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Preface

At a certain point, one adopts a mode of learning mathematics. Then at a
later point, after progressing through various styles of teaching and writing, one
develops one’s own point of view for how mathematics is to be taught. This book
is an arrogant attempt to reassemble linear algebra according to the author’s
pedagogy.

About this book

There are countless (seriously, too many) books on linear algebra, and it is
necessary to ask why we need another. Most of these books are designed for
a first course in linear algebra for college students, which possibly include an
emphasis in proof writing. However, there is a definite discrepancy between
the presentation of linear algebra in such textbooks and how mathematicians
understand the theory. Almost every professional mathematician has a natural
functorial picture of linear algebra, but this is rarely written down in textbooks.
Hence in reality, one acquires the functorial understanding while learning more
advanced mathematics, such as commutative algebra or vector bundles. The
philosophy of this book is that the determined reader can benefit from being
directly introduced to the abstract development of linear algebra.

Hence this book will be most suitable to a reader who is (1) planning to
pursue a career in mathematics, and (2) is already comfortable with rigorous
presentations of mathematics. I believe it can also be used for a second course in
linear algebra. The audience I had in mind when writing the book are students
who had experience in mathematical competitions wanting to learn college-level
mathematics. There are minimal prerequisites for reading this book, aside from
fluency in mathematical communications, i.e., reading and writing proofs.

I tried to minimize the material dealt in this book. My conception of the
book is that it is the bare bones of linear algebra. Most mathematicians, working
in all fields, will be familiar with all the material in this book. Linear algebra
arguably is the main tool for studying mathematical objects. On the other
hand, the book will serve as a solid background for learning other parts of
mathematics. I have tried to explain some of the applications of linear algebra
in the epilogue.
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Organization

In Chapter 1, we introduce näıve set theory. Set theory provides the foundation
of modern mathematics, and it is necessary that the reader is familiar with sets
and the basic operations. We have also included a first taste of category theory,
introducing the concept of commutative diagrams and universal properties.

In Chapter 2, we introduce the theory of vector spaces. Linear algebra is,
and should be, the study of vector spaces and linear maps, not of matrices.
Matrices are a good tool for computations, but abstraction is necessary for
a solid conceptual picture. During the first half of the chapter, we carefully
develop various constructions in the category of vector spaces, e.g., products,
direct sum, subspaces, quotient spaces, kernel, cokernel, image, internal hom,
etc. In the second half, we prove the theorem that every vector space has a basis,
and discuss applications of this fact. We will not ignore infinite-dimensional
spaces. There is also a section on applications of linear algebra in combinatorics,
for students with a competition mathematics background.

In Chapter 3, we introduce tensor products, the symmetric algebra, and
the exterior algebra. We discuss the universal properties of these vector spaces
as a motivation. The determinant is defined using the exterior algebra, as it
should be. Using this definition, we prove Cramer’s rule and discuss Gaussian
elimination.

In Chapter 4, we introduce modules over a commutative ring. Modules are
important objects in commutative algebra, but our main goal in this chapter is
study the different possible ways a linear map can act on a vector space. We
prove the classification theorem of finitely generated modules over a principal
ideal domain, and use this to discuss Frobenius normal form, Jordan normal
form, eigenvectors, eigenspaces, and generalized eigenspaces.

In Chapter 5, we do linear algebra combined with analysis. We define inner
product structures and finite-dimensional Hilbert spaces, and lead up to proving
the spectral theorem on finite-dimensional spaces. There is a more algebraic
proof in the finite-dimensional case, using the Jordan normal form for instance,
but we use an analytic argument that applies also to compact operators on
infinite-dimensional Hilbert spaces.

There are plenty of exercises. I have tried to meld the exercise with the
text so that they appear in context. Some of the exercises will be used in later
proofs, and some of them will be used implicitly throughout the book. Others
will be unimportant from a theoretical perspective, but nonetheless helpful in
properly understanding the material. Abstraction can be a double-edged sword,
as the abstract loses meaning when disconnected from the concrete. By doing
the exercises, the reader is expected to train moving between the two worlds.

Acknowledgements
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a set of linear algebra notes remained. I would like to thank everyone who had
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was working on the book.

The current text is a draft, and will be updated occasionally. I beg ev-
eryone to send me typos, grammatical errors, mathematical errors, sugges-
tions, comments, criticisms, anything about the book. You can reach me at
dkim04@stanford.edu. The latest version of this book can be obtained at my
website http://dongryulkim.wordpress.com. Happy reading!

April, 2020

Dongryul Kim

Here, I keep a list of chores I need to do. The draft will be a final draft once
the list is empty.

• Probably expand the chapter “Preface” once I indicate optional/required
material

• Do we move where we discuss Gaussian elimination? Maybe matrices and
algorithms deserve a separate section?

• Write about the LU decomposition

• Include somewhere a discussion Cayley–Hamilton

• Fill in the section “Duality in linear programming”

• Introduce functional calculus for self-adjoint operators

• Check which are optional, which are required

• Rank exercises by difficulty?

• Give hints for exercises?

• Add references at the end of each chapter?
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Chapter 1

Sets

Most of mathematics is grounded on the notion of sets. In this chapter, we
quickly review the basic set theory we use throughout the book, assuming that
the reader is familiar with most of the material.

1.1 Sets and maps

In standard mathematics, that is, Zermelo–Fraenkel set theory, literally every
mathematical object is a set. Each of the numbers 0, 1, 2, . . . is actually a set:

0 = ∅ = {}, 1 = {∅} = {{}}, 2 = {∅, {∅}} = {{}, {{}}}, . . . .

But because the notion of sets provides a foundation for mathematics, it does
not make sense to mathematically define what a set is. Instead, people take the
notion as granted and assume that sets satisfy certain axioms. But we are not
going to worry to much about these issues and the following definition will be
good for us.

Definition 1.1.1. A set is a well-defined collection of objects. If an object x
is inside the set X, we say that x is an element of X and write x ∈ X.

Example 1.1.2. The set of natural numbers Z≥0 = {0, 1, 2, . . .} is a set. The
set of integers Z = {. . . ,−1, 0, 1, . . .} is a set. The set of even integers

2Z = {. . . ,−2, 0, 2, 4, . . .} = {2x : x ∈ Z}

is a set.

An issue arises when one tries to look at the set of all sets. In fact, in
Zermelo–Fraenkel set theory, it is possible to prove that there is no set that
contains all sets. But again, we are going to ignore such issues.

Definition 1.1.3. Given two sets X and Y , if x ∈ Y implies x ∈ X, we say
that Y is a subset of X and write Y ⊆ X. Equivalently, we say that X is a
superset of Y and write X ⊇ Y . For instance, {1, 3} ⊆ {1, 2, 3}.

1



2 CHAPTER 1. SETS

Definition 1.1.4. Given two sets X and Y , we define the difference X \Y as
the subset

{x ∈ X : x /∈ Y } ⊆ X

of X.
A subset of a subset is a sub-
set Exercise 1.1.A. Let A,B,C be sets. Show that if A ⊆ B and B ⊆ C, then

A ⊆ C.
Equality is inclusion in both
directions Exercise 1.1.B. Let A and B be sets. If A ⊆ B and B ⊆ A, show that A = B.

(Here, A = B means that they have the same elements, i.e., x ∈ A if and only if
x ∈ B.) In the future, this will be a useful way to prove that two sets are equal.

Definition 1.1.5. Given two sets X and Y , their intersection X ∩ Y is the
set consisting of elements in both of the sets, and their union X ∪ Y is the set
consisting of elements in either one of the sets. For instance, {1, 3}∩{2, 3} = {3}
and {1, 3} ∪ {2, 3} = {1, 2, 3}.

Exercise 1.1.C. Let A and B be sets. Show that A∩B and A\B are disjoint,
i.e., their intersection is ∅, and that their union is A.

Intersection and union are
associative Exercise 1.1.D. For sets A,B,C, show that (A ∩ B) ∩ C = A ∩ (B ∩ C) and

(A ∪B) ∪ C = A ∪ (B ∪ C).
Intersection distributes over
union Exercise 1.1.E. For sets A,B,C, show that (A∪B)∩C = (A∩C)∪ (B ∩C).

We are now ready to definite maps between sets. The right way to think
about a map is as a machine that takes in an element of one set and spits out
an element of another set. But this is not mathematically rigorous, and to make
it rigorous, we need to complicate it a little bit. But be sure keep the intuitive
picture of a map while reading the formal defenition.

Definition 1.1.6. Given two sets X and Y , define their Cartesian product

X × Y = {(x, y) : x ∈ X, y ∈ Y }

as the set of (ordered) pairs (x, y) where x and y are elements of X and Y
respectively.

Definition 1.1.7. Let X and Y be sets. A map or function f : X → Y is
a subset f ⊆ X × Y such that for each element x ∈ X, there exists a unique
y ∈ Y such that (x, y) ∈ f . In such a case, we write f(x) = y or f : x 7→ y. We
call the set X the domain of f and the set Y the target or codomain of f .

Example 1.1.8. Consider the map f : R→ R given by f(x) = x2. According
to this definition, this is actually a subset

f = {(x, x2) : x ∈ R} ⊆ R× R.

If you draw this subset out on the coordinate plane R × R, you get the graph
of the parabola y = x2.
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Exercise 1.1.F. For each set X, show that there is a unique map ∅ → X.
(Note that this is true even for X = ∅.) Also show that there is a unique map
X → {0}. (This set {0} can be replaced by any set with exactly one element.)

Given an arbitrary set X, there is a canonical map X → X we can define.

Definition 1.1.9. The identity map on X is defined as

idX : X → X; x 7→ x.

Formally, it is the diagonal subset

idX = ∆ = {(x, x) : x ∈ X} ⊆ X ×X.

We can also compose to maps to get another map.

Definition 1.1.10. Let f : X → Y and g : Y → Z be two maps. We define
their composite to be

g ◦ f : X → Z; x 7→ g(f(x)).

It is rather unfortunate that g ◦ f means applying f first and then applying
g. But this notation is pretty set in mathematics, so just remember to switching
the order every time you compose maps. From now on, I will no longer use the
“subset of X ×Y ” interpretation of a map. Nobody seriously thinks of maps as
sets, and instead tries to distinguish maps and sets as different types of objects.
If we really want to discuss that particular subset, we will refer it to the graph
of f .

Exercise 1.1.G. For f : X → Y a map, show that f ◦ idX = idY ◦f = f .
Composition is associative

Exercise 1.1.H. Given maps f : X → Y , g : Y → Z, and h : Z → W , show
that (h ◦ g) ◦ f = h ◦ (g ◦ f). This shows that we can just write this composite
as h ◦ g ◦ f without ambiguity.

Definition 1.1.11. Let f : X → Y be a map. For a subset T ⊆ Y , we define
its inverse image as

f−1(T ) = {x ∈ X : f(x) ∈ T}.

For a subset S ⊆ X, we define its image as

f(S) = {f(x) : x ∈ S}.
Inverse image distributes
over unions and intersec-
tions

Exercise 1.1.I. Let f : X → Y be a map. If A,B ⊆ Y are two subsets, show
that f−1(A∩B) = f−1(A)∩ f−1(B) and f−1(A∪B) = f−1(A)∪ f−1(B). But
the analogous statement does not hold for images. Find examples of maps f
and C,D ⊆ X such that f(C ∩D) 6= f(C) ∩ f(D).

Definition 1.1.12. A map f : X → Y is called injective if for every y ∈ Y
there exists at most one x ∈ X such that f(x) = y. It is called surjective if
for every y ∈ Y there exists at least one x ∈ X such that that f(x) = y. A map
is called bijective if it is both injective and surjective.
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When a map is injective, we will sometimes draw the arrow as X ↪→ Y to
indicate injectivity. When it is surjective, we will draw it as X � Y . When it
is bijective, we will draw X

∼−→ Y or sometimes X ∼= Y .

Exercise 1.1.J. Show that a map f : X → Y is surjective if and only if
f(X) = Y .

Injectivity and surjectivity
are closed under composi-
tion

Exercise 1.1.K. Let f : X → Y and g : Y → Z be maps. Show that if f and
g are both injective, then g ◦ f is injective. Likewise, show that if f and g are
surjective, then g ◦ f is surjective.

Exercise 1.1.L. Let f : X → Y and g : Y → Z be maps. Show that if g ◦ f
is injective, then f is injective. Dually, show that if g ◦ f is surjective, then
g is surjective. Find counterexamples to the statement that the other map is
injective/surjective.

Note that id : X → X is always bijective. From this exercise, we see that if
g ◦ f = idX , then f is injective and g is surjective. Hence if g ◦ f = idX and
f ◦ g = idY then both f and g are bijective. In this case, we say that f is an
inverse map of g and vice versa.

Bijective maps have inverses

Exercise 1.1.M. Let f : X → Y be a bijective map. Show that there exists a
map g : Y → X such that g ◦ f = idX and f ◦ g = idY .

Definition 1.1.13. We say that a set X is finite if there is a bijection between
X and {1, 2, . . . , n} for some n ∈ Z≥0 = {0, 1, . . .}. In this case, we write
|X| = n or #X = n, and call n the cardinality of size of the set X.

Let X and Y be finite sets. Then there exists an injection X ↪→ Y if and
only if |X| ≤ |Y |. However, it is not true that there exists a surjection Y � X
if and only if |X| ≤ |Y |. Take X = ∅.

1.2 Products, coproducts, and sets of maps

We have seen how to take the product X×Y of two sets X and Y . We just take
all possible pairs (x, y) for x ∈ X and y ∈ Y . This can be easily generalized to
products of more sets. If we have sets X1, . . . , Xn, we should be able to take

n∏
i=1

Xi = X1 ×X2 × · · · ×Xn = {(x1, . . . , xn) : x1 ∈ X1, . . . , xn ∈ Xn}.

Note that if X1, . . . , Xn are finite sets, then X1 × · · · × Xn is also a finite set
and

|X1 ×X2 × · · · ×Xn| = |X1||X2| · · · |Xn|.

This explains why we call this a product set.
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Exercise 1.2.A. Show that the canonical map

X × Y × Z → (X × Y )× Z; (x, y, z) 7→ ((x, y), z)

is a bijection. We can easily think of doing more complicated things by placing
parentheses differently.

We can also start taking infinite products in a similar way. Let I be a set,
which indexes sets. That is, for each element i ∈ I there is going to be a set
Xi, of which we will try to take a product. This indexing set I can be infinite
like Z≥0 = {0, 1, . . .} or very infinite like R. Given this data, we can define their
product.

Definition 1.2.1. Let I be an indexing set, and for each i ∈ I let Xi be a set.
The product of Xi is defined as∏

i∈I
Xi = {(xi)i∈I : xi ∈ Xi}

where (xi)i∈I is an infinite tuple indexed by I. If you want to be super rigorous,
you can think of the infinite tuple as a map ϕ : I →

⋃
i∈I Xi such that ϕ(i) ∈ Xi

for all i ∈ I.

Exercise 1.2.B. If I = ∅, what is
∏
i∈I Xi? How many elements does it have?

The product of the empty
set with other sets is emptyExercise 1.2.C. Show that if there exists an i0 ∈ I such that Xi0 = ∅, then

the product is
∏
i∈I Xi = ∅.

On the other hand, what if all the sets Xi are nonempty?
Products of nonempty sets
are nonemptyProposition 1.2.2 (Axiom of Choice). Let I be an indexing set, and for each

i ∈ I let Xi 6= ∅ be a nonempty set. Then their product
∏
i∈I Xi is also

nonempty.

A product of sets comes with canonical projections maps defined as, for each
i0 ∈ I,

πi0 :
∏
i∈I

Xi → Xi0 ; (xi)i∈I 7→ xi0 .

Exercise 1.2.D. Suppose Xi are all nonempty. Assuming the Axiom of Choice,
show that each projection map πi0 is surjective.

There is a dual notion of products, called coproducts. A funny habit of
mathematicians is that they put the prefix “co-” in front of a word to make
another word that describes the notion that is dual to the original one. It might
not seem very clear at this point why coproducts is the dual notion of products,
but we will see it in the next section. It is amazing how a lot of mathematics
come in dual pairs.
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Definition 1.2.3. Let I be an indexing set, and for each i ∈ I let Xi be a set.
The coproduct of Xi or the disjoint union of Xi is defined as∐

i∈I
Xi = {(i, x) : i ∈ I, x ∈ Xi} ⊆ I ×

⋃
i∈I

Xi.

The coproduct also comes with canonical maps, this time from the individual
sets to the coproduct. For each i0 ∈ I, define the inclusion map

ιi0 : Xi0 →
∐
i∈I

Xi; x 7→ (i0, x).

Exercise 1.2.E. Convince yourself if X1, . . . , Xn are finite sets, then X1q· · ·q
Xn is also a finite set and

|X1 qX2 q · · · qXn| = |X1|+ |X2|+ · · ·+ |Xn|.

Exercise 1.2.F. If I = ∅, what is
∐
i∈I Xi?

Exercise 1.2.G. Show that each ιi0 is always injective, without any assump-
tions.

Before moving on, let me introduce one more construction. Given two sets
X and Y , the maps from X to Y themselves form a set.

Definition 1.2.4. Let X and Y be sets. The set of maps from X to Y is
denoted by Y X or MorSet(X,Y ).

The sans-serif Set indicates that we are working with sets, not some other
mathematical structure, and Mor stands for morphisms, which are just maps
when we work with sets. In algebra, it is important to always be aware of what
“type” of mathematical object we are working with, and this will be a sort of
reminder. For the rationale behind the other notation, do the following exercise.

Exercise 1.2.H. Let X and Y be finite sets. Convince yourself that Y X is
finite and |Y X | = |Y ||X|.

The next exercise can be confusing at first, but it is a crucial idea in math-
ematics that you can sometimes play around with maps like this. We will see
the same idea over and over in different contexts.

Maps between sets allow
currying Exercise 1.2.I. Let X, Y , and Z be sets. Show that the map

MorSet(X,MorSet(Y,Z))→ MorSet(X × Y, Z);

(x 7→ (fx : y 7→ z)) 7→ ((x, y) 7→ z = fx(y))

is a bijection. This map can be described alternatively as sending a map f :
X → MorSet(Y,Z) to (x, y) 7→ (f(x))(y).
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1.3 Fun with diagrams

So far we have not been looking at complicated situations with many functions
and sets, but once we go into serious business, it will be hard to keep track of all
the sets and maps. Diagrams will make this job considerably easier and more
intuitive. For instance, if we have maps f : A→ B, g : B → D and h : A→ C,
k : C → D, we can draw this entire data as

A B

C D.

f

h g

k

There are two ways to get a map A → D from this diagram: g ◦ f and k ◦ h.
Oftentimes, these two maps will be equal, and in this case, we are going to
say that this diagram commutes. In general, a diagram can be much more
complicated, and we are going to say that it commutes when all possible ways
of composing maps give the same map as long as they have the same domain
and target.

For example, consider the following diagram:

A B C

D E F.

a

b

c

d e

f g

This diagram commutes when f ◦ b = d ◦ a and g ◦ d = e ◦ c and g ◦ f ◦ b =
g ◦ d ◦ a = e ◦ c ◦ a. But note that the last condition is unnecessary because
f ◦ b = d ◦ a already implies g ◦ f ◦ b = g ◦ d ◦ a and g ◦ d = e ◦ c implies
g ◦d◦a = e◦ c◦a. Therefore the diagram commutes if and only if the two small
squares commute.

Let me now prove an interesting proposition.
Maps into two sets is the
same as a map into their
product

Proposition 1.3.1 (Universal property for products). Let X and Y be sets,
and π1 : X × Y → X and π2 : X × Y → Y be the projection maps. Let W be
an arbitrary set and f : W → X and g : W → Y be arbitrary maps. Then there
exists a unique map h : W → X × Y such that f = π1 ◦ h and g = π2 ◦ h, i.e.,
the following diagram commutes:

W

X × Y

X Y.

h

f g

π1 π2

Proof. We first prove existence. Consider the map

h : W → X × Y ; w 7→ (f(w), g(w)).
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Then π1(h(w)) = π1((f(w), g(w))) = f(w) means that f = π1◦h and π2(h(w)) =
π2((f(w), g(w))) = g(w) means that g = π2 ◦ h. That is, this h satisfies the
condition.

On the other hand, for h to satisfy this condition, h has to be precisely
this map. The condition π1 ◦ h = f means that the first component of h(w)
is f(w), and the other condition π2 ◦ h = g means that the second component
of h(w) is g(w). Therefore if h satisfies the condition, it needs to send w to
h(w) = (f(w), g(w)). This shows uniqueness.

Such a property is called a universal property. It gives a universal char-
acterization of this product X × Y . Suppose there is another set (X × Y )′ with
maps π′1 : (X × Y )′ → X and π′2 : (X × Y )′ → Y satisfying the same property:
for each f : W → X and g : W → Y there exists a unique h : W → (X × Y )′

such that f = π′1 ◦ h and g = π′2 ◦ h. If we apply this property to W = X × Y
and f = π1, g = π2, then we get a unique map ψ : X ×Y → (X ×Y )′ such that
π1 = π′1 ◦ψ and π2 = π′2 ◦ψ. But if we apply Proposition 1.3.1 to W = (X×Y )′

and f = π′1 and g = π′2 then we get a unique map ϕ : (X × Y )′ → X × Y such
that π′1 = π1 ◦ ϕ and π′2 = π2 ◦ ϕ.

X × Y

(X × Y )′

X Y

ψ

π1 π2

π′1 π′2

(X × Y )′

X × Y

X Y

ϕ

π′1 π′2

π1 π2

So we have canonically obtained maps ϕ and ψ between X × Y and (X ×
Y )′. But I further claim that these maps are inverses to each other, and hence
bijections. In view of the remark after Exercise 1.1.L, we only need to show that
ψ ◦ ϕ = idX×Y and ϕ ◦ ψ = id(X×Y )′ . Here, we are going to use the uniqueness
part of the property. Note that the two diagrams

X × Y

(X × Y )′

X × Y

X Y

ψ

π1 π2
ϕ

π′1 π′2

π1 π2

X × Y

X × Y

X Y

idX×Y

π1 π2

π1 π2

are commutative. By the uniqueness part of Proposition 1.3.1, applied to W =
X × Y and f = π1, g = π2, we conclude that ϕ ◦ ψ = idX×Y . By a similar
argument, but this time applying the property for (X × Y )′, we also see that
ψ ◦ ϕ = id(X×Y )′ . So we have shown, by just playing around with diagrams,
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that the two sets (X × Y )′ and X × Y have a unique bijection between them.
Maybe it seems rather foolish to make this complicated argument, but again,
we will revisit this idea as we proceed. The power of the argument shines when
there is too much structure in the objects we are studying, and so constructing
invertible maps between the objects is too complicated.

It is now time for you to do something similar. The coproduct, or disjoint
union, also has a universal property. Surprisingly, you just reverse all the arrows!

Maps from two sets is the
same as a map from their co-
product

Exercise 1.3.A (Universal property for disjoint unions). Show the following
universal property for the coproduct: for arbitrary maps f : X → W and
g : Y →W , there exists a unique map h : X qY →W such that f = h ◦ ι1 and
g = h ◦ ι2.

