Relational Access Control with Bivalent Permissions in a Social Web/ Collaboration Architecture

Todd Davies and Mike D. Mintz
Symbolic Systems Program
Stanford University
http://deme.stanford.edu
This paper is about
access control.
But we are not
specialists in access control research.
Deme with Anonymous user
Deme with logged in user
Symbolic Systems (new site beta)

What is Symbolic Systems?

The Symbolic Systems Program (SSP) at Stanford University focuses on computers and minds: artificial and natural systems that use symbols to represent information. SSP brings together students and faculty interested in different aspects of the human-computer relationship, including:

- **cognitive science**: studying human intelligence, natural languages, and the brain as computational processes;
- **artificial intelligence**: endowing computers with human-like behavior and understanding; and
- **human-computer interaction**: designing computer software and interfaces that work well with human users.

Symbolic Systems' affiliated faculty come from several departments at Stanford University, including Computer Science, Linguistics, Philosophy, Psychology, Communication, and Education. Our students are exposed to the tools of these disciplines -- formal methods, philosophical analysis, computer programming, and empirical research -- with the aim of being able to apply the appropriate tools to a chosen area of specialization. SSP alumni are found in various occupations, including software design and applications, teaching and research, law, medicine, and public service.

What's New in Symbolic Systems?

The next Symbolic Systems Forum will be on Thursday, May 20, 2010 (4:15-5:30 pm in 380-380C), featuring a screening of the video docudrama Breaking the Code, about the life of Alan Turing. Check the SSP calendar page for details and abstracts for Forum talks as they are scheduled.

Office hours for the Symbolic Systems Advising Fellows and Program Administrators are listed below for Spring Quarter. Note that AFs will not hold office hours during Finals Week. Watch here for updates:

- **Jimmy Chen, AF, T 3:00-5:00pm, Th 3:15-5:15pm in 460-040A**
- **Zavain Dar, AF, TTH 12:15 - 2:15 in 460-040A**
- **Todd Davies, Associate Director, TTh 10:30-11:30 am, or by appointment, in 460-040C**
- **Nat Hillard, AF, TTh 10AM-12PM in 460-040C**
- **Christopher Lin, AF, M 10:00-11:00am, T 1:30-3:30pm, W 10:00-11:00am in 480-060A**
- **Mike Mellowin, AF, W 3:00-6:00pm and Th 11:00am-12:00 noon in 460-040A**
- **Clayton Mellina, AF, MW 11:00am-1:00pm in 460-040A**
Deme aims to mirror the structure of real world groups.
Deme…

aims to merge collaborative production, document-centered discussion, and group decision making with content management, social networking, data sharing and portability, and user control
Deme’s technical orientation

End-user OOP/extensible content management
Content type inheritance
The Django web app framework
• Object-relational mapping
• Model-view code separation
Standard relational practice (no complex data structures in db cells)
Deme architecture
(see IWWOST ‘09 paper)
Access control has evolved...

Old, discretionary access control (DAC) model:
• Files with single owners, users
• Permissions stored with user as capabilities; or with file as an access control list (ACL)

Role-based access control (RBAC) adds:
• Permissions for roles
• Support for finer grain control (e.g. fields of a database record)
An emerging paradigm for the social Web:

Relational access control (RAC)

- access control rules (ACRs) stored separately from both subject and object
- allows very flexible specification of rules as a relation between subject, object, ability, and sign (positive and negative permissions)
- subjects can be groups of users; objects can be collections of objects
- rules can be subjects of further rules
- developed in depth in theoretical work on XML access control (especially by Dongwon Lee et al.)
ACRs may be stored...

as a set of rules in a language for specifying ACRs;

or

as first-class relation objects in the same database as the objects/subjects of permissions

(relation object access control - ROAC)
ROAC versus ACMs

In an access control matrix (ACM), rows are subjects and columns are objects, and the permission is defined at each cell.

In a ROAC database, each permission is its own row; columns are the fields of the permission, which is a relation object.
Some advantages of ROAC

Integrates permissions within database, so that code designed to interact with objects can access permissions/ACRs as well

Allows permissions to be searched and discussed more easily

Allows dynamic referencing through pointing

Allows end users to modify permissions within the normal UI
**BROAC - ** *Bivalent* relation

object access control

Traditional permissions are positive only - no distinction between absence of permission and prohibition

Bivalent permissions may be positive or negative

Bivalent permissions are useful for representing conflicts in permissions, e.g. a personnel staff member who would otherwise have access to their own interview file
Some characteristics of social Web/collaboration environments

Objects (photos, webpages, comments, etc.) can be tagged/labeled into multiple overlapping categories, with competing indications of permission.

Users can be members of multiple overlapping groups.

Groups can have positive, negative, or unspecified permissions.
Deme permissions

Principles:

1. A permission is a relation between a subject, an object, an ability, and a sign
2. Closed world assumption - if no relevant permission exists between a subject and an object, subject does not have that ability
3. Precendence:
 - More specific has precedence over less specific
 - Subject specificity has precedence over object specificity
 - Negative has precedence over positive
Practicalities: in *Deme*, you...

can specify a permission through membership in a collection (RecursiveMembership)

cannot specify competing permissions differing only in sign

cannot specify precedence between groups or collections
Precedence by permission types in *Deme*

<table>
<thead>
<tr>
<th>Subject</th>
<th>Agent</th>
<th>Item</th>
<th>Collection</th>
<th>All Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>One To</td>
<td>One To</td>
<td>One To</td>
<td>One To</td>
</tr>
<tr>
<td></td>
<td>One (1)</td>
<td>Some (2)</td>
<td>All (3)</td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>Some To</td>
<td>Some To</td>
<td>Some To</td>
<td></td>
</tr>
<tr>
<td></td>
<td>One (4)</td>
<td>Some (5)</td>
<td>All (6)</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>All To</td>
<td>All To</td>
<td>All To</td>
<td></td>
</tr>
<tr>
<td>Agents</td>
<td>One (7)</td>
<td>Some (8)</td>
<td>All (9)</td>
<td></td>
</tr>
</tbody>
</table>
Conflict Resolution in Deme - examples

Example 1. The executive director of a nongovernmental organization, who is hired and supervised by the NGO's board of directors, has access to most board documents as a member of the board's Group, but does not have access to those documents related to the board's deliberations over the executive director himself. The board's Group permission for reading its Folio is positive for the Collection of executive director hiring and review documents. The executive director's Agent permission for reading this Collection is negative. The latter (negative) permission has precedence. \(2(-)\) defeats \(5(+)\).
Example 2. Each student has access to their own transcript, but not to those of other students. The Group of students has a negative permission for reading a student's transcript. But a student's Agent permission is positive for reading their own transcript. The latter (positive) permission has precedence. $1(+) \text{ defeats } 4(-)$.
Example 3. A student is a programmer for an academic program, and also a member of the staff Group as well as the Group of students. The staff Group has a positive permission for reading student intern applications. The students Group has a negative permission for reading intern applications. The latter (negative) permission has precedence, reflecting a policy that students cannot view transcripts of other students, regardless of their staff status. 5(-) defeats 5(+).
For more info...

http://deme.stanford.edu

Sites powered by Deme:
• http://symsys.stanford.edu
• http://odbook.stanford.edu
• http://mindroll.org