The frequency and distribution of *um* and *uh* in acquisition

Daisy Leigh • Stanford University • ddleigh@stanford.edu

Background

Children encounter production delays in conversation - especially turn-initially, when the demands of planning and producing an utterance slow down turn-timing. 1,2,3

Adult speakers use pragmatically meaningful delay markers (DMs) like *um* and *uh* to hold the floor when they encounter production problems. 4

The developmental trajectories of *um* and *uh* might be different: children need turn-initial DMs less as they get better at turn-timing, and turn-medial DMs more as they learn the pragmatics of conversation.

Study 1: ‘Shem’ Case study

Methodology

- **turn-initial**
 - um we should invite the mouses to play
 - *Shem,* English-speaking monolingual child
 - corpus data from 2.2 to 3.2
 - every DM coded for position in the turn
- **turn-medial**
 - I think um let’s play...
 - *Shem,* English-speaking monolingual child
 - every child-produced utterance coded for type

Results

- DMs more frequent in question-responses than child-initiated turns ($\chi^2 (1, N = 305) = 36.57, p < 0.001$)
- DMs more frequent in response to wh- vs. polar questions ($\chi^2 (1, N = 153) = 36.38, p < 0.001$)
- Turn-initial DMs significantly more likely in question-responses, turn-medial DMs in child-initiated turns ($\chi^2 (1, N = 305) = 27.15, p < 0.001$)

Predictions

- Do these initial predictions hold?
 - More complex child-directed questions (why, how) increased at the same time, suggesting that CDS becomes more complex as children’s linguistic and turn-timing skills develop - as observed by others 5

Study 2: ‘Providence’ Corpus study

Methodology

- **5 children (3 girls, 2 boys) from the Providence corpus**
- **Data from regular recordings between 1;4 and 3;4**
- **Every DM coded for turn-position and turn type, every child-produced utterance coded for turn-type**

Pattern 1

- Huge variation in the frequency of DM production: children who used the most showed similar patterns to Shem
- Lexisosyntactic competence (quantified by IPSyn, VOCD, MLU and DSS) did not directly relate to DM frequency
- Exposure to DMs in child-directed speech also did not fully account for the variation
- All children increased turn-initial DM production over time, but displayed one of two broad patterns:
 - **Pattern 1:** DMs used early to hold the floor while lexisosyntactic competence develops
 - **Pattern 2:** DM production increases in line with conversational experience; turn-medial DMs acquired after turn-initial
 - Together, this suggests that some children were still acquiring the pragmatic meaning of *um* and *uh* - only using them to hold the floor mid-utterance after having acquired them to mitigate turn-timing delays

Pattern 2

- Children start using DMs as early as (1;8), but with varying frequency
- This variation is a product of input, lexisosyntactic competence, sensitivity to pragmatic information, and a desire to hold the floor
- Children begin using DMs turn-initially when turn-timing pressures are particularly acute, and then begin producing turn-medial DMs to manage delays in more complex utterances

References

Many thanks to Eve Clark, Rob Podesva, Meghan Summer and the Stanford Linguistics community for their invaluable discussion, guidance and support.