X Y

X q Y

W

ι1

f

ι2

g

h

Again, you can use the same argument to show that this property determines
X q Y up to invertible maps. Products and coproducts can be generalized to
limits and colimits, but we won’t talk about this. Look them up if you’re
interested.

Exercise 1.3.B. Fix sets A,B,C and maps α : A → C and β : B → C.
Construct a set P along with maps π1 : P → A and π2 : P → B that satisfy the
following property: for arbitrary maps f : W → A and g : W → B satisfying
α ◦ f = β ◦ g, there exists a unique map h : W → P such that f = π1 ◦ h and
g = π2 ◦ h.

W

P B

A C

g

f

h

π2

π1 β

α

(This set P is called the fiber product of A and B over C.)

1.4 Equivalence classes

Equivalent classes provide us with a way of saying that two things are the
“same”. Consider the set {1, 2, 3, 4, 5}. If we care about these numbers as they
are, we can just work with them. But if we only care about the parity of the
numbers, whether they are even or odd, 1 and 3 makes no difference at all. Then
we may as well say that 1 is the “same” as 3, in this perspective. We want this
notion of “same” to satisfy these properties:
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Figure 1.1: Visualizing an equivalence relation

(i) Always, x is the same as x.

(ii) If x is the same as y, then y is the same as x.

(iii) If x is the same as y and y is the same as z, then x is the same as z.

These are reasonable requirements for what we would like to call the same. This
motivates the definition of equivalence relations.

Definition 1.4.1. Let X be a set. An equivalence relation R is a subset
R ⊆ X×X satisfying the following properties: (we are going to denote (x, y) ∈ R
as x ∼R y, because this is indicative of it being a relation rather than a subset)

(EQ1) For all x ∈ X, x ∼R x.

(EQ2) For all x, y ∈ X, x ∼R y if and only if y ∼R x.

(EQ3) For all x, y, z ∈ X, if x ∼R y and y ∼R z then x ∼R z.

Imagine that there is a point corresponding to each element of X, and the
two dots corresponding to x, y ∈ X are connected by an edge if x ∼R y, as in
Figure 1.1. Then you could visualize the set of points forming groups, so that
no two points in different groups are connected, while every two points in the
same group are connected.

Definition 1.4.2. For x ∈ X, we define its equivalence class as

[x] = {y ∈ X : x ∼R y} ⊆ X.

This is going to be the group which contains x, or the set of things that are the
“same” as x.

Equivalence classes form a
partition of the original set Exercise 1.4.A. Show that if x ∼R y, then [x] = [y]. (Hint: show [x] ⊆ [y]

and [y] ⊆ [x].) Show that, on the other hand, if x 6∼R y, then [x] and [y] are
disjoint, i.e., [x] ∩ [y] = ∅.

We can now consider collapsing these sets like [x] into a single point.

Definition 1.4.3. Let X be a subset with an equivalence relation R. Given a
subset S ⊆ X, if there exists an element x ∈ X such that S = [x], then we say
that S is an equivalence class. We define the quotient of X by R as

X/R = {equivalence classes of X with respect to R}.
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There is always a canonical projecion map

π : X → X/R; x 7→ [x].
A map that sends equiva-
lent elements to the same el-
ement is the saem as a map
from the quotient

Exercise 1.4.B (Universal property for quotients). Let X be a set with an
equivalence relation R, and let f : X → Y be a function satisfying f(x1) = f(x2)
if x1 ∼R x2. Show that f factors uniquely through π, i.e., there exists a unique
function g : X/R→ Y such that f = g ◦ π.

X Y

X/R

π

f

g

Sometimes, we would want to force some elements to be equal, but the
elements we want to collapse might not be an equivalence relation. Consider
the set {1, 3, 5}, and suppose that for some reason we want to identify 1 = 3
and also 3 = 5. The solution is easy. We collapse all 1, 3, 5 into a single element.

Definition 1.4.4. Take an arbitrary subset S ⊆ X. The equivalence relation
generated by S is the following equivalence relation: x ∼R y if and only if
there exists an n ≥ 0 and a sequence x = x0, x1, . . . , xn = y of elements in X
such that for each 0 ≤ j ≤ n− 1, either (xj , xj+1) ∈ S or (xj+1, xj) ∈ S. (Here,
if n = 0 we get x ∼R x.)

Example 1.4.5. If X = {1, 2, 3, 4, 5} and S = {(1, 3), (3, 5)}, then

R = {(1, 1), . . . , (5, 5), (1, 3), (3, 1), (1, 5), (5, 1), (3, 5), (5, 3)}.

Exercise 1.4.C. Check that the R constructed as above is indeed an equiva-
lence relation on X. (That is, verify the three axioms EQ1, EQ2, and EQ3.)

Exercise 1.4.D. If R′ is another equivalence relation on X such that S ⊆
R′, show that R ⊆ R′. This means that R is the minimal (under inclusion)
equivalence relation containing S.

Because we are lazy, for an arbitrary S ⊆ X ×X we will write

X/S = X/R

where R is the equivalence relation generated by S. Because X/S is a quotient,
it comes with a map π : X → X/R = X/S.

Exercise 1.4.E. Let X be a set and let S ⊆ X × X be an arbitrary subset.
Let f : X → Y be a function satisfying f(x1) = f(x2) if x1 ∼S x2. Show that
f factors uniquely through π : X → X/S, i.e., there exists a unique function
g : X/S → Y such that f = g ◦ π.

X Y

X/S

π

f

g
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Equivalence relations can be used to construct many different objects. Here
is the dual version of Exercise 1.3.B.

Exercise 1.4.F. Fix sets A,B,C and maps α : C → A and β : C → B. Recall
that there are inclusion maps ι1 : A → A q B and ι2 : B → A q B. Define the
set

P = AqB/(ι1(α(c)) ∼ ι2(β(c)) for all c ∈ C)

which will come with maps

j1 : A
ι1−→ AqB → P, j2 : B

ι2−→ AqB → P.

Show that for arbitrary maps f : A→W and g : B →W satisfying f ◦α = g◦β,
there exists a unique map h : P →W such that f = h ◦ j1 and g = h ◦ j2.

C B

A P

W

β

α j2

gj1

f
h

(This P is called the fiber coproduct of A and B over C.)

Exercise 1.4.G. Let’s try to construct the integers Z from the natural numbers
Z≥0. Consider the relation

(a, b) ∼ (c, d) ⇔ a+ d = b+ c

on Z2
≥0. Check that this is an equivalence relation. There is a map s : Z2

≥0 → Z
given by (a, b) 7→ a − b, and check that (a, b) ∼ (c, d) implies s(a, b) = s(c, d).
This shows that the map s factors as

s : Z2
≥0

π−→ (Z2
≥0/ ∼)

t−→ Z.

Show that this map t is a bijection. This shows that we may construct the
integers Z as taking the quotient of Z2

≥0 by this equivalence relation.

Exercise 1.4.H. We can similarly construct Q from Z. Consider the relation

(a, b) ∼ (c, d) ⇔ ad = bc

on the set Z × (Z \ {0}), and check that this is an equivalence relation. Show
that we can identify Q with the quotient (Z× (Z \ {0}))/ ∼.



Chapter 2

Vector spaces

Linear algebra is the study of linear structures. Historically, the motivation for
the subject was solving systems of linear equations. Given an equation like{

3x+ y = 5,

x+ 3y = 7,

how do we solve it? This question led mathematicians such as Leibniz, Cramer,
and Gauss to study properties of systems of linear equations. Later, the notion
of matrices was introduced to record and manipulate equations more easily. For
examply, the above equation could be written as[

3 1
1 3

] [
x
y

]
=

[
5
7

]
using matrix notation. Then multiply the inverse matrix from the left on both
sides to solve the equation.

But such a concrete point of view is not always helpful in developing a theory.
When you know too much about an object, it is easy to get lost in the pile of
information. Abstraction is supposed to deal with such problems by taking away
some, but not too much, information so that only the essential ones stand out.

In the abstract approach to linear algbera, we study mathematical objects
called vector spaces. A vector space is a set with a linear structure, as we shall
define it in Section 2.2. We will try to understand these objects and the maps
between them, look at ways to construct new vector spaces, and eventually
classify all of them.

2.1 Fields

To definite a linear structure, we first need to choose a “base” for developing the
notion of linearity . In Euclidean geometry, we work over the real numbers R,
roughly meaning that the notion of linearity works over R. For instance, we can

13
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take a vector v ∈ R2 in the Euclidean plane and multiply it by any real number.
A field is supposed be this scalar number system to which we can multiply a
vector.

A field is a set with addi-
tion, subtraction, multiplica-
tion, and division

Definition 2.1.1. A field k is a set with the choice of two elements1 0, 1 ∈ k
and two maps +, · : k × k → k satisfying the following conditions: (Here, we
denote +(a, b) = a + b and ·(a, b) = a · b because they act like addition and
multiplication.)

(F0) 0 6= 1.

(F1) For all a ∈ k we have a+ 0 = 0 + a = a.

(F2) For all a, b ∈ k we have a+ b = b+ a.

(F3) For all a, b, c ∈ k we have a+ (b+ c) = (a+ b) + c.

(F4) For all a ∈ k there eaists an (−a) ∈ k such that a+ (−a) = (−a) + a = 0.

(F5) For all a ∈ k we have a · 1 = 1 · a = a

(F6) For all a, b ∈ k we have a · b = b · a.

(F7) For all a, b, c ∈ k we have a · (b · c) = (a · b) · c.
(F8) For all a ∈ k with a 6= 0 there eaists an a−1 ∈ k such that a · a−1 =

a−1 · a = 1.

(F9) For all a, b, c ∈ k we have a · (b+ c) = (a · b) + (a · c).

The first axiom (F0) is stating that the field is not degenerate, i.e., has at
least two elements. The next axioms (F1) to (F4) tell us about how addition
behaves. Addition should have an identity element called 0, be commutative,
be associative, and have inverses. The axioms (F5) to (F8) state analogous
properties for multiplication. One difference is that 0 need not have a multi-
plicative inverse. The last axiom (F9) states that multiplication distributes over
addition.

Example 2.1.2. The set of rational numbers Q is a field under usual addition
and multiplication. The set of real numbers R and the set of complex numbers
C are also fields under normal addition and multiplication.

Example 2.1.3. Let p be a prime number. We consider the set

Fp = {0, 1, 2, . . . , p− 1},

and define addition and multiplication modulo p. Then Fp is a field.

Exercise 2.1.A. Let k be a field, and let a, b, c ∈ k. Show that a + c = b + c
implies a = b. Show that a · c = b · c and c 6= 0 imply a = b. Show that a · b = 0
implies a = 0 or b = 0.

Multiplication by zero makes
everything to zero

1Here, 0 and 1 are not actually the integers 0 and 1. I could have used the symbols s and
t to denote them if I wanted, but they play the role of 0 and 1. So it is helpful to indicate
this fact by using the notations 0 and 1.
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Exercise 2.1.B. Let k be a field. Show that for all x ∈ k, we have x · 0 = 0.
(Hint: multiply both sides of 0 + 0 = 0 by x.) So 0 cannot have a multiplicative
inverse, because of (F0).

Exercise 2.1.C. Consider the subset

Q(i) = {a+ bi : a, b ∈ Q} ⊆ C.

Check that Q(i) is a field under normal addition and multiplication. (Here, you
also need to verify that x, y ∈ Q(i) implies x + y, xy ∈ Q(i), i.e., that addition
and multiplication are well-defined.)

Sometimes, like in Fp, adding 1 many times can get you back to 0.

Definition 2.1.4. Let k be a field. If the sequenece 1, 1 + 1, 1 + 1 + 1, . . . never
reaches 0, we say that k has characteristic zero, and write char k = 0. If one of
1 + · · ·+ 1 is equal to 0, we define its characteristic char k as the least positive
integer n such that

n︷ ︸︸ ︷
1 + · · ·+ 1 = 0.

For instance, charQ = 0 and charC = 0 but charFp = p.

Exercise 2.1.D. Show that the characteristic of a field is either 0 or a prime
number.

Every characteristic zero
field contains the rationalsExercise 2.1.E. Show that if char k = 0 for a field k, then there exists a map

i : Q→ k satisfying i(0) = 0, i(1) = 1, i(a+b) = i(a)+ i(b), and i(ab) = i(a)i(b)
for all a, b ∈ k.

2.2 Vector spaces

We are now ready to define vector spaces. This notion is supposed to capture
a linear structure, such as what a scaling means, or what a linear function on
this space is.

A vector space is a set with
addition and scalar multipli-
cation

Definition 2.2.1. Fix a field k. A vector space over k, or a k-vector space
is a set V with the choice of an element 0 ∈ V and two maps + : V × V → V
and · : k × V → V satisfying the following conditions:

(VS1) For all v ∈ V we have v + 0 = 0 + v = v.

(VS2) For all v, w ∈ V we have v + w = w + v.

(VS3) For all v, w, u ∈ V we have (v + w) + u = v + (w + u).

(VS4) For all v ∈ V there exists an (−v) ∈ V such that v+(−v) = (−v)+v = 0.

(VS5) For all v ∈ V we have 0 · v = 0 and 1 · v = v.

(VS6) For all v ∈ V and a, b ∈ k we have (a · b) · v = a · (b · v).

(VS7) For all v ∈ V and a, b ∈ k we have (a+ b) · v = a · v + b · v.
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(VS8) For all v, w ∈ V and a ∈ k we have a · (v + w) = a · v + a · w.

An element of a vector space is called a vector. (The notion of a vector only
makes sense when a vector space is given.)

This might look similar to the definition of a field, but an important differ-
ence is that multiplication is not defined between two vectors. We only have
the notion of multiplication by an element of k, that is, by a scalar. Let us look
at some examples.

Example 2.2.2. The space

k3 = {(a1, a2, a3) : a1, a2, a3 ∈ k}

is a vector space over k. Here, addition and multiplication is defined as

(a1, a2, a3)+(b1, b2, b3) = (a1+b1, a2+b2, a3+b3), a·(b1, b2, b3) = (ab1, ab2, ab3),

and the zero vector is 0 = (0, 0, 0). You can easily check that this satisfies all
the axioms. If k = R3, this is the usual 3-dimensional Euclidean space, where
you can add vectors, or multiply vectors by real numbers. But here, we don’t
have dot products or cross products.

Example 2.2.3. More generally, let n ≥ 0 be an integer. We define

kn = {(a1, . . . , an) : ai ∈ k}

with addition and multiplication

(a1, . . . , an)+(b1, . . . , bn) = (a1+b1, . . . , an+bn), a·(b1, . . . , bn) = (ab1, . . . , abn).

This is a vector space.

Example 2.2.4. What is k0? Because a n-tuple is a map from {1, . . . , n} to
k, the vector space k0 consists of maps ∅ → k, of which there is exactly one. So
we can write

k0 = 0 = {0}.

By abuse of notation, we shall call this vector space as 0.2

Example 2.2.5. What is k1? This is going to be

k = k1 = {a : a ∈ k},

as a vector space. When we regard k as a vector space, it forgets all about
multiplication within itself.

Example 2.2.6. Consider R, but now we are going to look at it as a vector
space over Q. That is, we consider the usual addition + : R×R→ R and usual
multiplication · : Q× R→ R. This defines R as a Q-vector space.

2So far, we have three kinds of 0. The symbol can mean 0 ∈ k, or 0 ∈ V , or the 0 vector
space. Make sure you do not confuse them.
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Example 2.2.7. Here is a crazier example. Take

C([0, 1]) = {continuous functions [0, 1]→ R},

and consider it as a R-vector space. Addition and multiplication is defined as

(f + g)(x) = f(x) + g(x), (a · f)(x) = a · f(x),

where this makes sense because the sum of two continuous functions and a
continuous function times a constant are again continuous. This satisfies all the
axioms, so C([0, 1]) is a vector space over R.

Exercise 2.2.A. Show that the axiom (VS4) is actually redundant. That is,
it can be derived from the other axioms.

So we have defined this mathematical object called a vector space, which
possesses a linear structure over k. Very often, when you define a mathematical
object with structure, you want to also look at maps between the objects that
behave well with respect to their structures.

A linear map is a map pre-
serving addition and scalar
multiplication

Definition 2.2.8. Let V and W be two k-vector spaces. We say that a map T :
V →W is k-linear or a linear transformation, or simply a homomorphism
if it satisfies:

(L0) T (0) = 0, where the first 0 is 0 ∈ V and the second 0 is 0 ∈W .

(L1) For all v1, v2 ∈ V we have T (v1 + v2) = T (v1) + T (v2).

(L2) For all a ∈ k and v ∈ V we have T (av) = aT (v).

Exercise 2.2.B. Show that the identity map idV : V → V is always k-linear.
Show also that the zero map 0 : V →W given by v 7→ 0 is also always k-linear.

Exercise 2.2.C. Show that the first axiom (L0) is redundant.
Linear maps are closed under
compositionExercise 2.2.D. Let T : V →W and S : W → U be k-linear maps. Show that

the composite map S ◦ T : V → U is also k-linear.

Exercise 2.2.E. Let V be a vector space over k. Show that there exists a
unique k-linear map V → 0 and also a unique k-linear map 0 → V . (Here 0
should mean a k-vector space!)

The Cauchy functional
equation is a linearity
condition over the rationals

Exercise 2.2.F. If you have every had to study functional equations in the
context of mathematical olympiads, you must have encountered what is called
that Cauchy functional equation. For a function f : R → R, we say that
the function satisfies the Cauchy equation if

f(x+ y) = f(x) + f(y)

for all x, y ∈ Q. Show that f satisfies the Cauchy equation if and only if f is
Q-linear, where R is regarded as a Q-vector space.
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Sometimes we can have two vector spaces that are set-theoretically different,
but similar-looking so that we do not wish to distinguish them. For instance,
suppose we have a vector space {(0, 0, 0)} with one element. This looks just like
the zero vector space 0 = {0}, but technically the two are not equal.

Definition 2.2.9. Let V and W be k-vector spaces. A k-linear map T : V →W
is called an isomorphism if there exists a map S : V →W such that S◦T = idV
and T ◦ S = idW . If there exists an isomorphism V → W , we say that V and
W are isomorphic and write V ∼= W .

Exercise 2.2.G. If T : V → W and S : W → U are isomorphisms, show
that S ◦ T : V → U is also an isomorphism. Deduce that “isomorphic” is an
equivalence relation.

An isomorphism is a bijec-
tive linear map Exercise 2.2.H. Show that a k-linear map V → W is an isomorphism if and

only if it is bijective.

Our initial goal in developing linear algebra will be to classify all vector
spaces. This means that we want to produce a “list” of all vector spaces. But
there are too many vector spaces if we interpret this goal literally. Instead,
we are going to satisfied with producing a list such that every vector space is
isomorphic to one of the vector spaces on our list. After all, we do not want to
distinguish isomorphic vector spaces apart.

Goal. Classify all vector spaces up to isomorphism.

2.3 Matrices

Before initiating the grand project of classifying vector spaces, I would like to
talk about matrices, which are generally presented to be the main objects of
study in introductory linear algebra textbooks.

Definition 2.3.1. A m×n matrix with entries in k is a k-linear map kn → km,
where kn and km are regarded as k-vector spaces.

What does this mean? A matrix is supposed to be an array with numbers,
not a linear map. But let us try to think about how we can encode a k-linear
map kn → km.

As a warm-up, let us try to classify all k-linear maps T : k → k, where both
k are considered as k-vector spaces. If we demand that T (1) = c for some c ∈ k,
then we get

T (a) = T (a · 1) = a · T (1) = a · c = ac

for all a ∈ k. That is, the value of T (1) completely determines T . On the other
hand, once we choose T (1) = c arbitrarily, the map T : a 7→ ac is indeed a linear
map, because

T (a+ b) = (a+ b)c = ac+ bc = T (a) + T (b), T (a · b) = abc = a(bc) = aT (b).
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This shows that there is a bijection

{k-linear maps k → k} ←→ k; T 7→ T (1),

and the linear maps k → k are completely classified by k.
Linear maps from the field to
a vector space is classified by
the vector space

Exercise 2.3.A. Let V be an arbitrary vector space. Show that the linear
maps T : k → V are classified by elements V . That is, exhibit a bijection

{k-linear maps k → V } ←→ V.

Let us now try to classify linear maps kn → km. Here, we are going to use
the notation

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . .

So, for instance, we can write

(a1, a2, . . . , an) = a1e1 + a2e2 + · · ·+ anen ∈ kn.

If T : kn → km is a linear map, for each 1 ≤ j ≤ n we get an element
T (ej) ∈ km. Let us write

T (ej) = (t1j , t2j , . . . , tmj) =

m∑
i=1

tijei.

From a k-linear map T : kn → km, we have thus extracted mn numbers tij ∈ k
for 1 ≤ i ≤ m and 1 ≤ j ≤ n. These mn numbers completely determine T ,
because

T ((a1, . . . , an)) = T

( n∑
j=1

ajej

)
=

n∑
j=1

ajT (ej) =

n∑
j=1

m∑
i=1

ajtijei.

Conversely, for arbitrary numbers tij ∈ k, the map defined above is k-linear,
because

T ((a1 + b1, . . . , an + bn)) =

n∑
j=1

m∑
i=1

(aj + bj)tijei

=

n∑
j=1

m∑
i=1

ajtijei +

n∑
j=1

m∑
i=1

bjtijei

= T ((a1, . . . , an)) + T ((b1, . . . , bn))

and

T (a(b1, . . . , bn)) =

n∑
j=1

m∑
i=1

(abj)tijei = a

n∑
j=1

m∑
i=1

bjtijei = aT ((b1, . . . , bn)).
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Hence the linear map T : kn → km is uniquely determined by the numbers tij
and we get a bijection

{k-linear maps T : kn → km} ←→ {mn numbers tij ∈ k}. (∗)

To keep track of all the numbers, we are going to introduce a new notation.
Let us write

T =


t11 t12 · · · t1n
t21 t22 · · · t2n
...

...
. . .

...
tm1 tm2 · · · tmn


when a linear map T : kn → km on the left hand side of (∗) corresponds to
tij ∈ k on the right hand side. With this notation, we are going to write

T ((a1, . . . , an)) = (b1, . . . , bm)

as 
t11 t12 · · · t1n
t21 t22 · · · t2n
...

...
. . .

...
tm1 tm2 · · · tmn



a1

a2

...
an

 =


b1
b2
...
bm

 .
These are all equivalent to saying that

bi =

n∑
j=1

tijaj ,

but with the new notation, we can write out the equations explicitly in a single
equation.

Remark 2.3.2. The notation seems to suggest that (a1, . . . , an) is a 1 × n
matrix, rather than a vector in kn. In a sense, this is true. Exercise 2.3.A shows
that an element of a vector space can be canonically identified with a map from
k to the vector space. So an element of kn can be considered as a k-linear map
k → kn, which is a 1× n matrix. If this is confusing, don’t worry about it.

