Neuroscience of Decision Making

Samuel McClure Psychology Department 15 May 2008

The Ultimatum Game

- \$10 to divide between two players
- "Proposer" chooses a division
- "Receiver" can either
 - -Accept: both receive proposed amounts
 - Reject: both receive nothing
- How much should the Proposer offer?

The Trolley Problem

The Footbridge Problem

12%

Intertemporal choice

 Choice involving rewards available at different time delays

Example

Would you rather have \$10 today or \$11 tomor

Would you rather have \$10 in a year or \$11 in a year and a day?

Can behavior be captured by formal models?

The astonishing hypothesis

- "You, your joys and your sorrows, your memories and your ambitions, your sense of personal identity and free will, are in fact no more than the behavior of a vast assembly of nerve cells and their associated molecules" (Crick)
- With mechanistic / computational models of the brain we may be able to derive laws of behavior

Introduction to the brain

- Approximately 100 billion neurons
- Each with up to 10,000 connections with other neurons
- Most complicated computation device known in the universe
- Communication via electrical impulses and propagated by chemical synapses

Brain Recording Methods

Principles of Cognitive Neuroscience, Figure 3.14

Brain Stimulation Reward

A neural substrate that replaces external reward

Midbrain dopamine system

Principles of Cognitive Neuroscience, Figure 24.5

© 2008 Sinauer Associates, Inc.

Single-unit Recording

Encode a
reward
prediction error

 For a stimulus that predicts reward, dopamine fring indicates value of reward

(Schultz et al., 199

Role for the prefrontal cortex

- Greatly expanded in people compared to other animals
- Supports higher cognitive processes (working memory)
- Critical for decision-making (e.g. shopping experiment)

Recording human brain activity: Functional Magnetic Resonance Imaging

 Allows measurement of brain activity at the scale of individual brain structures (mm)

- Temporal resolution is on the order of many cognitive processes (sec)
- · Non-invasive

→ For the first time we can measure close to the root cause of decision making

Hypothesis

Dopamine-related reward systems discount reward at a higher rate than does the prefrontal cortex.

d	\in { Today, 2 weeks, 1 month }
d'-d	\in { 2 weeks, 1 month }
(R'-R)/R	∈ {1%, 3%, 5%, 10%, 15%, 25%, 35%, 50%}

Regions that respond preferentially to immediately available rewards

А

x = 4mm

z = -4mm

Regions that respond equally to rewards at all delays

В

% Signal Change

А

x = 44mm

x = 0mm

Amygdala and the Ultimatum Game Sanfey et al. (2003)

Unfair Offers

fMRI Results

Greene et al. (2001)

VMPFC and morality

People are utilitarian without VMPFC

Transcranial Magnetic Stimulation (TMS)

Stimulating DLPFC increases acceptance of unfair offers in the Ultimatum Game

Are people generally rational?

 "Automatic" brain responses create biases and heuristics that are probably generally correct

• We also have a prefrontal cortex to enable f exible behavior and correct decision errors (sometimes)