Exercise 2.3.B. Show that the identity map id : kn → kn corresponds to the
matrix

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .
Composition of linear maps
corresponds to multiplica-
tion of matrices

Exercise 2.3.C. Let S : kn → km and T : km → kp be two matrices. (S
will be m × n and T will be p ×m.) The composite T ◦ S = U : kn → kp is
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going to be k-linear, and hence a matrix. Let tij , sjl, uil be the matrix entries
corresponding to the linear maps T , S, U . Then show that

uil =

m∑
j=1

tijsjl.

If you have learned about matrix multiplications before, check that this agrees
with the ordinary way of multiplying matrices.

So from the perspective of linear maps, multiplication of matrices is nothing
other than composition of linear maps. If you have been bewildered by the fact
that matrix multiplication is associative, that is,

A(BC) = (AB)C

for all matrices A, B, and C, now you know that this is because composition of
maps is associative.

2.4 Products and direct sums

In this section, we are going to talk about constructing vector spaces. We have
already seen the example of kn for n a nonnegative integer. We can generalized
this to when n is not a finite number, but infinite.

Definition 2.4.1. Let S be a set. We define

kS = {set of maps S → k}

with addition and scalar multiplication

(f + g)(s) = f(s) + g(s), (a · f)(s) = a · f(s)

for f, g ∈ kS , s ∈ S, and a ∈ k.

Exercise 2.4.A. Check that this indeed a k-vector space. What is the 0 vector?

Of course, if S = {1, 2, . . . , n} we retrieve the vector space kn. But if S is
much larger, this vector space can be pretty huge. An interesting feature of this
construction is that it is functorial. That is, if I have two sets S1, S2 and a map
α : S1 → S2 of sets, then I get a map

α∗ : kS2 → kS1 ; (f : S2 → k) 7→ (f ◦ α : S1 → k).

It is clear from the definition that if α : S1 → S2 and β : S2 → S3 are maps
between sets, then (β ◦ α)∗ = α∗ ◦ β∗.

Exercise 2.4.B. Show that α∗ is always k-linear.

Although this construction is a natural generalization of kn, there is a slightly
different construction that is more important in studying vector spaces.
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Definition 2.4.2. Let S be a set. We define the free vector space on S as

k⊕S = {set of maps f : S → k such that f(s) 6= 0 only for finitely many s},

with addition and scalar multiplication

(f + g)(s) = f(s) + g(s), (a · f)(s) = a · f(s)

for f, g ∈ k⊕S , s ∈ S, and a ∈ k.

Clearly, if S is finite, the two vector spaces kS and k⊕S agree, because
anyhow there can be only finitely many s such that f(s) 6= 0. But if S is
infinite, the vector space k⊕S is strictly contained in kS .

Exercise 2.4.C. Check that this is indeed a k-vector space. (Here you need to
show that if f and g satisfy the “finiteness of nonzero values” condition, then
f + g and a · f satisfy the condition as well.)

This constructions deserves more explanation, as it might seem unmotivated
to only take functions with finite nonzero values. For each s ∈ S, there is an
function S → k that sends s to 1 ∈ k and all other elements to 0 ∈ k. This
satisfies the finiteness condition, and hence is an element of k⊕S . We shall
denote it by s ∈ k⊕S , so that

s(s′) =

{
1 s′ = s

0 s′ 6= s.

These vectors are supposed to be like ei ∈ kn. For pairwise distinct elements
s1, . . . , sm ∈ S and nonzero scalars a1, . . . , am ∈ k, we can form the sum

v = a1s1 + a2s2 + · · ·+ amsm ∈ k⊕S .

The vector v, regarded as a map S → k, sends sj to aj and all other s ∈ S
to 0. In fact, every vector v ∈ k⊕S can be written like this sum because v is
nonzero only on a finite number of s. Moreover such a presentation of v as a
linear combination of s is unique. So this is the “freest” vector space you can get
by regarding elements of S as symbols. (You’re never allowed to add infinitely
many vectors at once, because addition is only defined on two elements.)

This vector space enjoys a universal property. For any set S, there exists a
natural (set) map

ι : S → k⊕S ; s 7→ s.

(Because S is a set, it does not make sense to ask if this map is linear or not.)
The map ι is always injective, because s 6= s′ implies s 6= s′. (To see this, note
that s(s) = 1 while s′(s) = 0.)

A map from a set to a vector
space is the same as a lin-
ear map from the free vector
space

Proposition 2.4.3 (Universal property for free vector spaces). Let S be a set,
and let V be an arbitrary k-vector space. If f : S → V is any (set) map, there
exists a unique linear map T : k⊕S → V that extends f , that is, f = T ◦ ι.

S V

k⊕S

ι

f

T
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The intuition is that once we choose where s are sent into V , it is also
uniquely determined where their finite linear combinations a1s1 + · · ·+ansn are
sent to a1f(s1) + · · ·+ anf(sn).

Proof. We first prove uniqueness. Recall that an element of k⊕S is formally a
map S → k that is 0 except on a finite number of elements of S. Then we can
write any element α ∈ k⊕S as

α =
∑
s∈S

α(s)s,

where α(s) 6= 0 for finitely many s ensures that the right hand side is a finite
sum. Suppose that a linear map T : k⊕S → V satisfies the condition f = T ◦ ι.
From this condition, we see that f(s) = T (ι(s)) = T (s). So by linearity of T ,
we get

T (α) = T

(∑
s∈S

α(s)s

)
=
∑
s∈S

α(s)T (s) =
∑
s∈S

α(s)f(s).

That is, T is uniquely determined to be function.
To show existence, we only need to check that the T we defined above is

indeed linear and satisfies the condition f = T ◦ι. This can be easily checked.

Another way to state this proposition is that there is a natural correspon-
dence

MorSet(S, V ) = {set maps S → V } ←→ {linear maps k⊕S → V },

where one direction of the correspondence is given by composing with the map
ι : S → k⊕S .

We have previously seen that a set map α : S1 → S2 induced a map

α∗ : kS2 → kS1 ; (f : S2 7→ k) 7→ (f ◦ α : S1 → k)

in the other direction. Can this construction be done for k⊕S2 → k⊕S1 as well?

Exercise 2.4.D. Show that the map

α∗ : k⊕S2 → k⊕S1 ; (f : S2 → k) 7→ (f ◦ α : S1 → k)

is not a well-defined map. What is the problem here?

But we can do the following. Consider the map

c = ιS2 ◦ α : S1 → k⊕S2 ; s 7→ α(s).

By Proposition 2.4.3, this uniquely induces a linear map A map of sets induces a lin-
ear map on the free vector
spacesα∗ : k⊕S1 → k⊕S2
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such that c = α∗ ◦ ιS1 , i.e., α∗(s) = α(s). This can also be drawn as

S1 S2

k⊕S1 k⊕S2 .

α

ιS1
c ιS2

α∗

Exercise 2.4.E. Check that if α : S1 → S2 and β : S2 → S3 are (set) maps,
then (β ◦ α)∗ = β∗ ◦ α∗.

Let us now consider two k-vector spaces V and W . We can look at their
product

V ×W = {(v, w) : v ∈ V,w ∈W}

as sets, but this set can naturally be given a structure of a k-vector space.

Definition 2.4.4. Given two vector spaces V and W , we define their product
as V ×W with addition and multiplication

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2), c(v, w) = (cv, cw).

Exercise 2.4.F. Check that this satisfies all the axioms of a vector space. What
is the 0 vector?

For instance, k2 × k3 can naturally be identified with k5 via the correspon-
dence

((a1, a2), (b1, b2, b3)) ↔ (a1, a2, b1, b2, b3).

As with sets, we can also define infinite products in the exact same way.

Definition 2.4.5. Let {Vi}i∈I be a set of vector spaces, where I is the indexing
set. We define their product as∏

i∈I
Vi = {(vi)i∈I : vi ∈ Vi}

with addition and multiplication

(vi)i∈I + (wi)i∈I = (vi + wi)i∈I , c(vi)i∈I = (cvi)i∈I .

Again, it is straightforward to check that this satisfies all the axioms of a
vector space, and is thus a vector space.

Exercise 2.4.G. For S a set, show that kS is naturally isomorphic to
∏
s∈S k.

So this product is a generalization of the previous construction.
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For each i0 ∈ I, there are (set) maps

πi0 :
∏
i∈I

Vi → Vi0 ; (vi)i∈I 7→ vi0 ,

and furthrmore they are also linear. This is because

πi0((vi) + (wi)) = πi0((vi + wi)) = vi0 + wi0 = πi0((vi)) + πi0((wi)),

πi0(c(vi)) = πi0((cvi)) = cvi0 = cπi0((vi)).
Linear maps to vector spaces
is the same as a linear map
to their product

Proposition 2.4.6 (Universal property for products). Let {Vi}i∈I be a set of k-
vector spaces. For an arbitrary k-vector space W and linear maps fi : W → Vi,
there exist a unique linear map f : W →

∏
i∈I Vi such that fi0 = πi0 ◦f for each

i0 ∈ I.

W
∏
i∈I Vi

Vi0

f

fi0
πi0

Proof. First we check that there exist a unique set map f : W →
∏
i∈I Vi such

that fi0 = πi0 ◦ f . This just a general version of Proposition 1.3.1, which an be
verified similarly. Here, the map f is going to be defined as

f : w 7→ (fi(w))i∈I .

Now it suffices to check that w 7→ (fi(w)) is indeed linear. This is also clear,
because the maps fi are all linear.

Exercise 2.4.H. Fill in the gaps of the previous proof.

This really is the vector space version of Proposition 1.3.1. If I = {1, 2}, we
can draw the diagram in the following way as well.

W

V1 × V2

V1 V2

f

f1 f2

π1 π2

We can also consider the subspace of the product space consisting only of
(vi)i∈I such that vi 6= 0 only for finitely many I. This will be analogue of k⊕S .

Definition 2.4.7. Let {Vi}i∈I be a set of k-vector spaces. We define their
direct sum⊕

i∈I
Vi = {(vi)i∈I : vi ∈ Vi, vi 6= 0 only for finitely many i ∈ I}

with addition and scalar multiplication

(vi) + (wi) = (vi + wi), c(vi) = (cvi).
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Exercise 2.4.I. Check again that this is a vector space.

Exercise 2.4.J. For S a set, show that
⊕

s∈S k is naturally isomorphic to k⊕S .

For each i0 ∈ I, there is a map

ιi0 : Vi0 →
⊕
i∈I

Vi; v 7→ (vi)i∈I where vi =

{
v ∈ Vi0 i = i0

0 ∈ Vi i 6= i0.

This map is clearly linear, because it is linear in each component.
Linear maps from vector
spaces is the same as a linear
map from their direct sum

Proposition 2.4.8 (Universal property for direct sums). Let {Vi}i∈I be a set
of k-vector spaces. For an arbitrary k-vector space W and linear maps fi : Vi →
W , there exists a unique linear map f :

⊕
i∈I Vi → W such that fi0 = f ◦ ιi0

for each i0 ∈ I.

Vi0

⊕
i∈I Vi W

ιi0
fi0

f

Proof. For uniqueness, the condition fi0 = f ◦ ιi0 forces

f((vi)) = f

(∑
i∈I

ιi(vi)

)
=
∑
i∈I

f(ιi(vi)) =
∑
i∈I

fi(vi).

Here, the sums are finite because vi 6= 0 for only finitely many i. To show exis-
tence, it suffice to check that the above map is linear, but this is straightforward
to check.

Exercise 2.4.K. Check the details in the above proof.

Again, if I = {1, 2} the diagram can be drawn as

V1 V2

V1 ⊕ V2

W.

ι1

f1

ι2

f2

f

In view of Exercise 1.3.A, we see that direct sum ⊕ for vector spaces works
precisely as disjoint union q for sets. Hence the direct sum is also be called the
coproduct of vector spaces.

Coproducts commute with
taking free vector spaces Exercise 2.4.L. Let {Si}i∈I be a set of sets. Show that there is a canonical

isomorphism ⊕
i∈I k

⊕Si ∼= k⊕(
∐

i∈I Si).

(Hint: Show that both satisfy the same universal property. In other words,
using universal properties, construct maps in both directions.)
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Exercise 2.4.M. Consider linear maps T : kn → km and S : kn → kl. From
Proposition 2.4.6, they induce a linear map M : kn → km × kl ∼= km+l. When
all these maps are considered as matrices, show that

M =

[
T
S

]
.

Exercise 2.4.N. Similarly, consider linear maps T : kn → kl and S : km → kl.
According to Proposition 2.4.8, they induce a linear mapM : kn+m ∼= kn⊕km →
kl. When all these maps are considered as matrices, show that

M =
[
T S

]
.

2.5 Subspaces and quotients

When we defined k⊕S , we defined it as a subset of kS , and then gave the exactly
same structure. We can consider this procedure in a more general setting.

Exercise 2.5.A. Let V be a k-vector space. Suppose that a subset W ⊆ V
satisfies

(SS1) 0 ∈W ,

(SS2) v1, v2 ∈W implies v1 + v2 ∈W ,

(SS3) v ∈W implies cv ∈W for all c ∈ k.

Then W inherits a k-vector space structure from V , with exactly the same
addition and scalar multiplication.

Definition 2.5.1. In such a case, we say that W is a subspace of V .

For instance, k⊕S is a subspace of kS consisting of maps f : S → k such
that f(s) 6= 0 for only finitely many s.

An injective linear map is
an isomorphism onto a sub-
space

Exercise 2.5.B. Show that any injective linear map T : W ↪→ V gives an
isomorphism between W and the image T (W ) as a subspace of V . Conversely,
if W is a subspace of V , show that the natural inclusion map i : W → V is an
injective linear map.

If W,U ⊆ V are subspaces, we can define

W + U = {w + u : w ∈W,u ∈ U} ⊆ V.

Exercise 2.5.C. Show that if W,U ⊆ V are subspaces, then W +U and W ∩U
are also subspaces.

Exercise 2.5.D. The subspace sum acts like a direct sum if the intersecion is trivial
Let W,U ⊆ V be subspaces. The two inclusion maps W,U ↪→ W + U induce a
linear map W ⊕U →W +U be the universal property of the direct sum. Show
that this map is always surjective. If W ∩ U = {0} then show that this map
is an isomorphism. In such a case, we shall abuse notation to sometimes write
W ⊕ U ⊆ V instead of W + U .
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V

W

V/W
π

Figure 2.1: Quotienting V by W

Exercise 2.5.E. Show that it is false that if W,U,X ⊆ V are subspaces, then
(W +U)∩X = (W ∩X) + (U ∩X). Give a counterexample, and show that one
always includes the other.

If W ⊆ V is a subspace, we get the following equivalence relation on V :

v1 ∼ v2 ⇔ v1 − v2 ∈W.

Exercise 2.5.F. Check that this is an equivalence relation. (You have to check
three things.)

Definition 2.5.2. For W ⊆ V a subspace, we define the quotient of V by W
as

V/W = V/(v1 ∼ v2 ⇔ v1 − v2 ∈W ),

with addition and multiplication defined asAddition and multiplication
on a quotient space is de-
fined by picking representa-
tives

[v1] + [v2] = [v1 + v2], c[v] = [cv].

This definition of addition and multiplication requires some checking. We
might worry that maybe [v1] = [v3] and [v2] = [v4] but [v1 + v2] 6= [v3 + v4]. If
this happens, addition is not well-defined and we have a problem. But [v1] = [v3]
means that v1 ∼ v3, which is equivalent to v1 − v3 ∈ W . Likewise [v2] = [v4]
means v2 − v4 ∈ W . Then (v1 + v2) − (v3 + v4) = (v1 − v3) + (v2 − v4) ∈ W
and so [v1 + v3] = [v2 + v4]. Likewise, if [v] = [v0] then v − v0 ∈ W and so
cv − cv0 = c(v − v0) ∈ W implies [cv] = [cv0]. This shows that addition and
scalar multiplication are well-defined oprations on the quotient set V/W .

The quotient can be thought of as “killing off” or “ignoring” or “collapsing”
the W part inside V . Anything that was in W becomes 0 in the quotient space
V/W . There is a natural projection map

π : V → V/W ; v 7→ [v],

and π(v) = 0 means that [v] = [0] ∈ V/W , and this means v ∈W .
Any surjective linear map is
a projection map up to an
isomorphism

Exercise 2.5.G. Show that the map π : V → V/W is always surjective. Con-
versely, show that if f : V � U any surjective linear map, then U ∼= V/f−1(0) so
that f : V → V/f−1(0)→ U is a quotient map composed with an isomorphism.



2.6. VECTOR SPACES FROM LINEAR MAPS 29

Again, there is a universal property for quotients, which is the analogue of
the universal property for quotienting out by equivalence relations.

A linear map that vanishes
on a subspace is the same as
a linear map from the quo-
tient

Exercise 2.5.H (Universal property for quotients). Let W ⊆ V be a subspace
of a k-vector space. For an arbitrary k-vector space U and a linear map f :
V → U such that f(w) = 0 for all w ∈ W , prove that there exists a unique
linear map g : V/W → U such that f = g ◦ π.

V U

V/W

f

π
g

Exercise 2.5.I. For W ⊆ V a subspace, show that V/W ∼= 0 as vector spaces
if and only if W = V .

Exercise 2.5.J (2nd isomorphism theorem). Let W,U ⊆ V be subspaces. Show
that there is a natural isomorphism

(W + U)/U →W/(W ∩ U); [w + u] 7→ [w].

Be careful about what each [−] means!
Quotients by the same vec-
tor space can be canceled
out

Exercise 2.5.K (3rd isomorphism theorem). Let U ⊆ W ⊆ V be subspaces.
Then W/U can be regarded as a subspace of V/U , via the injective linear map
W/U ↪→ V/U ; [w] 7→ [w]. Show that the natural map

V/W → (V/U)/(W/U); [v] 7→ [[v]]

is well-defined and is an isomorphism. Again, be careful about [−].

2.6 Vector spaces from linear maps

In this section, we are going to construct vector spaces from linear maps.

Definition 2.6.1. Let f : V → W be a linear map between k-vector spaces.
We define its kernel ker f and image im f as

ker f = f−1(0W ) = {v ∈ V : f(v) = 0} ⊆ V,
im f = f(V ) = {f(v) : v ∈ V } ⊆W.

Exercise 2.6.A. Show that ker f is a subspace of V and that im f is a subspace
of W .

A linear map canonically fac-
tors through the imageExercise 2.6.B. Show that any linear map f : V → W factors as f : V →

im f →W , where V � im f is surjective and im f ↪→W is injective.

Exercise 2.6.C. For a linear map f : V → W , show that f is injective if and
only if ker f = {0}.
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Quotient by the kernel is iso-
morphic to the image Exercise 2.6.D (1st isomorphism theorem). Let f : V → W be a linear map,

and consider the natural map

V/ ker f → im f ; [v] 7→ f(v).

Show that this map is well-defined and is an isomorphism of vector spaces.
A linear map that becomes
zero after composition is the
same as a linear map to the
kernel

Exercise 2.6.E (Universal property for kernels). Let f : V → W be a linear
map, and denote by i : ker f → V the inclusion map. For an arbitrary vector
space U and a linear map g : U → V such that f ◦ g = 0, show that there exists
a unique map h : U → ker f such that g = i ◦ h.

U

ker f V W

h
g

0

i f

We are now going to make a definition that might seem very unmotivated.
It will also be hard to visualize what it is supposed to mean. But my advice is
not to try too hard to find geometric meaning in this object. This definition is
going to be useful in a more formal, symbolic context.

Definition 2.6.2. Let f : V →W be a linear map. We define its cokernel as

coker f = W/ im f.

This makes sense because im f is a subspace of W .

This is supposed to be the dual notion of the kernel, and you can see this
from the universal property. Note that there is a natural projection map π :
W →W/ im f = coker f .

A linear map that becomes
zero after composition is the
same as a linear from the
cokernel

Exercise 2.6.F (Universal property for cokernels). Let f : V →W be a linear
map, and denote by π : W → coker f the projection map. For an arbitrary
vector space U and a linear map g : W → U such that g ◦ f = 0, show that
there exists a unique map h : coker f → U such that g = h ◦ π.

V W coker f

U

f

0

π

g
h

Exercise 2.6.G. Let f : V →W be a linear map. Show that there are natural
isomorphisms ker(W → coker f) ∼= coker(ker f → V ) ∼= im f .

All these constructions are “functorial”, in the following sense. Suppose we
have linear maps fi : Vi → Wi and ϕV : V1 → V2, ϕW : W1 → W2 such that
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ϕW ◦ f1 = f2 ◦ ϕV .

V1 W1

V2 W2

f1

ϕV ϕW

f2

We can extend on the left and right by looking at the kernels and cokernels of
fi. But then, we note that

f2 ◦ (ϕV ◦ ι1) = ϕW ◦ f1 ◦ ι1 = ϕW ◦ 0 = 0,

and therefore by the universal property of kernels, there exists a unique map
ker f1 → ker f2 such that makes the diagram commute. Likewise,

(π2 ◦ ϕW ) ◦ f1 = π2 ◦ f2 ◦ ϕV = 0 ◦ ϕV = 0,

and therefore there is a unique map coker f1 → coker f2 that makes the diagram
commute.

ker f1 V1 W1 coker f1

ker f2 V2 W2 coker f2

ι1 f1

ϕV ϕW

π1

ι2 f2 π2

Let me also introduce the notion of exactness. This will probably not be
helpful for us too much, but it is an extremely useful notion for keeping track of
various data, once we start dealing with complicated situations. Also, wrapping
your head around it will help you get familiar with all the notions we have been
looking at so far.

Definition 2.6.3. A sequence of vector spaces and linear maps

V1 V2 V3
f1 f2

is said to be exact if ker f2 = im f1. More generally, a sequence

V0 V1 · · · Vn
f0 f1 fn−1

is said to be exact if ker fi = im fi−1 for all 1 ≤ i ≤ n− 1.

Exercise 2.6.H. For f1 : V1 → V2 and f2 : V2 → V3, show that im f1 ⊆ ker f2

if and only if f2 ◦ f1 = 0. As a consequence, if V1 → V2 → V3 is exact, then the
composite of the two maps is zero.

Injectivity and surjectivity
correspond to exactness con-
ditions

Exercise 2.6.I. Show that a map f : V → W is injective if and only if the
sequence 0 → V → W is exact. Likewise, show that f is surjective if and only
if the sequence V →W → 0 is exact.

Exercise 2.6.J. An exact sequence that looks like 0 → A → B → C → 0 is
called a short exact sequence. In this case, A → B is an injection, so A
can be identified with a subspace of B. Show that C is naturally isomorphic to
B/A.
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Exercise 2.6.K. Consider the sequence

0 k k2 k 0.

[
a
b

]
[c d]

Find the condition that this sequence is exact, in terms of a, b, c, and d.

Exercise 2.6.L. Show that, for a linear map f : V →W , the sequences

0→ ker f → V → im f → 0, 0→ im f →W → coker f → 0

are exact.
Any linear map can be made
into an exact sequence Exercise 2.6.M. Show that, for a linear map f : V →W , the sequence

0→ ker f → V →W → coker f → 0

is always exact. (In general, if · · · → A−1 → A0 → B → 0 and 0→ B → A1 →
A2 → · · · are exact sequences, you can string them together to get an exact
sequence · · · → A−1 → A0 → A1 → A2 → · · · .)

Exercise 2.6.N (the four lemma and the five lemma). Do this exercise only if
you feel super energetic. Consider a commutative diagram

V1 V2 V3 V4

W1 W2 W3 W4

ϕ1 ϕ2 ϕ3 ϕ4

such that the two rows are exact sequences.

(a) If ϕ1 and ϕ3 are surjective, and ϕ4 is injective, show that ϕ2 is surjective.

(b) If ϕ2 and ϕ4 are injective, and ϕ1 is surjective, show that ϕ3 is injective.

Conclude that if

V1 V2 V3 V4 V5

W1 W2 W3 W4 W5

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

commutes and rows are exact, and ϕ1, ϕ2, ϕ4, ϕ5 are isomorphisms, then ϕ3 is
an isomorphism as well.

Before concluding this section, let me definer another vector space.

Definition 2.6.4. Let V and W be two k-vector spaces. We define

Homk(V,W ) = {k-linear maps f : V →W}.

This as a structure of a vector space, given by

(f + g)(v) = f(v) + g(v), (cf)(v) = cf(v).
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So Homk(V,W ) is not just a set, but a k-vector space again. It can be
checked that the addition and scalar multiplication satisfy all the axioms, with
0 being the zero map 0 : V → 0→W .

Exercise 2.6.O. For any k-vector space V , show that there is a natural iso-
morphism

Homk(k, V ) ∼= V ; f 7→ f(1).
Linear maps to vector spaces
are the same as linear maps
to the product

Exercise 2.6.P. Let {Vi}i∈I be a set of k-vector spaces. For any k-vector space
W , show that the natural linear map

Homk(W,
∏
i∈I Vi)→

∏
i∈I

Homk(W,Vi); f 7→ (πi ◦ f)i∈I

is an isomorphism of vector spaces.
Linear maps from vector
spaces are the same as linear
maps from the direct sum

Exercise 2.6.Q. Let {Vi}i∈I be a set of k-vector spaces. For any k-vector space
W , show that the natural linear map

Homk(
⊕

i∈I Vi,W )→
∏
i∈I

Homk(Vi,W ); f 7→ (f ◦ ιi)i∈I

is an isomorphism of vector spaces. As a consequence, there is a natural iso-
morphism Homk(k⊕S , V ) ∼= V S .

If f : V1 → V2 is a linear map, and W is an arbitrary k-vector space, there
are induced maps

f∗ : Homk(W,V1)→ Homk(W,V2); α 7→ f ◦ α,
f∗ : Homk(V2,W )→ Homk(V1,W ); α 7→ α ◦ f.

(In case you’re wondering what lower and upper stars mean, lower star usually
means that the direction of the order did not change, e.g., V1 → V2 inducing
Homk(−, V1)→ Homk(−, V2). Upper star means that the direction did change,
e.g., V2 → V2 inducing Homk(V2,−)→ Homk(V1,−).)

Covariant Hom is left exact
Exercise 2.6.R. If 0 → V1 → V2 → V3 is an exact sequence, show that the
induced sequence

0 = Homk(W, 0)→ Homk(W,V1)→ Homk(W,V2)→ Homk(W,V3)

is exact as well.
Contravariant Hom is left
exactExercise 2.6.S. If V1 → V2 → V3 → 0 is an exact sequence, show that the

induced sequence

0 = Homk(0,W )→ Homk(V3,W )→ Homk(V2,W )→ Homk(V1,W )

is exact as well.
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2.7 Bases and dimension

We are now more than ready to start classifying vector spaces. Recall that
this was our goal for studying vector spaces: classifying vector spaces up to
isomorphism.

Definition 2.7.1. Let V be a k-vector space and let S ⊆ V be a subset (not a
subspace) of V . The inclusion map i : S ↪→ V induces a linear map f : k⊕S → V
by Proposition 2.4.3. We say that the set S is

• linearly independent if f is injective, linearly dependent if f is not
injective,

• generating or spanning if f is surjective, and

• a basis if f is bijective.

Okay, this is some abstract definition. It would be helpful to know what
they really mean in concrete terms.

Exercise 2.7.A. Show that a subset S ⊆ V is linearly independent if and only
if the following condition holds: for arbitrary distinct vectors v1, . . . , vn ∈ S and
scalars a1, . . . , an ∈ k, the equation

a1v1 + a2v2 + · · ·+ anvn = 0

implies a1 = a2 = · · · = an = 0.

Exercise 2.7.B. Show that a subset S ⊆ V is generating if and only if the
following condition holds: for each v ∈ V , there exist elements v1, . . . , vn ∈ S
and scalars a1, . . . , an ∈ k such that

a1v1 + a2v2 + · · ·+ anvn = v.

Intuitively speaking, linear independence means that you cannot combine
the vectors in S in a nontrivial way to make 0. For instance, if you have the
vectors ~v1 = (1, 0) and ~v2 = (2, 3) in R2, they point in different directions, so
you cannot make some linear combination and get 0, unless you do something
as meaningless as 0 · ~v1 + 0 · ~v2 = ~0.

A subset S ⊆ V spans the vector space V if every vector in V can be written
as a linear combination of vectors in S. I think it is quite clear what this means.
For instance, {(1, 0), (2, 3), (3, 5)} spans R2, because we can, for instance, write
(x, y) = x(1, 0)− 3y(2, 3) + 2y(3, 5). But it is not linearly independent because,
say, (1, 0)− 5(2, 3) + 3(3, 5) = (0, 0).

Definition 2.7.2. Let S ⊆ V be an arbitrary subset of a vector space. The
inclusion map i : S ↪→ V induces a linear map f : k⊕S → V . We define the
subspace spanned by S as span(S) = im f ⊆ V .

It is clear that span(S) is the subspace consisting of vectors that can be
expressed as a linear combination of elements of S. Also, S is spanning if and
only if span(S) = V . The two conditions, linear independence and spanning,
when put together, means something very nice.
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Exercise 2.7.C. Show that a subset S ⊆ V is a basis if and only if the following
condition holds: for each v ∈ V , there is a unique tuple (as)s∈S of elements in
k such that as 6= 0 only for finitely many s and∑

s∈S
ass = v.

One reason we care about bases is that a basis gives an isomorphism between
k⊕S and V , that is, an isomorphism between V and a free vector space. We
know exactly what a free vector space looks like, so such an isomorphism is
going to be useful in studying properties of the vector space V .

The surprising fact that actually every vector space has a basis!
Every vector space has a ba-
sisTheorem 2.7.3 (under Axiom of Choice). Every vector space has a basis.

Corollary 2.7.4. Every vector space is isomorphic to k⊕S for some set S.

How would one prove such a theorem? We need to construct a basis, which
is a set that is both linearly independent and generating. Let us start with
S0 = ∅. This is clearly linearly independent, because there is no vector to form
a nontrivial linear relation. But also, unless V = 0, the set is not spanning. So
take any nonzero vector v1 ∈ V and throw it into the set S0. After this step, we
have S1 = {v1}. As long as v1 6= 0, the set {v1} is linearly independent because
a1v1 = 0 implies a1 = 0. If V = span(S1) = {a1v1} then this is spanning as
well, and we are done. Otherwise, we need more vectors, so pick another vector
v2 /∈ span(S1) and throw it into S1. Then we get a set S2 = {v1, v2} that is
linearly independent, but not necessarily spanning. We are going to repeat this
process, until we get a spanning set. One problem is that the process might
continue on infinitely, and the Axiom of Choice is what will help us deal with
this issue.

Exercise 2.7.D. Let us make the above process formal. Let S ⊆ V be a linearly
independent subset. Suppose that span(S) ( V , and pick a vector v ∈ V with
v /∈ span(S). Show that S ∪ {v} is linearly independent as well.

One general tool for dealing with infinite processes is Zorn’s lemma. We will
only state and not prove the lemma. It is known that Zorn’s lemma is equivalent
to the Axiom of Choice.

Lemma 2.7.5 (Zorn’s lemma). Let X be a set, and consider a relation R ⊆
X ×X. (We’re going to write (x, y) ∈ R as x � y. As the notation suggests,
this relation is supposed to represent an ordering.) Suppose this relation satisfies
the following:

(1) x � x for all x ∈ X,

(2) if x � y and y � x then x = y,
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(3) if x � y and y � z then x � z,

(4) if S ⊆ X is an subset such that either x � y or y � x for every x, y ∈ S,
then there exists an z ∈ X such that x � z for all x ∈ S.

Then there exists an element m ∈ X such that m � x is true only for x = m.

The first three conditions capture a notion of ordering. A relation satisfying
(1), (2), (3) is called a partial order, with “partial” meaning that not every
two elements can be compared. The last condition (4) is the interesting one. It
roughly says that every “chain” of comparable elements has an “upper bound”.
The conclusion is that there is an element that is maximal in the sense that
nothing is strictly bigger. If you are interested in learning the proof, the idea
is the same as what we sketched for finding a basis. Pick an arbitrary element,
which is probably not going to be maximal. If it is not maximal, you can find
an element that is strictly bigger than it. If this is not maximal, then you can
continue finding an element strictly bigger that that and so on. The condition
(4) allows you to run the process transfinitely.

Proof of Theorem 2.7.3. Let V be a vector space, and consider the collection

A = {S ⊆ V : S is linearly independent}

of linearly independent sets. Consider the inclusion order S1 � S2 ⇔ S1 ⊆ S2

given on A. By properties of sets, this automatically satisfies (1), (2), and (3)
of Lemma 2.7.5.

We can also check the last condition (4). Suppose that C ⊆ A is a collec-
tion of linearly independent sets, such that any two S1, S2 ⊆ C are ordered by
inclusion. If we define

SM =
⋃
S∈C

S,

then it is clear that SM is a set that contains all elements of C. We also can check
that SM ∈ A, i.e., SM is linearly independent. If not, there exist distinct vectors
v1, . . . , vn ∈ SM and a1, . . . , an ∈ k, not all zero, such that a1v1 + · · ·+anvn = 0.
But each vi is in the union of S ∈ C, so there exist Si ∈ C such that vi ∈ Si. If we
look at the sets S1, . . . , Sn ∈ C, every two of them are comparable by inclusion.
This means that we can assume S1 ⊆ S2 ⊆ · · · ⊆ Sn without loss of generality.
Then vi ∈ Si implies that v1, . . . , vn ∈ Sn. This and a1v1 + · · · + anvn = 0
contradicts that Sn ∈ A is linearly independent. Therefore SM has to be linearly
independent, and is larger than all elements of C. This verifies (4).

We now apply Lemma 2.7.5 to the collection A ordered by inclusion. There
exists a maximal set M ∈ A. (Maximality in this context means that M ⊆ S
and S linearly independent implies M = S.) Because M is already linearly
independent, we are done if we can show that M spans V . Suppose not, that
span(M) ( V . We can pick a vector v ∈ V \ span(M), and then by Exer-
cise 2.7.D, M ∪ {v} is a linearly independent set that is strictly larger than M .
(The vector v can’t already be in M , because then v would be in span(M).)
This contradicts our assumption on M , and therefore span(M) = V . That is,
M is both linearly independent and spanning, hence a basis.
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This is a difficult proof, probably one of the hardest you will encounter in
linear algebra. But the main idea is simple: if the set is not spanning, add in
vectors while keeping it linearly independent. The rest is simply a standard
technique of using Zorn’s lemma, which you will get used to after seeing it three
times.

Exercise 2.7.E. Let B ⊆ V be a basis of a vector space V . For each vector
space, show that the natural map

Homk(V,W )→
∏
b∈B

W ; f 7→ (f(b))b∈B

is an isomorphism of vector spaces.
Every linearly independent
set can be extended to a ba-
sis

Exercise 2.7.F. Let us prove something slightly stronger than just the exis-
tence of a basis. Let V be a k-vector space and consider an arbitrary linearly
independent subset S ⊆ V . Prove that there exists a superset S ⊆ T such that
T is a basis of V . (Hint: we need to start the process from S instead of the
empty set. Consider the family of linearly indepedent sets already containing
S.)

There is a basis between any
linearly independent set and
any spanning set containing
it

Exercise 2.7.G. We can even put an upper bound in finding the basis. Let V
be a k-vector space and consider S1 ⊆ V a linearly indepedent set and S2 ⊆ V
a spanning set. Suppose that S1 ⊆ S2. Prove that there exists a subset T with
S1 ⊆ T ⊆ S2 such that T is a basis of V . (Hint: this time, we only add in
elements of S2 while running the process. Consider the lineraly independent
subsets containing S1 and contained in S2.)

So we have proven that all vector spaces are isomorphic to some k⊕S . But
this does not finish the classification of vector spaces, because there certainly
are multiplicities within this classification. For instance, it is possible that
k⊕S ∼= k⊕T for distinct sets S 6= T . For instance, if S and T have the same
number of elements, then probably k⊕S ∼= k⊕T .

Exercise 2.7.H. Suppose that α : S → T is a map of sets. Show that the
induced map α∗ : k⊕S → k⊕T is injective if and only if α is injective, and
that α∗ is surjective if and only if α is surjective. As a consequence, α∗ is an
isomorphism if α is bijective.

It is reasonable to guess that k⊕S ∼= k⊕T if and only if there is a bijection
between S and T . This turns out to be a true statement, but we need some
preparation before proving it.

Every short exact sequence
splitsProposition 2.7.6. Let f : V � W be a surjective linear map. Then there

exists a linear map g : W → V such that f ◦ g = idW is the identity map. (Such
g necessarily has to be injective.)
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V W
f

g

Figure 2.2: Different sections (gray) of a projection map f : V →W

Proof. Pick a basis B ⊆W . From Exercise 2.7.E, we see that a map g : W → V
is uniquely determined by the values g(b) for b ∈ B. Because we want f(g(b)) = b
for each b ∈ B, we pick g(b) as an vector in the inverse image f−1(b). Here, note
that f−1(b) is nonempty because f is surjective. But f(g(b)) = b means that
f ◦ g : W → W and idW : W → W agree on all elements of B. Exercise 2.7.E
immediately implies that f ◦ g = idW as linear maps.

Example 2.7.7. Note that the function g is far from being unique. Let’s try
to see what we did in the previous proof with an example of f : R2 → R given
by f(x, y) = y. We first pick a basis B = {1} of W = R. The proof tells us
to pick g(1) as any vector that is in f−1(1) = {(x, 1)}. In general, let us pick
gc(1) = (c, 1), so that gc(x) = (cx, x). It is clear that all these linear maps gc
satisfy f ◦ gc = idW . See Figure 2.2.

Exercise 2.7.I. Consider a short exact sequence

0 V1 V2 V3 0.
f1 f2

Then f2 : V2 → V3 is surjective, and hence there exists a linear map g2 : V3 → V2

such that f2 ◦ g2 = idV3
. Show that every element v2 ∈ V2 can be uniquely

presented as
v2 = f1(v1) + g2(v3)

for v1 ∈ V1 and v3 ∈ V3. (Uniqueness means that if v2 = f1(v′1) + g2(v′3) then
v′1 = v1 and v′3 = v3.) Also show that there exists a linear map g1 : V2 → V1

such that g1 ◦ f1 = idV1 .
There is an injective map if
and only if there is a surjec-
tive map in the other direc-
tion

Exercise 2.7.J. For two vector spaces V and W , show that there exists a
surjective linear map V �W if and only if there exists an injective linear map
W ↪→ V . (Hint: use the previous exercise.)

We are now ready to prove that k⊕S ∼= k⊕T implies that there exists a
bijection between the two sets S and T . In fact, we will prove a much more
stronger statement. This is again a hard theorem, but try to at least grasp the
main idea. If you are not familiar with set theory regarding cardinality, feel free
to skip the case when T is infinite.
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Theorem 2.7.8. For arbitrary sets S and T , the following are equivalent:

(i) There exists an injective linear map k⊕S ↪→ k⊕T .

(ii) There exists a surjective linear map k⊕T � k⊕S.

(iii) There exists an injective (set) map S ↪→ T .

(iv) Either there exists a surjective (set) map T � S or S = ∅.

Proof. Exercise 2.7.J gives the equivalence between (i) and (ii). It follows from
basic set theory that (iii) and (iv) are equivalent. (Actually (iv)⇒ (iii) requires
the Axiom of Choice, but we’re already assuming this.) So now we need to prove
equivalence between (i) ⇔ (ii) and (iii) ⇔ (iv). One direction is immediate:
(iii) ⇒ (i) follows from Exercise 2.7.H. It suffices to show the other direction.

We are going to divide into two cases. First assume that T is infinite,
and consider a surjective linear map f : k⊕T � k⊕S . We are going to prove
(ii) ⇒ (iv). For each element tj ∈ T , we look at f(tj) ∈ k⊕S . Write

f(tj) = aj,1sj,1 + aj,2sj,2 + · · ·+ aj,nj
sj,nj

.

Now we define a (set) map

α : {(tj ,m) ∈ T × Z≥0 : 1 ≤ m ≤ nj} → S; (tj ,m) 7→ sj,m.

The point is that this map is a surjective map. If some s ∈ S doesn’t appear in
the image of α, this means that s doesn’t appear in any of the f(tj). Then the

image of f is contained in k⊕(S\{s}), which contradicts that f is surjective. So
we get a surjective map from a subset of T × Z≥0 to S. Because T is infinite,
there exists a bijection between T and T × Z≥0 (this is another set-theoretic
fact), and hence there exists a surjection from a subset of T to S. This gives
(iv).

Now let us deal with the case when T = {t1, . . . , tn} is finite. We are going
to use the next lemma (Lemma 2.7.9) here to prove (ii) ⇒ (iii). Consider a
surjective map f : k⊕T � k⊕S . Then A = {f(t1), . . . , f(tn)} is a spanning set
for k⊕S , and on the other hand, B = {s : s ∈ S} = {s1, s2, . . .} is a basis of
k⊕S . By Lemma 2.7.9, we can remove one element in B and replace it by an
element of A to get another basis. Let us remove s1 from B and replace it with
some element of A to get a new basis

B1 = {ti1 , s2, s3, . . .}.

Then we can remove s2 and replace it by some element of A to get another basis

B2 = {ti1 , ti2 , s3, . . .}.

Here, we must have i1 6= i2, because otherwise B2 is strictly a subset of B1.
This means that this process should not be allowed to continue for more than n
times, because A has only n elements and the same element cannot appear twice
among ti1 , ti2 , . . .. This shows that B cannot have more than n elements to start
out with. Therefore S has at most n elements and there exists an injective (set)
map S ↪→ T .
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Given a basis minus one ele-
ment, you can put in an ele-
ment of a given spanning set
to get another basis

Lemma 2.7.9 (basis exchange). Let V be a k-vector space. Let B ⊆ V be a
basis, and A ⊆ V be a spanning set. Then for each b ∈ B, there exists an a ∈ A
such that (B \ {b}) ∪ {a} is again a basis.

Proof. Because A is spanning, there exists an a ∈ A such that a /∈ span(B\{b}).
Otherwise, A ⊆ span(B \ {b}) and so V = spanA ⊆ span(B \ {b}) gives a
contradiction. By Exercise 2.7.D, the set (B \{b})∪{a} is linearly independent.
Let us now show that it is spanning. Because B is a basis, there is a way to
write

a = cb+ c1b1 + c2b2 + · · ·+ cnbn

where c, c1, . . . , cn ∈ k and b1, . . . , bn ∈ B \ {b} are distinct. Because a /∈
span(B \ {b}), we have c 6= 0. Then we can also write

b = c−1a− c−1c1b1 − c−1c2b2 − · · · − c−1cnbn.

This shows that b ∈ span((B \ {b}) ∪ {a}) and so V = span(B) ⊆ span((B \
{b}) ∪ {a}). Therefore (B \ {b}) ∪ {a} is a basis.

Exercise 2.7.K. Translate Theorem 2.7.8 to the following statement. Let V
and W be vector spaces, and let BV and BW be bases for V and W respectively.
Then the following statements are equivalent:

(i) There exists an injective linear map V ↪→W .

(ii) There exists a surjective linear map W � V .

(iii) There exists an injective map BV ↪→ BW .

(iv) Either there exists a surjective map BW � BV or BV = ∅.
The size of a basis is an in-
variant of the vector space Corollary 2.7.10. If B1 and B2 are two bases of a k-vector space V , then

|B1| = |B2|, i.e., there exists a bijection between B1 and B2.

Proof. Because idV : V → V is injective, there exists an injective map B1 ↪→ B2.
But idV : V → V is also surjective, so there exists an injective map B2 ↪→ B1.
By the Schröder–Bernstein theorem, which we will not prove, there exists a
bijection between the two sets B1 and B2.

So the number of elements of a basis of V is an invariant of V , not depending
on the choice of the basis. This allows us to define the dimension of V .

Exercise 2.7.L. Let V be a k-vector space. Show that the following two
statements are equivalent:

(i) There exists a basis B ⊆ V such that B is finite.

(ii) Every basis B ⊆ V is finite.

https://en.wikipedia.org/wiki/Schr\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\accent 127 o\egroup \spacefactor \accent@spacefactor der\OT1\textendash Bernstein_theorem
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Definition 2.7.11. Let V be a k-vector space. We say that V is finite-
dimensional if there exists a finite basis (and hence all bases are finite by
the previous exercise). In this case, define the dimension of V as

dimk V = |B|

where B is a basis of V . This cardinality is independent of the choice of the
basis B, so the dimension is well-defined.

Even if B is an infinite set, we can make sense of dimV by its “cardinality”.
We are going to say that |S1| = |S2| if there exists a bijection between the
two sets S1 and S2, and we are going to say that |S1| ≤ |S2| if there exists an
injective map S1 ↪→ S2. What Schröder–Berstein says is that |S1| ≤ |S2| and
|S2| ≤ |S1| implies |S1| = |S2|. But in most cases, we are only going to worry
about finite-dimensional vector spaces when talking about dimension.

Example 2.7.12. For any nonnegative integer n, we have dimk k
n = n because

e1, . . . , en forms a basis.

Corollary 2.7.13. Let V and W be finite-dimensional k-vector spaces, and let
BV and BW be bases for V and W respectively. Then the following statements
are equivalent:

(i) There exists an injective linear map V ↪→W .

(ii) There exists a surjective linear map W � V .

(iii) dimk V ≤ dimkW .
The dimension of the direct
sum is the sum of the dimen-
sions

Exercise 2.7.M. For finite-dimensional vector spaces V1, V2, . . . , Vn, show that

dimk(V1 ⊕ V2 ⊕ · · · ⊕ Vn) = dimk V1 + dimk V2 + · · ·+ dimk Vn.

Exercise 2.7.N. Let W ⊆ V be a subspace of a finite-dimensional vector space
V . Show that W and V/W are also finite-dimensional and

dimk V = dimkW + dimk(V/W ).
The alternating sum of di-
mensions of an exact se-
quence vanishes

Exercise 2.7.O. Consider an exact sequence

0→ V0 → V1 → V2 → · · · → Vn → 0,

where each Vi are finite-dimensional vector spaces. Then show that

dimk V0 − dimk V1 + dimk V2 − · · ·+ (−1)n dimk Vn = 0.

It is thanks to this fact that the Euler characteristic behaves very well.

Exercise 2.7.P. Let V andW be finite-dimensional vector spaces with dimk V =
dimkW . Show that any injective linear V ↪→ W is an isomorphism. Similarly,
show that any surjective linear V �W is an isomorphism. Find counterexam-
ples to both statements when V and W are allowed to be infinite. (Hint: try
shifting sequences around in R⊕Z≥0 .)

https://en.wikipedia.org/wiki/Euler_characteristic
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A one-sided inverse of a ma-
trix is automatically a two-
sided inverse

Exercise 2.7.Q. Let A and B be n× n square matrices with entries in a field
k. Show that AB = I if and only if BA = I. (Here, I denotes the identity
matrix, corresponding to id : kn → kn.)

Exercise 2.7.R. Let V and W be finite-dimensional vector spaces. We define
the rank of a linear map f : V → W as rank f = dimk(im f). Show that
rank f ≤ min{dimk V,dimkW}.

Let us also do some computations with finite-dimensional vector spaces.

Exercise 2.7.S. Consider the linear map T : R3 → R3 given by the matrix

T =

−2 −1 0
−1 0 1
0 1 2

 .
(a) Find a basis of kerT . What is dimR(kerT )?

(b) Find a basis of imT . What is dimR(imT )?

(c) Find a basis of cokerT . What is dimR(cokerT )?

(d) Recall that there are short exact-sequences 0→ kerT → R3 → imT → 0
and 0→ imT → R3 → cokerT → 0. Verify that dim kerT + dim imT = 3
and dim imT + dim cokerT = 3.

There is a conic passing
through any five points on
the plane

Exercise 2.7.T. Let A1, . . . , A5 ∈ R2 be five points on the plane. Consider

V = {polynomials in x and y with coefficients in R and total degree ≤ 2}.

(For instance, x2 + xy + y + 2 ∈ V while xy2 /∈ V , because total degree of xy2

is 3.)

(a) Show that V is a vector space over R, and compute its dimension.

(b) Consider the map Φ : V → R5 given by p(x, y) 7→ (p(A1), . . . , p(A5)).
Check that this map is linear.

(c) Show that there exists a nonzero polynomial p(x, y) ∈ V such that Φ(p) =
0.

(d) Conclude that there exists a conic (or two lines) that passes through all
five points A1, . . . , A5.

A polynomial is uniquely de-
termined by values at its de-
gree plus one numbers

Exercise 2.7.U. Let a0 < a1 < · · · < an be distinct real numbers. Consider
the space

V = {polynomials in x with coefficients in R and degree ≤ n}.

Compute dimR V . Consider the map

V → Rn+1; p(x) 7→ (p(a0), . . . , p(an)).

Show that this linear map is an isomorphism. (You only have to show either
injectivity or surjectivity. You can go both ways: for injectivity, you can use
polynomial division, and for surjectivity, you can use Lagrange interpolation.)

https://en.wikipedia.org/wiki/Lagrange_polynomial
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Picking an ordered basis is
picking an isomorphism with
a standard vector space

Exercise 2.7.V. Let V be a vector space with dimk V = n. Show that there
is a bijection (of sets)

{isomorphisms kn → V } ↔ {(v1, . . . , vn) ∈ V n : {v1, . . . , vn} is a basis}
f 7→ (f(e1), . . . , f(en)).

In other words, picking an isomorphism kn ∼= V is equivalent to picking a basis
and then ordering it. We shall say that (v1, . . . , vn) ∈ V n is an ordered basis
if {v1, . . . , vn} is a basis.

Let V and W be vector spaces with dimk V = n and dimkW = m. Consider
a linear map T : V → W . We would like to say that T corresponds to a
m× n matrix, but we cannot immediately say this because a matrix is a linear
map kn → km. (The reason we want to write down a map as a matrix is
because matrices are computable.) So what we do is choose ordered bases B of
V and C of W , and consider the corresponding isomorphisms ϕB : kn → V and
ϕC : km →W . Then the composition

C [T ]B = ϕ−1
C ◦ T ◦ ϕB : kn

ϕB−−→ V
T−→W

ϕ−1
C−−→ km

is a m × n matrix. (This is not standard notation, by the way.) We can also
write down vectors v ∈ V as n× 1 column matrices:

B [v] = ϕ−1
B (v) ∈ kn.

Exercise 2.7.W. Let V,W be finite-dimensional vector spaces with ordered
bases B,C. For a linear map T : V → W , show that C [Tv] = C [T ]BB [v] as
matrices.

Exercise 2.7.X. Let V,W,U be finite-dimensional vector spaces with ordered
bases B,C,D. For linear maps T : V → W and S : W → U , show that

D[S ◦ T ]B = D[S]CC [T ]B .

V W U

kn km kl

T S

ϕ−1
C

ϕB

C [T ]B

ϕC

D[S]C

ϕD

Change of basis corresponds
to multiplying appropriate
matrices

Exercise 2.7.Y. Let V be a finite-dimensional vector space and consider two
bases B and B′. Consider the matrix B [id]B

′
representing the identify map

idV : V → V , where the two V are considered using different bases.

(a) Show that B [id]B = I is the identity matrix and B′ [id]BB [id]B
′

= B [id]B
′
B′ [id]B =

I, that is, changing B and B′ gives the inverse matrix.

(b) If W is another vector space with ordered bases C,C ′, and T : V →W is
a linear map, show that C′ [T ]B

′
= C′ [id]CC [T ]BB [id]B

′
.
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(c) If T : V → V is a linear map, show that B′ [T ]B
′

= PB [T ]BP−1 where
P = B′ [id]B .

Exercise 2.7.Z. Consider the linear map T : R2 → R2 given by the matrix

T =

[
1 −3
2 0

]
.

Consider ordered bases B = ((1, 2), (−1,−1)) and B′ = ((−1, 0), (4, 1)) of R2.

(a) Compute the matrix B [T ]B .

(b) Compute the matrix B′ [T ]B
′
.

(c) Compute the matrix P = B′ [id]B .

(d) Verify that B′ [T ]B
′

= PB [T ]BP−1.

2.8 Dual spaces

In this section, we are going to talk about linear maps V → k. These are going
to be ways to measure a vector in terms of a single number. Why are these
interesting objects to study? First, it is a natural thing to try and measure
an object. We might want to measure the length or area of some geometric
object, and to do this, we need to know how to measure vectors, or maybe
parallelograms formed by vectors. That is, we need some way of turning a
vector into a number to measure. The second reason is formal. In mathematics,
many objects or concepts appear with some form of duality and it is fundamental
to understand what happens between them. The dual vector space is one such
example.

Definition 2.8.1. Let V be a k-vector space. We define its dual as

V ∗ = Homk(V, k).

An element of V ∗ is sometimes called a linear functional on V .

Example 2.8.2. What is (kn)∗? This is the space of linear maps kn → k, in
other words, the space of 1 × n matrices. (Note that we have identified kn as
n× 1 column vectors.) So there is an isomorphism

−∗ : kn → (kn)∗; a =

a1

...
an

 7→ a∗ =
[
a1 · · · an

]
.

An interesting structure coming from this isomorphism is the standard
inner product or dot product on kn. Consider two vectors a, b ∈ kn. Under
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1

−1

2

−2

3

−3

0

v1

v2

V

α : v1 7→ 2

α : v2 7→ −1

Figure 2.3: Visualizing an element of α ∈ V ∗: the vectors on the gray line
labeled a are sent to a.

the identification, a∗ ∈ (kn)∗ is a linear map kn → k, so we can evaluate a∗(w).
In terms of matrices, it will be

a∗(b) =
[
a1 · · · an

] b1...
bn

 = a1b1 + · · ·+ anbn ∈ k.

From this formula, we immediately note that a∗(b) = b∗(a), and define

a · b = b · a = a∗(b) = b∗(a) ∈ k.

Because a∗ : kn → k is linear, we immediately have some properties like

a · (βb+ γc) = β(a · b) + γ(a · c)

for a, b, c ∈ kn and β, γ ∈ k.
The dual of a free vector
space is the function vector
space

Exercise 2.8.A. For each set S, show that there is a natural isomorphism
(k⊕S)∗ ∼= kS . This should be the map defined above when S is finite.

A note of caution, however, is that we have made a somewhat arbitrary
choice here when identifying kn ∼= (kn)∗. We could have defined v∗ = [an · · · a1],
and the map would have still been an isomorphism. What this suggests is
that given an abstract vector space V , there is no canonical (i.e., free of ar-
bitrary choices) isomorphism V → V ∗, even if V is finite-dimensional. Of
course, you can choose a basis, i.e., an isomorphism V ∼= kn and then identify
V ∼= kn ∼= (kn)∗ ∼= V ∗ through kn. But without choosing a basis, there is just
no way to identify V and V ∗.

Let me spell out the map V ∼= V ∗ (after choosing a basis) more explicitly.
Suppose dimk V = n and choose an ordered basis B = (v1, v2, . . . , vn). The
assignment Φ(vi) = ei then gives an isomorphism

Φ : V → kn;

n∑
i=1

aivi 7→
n∑
i=1

aiei = (a1, . . . , an),
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where ei are the standard basis vectors. Using this isomorphism, we can con-
struct a map

−∗ : V kn (kn)∗ V ∗.Φ ∼= f 7→f◦Φ

This is an isomorphism, because it is a composition of isomorphisms. At the
least, we have the following.

A finite-dimensional vector
space and its dual have the
same dimension

Proposition 2.8.3. If V is finite-dimensional, then V ∗ is finite-dimensional
as well and dimk V = dimk V

∗.

Proof. We constructed an (non-canonical) isomorphism between V and V ∗.
(Check that f 7→ f ◦ Φ is an isomorphism.)

Exercise 2.8.B. Let v∗i ∈ V ∗ be the image of vi under the above isomorphism.
Show that

v∗i (vj) =

{
1 i = j

0 i 6= j.

This can also be taken as the definition of v∗i . One thing to be careful is
that v∗i is not defined using only vi. You need the entire basis v1, . . . , vn in
order to define even a single v∗i . The notation is highly misleading in this sense,
but unfortunately it is used widely in mathematics. The following exercise will
demonstrate to you how careful you need to be when doing computations with
the dual vector space.

The identification with its
dual requires the choice of
an entire ordered basis

Exercise 2.8.C. Let us take V = R2 with k = R.

(a) Consider the ordered basis e1 = (1, 0) and e2 = (0, 1). There is an isomor-
phism −∗e : V → V ∗ corresponding to this ordered basis. (We have put
the superscript e to denote that it comes frome e1, e2.) Write e∗e1 and e∗e2
as 1× 2 matrices.

(b) Change one vector and take v1 = e1 = (1, 0) and v2 = (1, 1). Consider the
isomorphism −∗v : V → V ∗ corresponding to this ordered basis. Write
v∗v1 and v∗v2 as 1× 2 matrices.

(c) Note that v∗v1 6= e∗e1 even though e1 = v1. Express e∗v1 and e∗v2 as 1 × 2
matrices.

I hope the discussion above gives enough intuition about how dual spaces
behave. Let us now discuss the more formal properties of the dual. Suppose we
have a linear map f : V →W between vector spaces. This induces a map

f∗ : W ∗ → V ∗; α 7→ α ◦ f.

We actually talked about this when discussing Homk. In fact, dualizing is a
special case of Homk, so everything we have proven about Homk holds.
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Exercise 2.8.D. For vector spaces V and W , show that there is a natural
isomorphism (V ⊕W )∗ ∼= V ∗ ⊕W ∗.

Dual of an injective map is
surjective, dual of a surjec-
tive map is injective

Proposition 2.8.4. Consider a linear map f : V → W between vector spaces.
If f is injective, then f∗ is surjective. If f is surjective, then f∗ is injective.

Proof. Let us first show that if f is surjective then f∗ is injective. To check that
f∗ : W ∗ → V ∗ is injective, we only need to show that ker f∗ = 0. Consider any
α ∈W ∗ such that f∗(α) = α ◦ f = 0. Then α(f(v)) = 0 for all v ∈ V . Because
f is surjective, f(v) ranges over all vectors in W . This shows that α(w) = 0 for
all w ∈W , and hence α = 0.

We now show that if f is injective then f∗ is surjective. Given an arbitrary
β ∈ V ∗, we need to show that there exists an α ∈W ∗ such that f∗(α) = α◦f =
β. By this condition α◦f = β, such a map α restricted to f(V ) ⊆W is uniquely
determined. That is, the map α0 = α ◦ f−1 : f(V ) → k is well-defined, and
α ◦ f = β is equivalent to α|f(V ) = α0. What we need to do is to extend this
linear map α0 : f(V ) → k to a linear map α : W → k. We do this by picking
a basis. Let B1 ⊆ f(V ) be a basis of f(V ). By Exercise 2.7.F, there exists
a B2 ⊆ W , disjoint from B1, such that B1 ∪ B2 is a basis of W . Let define
α : W → k by

α(b) = α0(b) if α ∈ B1, α(b) = 0 if α ∈ B2.

Because spanB1 = f(V ) and α(b) = α0(b) for b ∈ B1, we see that α|f(V ) = α0.
On the other hand, this is clearly gives a linear map W → k because B1 ∪B2 is
a basis of W .

Dualizing is exact

Exercise 2.8.E. Let V1 → V2 → V3 be an exact sequence of vector spaces.
Show that its dual V ∗3 → V ∗2 → V ∗1 is exact as well.

This actually holds in greater generality.
Contravariant Hom is exact

Exercise 2.8.F. Let V1 → V2 → V3 be an exact sequence of vector spaces. For
an arbitrary vector space W , show that the induced sequence

Hom(V3,W )→ Hom(V2,W )→ Hom(V1,W )

is exact. (So in Exercise 2.6.S, actually you can put a 0 at the end.)
Covariant Hom is exact

Exercise 2.8.G. This is not really relevant, but I think it’s worth mentioning.
Let V1 → V2 → V3 be an exact sequence of vector spaces. For an arbitrary
vector space W , show that the induced sequence

Hom(W,V1)→ Hom(W,V2)→ Hom(W,V3)

is exact. (So you can put a 0 at the end of Exercise 2.6.R as well.)

Exercise 2.8.H. Consider a vector space V and a vector v ∈ V . If f(v) = 0
for all linear maps f : V → k, then show that v = 0.
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Exercise 2.8.I. Consider a vector space V and a subset S = {vi}i∈I . For every
vector v ∈ V , show that the following are equivalent:

(i) v /∈ span(S).

(ii) There exists a f ∈ V ∗ such that f(vi) = 0 for all vi ∈ S but f(v) 6= 0.
A linear equation has a solu-
tion if and only if there is no
contradiction

Exercise 2.8.J. Let V be a vector space and S = {vi}i∈I ⊆ V be a set of
vectors. For ci ∈ k, show that the following conditions are equivalent:

(i) The equations f(vi) = ci for i ∈ I do not have a common solution f ∈ V ∗.
(ii) There exist i1, . . . , in ∈ I and a1, . . . , an ∈ k such that a1vi1 +a2vi2 + · · ·+

anvin = 0 but a1ci1 + · · ·+ ancin 6= 0.

(Hint: extend vi to ṽi = (vi, ci) ∈ V ⊕ k. Then (i) is equivalent to the nonexis-
tence of f ∈ (V ⊕ k)∗ such that f(ṽi) = 0 for all i ∈ I and f(0V , 1) = −1. Now
use the previous exercise.)

Exercise 2.8.K. For a linear f : V →W , recall that we have defined rank f =
dimk im f . If rank f < ∞, i.e., im f is finite-dimensional, show that rank f =
rank f∗. (Hint: if f is decomposed as f : V � U ↪→ W , then show that
rank f = dimU .)

The dual map of a matrix is
the transpose matrix Exercise 2.8.L. Consider a linear map T : kn → km, corresponding to an

m× n matrix with entries in k. Write

T =

 t11 · · · t1n
...

. . .
...

tm1 · · · tmn

 .
Its dual is going to be T ∗ : (km)∗ → (kn)∗, and under the isomorphisms km ∼=
(km)∗ and kn ∼= (kn)∗, we can regard it as a linear map T ∗ : kn → km. Show
that the n×m matrix corresponding to T ∗ is

T ∗ =

t11 · · · tm1

...
. . .

...
t1n · · · tmn

 .
This is also called the transpose matrix of T .

Row rank equals column
rank Exercise 2.8.M. Consider a linear map T : kn → km, and consider it as a

m× n matrix. Consider the columns of T as elements of km, and denote them
by v1, . . . , vn ∈ km. We define the column rank as dimk span(v1, . . . , vn). Show
that the column rank of T is simply rankT , where T is regarded as a linear map.
Similarly, consider the rows of T as w1, . . . , wm ∈ kn, and define the row rank
as dimk span(w1, . . . , wm). Show that the row rank of T is rankT ∗. Conclude
that

rankT = (column rank of T ) = (row rank of T )

for any matrix T .
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An element α ∈ V ∗ is, by definition, a linear map V → k, so there is a
“pairing” between V and V ∗ given by

V ∗ × V → k; (α, v) 7→ α(v).

This map is not linear, because (α1 + α2)(v1 + v2) 6= α1(v1) + α2(v2). Instead,
it is linear when one component is fixed. This is called a “bilinear map”, which
we will look at in the next chapter. The point is that the map is linear on α
when v ∈ V is fixed. That is, for each v ∈ V , we get a linear map

−(v) : V ∗ → k; α 7→ α(v).

This then gives a canonical map

ΨV : V → (V ∗)∗; v 7→ −(v) = (α 7→ α(v)).

Exercise 2.8.N. Show that the map ΨV is injective for every vector space V .
A finite-dimensional vector
space is isomorphic to its
double dual

Exercise 2.8.O. Show that if V is finite-dimensional, then ΨV is an isomor-
phism. (Hint: look at the dimension)

Unfortunately, if V is infinite-dimensional, the map ΨV is always injective
but not surjective. From Exercise 2.8.A, we see that (k⊕S)∗ can be identified
with kS . But if S is infinite, there are many linear maps kS → k that don’t
come from a pairing with an element of k⊕S . This is one reason we won’t talk
a lot about duals of infinite-dimensional vector spaces.

Exercise 2.8.P. Let V and W be finite-dimensional vector spaces, and let
f : V → W be a linear map. The map f induces a map f∗ : W ∗ → V ∗,
which then induces f∗∗ : V ∗∗ → W ∗∗. Show that f∗∗ is equal to f under the
identifications V ∼= V ∗∗ and W ∼= W ∗∗.

V W

V ∗∗ W ∗∗

f

ΨV ΨW

f∗∗

Exercise 2.8.Q. Let V and W be finite-dimensional vector spaces. Show that
the map

Homk(V,W )→ Homk(W ∗, V ∗); f 7→ f∗

is an isomorphism of vector spaces.
In a finite-dimensional vector
space, the annihilator of the
annihilator is itself

Exercise 2.8.R. Let V be a finite-dimensional vector space, and let W ⊆ V
be a subspace. We define the annihilator of W as the subspace

W 0 = {α ∈ V ∗ : α(W ) = 0} ⊆ V ∗.
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(a) Show that W 0 = ker(i∗ : V ∗ → W ∗), where i : W ↪→ V is the inclusion
map.

(b) Show that dimV = dimW + dimW0.

(c) Show that W 00 ⊆ V ∗∗ is equal to W under the identification V ∼= V ∗∗.

Exercise 2.8.S. Let V be a finite-dimensional vector space and S = {fi}i∈I ⊆
V ∗ be a set of linear functionals. For ci ∈ k, show that the following conditions
are equivalent:

(i) The equations fi(v) = ci for i ∈ I do not have a common solution v ∈ V .

(ii) There exist i1, . . . , in ∈ I and a1, . . . , an ∈ k such that a1fi1 +a2fi2 + · · ·+
anfin = 0 but a1ci1 + · · ·+ ancin 6= 0.

2.9 Linear algebra in combinatorics

The theory of bases and dimension is difficult and delicate, as you have seen.
This also means that it is a powerful tool that turn many difficult problems
into trivialities. Linear algebra is fundamental to many areas of mathematics,
such as algebraic geometry, differential geometry, real analysis, and so on. It
is even used in combinatorics to solve seemingly unrelated problems. We will
see some of those problems where linear algebra is a powerful tool. If you are
not interested such applications, you may skip this section entirely. Also, the
exercises in this section are going to be hard, so feel free to move on without
solving all of them.

If there are vectors more
than the dimension, they are
linearly dependent

Exercise 2.9.A. Let V be a k-vector space with dimV = n finite. If v1, . . . , vn+1 ∈
V , there exist a1, . . . , an+1 ∈ k, not all zero, such that

a1v1 + a2v2 + · · ·+ an+1vn+1 = 0.
If there are more variables
than homogeneous equa-
tions, there is a nontrivial so-
lution

Exercise 2.9.B. Let x1, . . . , xn be n variables, and consider n− 1 equations

aj,1x1 + aj,2x2 + · · ·+ aj,nxn = 0

for 1 ≤ j ≤ n − 1, where aj,i ∈ k. Show that there always exists a nonzero
solution (x1, . . . , xn) ∈ kn satisfying all the n − 1 equations. (Nonzero means
that (x1, . . . , xn) 6= (0, . . . , 0).)

A lot of the examples will rely on these two results, that n+1 elements in an
n-dimensional vector space are always linearly dependent, and that any n − 1
equations with n variables have a nonzero solution. In each situation, a clever
choice of the base field k and the vectors vi will give us some useful information.
The first example is called the “Oddtown problem”.

Theorem 2.9.1 (Oddtown problem). Let A1, . . . , Am ⊆ {1, 2, . . . , n} be subsets
such that |Ai| is odd for each 1 ≤ i ≤ n and |Ai ∩ Aj | is even for each 1 ≤ i <
j ≤ n. Then m ≤ n.
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Proof. Consider k = F2, the field with two elements with addition and mul-
tiplication modulo 2. For each set Ai, consider the vector vi ∈ Fn2 such that
(vi)j = 1 if j ∈ Ai and (vi)j = 0 if j /∈ Ai. Using the standard inner product
on Fn2 , we can write the condition |Ai| odd simply as vi · vi = 1 ∈ F2, and the
condition |Ai ∩Aj | can be translated to vi · vj = 0 ∈ F2.

We are now going to prove that the vectors v1, . . . , vm are linearly indepen-
dent in Fn2 . This will immediately show that m ≤ n. Suppose that

a1v1 + a2v2 + · · ·+ amvm = 0

in Fn2 . Then taking the dot product with vi, we get

0 = vi · 0 = vi · (a1v1 + · · ·+ amvm) =

m∑
j=1

aj(vi · vj) = ai.

Therefore ai = 0 for all i, and this shows that v1, . . . , vm are indeed linearly
independent.

Exercise 2.9.C (Eventown problem). Let A1, . . . , Am ⊆ {1, 2, . . . , n} be sub-
sets such that |Ai| is even for each 1 ≤ i ≤ n and |Ai ∩ Aj | is odd for each
1 ≤ i < j ≤ n. Show that m ≤ n.

Exercise 2.9.D. Let A1, . . . , Am, B1, . . . , Bp ⊆ {1, . . . , n} be subset such that
|Ai ∩Bj | is odd for all 1 ≤ i ≤ m and 1 ≤ j ≤ p. Show that mp ≤ 2n−1.

Exercise 2.9.E. Let A1, . . . , An+1 ⊆ {1, 2, . . . , n} be arbitrary nonempty sub-
sets. Show that there exist nonempty disjoint subsets I, J ⊆ {1, 2, . . . , n} such
that ⋃

i∈I
Ai =

⋃
j∈J

Aj .

Theorem 2.9.2 (Graham–Pollak). Suppose that the edges of a complete graph
Kn are partitioned into the edges of m complete bipartite graphs. Then m ≥
n− 1.

Proof. Label the vertices of Kn by 1, 2, . . . , n, and let Ai and Bi be the set of
vertices on each side of the ith complete bipartite graph. Then we have the
identity ∑

1≤i<j≤n

xixj =

m∑
t=1

(∑
j∈At

xj

)(∑
j∈Bt

xj

)
.

If m ≤ n− 2, then m+ 1 ≤ n− 1 and so there exists a nonzero solution to the
m+ 1 equations ∑

j∈At

xj = 0, x1 + x2 + · · ·+ xn = 0,
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where we work over k = R. Then we have

0 = (x1 + · · ·+ xn)2 =

n∑
i=1

x2
i + 2

∑
1≤i<j≤n

xixj

=

n∑
i=1

x2
i + 2

m∑
t=1

0 ·
∑
j∈Bt

xj =

n∑
i=1

x2
i .

But xi ∈ R, and so the only way this can be satisfied is x1 = · · · = xn = 0. This
contradicts that (x1, . . . , xn) 6= (0, . . . , 0). Therefore m ≥ n− 1.

Exercise 2.9.F (Fisher’s inequality). Let 1 ≤ k ≤ n be positive integers.
Suppose A1, . . . , Am ⊆ {1, 2, . . . , n} are distinct subsets such that |Ai ∩Aj | = k
for each 1 ≤ i < j ≤ n. Show that m ≤ n.

Sometimes, it is very useful to set the base field as Q, although the vector
spaces become messy.

Theorem 2.9.3. Let r > 0 be a positive real number. It is possible to partition
a 1×r rectangle into finitely many squares, if and only if r is a rational number.

Proof. If r is rational, it is clear that the 1× r rectangle can be cut into finitely
many squares. Now suppose that r is irrational and there is a partition of the
rectangle into finitely many squares. Consider a Q-linear function f : R → R
such that f(1) = 1 and f(r) = −1. (Such a map exists because we can take a
Q-linear map span(1, r) → R with f(1) = 1, f(r) = −1 and then extend it to
R by choosing a basis.) Now if a rectangle of side-length a and b is partitioned
into rectangles with side-length ai and bi, we have the equality

f(a)f(b) =
∑
i

f(ai)f(bi)

because dividing along a side splits f(a) into f(x) + f(a − x) = f(a). Now if
the 1× r rectangle is partitioned into squares of side-length ai, then

−1 = f(1)f(−r) =
∑
i

f(ai)f(ai) =
∑
i

f(ai)
2 ≥ 0.

This is clearly a contradiction.

Exercise 2.9.G. Let A be a finite set of real numbers strictly between 0 and
1, such that for each x ∈ A, there exist a, b ∈ A ∪ {0, 1} such that a, b 6= x and
x = 1

2 (a+ b). Show that all elements of A are rational numbers.

Exercise 2.9.H (Iran 1998). Let S ⊆ [0, 1] be a finite subset containing 0 and
1. Suppose that every distance between elements of S occurs in at least two
different ways, except for the distance 1. Prove that S contains only rational
numbers.
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We end the chapter by a recent result that was proved in an elegant way
using linear algebra.

Exercise 2.9.I. Let p be a prime and n be a positive integer. Consider the
Fp-vector space

V = {polynomials P in x1, . . . , xn with coefficients in Fp and degxi
P ≤ p−1}.

(For instance, xp−1
1 xp−1

2 ∈ V because separately the degree are at most p − 1,
even though the total degree is 2(p− 1).) Consider the linear map

V → F(Fn
p )

p ; P 7→ (P (A))A∈Fn
p
.

Show that this map is an isomorphism, by showing that it is a surjection between
vector spaces of equal dimension. Conclude that if a polynomial P ∈ V vanishes
at all points in Fnp then P = 0 as a polynomial.

Theorem 2.9.4 (Dvir, 2009). Let p be a prime and n be a positive integer.
Consider a subset K ⊆ Fnp such that for each x ∈ Fnp , there exists an y ∈ Fnp
such that

y, y + x, y + 2x, . . . , y + (p− 1)x ∈ K.
Then |K| ≥

(
p+n−1
n

)
.

Proof. Suppose that |K| <
(
p+n−1
n

)
. Consider the space

V = {polynomials in x1, . . . , xn with coefficients in Fp and total degree ≤ p−1}.

This is a vector space over Fp, and dimFp
V =

(
p+n−1
n

)
. Consider the linear map

V → FKp ; P (x1, . . . , xn) 7→ (P (A))A∈K .

Because the dimension of the right hand side is smaller, it cannot be injective.
Therefore there is a nonzero polynomial P ∈ V such that P (A) = 0 for all
A ∈ K.

Now for each x, find a y ∈ Fnp such that y + ix ∈ K for all 0 ≤ i < p.
Consider the polynomial

Px,y(t) = P (y + tx),

which is a polynomial with one variable and coefficients in Fp. We have degPx,y ≤
p − 1 but Px,y(t) = 0 for all t ∈ Fp. This shows that Px,y must be the zero
polynomial. Let 0 ≤ degP = d ≤ p−1, and consider the homogeneous degree d
part of P , denoted by P . If we look at the degree d coefficient of Px,y, it is going
to be P (x). This shows that P (x) = 0 for all x ∈ Fnp , and by Exercise 2.9.I, we

see that P = 0 as a polynomial. This contradicts degP = d.

Exercise 2.9.J (German TST 2004). Consider a simple graph G, and suppose
that all the vertices are colored white. We are allowed to do the following
operation: pick a vertex v of G, change the color of v from white to black or
from black to white, and also change the color of all neighbors of v. Show that
it is possible to make all the vertices black after a finite number of operations.
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Exercise 2.9.K (USAMO 2008 6). At a certain mathematical conference, every
pair of mathematicians are either friends or strangers. At mealtime, every
participant eats in one of two large dining rooms. Each mathematician insists
upon eating in a room which contains an even number of his or her friends.
Prove that the number of ways that the mathematicians may be split between
the two rooms is a power of two (i.e., is of the form 2k for some positive integer
k).

Exercise 2.9.L (Putnam 2017 A6). The 30 vertices of a regular icosahedron
are distinguished by labeling them 1, 2, . . . , 30. How many ways are there to
paint each edge red, white, or blue, such that each of the 20 triangular faces of
the icosahedron has two edges of the same color and third edge of a different
color?



Chapter 3

Multilinear algebra

We now proceed into a new territory. So far, we have been looking at linear
structure, called vector spaces, and linear maps between them. When working
with these spaces, we are allowed to add vectors and multiply vectors by scalars.
But there are times where we would like to multiply vectors together. The inner
product

v · w = v1w1 + v2w2 + · · ·+ vnwn

defined on kn is one example. Another interesting example is the cross product

v × w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1)

defined on k3. More generally, notions such as “area” or “volume” necessarily
involves multiplying vectors together in some way. All multiplications here
satisfy the property that the map is linear if all but one component is fixed.

3.1 Bilinear maps and tensor products

Definition 3.1.1. Let V , W , and U be k-vector spaces. A (set) map f :
V ×W → U is said to be bilinear if

(BL1) for each v ∈ V , the map f(v,−) : W → U is linear, and

(BL2) for each w ∈W , the map f(−, w) : V → U is linear.

Here, V ×W is not supposed to thought of as a vector space. If you regard
V ×W as a vector space, the bilinear map f isn’t going to be linear in general.
For example,

f(cv, cw) = cf(v, cw) = c2f(v, w)

for c ∈ k.
Bilinear maps form a vector
spaceExercise 3.1.A. Show that the set {bilinear f : V ×W → U} is a k-vector

space under the usual operations

(f + g)(v, w) = f(v, w) + g(v, w), (cf)(v, w) = cf(v, w).

55
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A bilinear map is a linear
map to the Hom space Exercise 3.1.B. Consider the natural map

Homk(V,Homk(W,U))→ {bilinear f : V ×W → U};
f 7→ ((v, w) 7→ f(v)(w)).

Show that this map is an isomorphism of vector spaces. Likewise, show that
the map

Homk(W,Homk(V,U))→ {bilinear f : V ×W → U};
f 7→ ((v, w) 7→ f(w)(v))

is an isomorphism. In particular, we have a natural isomorphism

Homk(W,Homk(V,U)) ∼= Homk(V,Homk(W,U)).

Exercise 3.1.C. For a vector space V , show that the map V ∗ × V → k given
by (α, v) 7→ α(v) is bilinear. For vector spaces V,W and α ∈ V ∗, β ∈W ∗, show
that the map

V ×W → k; (v, w) 7→ α(v)β(w)

is bilinear.

Let us now try to classify bilinear maps. For instance, how is a bilinear map
f : k2 × k2 → V classified? We have

f(ae1 + be2, ce1 + de2) = af(e1, ce1 + de2) + bf(e2, ce1 + de2)

= acf(e1, e1) + adf(e1, e2) + bcf(e2, e1) + cdf(e2, e2),

and thus f is completely determined by the four values f(ei, ej) ∈ V . Con-
versely, for arbitrary choices of f(ei, ej), the above map is bilinear, because
every coefficient has exactly one of a, b and exactly one of c, d. This shows that
there is a correspondence

{bilinear k2 × k2 → V } → V 4; f 7→ (f(ei, ej))1≤i,j≤2.

Another way to think about this is that

Homk(k2,Homk(k2, V )) ∼= Homk(k2, V 2) ∼= (V 2)2 ∼= V 4.

Exercise 3.1.D. Show that the map

{bilinear km × kn → V } → V mn; f 7→ (f(ei, ej))1≤i≤m,1≤j≤n

is an isomorphism of vector spaces.

These facts can also be stated as there being an isomorphism

{bilinear km × kn → V } ∼= {linear kmn → V }.

This motivates the definition of tensor products.
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Tensor products are defined
so that a bilinear map is the
same as a linear map from
the tensor product

Definition 3.1.2. Let V and W be vector spaces. If ⊗ : V × W → T is a
bilinear map and satisfies the following property, we say that T (along with the
data of the bilinear map ⊗ : V ×W → T ) is a tensor product: for any vector
space U and a bilinear map b : V ×W → U , there exists a unique linear map
f : V ⊗W → U such that b = f ◦ ⊗.

V ×W U

T

b

⊗
f

As with all universal properties, such a T , if exists, is unique up to isomorphism.
So we call T the tensor product of V and W , and write T = V ⊗W . We also
write ⊗(v, w) = v ⊗w. An element of V ⊗W is called a simple tensor if it is
of the form v ⊗ w for some v ∈ V and w ∈ W . (Simple tensors generally don’t
form a subspace of T .)

This is a weird definition, because we have characterized the tensor product
as something satisfying a property. Such a definition is possible because any
two objects satisfying the same universal property are canonically isomorphic.
But the problem is that we do not know if there exists such a vector space T .
If there is no such T that satisfies the universal property, we would always have
to worry about existence when writing V ⊗W .

The tensor product always
existsProposition 3.1.3. For arbitrary vector space V and W , their tensor product

V ⊗W always exists.

Proof. We are going to do something crazy. Note that a (set) map b : V ×W →
U is the same as a linear map

Φ : k⊕(V×W ) → U,

where V ×W is regarded as a set in k⊕(V×W ). (This is a super large vector
space.) Here, Φ(v, w) = b(v, w) by definition. We have the condition that b is
bilinear, which means that

b(v + v′, w) = b(v, w) + b(v′, w), b(cv, w) = cb(v, w),

b(v, w + w′) = b(v, w) + b(v, w′), b(v, cw) = cb(v, w).

In terms of Φ, this can be translated to

Φ(v + v′, w) = Φ(v, w) + Φ(v′, w), Φ(cv, w) = cΦ(v, w),

Φ(v, w + w′) = Φ(v, w) + Φ(v, w′), Φ(v, cw) = cΦ(v, w).

So if we consider the subspace spanned by all such relations,

X = span

{
Φ(v + v′, w)− Φ(v, w)− Φ(v′, w), Φ(cv, w)− cΦ(v, w),
Φ(v, w + w′)− Φ(v, w)− Φ(v, w′), Φ(v, cw)− cΦ(v, w)

}
⊆ k⊕(V×W ),
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the condition b bilinear is equivalent to Φ(X) = 0. That is, a bilinear map
corresponds to a linear map k⊕(V×W )/X → U .

Now define T = k⊕(V×W )/X, with v ⊗ w = [(v, w)] ∈ T . Then any bilinear
map b : V ×W → U factors uniquely through ⊗ : V ×W → T , by the discussion
above. That is, T is the tensor product of V and W .

This gives an explicit construction of V ×W , and it can be taken as the
definition of V ⊗W . But we had to quotient a very large vector space by a very
large subspace, so the definition by universal properties is more intuitive to
understand. In fact, we are going to derive all properties of the tensor product
from this universal property. But on the other hand, if you want a concrete
idea, the above description can be useful. For instance, if

v1 ⊗ w1 + v2 ⊗ w2 = v3 ⊗ w3,

this means that (v1, w1) + (v2, w2) − (v3, w3) ∈ X and so the relation can be

built out of basic bilinear operations like v ⊗ (w + w′) = v ⊗ w + v ⊗ w′ or
(cv)⊗ w = c(v ⊗ w).

A linera map to the Hom
space is the same as a linear
map from the tensor product

Exercise 3.1.E. Show that the natural map

Homk(V ⊗W,U)→ Homk(V,Homk(W,U)); f 7→ (v 7→ (w 7→ f(v ⊗ w)))

is an isomorphism of vector spaces.

Exercise 3.1.F. For an arbitrary vector space, show that the natural map

V → k ⊗ V ; v 7→ 1⊗ v

is an isomorphism.

Exercise 3.1.G. Show that dim(km ⊗ kn) = mn.
The simple tensors formed
by basis vectors form a ba-
sis for the tensor product

Proposition 3.1.4. Let V and W be two vector spaces, with bases {vi}i∈I and
{wj}j∈J . Then {vi ⊗ wj}i∈I,j∈J is a basis of V ⊗W .

Proof. Let us first show that vi⊗wj generate V ⊗W . Because every v ∈ V is a
linear combination of vis and every w ∈W is a linear combination of wjs, every
v⊗w is a linear combinations of vi ⊗wjs. On the other hand, the construction
in Proposition 3.1.3 immediately implies that V ⊗W is generated by the simple
tensors v ⊗ w for v ∈ V and w ∈ W . This shows that V ⊗W is generated by
vi ⊗ wj . (Here is another way to see this. Any linear map f : V ⊗W → U
such that f(v ⊗ w) = 0 has to be 0 because the corresponding bilinear map
V ×W → U is 0. This shows that V ⊗W is generated by v ⊗ w.)

Now let us show that the vectors vi ⊗wj are linearly independent. Suppose
that ∑

i∈I

∑
j∈J

aij(vi ⊗ wj) = 0 ∈ V ⊗W,
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where aij = 0 except for finitely many (i, j) ∈ I × J . For each i ∈ I and j ∈ J ,
there are functionals v∗i ∈ V ∗ and w∗j ∈W ∗. Thus the map

V ×W → k; (v, w) 7→ v∗i (v)w∗j (w)

is bilinear, and corresponds to a linear map fij : V ⊗ W → k. This should
satisfy fij(v ⊗ w) = v∗i (v)w∗j (w), and hence

0 = fi0j0(0) = fi0j0

(∑
i∈I

∑
j∈J

aijvi ⊗ wj
)

=
∑
i∈I

∑
j∈J

aijfi0j0(vi ⊗ wj) =
∑
i∈I

∑
j∈J

aijv
∗
i0(vi)w

∗
j0(wj) = ai0j0 .

Therefore all aij are 0, which means that vi ⊗ wj are linearly independent.

This also can be taken as a definition for the tensor product V ⊗W . But
then the problem is that it depends on the choice of bases {vi} and {wj}. One
would have to check that a change of basis induces an isomorphism between the
two tensor products, and this will not be fun.

The dimension of the tensor
product is the product of the
dimensions

Corollary 3.1.5. If V and W are finite-dimensional vector spaces, then V ⊗W
is finite-dimensional and

dimk(V ⊗W ) = dimk V · dimkW.

Let us now discuss some of the more formal properties of tensor products.
Let f : V →W be a linear map and U be an arbitrary vector space. We would
like to say that f induces a map

f ⊗ idU : V ⊗ U →W ⊗ U ; v ⊗ u 7→ f(v)⊗ u.

How can we construct this map? The above is not really a definition because
v ⊗ u cover only very special elements in V ⊗ U . So we appeal to the universal
property. Such a map should correspond to a bilinear map

V × U →W ⊗ U ; (v, u) 7→ f(v)⊗ u,

and it is easy to check that this is indeed bilinear. By the universal property,
it induces a linear map f ⊗ idU : V ⊗ U → W ⊗ U , and f ⊗ idU should satisfy
v ⊗ u 7→ f(v)⊗ u by definition.

V × U W × U

V ⊗ U W ⊗ U

⊗

f×idU

⊗

This construction suggests that whenever I have an expression E(v, w) that
is bilinear in v and w, the map

V ⊗W → (sth); v ⊗ w 7→ E(v, w)



60 CHAPTER 3. MULTILINEAR ALGEBRA

is always uniquely defined. Such a definition should be interpreted as the map
V ⊗W → (sth) induced from the bilinear map V ×W → (sth) with (v, w) 7→
E(v, w).

For example, suppose I have f : V1 → V2 and g : W1 →W2. Then the map

f ⊗ g : V1 ⊗W1 → V2 ⊗W2; v ⊗ w 7→ f(v)⊗ g(w)

is a well-defined linear map.

Exercise 3.1.H. Let f1 : V1 → V2, f2 : V2 → V3, g1 : W1 →W2, g2 : W2 →W3

be linear maps. Show that (f2 ⊗ g2) ◦ (f1 ⊗ g1) = (f2 ◦ f1)⊗ (g2 ◦ g1).

Exercise 3.1.I. For vector spaces V and W , show that the map

V ⊗W →W ⊗ V ; v ⊗ w 7→ w ⊗ v

is an isomorphism of vector spaces.
Tensor product is associative

Exercise 3.1.J. Let V , W , and U be vector spaces. Rigorously define the
linear map

V ⊗ (W ⊗ U)→ (V ⊗W )⊗ U ; v ⊗ (w ⊗ u) 7→ (v ⊗ w)⊗ u

and show that it is an isomorphism. Then we are allowed to write V ⊗W ⊗ U
without ambiguity.

Tensor product distributes
over direct sum Exercise 3.1.K. Let {Vi}i∈I and W be vector spaces. Show that the map(⊕

i∈I
Vi

)
⊗W →

⊕
i∈I

(Vi ⊗W ); (vi)i∈I ⊗ w 7→ (vi ⊗ w)i∈I

is an isomorphism. (The chain of isomorphisms

Hom((
⊕

i Vi)⊗W,X) ∼= Hom(
⊕

i Vi,Hom(W,X)) ∼=
∏
i Hom(Vi,Hom(W,X))

∼=
∏
i Hom(Vi ⊗W,X) ∼= Hom(

⊕
i(Vi ⊗W ), X)

suggests that the two should be isomorphic.)
Tensor product is exact

Exercise 3.1.L. Let f : V → W be a linear map and U be a vector space, so
that we have an induced linear map f ⊗ idU : V ⊗ U →W ⊗ U .

(a) Show that if f is surjective, then f ⊗ idU is surjective.

(b) Show that if f is injective, then f ⊗ idU is injective. (Hint: pick a basis
of U .)

(c) Show that if V
f−→W

g−→ X is exact, then

V ⊗ U W ⊗ U X ⊗ Uf⊗idU g⊗idU

is exact. In particular, statements like ker(f⊗ idU ) = (ker f)⊗U are true.
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Here is another interesting construction. For V and W vector spaces, we
can define a linear map.

V ∗ ⊗W → Homk(V,W ); α⊗ w 7→ (α(−)w : v 7→ α(v)w).
Tensoring with the dual of
a finite-dimensional space is
the same as taking Hom
from that space

Exercise 3.1.M. Assume that V and W are both finite-dimensional. Show
that the natural map V ∗⊗W → Homk(V,W ) defined above is an isomorphism.
(Hint: after comparing dimension, it suffices to show either injectivity of sur-
jectivity.)

Exercise 3.1.N. Let V and W be finite-dimensional vector spaces. Show that
the natural map

V ∗ ⊗W ∗ → (V ⊗W )∗; α⊗ β 7→ (v ⊗ w 7→ α(v)β(w))

is an isomorphism. (This is the same as V ∗⊗W ∗ → Hom(V,W ∗) ∼= Hom(V,Hom(W,k)) ∼=
Hom(V ⊗W,k) = (V ⊗W )∗.)

So we are working with finite-dimensional vector spaces, we can always write
Homk out as tensor products. For instance, we can simplify a complicated
expression like

Hom(Hom(V,W ),Hom(U,X)) ∼= Hom(V,W )∗ ⊗Hom(U,X)
∼= (V ∗ ⊗W )∗ ⊗ (U∗ ⊗X) ∼= V ∗∗ ⊗W ∗ ⊗ U∗ ⊗X
∼= V ⊗W ∗ ⊗ U∗ ⊗X.

But for infinite-dimensional vector spaces, the situation becomes complicated.
Tensor product with a dual
of a vector space is the same
as taking finite rank linear
maps from the space

Exercise 3.1.O. Let V and W be arbitrary vector spaces.

(a) Show that the natural map V ∗ ⊗W → Homk(V,W ) is always injective.

(b) Show that the image of V ∗ ⊗ W → Homk(V,W ) is the subspace of
Homk(V,W ) consisting of finite rank linear maps V →W .

Here is another interesting thing you can do. For a vector space V , we have
seen that V ∗ × V → k given by (α, v) 7→ α(v) is a bilinear map. This defines a
linear map

trV : V ∗ ⊗ V → k; α⊗ v 7→ α(v).
The trace map is induced
from bilinear pairingDefinition 3.1.6. For a finite-dimensional vector space V and a linear map

f : V → V , we define the trace map

trV : Homk(V, V ) ∼= V ∗ ⊗ V → k.

More generally, in view of Exercise 3.1.O, we can define the trace map as

trV : {linear f : V → V with finite rank} ∼= V ∗ ⊗ V → k

even if V is infinite-dimensional.
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Because trV is linear, we have, in particular, tr(f + g) = tr(f) + tr(g) and
tr(cf) = c tr(f).

The trace of a matrix is the
sum of the diagonal entries Exercise 3.1.P. Consider a linear map A : kn → kn given by the matrix

A =

a11 · · · a1n

...
. . .

...
an1 · · · ann

 .
Show that tr(A) = a11 + · · ·+ ann.

Exercise 3.1.Q. For V a finite-dimensional vector space and f : V → V a
linear map, consider its dual map f∗ : V ∗ → V ∗. Show that tr(f) = tr(f∗).

Exercise 3.1.R. Let V be a finite-dimensional vector space. Consider linear
maps f, g : V → V , corresponding to f, g ∈ V ∗ ⊗ V . Then g ◦ f is a liner map
V → V , and hence corresponds to g ◦ f ∈ V ∗ ⊗ V . Show that g ◦ f ∈ V ∗ ⊗ V is
the image of f ⊗ g ∈ V ∗ ⊗ V ⊗ V ∗ ⊗ V under the map

id⊗ tr⊗ id : V ∗ ⊗ (V ⊗ V ∗)⊗ V → V ∗ ⊗ k ⊗ V ∼= V ∗ ⊗ V.
Trace of a composition does
not depend on the order of
composition

Exercise 3.1.S. Let V be a finite-dimensional vector space, and let f, g : V →
V be linear maps. Show that tr(f ◦ g) = tr(g ◦ f). (This can be done by picking
a basis, but you can use the previous exercise to do it without picking bases.)
This means that you can cyclically permute compositions, but not arbitrarily.
For instance, tr(f ◦ g ◦ h) = tr(g ◦ h ◦ f) but it is not equal to tr(f ◦ h ◦ g).

Exercise 3.1.T. Let V and W be finite-dimensional vector spaces, and let
f : V → V and g : W → W be linear maps. Show that tr(f ⊗ g) = tr(f) tr(g).
(Again, you are welcome to pick a basis, but you can do this without picking
bases as well.)

Exercise 3.1.U. Let k have characteristic zero. For a finite-dimensional vector
space V and two maps f, g : V → V , is it possible that f ◦ g− g ◦ f = id? What
if k is allowed have positive characteristic?

3.2 Symmetric and exterior algebras

In this section, we look at variants of the tensor product. We have defined V ⊗V
to be the vector space that classifies bilinear maps mapping out of V × V . But
because the first and second component are both V , we can ask for additional
properties for such bilinear maps, and try to come up with spaces classifying
them. But first let us extend the notion of bilinearity to multilinearity.

Definition 3.2.1. Given vector spaces V1, . . . , Vn and W , we say that a (set)
map f : V1×V2×· · ·×Vn →W is multilinear if for every v1 ∈ V1, . . . , vn ∈ Vn,
the map

f(v1, . . . , vi−1,−, vi+1, . . . , vn) : Vi →W

is linear.
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Exercise 3.2.A. Show that V1 ⊗ · · · ⊗ Vn classifies multilinear maps out of
V1 × · · · × Vn. More concretely, given any multilinear m : V1 × · · · × Vn → W ,
show that there exists a unique linear map f : V1 ⊗ · · · ⊗ Vn → W such that
m(v1, . . . , vn) = f(v1 ⊗ · · · ⊗ vn).

V1 × · · · × Vn W

V1 ⊗ · · · ⊗ Vn

m

⊗
f

As we have said earlier, if V1 = · · · = Vn, then there are additional properties
we can impose. In particular, we shall consider symmetry and anti-symmetry.

Definition 3.2.2. Let V and W be vector spaces. A multilinear map f : V n →
W is said to be symmetric if

f(v1, . . . , vn) = f(vσ(1), . . . , vσ(n))

for all permutations σ of {1, . . . , n} and v1, . . . , vn ∈ V .

Exercise 3.2.B. Let α, β ∈ V ∗ be two linear functionals. Show that

V × V → k; (v, w) 7→ α(v)β(w)

is symmetric if and only if α and β are linearly dependent.

In a similar way, let us define anti-symmetric, or alternating, maps. When
n = 2, a map alternating should mean something like f(v, w) = −f(w, v). For
more variables, we need the notion of a signature of a permutation.

Definition 3.2.3. For σ a permutation of the set {1, 2, . . . , n}, we define its
signature as

sgn(σ) = (−1)#{(i,j):1≤i<j≤n,σ(i)>σ(j)}.

Exercise 3.2.C. We say that a permutation τ of {1, . . . , n} is a transposition
if there exist 1 ≤ i < j ≤ n such that τ(i) = j and τ(j) = i and τ(k) = k for
k 6= i, j. Show that every permutation can be written as a composition of
transpositions.

The signature is the parity of
the number of transpositions
needed to make a permuta-
tion

Exercise 3.2.D. If σ is a permutation of {1, . . . , n} and τ is a transposition,
show that sgn(σ ◦ τ) = − sgn(σ). Deduce that if σ is a composition of m
transpositions, then sgn(σ) = (−1)m. Show that sgn(σ1 ◦σ2) = sgn(σ1) sgn(σ2)
for permutations σ1 and σ2 of {1, . . . , n}.

Definition 3.2.4. Let V and W be vector spaces. A multilinear map f : V n →
W is said to be skew-symmetric or anti-symmetric or alternating if

f(v1, . . . , vn) = 0

for v1, . . . , vn ∈ V with vi = vj for some i < j.
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Exercise 3.2.E. Show that if f : V n →W is an alternating map, then

f(v1, . . . , vi, . . . , vj , . . . , vn) = −f(v1, . . . , vj , . . . , vi, . . . , vn).

That is, switching two elements change the sign. (Hint: consider f(. . . , vi +
vj , . . . , vi + vj , . . .).) Deduce that

f(vσ(1), . . . , vσ(n)) = sgn(σ)f(v1, . . . , vn)

for vectors v1, . . . , vn ∈ V and a permutation σ of {1, . . . , n}.

But the condition f(vσ(1), . . . , vσ(n)) = sgn(σ)f(v1, . . . , vn) does not imply
that f is alternating. If k has characteristic 2, that is if 2 = 0 inside k, then
sgn(σ) = 1 for all σ and thus there is no guarantee that f(v, v) = 0. On the
other hand if char k 6= 2, it is straightforward to see that the two conditions are
equivalent.

We are now ready to define the symmetric and exterior powers.
A multilinear symmetric
map is the same as a linear
map from the symmetric
power

Definition 3.2.5. Let V be a vector space. Suppose S is a vector space along
with a multilinear symmetric map · : V e → S such that for any other vector
space W and a multilinear symmetric map s : V d → W , there exists a unique
linear map f : S →W such that s = f ◦ ·.

V d W

S

s

·
f

Then we say that S is the symmetric power of V , and write S = Symd V .
We also write ·(v1, . . . , vd) = v1 · · · vd, because permuting v1, . . . , vd does not
change the product.

Exercise 3.2.F. Show that the symmetric power Symd V always exists. (Hint:
Imitate the construction of the tensor product.)

The monomials formed by a
basis forms a basis of the
symmetric power

Exercise 3.2.G. Let {vi}i∈I be a basis of V , where we assume that there is a
total ordering of I. (Feel free to assume that I is finite.) Show that the set

{vi1vi2 · · · vid : i1 ≤ . . . ≤ id}

is a basis of Symd V . (Hint: for linear independence, imitate the proof of Propo-
sition 3.1.4.)

Exercise 3.2.H. Let V be a finite-dimensional vector space with dimension
dimk V = n. Show that Symd V is finite-dimensional as well and that dimk Symd V =(
d+n−1

d

)
.
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The way to think about symmetric powers is as polynomials. For instance,
let us consider V = kn with basis {e1, . . . , en} ⊆ V . The symmetric power
Symd n will have basis

{ed11 e
d2
2 · · · ednn : d1 + d2 + · · ·+ dn} ⊆ Symd V.

That is, Symd V looks like the homogeneous total degree d polynomials in the
variables e1, . . . , en. This analogy can be pushed further.

Definition 3.2.6. Let V be a vector space. We define the symmetric algebra
on V as

Sym• V =

∞⊕
d=0

Symd V.

(Here, Sym0 V = k if you think over the definition carefully.)

Then this is the direct sum of all the homogeneous polynomials, and therefore
is like the space of all polynomials in the variables e1, . . . , en. A typical element
in Sym• V will look like 1 + 2e2

2 + 3e2
1e3 − 2e1e

2
4.

We can even multiply elements in Sym• V together. Consider the linear map

Symd V ⊗ Syme V → Symd+e V ; (vi1 · · · vid , vj1 · · · vje) 7→ vi1 · · · vidvj1 · · · vje .

This is well-defined, and is going to be the analogue of “multiplication” of
polynomials. We then get an isomorphism

{polynomials in the variables e1, . . . , en} ←→ Sym• kn

which not only is an isomorphism of vector spaces, but also preserves the “mul-
tiplication” structure. (A vector space with a multiplication structure is called
an algebra, so this is an isomorphism of algebras.)

If V is just a finite-dimensional vector space, without a canonical isomor-
phism to kn, we can still talk about Sym• V . But this symmetric algebra will
not be identified with a polynomial algebra without choosing a basis for V . This
can be a useful construction, for instance, in algebraic geometry.

The symmetric power is
functorialExercise 3.2.I. Show that a linear map f : V → W induces linear maps fd :

Symd V → SymdW on each degree d. Also show that the map f• : Sym• V →
Sym•W preserves multiplication. Show that this induced map behaves well with
composition, i.e., if g : W → U is another linear map then (g ◦ f)• = g• ◦ f•.

Exercise 3.2.J. Let 0→ V →W → U → 0 be an exact sequence. Is

0→ Symd V → SymdW → Symd U → 0

necessarily exact?

To us, the exterior power, classifying alternating maps, will be more impor-
tant. The definition of the exterior power is almost identical to the definition of
the symmetric power, except for that symmetric is replaced with alternating.
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An multilinear alternating
map is the same as a linear
map from the exterior power

Definition 3.2.7. Let V be a vector space. Suppose E is a vector space along
with a multilinear alternating map ∧ : V d → E such that for any other vector
space W and a multilinear alternating map a : V d → W , there exists a unique
linear map f : E →W such that a = f ◦ ∧.

V d W

E

a

∧
f

Then we say that E is the exterior power of V , and write E =
∧
dV . We also

write ∧(v1, . . . , vd) = v1 ∧ · · · ∧ vd.

Exercise 3.2.K. Show that the exterior power
∧
dV always exists.

Exercise 3.2.L. Let V be a vector space with basis {vi}i∈I , and assume that I
is totally ordered. (Again, you can assume that V is finite-dimensional.) Show
that

{vi1 ∧ vi2 ∧ · · · ∧ vid : i1 < i2 < · · · < id}

is a basis of
∧
dV .

Exercise 3.2.M. Let V be a finite-dimensional vector space with dimk V = n.
Show that

∧
dV is finite-dimensional with dimension dimk

∧
dV =

(
n
d

)
.

Exercise 3.2.N. Let V = k3. The vector space V has basis {e1, e2, e3}, and
the vector space

∧
2V has basis {e1∧e2, e2∧e3, e3∧e1}. We then define a linear

map, called the Hodge star operator, as

? :
∧2V → V ; e1 ∧ e2 7→ e3, e2 ∧ e3 7→ e1, e3 ∧ e1 7→ e2.

Show that for two vectors v, w ∈ k3, their cross product v × w is equal to
?(v ∧ w). (If you don’t know what a cross product is, take this as a definition
and compute the components of v × w in terms of v1, v2, v3 and w1, w2, w3.)

How should we think about the exterior power
∧
dV ? The point of the

exterior power is that there is some notion of orientation to it; if you switch
two vectors, you flip the orientation and pick up a sign. The interpretation
is that

∧
dV is supposed to be a d-dimensional volume element in the vector

space V . You can think of v1 ∧ · · · ∧ vd as the volume element corresponding to
the d-dimensional parallelotope with v1, . . . , vd as sides. If two of these vectors
are equal, the parallelotope becomes degenerate, and so the corresponding vol-
ume element becomes zero. If two vectors are switched, the orientation of the
parallelotope is flipped and we get a minus sign.

Like with the symmetric powers, we can define multiplication between ele-
ments of exterior powers. Consider the linear map∧dV ⊗∧eV → ∧d+eV ; (v1∧· · ·∧vd, w1∧· · ·∧we) 7→ v1∧· · ·∧vd∧w1∧· · ·∧we.
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v1

v2

v1 ∧ v2

v1

v2
v3

v1 ∧ v2 ∧ v3

Figure 3.1: Visualizing elements of
∧

2V and
∧

3V . Orientation of a 3-
dimensional volume element is harder to describe geometrically.

Definition 3.2.8. For a vector space V , we define its exterior algebra as the
vector space ∧•V =

∞⊕
d=0

∧dV
along with the multiplication maps defined above. (Here,

∧
0V = k if you go

back to the definition.)

For α ∈
∧
dV and β ∈

∧
eV , we shall simply denote by α ∧ β their product

in
∧
d+eV . For instance, we can do computations like

(v1 ∧ v2 − 2v2 ∧ v3) ∧ (v1 + v3)

= v1 ∧ v2 ∧ v1 + v1 ∧ v2 ∧ v3 − 2v2 ∧ v3 ∧ v1 − 2v2 ∧ v3 ∧ v3

= v1 ∧ v2 ∧ v3 − 2v1 ∧ v2 ∧ v3 = −v1 ∧ v2 ∧ v3.

for d = 2 and e = 1.
The exterior algebra is com-
mutative up to a signExercise 3.2.O. Let α ∈

∧
dV and β ∈

∧
eV . Show that α ∧ β = (−1)deβ ∧ α

as elements of
∧
d+eV .

Exercise 3.2.P. Let d be an odd positive integer. Show that α ∧ α = 0 for
every α ∈

∧
dV , even if k has characteristic 2 so that division by 2 is not allowed.

Exercise 3.2.Q. Show that vectors v1, . . . , vd ∈ V are linearly independent if
and only if v1 ∧ · · · ∧ vd 6= 0 in

∧
dV . (Hint: Exercise 2.7.F.) The geometric

interpretation is that a parallelotope is degenerate if and only if the side vectors
are linearly independent.

Of course, a linear map f : V →W induces a linear map

f∧d :
∧dV → ∧dW ; v1 ∧ · · · ∧ vd 7→ f(v1) ∧ · · · ∧ f(vd).

Exterior algebra is functorial
Exercise 3.2.R. Verify that if f : V → W and g : W → U are linear maps,
then g∧d ◦ f∧d = (g ◦ f)∧d. Also show that f∧• :

∧•V → ∧•W preserves
multiplication.
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Symmetric power and exte-
rior power of a direct sum
decomposes into bidegrees

Exercise 3.2.S. For vector spaces V and W , find natural isomorphisms

Symd(V ⊕W ) ∼=
d⊕
i=0

Symi V ⊗ Symd−iW,

∧d(V ⊕W ) ∼=
d⊕
i=0

∧iV ⊗∧d−iW.
Exterior power of a dual
is the dual of the exterior
power

Exercise 3.2.T. For a vector space V , show that the linear map∧dV ∗ → (
∧dV )∗;

α1 ∧ · · · ∧ αd 7→
(
v1 ∧ · · · ∧ vd 7→

∑
σ

sgn(σ)α1(vσ(1)) · · ·αd(vσ(d))

)
where σ ranges over all permutations of {1, . . . , d}, is well-defined and an iso-
morphism. Thus an element of

∧
dV ∗ inputs a d-dimensional volume form and

outputs a number. It can then be thought of as something that can measure
volume.

3.3 The determinant

We finally get to define the determinant. Intuitively, the determinant measures
the change of volume in the linear transformation. Let us look at an example.
Consider the linear map A : R2 → R2 defined by the matrix

A =

[
1 −1
−2 0

]
.

What this map does to the standard basis vectors is depicted in Figure 3.2. The
area of the parallelogram defined by e1 and e2 gets orientation-reversed, and the
area becomes twice. In fact, given any reasonable finite shape in R2, the map A
is going to reverse its orientation and double its volume. This suggests that the
“factor of volume change” is some invariant of the map A that does not depend
on the choice of a basis.

The determinant is the ac-
tion on the top exterior
power

Definition 3.3.1. Consider a finite-dimensional vector space V of dimension
dimk V = n, and a linear map f : V → V . Its nth exterior power

∧
nV is a

1-dimensional vector space, and

f∧n :
∧nV → ∧nV

is a linear map. Thus this map f∧n is just multiplication by some scalar in k.
We define the determinant of f as the element deg f ∈ k such that

f∧n(ω) = (det f) · ω.
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e1

e2

Ae1

Ae2

Figure 3.2: A linear map R2 → R2: the map has determinant −2 because it
doubles the volume and reverses orientation.

There are some obvious facts directly following from this definition. Let
f, g : V → V be linear maps, where V is a finite-dimensional vector space of
dimension n. Then∧nV f∧n=×(det f)−−−−−−−−−→

∧nV g∧n=×(deg g)−−−−−−−−−→
∧nV

and g∧n ◦ f∧n = (g ◦ f)∧n shows that

det(g ◦ f) = (det g)(det f).

This should be intuitively clear, because det is supposed to tell you how volume
changes under the linear map.

A linear map is invertible if
and only if it has nonzero de-
terminant

Exercise 3.3.A. Let V be a finite-dimensional vector space with basis v1, . . . , vn,
and let T : V → V be a linear map.

(Tv1) ∧ (Tv2) ∧ · · · ∧ (Tvn) = (detA)v1 ∧ v2 ∧ · · · ∧ vn.

Using Exercise 3.2.Q, conclude that T is an isomorphism (i.e., invertible) if and
only if detT 6= 0.

Exercise 3.3.B. Let σ be a permutation of {1, 2, . . . , n}, and consider the map
f : kn → kn defined by f(ei) = eσ(i). Show that det f = sgn(σ).

The determinant of a map is
the same as the determinant
of its dual map

Exercise 3.3.C. Let V be a finite-dimensional vector space, and let f : V → V
be a linear map. Show that det(f) = det(f∗).

Exercise 3.3.D. Compute the determinant of the map A : k2 → k2 given by
the matrix

A =

[
a b
c d

]
in terms of a, b, c, d.
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Now it would be nice to have a formula of a general n× n matrix, in terms
of the entries. The purpose for looking for this formula is two-fold. Firstly, in
terms of computations, it would be nice to have a general formula. If we ever
get to do computations, such as checking that some identity holds, we could just
write down the determinant, expand everything, and prove that the two sides
are equal. Secondly, the mere existence of a formula is helpful from a theoretical
perspective as well. If a formula that does not involve division exists, we could
extend the definition to “number systems without division”. If we find out that
the formula is a polynomial, we find out that the set matrices with nonzero
determinant forms an algebraic variety, for instance.

Hence let us look for the formula. We write the ith column of an n × n
matrix A by a•i, so that A looks like

A =

a•1 · · · a•n

 .
Another way to say this is a•i = Aei ∈ kn. But anyways, from Exercise 3.3.A
applied to the standard basis vectors, we have

(detA)e1 ∧ · · · ∧ en = (Ae1) ∧ · · · ∧ (Aen) = a•1 ∧ · · · ∧ a•n.

Let us now expand the right hand side. We know, by definition, that a•j =
a1je1 + · · ·+ anjen. So

(detA)(e1 ∧ · · · ∧ en) =

( n∑
i1=1

ai11ei1

)
∧ · · · ∧

( n∑
in=1

ainnein

)

=

n∑
i1=1

· · ·
n∑

in=1

(ai11ai22 · · · ainn)ei1 ∧ · · · ∧ ein .

We know that ei1 ∧ · · · ∧ ein = 0 if any two of i1, . . . , in are equal. Thus we may
consider the sum as over (i1, i2, . . . , in) that is a permutation of 1, . . . , n. Then
we can write

(detA)(e1 ∧ · · · ∧ en) =
∑
σ

aσ(1)1aσ(2)2 · · · aσ(n)neσ(1) ∧ eσ(2) ∧ · · · ∧ eσ(n),

where σ runs over permutations of {1, . . . , n}, i.e., bijective maps {1, . . . , n} →
{1, . . . , n}. But because taking ∧ is alternating, we have eσ(1) ∧ · · · ∧ eσ(n) =
sgn(σ)e1 ∧ · · · ∧ en. Therefore we get the following formula.

Proposition 3.3.2 (Formula for the determinant). For A : kn → kn a matrix,
we have

detA =
∑
σ

sgn(σ)aσ(1)1aσ(2)2 · · · aσ(n)n,

where σ runs over all permutations of {1, . . . , n}.
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Corollary 3.3.3. The determinant of a matrix A is an integer-coefficient poly-
nomial in its entries aij.

Exercise 3.3.E. Show that for any permutation σ, we have aσ(1)1 · · · aσ(n)n =
a1σ−1(1) · · · anσ−1(n). Deduce that the formula for the determinant can also be
written as

detA =
∑
σ

sgn(σ)a1σ(1) · · · anσ(n).

Using the matrix interpretation of the dual (i.e., transpose, see Exercise 2.8.L),
show that detA = detA∗. This is another proof of Exercise 3.3.C.

Exercise 3.3.F. Try to prove det(g ◦ f) = det(g) det(f) for linear maps f, g :
kn → kn, directly from the formula. This is going to be a nice combinatorial
exercise.

In a map between short ex-
act sequences, the determi-
nant of the middle map is
the product of the determi-
nants of the side maps

Exercise 3.3.G. Let V be a finite-dimensional vector space and let f : V → V
be a linear map. Assume W ⊆ V is a subspace satisfying f(W ) ⊆ W . Let
g = f |W : W → W be the restriction of f to W and let h : V/W → V/W be
the linear map defined by [v] 7→ [f(v)]. (Check that this is well-defined.) Show
that det(f) = deg(g) det(h). (You can do this in two ways: abstractly, or by
picking a basis and looking at the corresponding matrix.)

Here is another way to put the same statement: if 0 → V → W → U → 0
is a short exact sequence of finite-dimensional vector spaces and fV : V → V ,
fW : W → W , fU : U → U are linear maps making the following diagram
commute, then det(fW ) = det(fV ) det(fU ).

0 V W U 0

0 V W U 0

fV fW fU

The coefficients of the char-
acteristic polynomial are the
traces of exterior powers

Exercise 3.3.H. Let V be a n-dimensional vector space, and let f : V → V be
a linear map. For any c ∈ k, show that

det(c · id +f) =

n∑
i=0

cn−i tr(f∧i :
∧iV → ∧iV ).

(Hint: picking a basis sometimes makes life much easier.)
The determinant of a skew-
symmetric matrix is the
square of the Pfaffian

Exercise 3.3.I. Let k be a field of characteristic 0. Consider a matrix A :
k2n → k2n, and assume that the matrix A satisfies aij = −aji, i.e., A∗ = −A
as matrices. Define the Pfaffian as

pf(A) =
1

2nn!

∑
σ

aσ(1)σ(2)aσ(3)σ(4) · · · aσ(2n−1)σ(2n),

where σ runs over all permutations of {1, . . . , 2n}.
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(a) Show that if we define ω =
∑

1≤i<j≤2n aijei ∧ ej ∈
∧

2k2n, then

1

n!
ω∧n = pf(A)e1 ∧ e2 ∧ · · · ∧ e2n.

(b) Show that det(A) = pf(A)2.

Exercise 3.3.J. Let A,B,C,D : kn×kn be n×n matrices such that CD = DC.
Show that either detD = 0 or the determinant of the 2n× 2n matrix

M =

[
A B
C D

]
is equal to det(AD − BC). (Hint: multiply and appropriate matrix N on the
right so that detN and detMN are easy to compute.)

Exercise 3.3.K (Sylvester’s determinant identity). Let V and W be finite-
dimensional vector spaces and f : V → W and g : W → V be matrices. Show
that det(idV +g ◦ f) = det(idW +f ◦ g). (Hint: pick bases so that f and g are
represented by n × m and m × n matrices F and G. We then want to show
that det(Im + GF ) = det(In + FG). Show that both sides are equal to the
determinant of [ In F

−G Im
].)

Exercise 3.3.L (J. R. Sylvester, 2000). Let A,B,C,D : kn × kn be n × n
matrices such that CD = DC. Show that the determinant of the 2n × 2n
matrix

M =

[
A B
C D

]
is equal to det(AD−BC). (Hint: Show that the identity for M = [A B

C (D+xI) ] as
a polynomial in x. Here, the determinant is a polynomial, so everything should
be a polynomial in the variable x and coefficients in k.)

3.4 Computing the inverse matrix

With our discussion of the determinant, we can now devise a formula for the
inverse matrix. For a finite-dimensional vector space V , we have shown in
Exercise 3.3.A that a linear map f : V → V is an isomorphism (i.e., invertible)
if det(f) 6= 0. For V = k2, this is reflected in the formula for the inverse matrix

A−1 =
1

ad− bc

[
d −b
−c a

]
where A =

[
a b
c d

]
,

because det(A) = ad− bc appears in the denominator.

Definition 3.4.1. Consider a set S ⊆ {1, 2, . . . , n} and write S = {s1, . . . , sa}
where a = |S| and s1 < · · · < sa. We define the linear maps

ιS : ka → kn; (x1, . . . , xa) 7→ x1es1 + · · ·+ xaesa = (. . . , 0, x1, 0, . . .)

and

πS : kn → ka; (x1, . . . , xn) 7→ xs1e1 + · · ·+ xsaea = (xs1 , . . . , xsa).
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Definition 3.4.2. For a matrix M : kn → km and subsets S ⊆ {1, . . . ,m} and
T ⊆ {1, . . . , n}, we define the minor of A with respect to S and T by

MST = πS ◦M ◦ ιT : k|T | → k|S|.

If S = {1, . . . ,m} \ {i} and T = {1, . . . , n} \ {j}, we will also write

MST = Mîĵ .

The hat means that that index is missing.

Exercise 3.4.A. If S = {s1, . . . , sa} and T = {t1, . . . , tb} with s1 < · · · < sa
and t1 < · · · < tb, show that

MST =


ms1t1 ms1t2 · · · ms1tb

ms2t1 ms2t2 · · · ms2tb
...

...
. . .

...
msat1 msat2 · · · msatb

 .
Rank of a matrix is the max-
imal size of an invertible mi-
nor

Exercise 3.4.B. Let V be a finite-dimensional vector space of dimension m.

(a) For a injective linear map f : V ↪→ kn, show that there exists a subset
S ⊆ {1, . . . , n} with |S| = m such that πS ◦f : V → km is an isomorphism.

(b) For a surjective linear map f : kn � V , show that there exists a subset
S ⊆ {1, . . . , n} with |S| = m such that f ◦ ιS : km → V is an isomorphism.

(c) Consider a linear map M : kn → km. Show that the rank of M is equal
to the largest integer r such that there exist subsets S ⊆ {1, . . . ,m} and
T ⊆ {1, . . . , n} with |S| = |T | = r and MST an isomorphism.

Our goal is to find the inverse matrix, and let us think about what this
means. Consider a matrix A : kn → kn, and assume it is an isomorphism. Let
us look at the rows of A−1, which we will denote by αi.

A =

 α1

...
αn


These rows αi are elements in (kn)∗, and if we plug in the columns Aei = a•i
of A, from the identity A−1A = I it follows that

αi(a•j) =

{
1 j = i

0 j 6= i.

That is, αi is a linear functional on kn that sends a•i to 1 and all other a•j to
0. What function can this possibly be? It is immediate that

kn →
∧nkn; v 7→ a•1 ∧ · · · ∧ a•(i−1) ∧ v ∧ a•(i+1) ∧ · · · ∧ a•n
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sends a•j to 0 if j 6= i, and sends a•i to a•1 ∧ · · · ∧ a•n = (Ae1) ∧ · · · ∧ (Aen) =
det(A)e1 ∧ · · · ∧ en. So the functional αi should satisfy

det(A)αi(v)e1 ∧ · · · ∧ en = a•1 ∧ · · · ∧ a•(i−1) ∧ v ∧ a•(i+1) ∧ · · · ∧ a•n.

Let’s describe this in a more concrete way. In particular, let us plug in v = ej
and see what happens. We have

αi(ej)e1 ∧ · · · ∧ en =
1

det(A)
a•1 ∧ · · · ∧ a•(i−1) ∧ ej ∧ a•(i+1) · · · ∧ a•n

=
(−1)j−1

det(A)
ej ∧ a•1 ∧ · · · ∧ a•(i−1) ∧ a•(i+1) ∧ · · · ∧ a•n

and so

αi(ej)ej ∧ e1 ∧ · · · ∧ ej−1 ∧ ej+1 ∧ · · · ∧ en

=
(−1)i+j

det(A)
ej ∧ a•1 ∧ · · · ∧ a•(i−1) ∧ a•(i+1) ∧ · · · ∧ a•n.

But on the right hand side, there’s a ej among the wedges, so we get to ignore
all the ej components of a•l. This means that we are looking at a•l as elements
in kn/ span(ej), under the projection map πĵ . This shows that

ej ∧ a•1 ∧ · · · ∧ a•(i−1) ∧ a•(i+1) ∧ · · · ∧ a•n
= (detAĵî)ej ∧ e1 ∧ · · · ∧ ej−1 ∧ ej+1 ∧ · · · ∧ en.

This immediately gives the formula for A−1. By definition, the ith row jth
column entry of A−1 is αi(ej), which is

αi(ej) =
(−1)i+j

detA
detAĵî

The inverse matrix is the
matrix of determinants of
minors, divided by the deter-
minant

Theorem 3.4.3 (Cramer’s rule). The inverse matrix of A : kn → kn is given
by

A−1 =
1

detA


detA1̂1̂ −detA2̂1̂ · · · (−1)n+1 detAn̂1̂

−detA1̂2̂ detA2̂2̂ · · · (−1)n+2 detAn̂2̂
...

...
. . .

...
(−1)n+1 detA1̂n̂ (−1)n+2 detA2̂n̂ · · · detAn̂n̂

 .
In particular, for n = 2 we immediately recover[

a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.

Corollary 3.4.4. There is a matrix adj(A) whose entries are integer-coefficient
polynomials in the entries of A, such that

adj(A)A = A adj(A) = det(A)I.
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This matrix adj(A) is called the adjugate of A. It is clear from the con-
struction that if A is n × n, then all the entries of adj(A) is homogeneous of
degree n− 1 in the entries of A.

Exercise 3.4.C. From Cramer’s rule deduce that

detA =

n∑
j=1

(−1)i+jaij detAîĵ .

for every fixed i. Give another proof of this formula by directly using the formula
for the determinant.

There is another way of computing the inverse matrix. Suppose you want to
compute A−1, or even detA for a given n× n matrix. If you decide to use the
explicit formula for the determinant you would already need to add n! terms
together. If, say n = 30, we need to add 30! ≈ 2.65× 1032 terms. This is clearly
impractical.

Definition 3.4.5. Let A be a m × n matrix, and consider the rows ai• of A.
The following operations are called elementary row operations on A:

(i) Switching rows—switch ai• and aj• so that a′i• = aj• and a′j• = ai• for
i 6= j.

(ii) Multiplying rows—multiply ai• by a nonzero constant c ∈ k× so that
a′i• = cai•.

(iii) Adding rows—add aj• times a constant c ∈ k to ai• so that a′i• = ai•+caj•.

The definition of the elementary row operations is supposed to be that they
are reversible operations. If if we switch the ith and jth row, we can switch
them back again. If we multiply a row by a nonzero constant c, multiplying it
by c−1 brings it back to the original row. If we add c times the jth row to the
ith row, adding −c times the jth row to the ith row, we recover the original ith
row.

Definition 3.4.6. We define the elementary matrices as

• E(1)
i,j =



1

. . .
0 1

. . .
1 0

. . .
1

,

• E(2)
i (c) =


1

. . .
1
c

1

. . .
1

,
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• E(3)
i,j (c) =



1

. . .
1 c

. . .
1

. . .
1

.

Elementary row operation is
multiplication on the left by
an elementary matrix

Exercise 3.4.D. Show that the mth elementary row operation is the same as
changing the matrix A to some E(m)A. That is, elementary row operations are
just multiplying elementary matrices on the left.

Exercise 3.4.E. Show that detE
(1)
ij = −1, detE

(2)
i (c) = c, and detE

(3)
ij (c) = 1.

Inverses of elementary ma-
trices are elementary matri-
ces

Exercise 3.4.F. Show that (E
(1)
ij )−1 = E

(1)
ij , (E

(2)
i (c))−1 = E

(2)
i (c−1), and

(E
(3)
ij (c))−1 = E

(3)
ij (−c).

So elementary matrices have simple formulas for determinants and inverses.
This means that finding the determinant or inverse of EA is almost equally hard
as finding the determinant or inverse of A, because

det(EA) = det(E) det(A), (EA)−1 = A−1E−1.

The idea is that if we can makeA into a very simple form through elementary row
operations, i.e., by multiplying elementary matrices on the left, then we would
be able to backtrack the process and compute the determinant and inverse of
A.

We are now going to describe two algorithms, together which is called Gaus-
sian elimination. The idea is that we may simplify a matrix by using elemen-
tary row operations. Let us call the following algorithm Alg1.

1. Look at the first column a•1. If this is a zero vector, no elementary row
operation can do anything, so move to the next column.

2. If this column is not all zero, we would like to make sure that a11 is
nonzero. In order to do this, pick any j such that aj1 6= 0 and switch the
1st and jth row.

3. Divide the 1st row by a11 so that after this step a11 = 1.

4. For each j > 1, subtract aj1 times the 1st row from the jth row. After
this step, we will have aj1 = 0 for j > 0. Now we won’t deal with the 1st
row anymore, so ignore it from now on, and move to the next column.

5. Repeat the process until you get to the last column.

Maybe I have done a terrible job of explaining the algorithm, so I included an
example of a matrix processed under Alg1 in Figure 3.3.

Alg1 puts a matrix in row
echelon form Exercise 3.4.G. Let A be an m × n matrix, and let B = (bij) be the result

when Alg1 is run on A. Show that there exist integers 1 ≤ n1 < · · · < nk ≤ n
with k ≤ m such that



3.4. COMPUTING THE INVERSE MATRIX 77

 2 −2 0 2
−3 3 0 −1
2 −1 3 0

  1 −1 0 1
−3 3 0 −1
2 −1 3 0

 1 −1 0 1
0 0 0 2
2 −1 3 0



1 −1 0 1
0 0 0 2
0 1 3 −2

 1 −1 0 1
0 1 3 −2
0 0 0 2

 1 −1 0 1
0 1 3 −2
0 0 0 1



E
(2)
1 ( 1

2 ) E
(3)
2,1(3)

E
(3)
3,1(−2)

E
(1)
2,3 E

(2)
3 ( 1

2 )

Figure 3.3: Example of a 3× 4 matrix going through Alg1

(i) bini
= 1 for all 1 ≤ i ≤ k, and

(ii) bix = 0 when x < ni or i > k.

A matrix in this form is sometimes said to be in row echelon form.
Elementary row operations
preserve the rankExercise 3.4.H. Let A be an m×n matrix, and let E be an m×m elementary

matrix. Show that rank(EA) = rank(A). Conclude that rank(A) is the number
of nonzero rows when A is made into a row echelon form by Alg1.

Actually, we can further simplify the matrix by using the 1’s we have ob-
tained to cancel out all the terms above it. Consider the following algorithm,
which we call Alg2.

1. Start from the second row, with first nonzero entry a2j = 1.

2. Cancel out the entry a1j by adding −a1j times the second row to the first
row.

3. Move to the next row, whose first nonzero entry is a3j′ = 1.

4. Again, cancel out the entries a1j′ and a2j′ by adding the third row times
a constant to the first and second rows.

5. Repeat the process until we get to the last nonzero row.

Again, as an example, I have run this algorithm on the result of Figure 3.3 in
Figure 3.4.

By running Alg1 and Alg2 on the given matrix, I have shown that1 0 3 0
0 1 3 0
0 0 0 1

 = E
(3)
2,3(2) · E(3)

1,3(1) · E(3)
1,2(1) · E(2)

3 ( 1
2 )

· E(1)
2,3 · E

(3)
3,1(−2) · E(3)

2,1(3) · E(2)
1 ( 1

2 ) ·

 2 −2 0 2
−3 3 0 −1
2 −1 3 0

 .
If we run Alg1 and Alg2 on a square matrix, and the resulting matrix happens to
be the identity matrix, then we would get I = E1 · · ·En ·A, and then E1 · · ·En
will be the inverse of A.



78 CHAPTER 3. MULTILINEAR ALGEBRA

1 −1 0 1
0 1 3 −2
0 0 0 1

 1 0 3 −1
0 1 3 −2
0 0 0 1



1 0 3 0
0 1 3 −2
0 0 0 1

 1 0 3 0
0 1 3 0
0 0 0 1



E
(3)
1,2(1)

E
(3)
1,3(1)

E
(3)
2,3(2)

Figure 3.4: Example of a 3× 4 matrix going through Alg2

Gaussian elimination puts a
matrix in row reduced eche-
lon form

Exercise 3.4.I. Let A be an m × n matrix, and let B = (bij) be the result
when Alg1 and then Alg2 is run on A. Show that there exist integers 1 ≤ n1 <
· · · < nk ≤ n with k ≤ m such that

(i) bini
= 1 for 1 ≤ i ≤ k,

(ii) bix = 0 for x < ni or i > k, and

(iii) bxni = 0 for 1 ≤ i ≤ k and x 6= ni.

A matrix in this form is said to be in reduced row echelon form.

Exercise 3.4.J. Let A be an invertible n× n matrix. Show that the result of
Alg1 and Alg2 run on A is the n × n identity matrix I. Use this to show that
the following algorithm calculates the inverse matrix of A:

1. First consider the n× 2n matrix Ã =
[
A I

]
defined by putting the n×n

identity matrix on the right side of A.

2. Run Alg1 and then Alg2 on Ã.

3. Discard the first n columns to get a n× n matrix.
Doing Gaussian elimination
on an augmented matrix
solves a linear equation

Exercise 3.4.K. Let A be an invertible n×n matrix, and let b ∈ kn be a n×1
column vector. Show that the following algorithm solves the equation Ax = b:

1. First consider the n× (n+ 1) matrix Ã =
[
A b

]
defined by augmenting

A with the n× 1 vector b to the right.

2. Run Alg1 and then Alg2 on Ã.

3. Take the (n+ 1)th column.



Chapter 4

Linear algebra without
division

So far we have been studying vector spaces. These are defined over a field,
which in particular has division. But we might want to do look at a more
general situation. For instance, we might want to think of Zn as a “vector
space” of “dimension” n over Z, even though Z is not a field. This can be made
precise, although in this setting the trade-off is losing many the nice theorems
we had in the case of fields.

Other than being just a generalization of the theory we have developed so
far, this theory will also have an important application for vector spaces over
fields. From a structure theory of modules over k[t], we will immediately deduce
Jordan normal form, in Section 4.4.

4.1 Commutative rings

A commutative ring is like a vector space, except that we do not have multi-
plicative inverses.

A ring is a set with addition,
subtraction, and multiplica-
tion

Definition 4.1.1. A commutative ring R is a set with the choice of two
elements 0, 1 ∈ R and two maps +, · : R × R → R satisfying the following
conditions: (Here, we write +(a, b) = a+ b and ·(a, b) = a · b.)

(R1) For all a ∈ R we have a+ 0 = 0 + a = a.

(R2) For all a, b ∈ R we have a+ b = b+ a.

(R3) For all a, b, c ∈ R we have a+ (b+ c) = (a+ b) + c.

(R4) For all a ∈ R there exists an (−a) ∈ R such that a+ (−a) = (−a) +a = 0.

(R5) For all a ∈ R we have a · 1 = 1 · a = a

(R6) For all a, b ∈ R we have a · b = b · a.

(R7) For all a, b, c ∈ R we have a · (b · c) = (a · b) · c.

79
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(R8) For all a, b, c ∈ R we have a · (b+ c) = (a · b) + (a · c).

Here, are some standard examples.

• The ring {0 = 1} with one element is a ring, with the obvious addition
and multiplication maps.

• Any field is a ring.

• Z is a ring with usual addition and multiplication.

• Take any ring R, and look at the set of polynomials

R[t] = {a0 + a1t+ a2t
2 + · · ·+ ant

n : a0, . . . , an ∈ R}

in the variable t with coefficients in R. This is a ring with addition and
multiplication given by∑
i

ait
i+
∑
i

bit
i =

∑
i

(ai+bi)t
i,

(∑
i

ait
i

)(∑
i

bit
i

)
=
∑
i

( ∑
j+k=i

ajbk

)
ti.

• Take any ring R, but now look at the set of formal power series

R[[t]] = {a0 + a1t+ a2t
2 + a3t

3 + · · · : a0, a1, . . . ∈ R}

in the variable t with coefficients in R. (Here, you don’t worry about
convergence just take the set of all series that can possibly be written
down.) This is going to be a ring with addition and multiplication given
similarly.

• The set
Z/nZ = {0, 1, 2, . . . , n− 1}

is a ring with addition and multiplication defined modulo n, i.e., taking
remainder of division by n after doing ordinary addition or multiplication.

• For an integer n > 0, the set

Z[i] = {a+ bi : a, b ∈ Z} ⊆ C

is a ring with usual addition and multiplication.

• The set
Z[ 1

2 ] = {a2−b : a ∈ Z, b ∈ Z≥0} ⊆ Q

is a ring with usual addition and multiplication.

As you can see, there are lots and lots of rings, and the theory of commutative
rings can be pretty delicate. Here is one concept in commutative ring theory
(also called commutative algebra) that helps studying rings.

Definition 4.1.2. An ideal of a ring R is a subset a ⊆ R such that

(I1) 0 ∈ a,



4.1. COMMUTATIVE RINGS 81

(I2) a, b ∈ a implies a+ b,−a ∈ a,

(I3) for any a ∈ a and r ∈ R, we have ra ∈ a.

This is not the same as a subring, because (I3) is something stronger than
saying that a, b ∈ a implies ab ∈ a.

Exercise 4.1.A. For each element a ∈ R, show that the set

(a) = aR = {ra : r ∈ R}

is an ideal of R. An ideal that can be written in this form is called a principal
ideal.

The ring of integers is a PID

Exercise 4.1.B. Show that the ideals of Z are precisely (0), (1) = Z, (2), (3), . . ..
(Hint: take the minimal positive element in the ideal.)

Definition 4.1.3. A commutative ring R is called a principal ideal domain,
or PID for short, if

(PID1) ab = 0 implies either a = 0 or b = 0,

(PID2) every ideal of R is principal.

So for example Z is a principal ideal domain.
The polynomial ring over a
field is a PIDExercise 4.1.C. For k a field, show that the polynomial ring k[t] is a principal

ideal domain.

Exercise 4.1.D. Show that Z[i] is a principal ideal domain. On the other hand,
show that

Z[
√
−5] = {a+ b

√
−5 : a, b ∈ Z} ⊆ C

is not a principal ideal domain.

To satisfy number-theorists, let me define the following divisibility relation.

Definition 4.1.4. Let R be a ring in general. For x, y ∈ R, we say that x
divides y or write x | y if there exists an z ∈ R such that xz = y.

For instance, we always have 1 | x or x | 0 because x = 1 · x and 0 = x · 0.
Of course, the motivation comes from R = Z. If R is a field, this relation is not
very useful because for instance x | y for arbitrary x, y ∈ R \ {0}.

In a principal ideal domain, we may take the greatest common divisor by
adding ideals.

The sum of ideal is an ideal

Exercise 4.1.E. Let a, b ⊆ R be two ideals. Show that

a + b = {a+ b : a ∈ a, b ∈ b} ⊆ R

is again an ideal of R.



82 CHAPTER 4. LINEAR ALGEBRA WITHOUT DIVISION

Exercise 4.1.F. Assume that R is a principal ideal domain. Consider two
elements a, b ∈ R so that (a) and (b) are two ideals of R. Because (a) + (b) is
an ideal of R, we may find a d ∈ R (it is not uniquely determined!) such that

(a) + (b) = (d).

Show that d divides both a and b, and show that if some e ∈ R divides both
a and b, then e divides d. Check that this agrees with the usual notion of a
greatest common divisor when R = Z.

We can quotient rings by ideals.
The additive cosets of an
ideal in a ring form a ring Exercise 4.1.G. Let R be a commutative ring and a ⊆ R be an ideal. Show

that

R/a = R/(x ∼ a+ x for x ∈ R, a ∈ a)

inherits a structure of a ring from R. (You first need to check that the relation
is an equivalence relation. Then you will need to check that the addition and
multiplication maps [x] + [y] = [x+ y] and [x][y] = [xy] are well-defined. After
this, you should check the ring axioms.)

The example Z/nZ is actually an instance of this. Because (n) = nZ is an
ideal of Z, the quotient Z/nZ naturally is a ring.

4.2 Modules

We now define an analogue of vector spaces over a ring.
A module is a set with ad-
dition and scalar multiplica-
tion over a ring

Definition 4.2.1. Fix a commutative ring R. A module over R, or an R-
module is a set M with the choice of an element 0 ∈ M and two maps + :
M ×M →M and · : R×M →M satisfying the following conditions:

(M1) For all x ∈M we have x+ 0 = 0 + x = x.

(M2) For all x, y ∈M we have x+ y = y + x.

(M3) For all x, y, z ∈M we have (x+ y) + z = x+ (y + z).

(M4) For all x ∈M there exists an (−x) ∈M such that x+(−x) = (−x)+x = 0.

(M5) For all x ∈M we have 0 · x = 0 and 1 · x = x.

(M6) For all x ∈M and a, b ∈ R we have (a · b) · x = a · (b · x).

(M7) For all x ∈M and a, b ∈ R we have (a+ b) · x = a · x+ b · x.

(M8) For all x, y ∈M and a ∈ R we have a · (x+ y) = a · x+ a · y.

Note that the axioms for modules look exactly the same as the axioms for
vector spaces. The only difference is that we are working over a commutative
ring R instead of a field k. Because a field k is also a ring, we may call a k-vector
space a k-module instead.
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Example 4.2.2. Take R = Z. What are Z-modules? If M has a structure of
addition + : M ×M → M satisfying (M1)–(M4), this is already a Z-module.
This is because for x ∈ M and n > 0 an integer, we can recover multiplication
as

nx =

n︷ ︸︸ ︷
x+ x+ · · ·+ x .

Then we can define (−n)x = −(nx).

So anything with addition is a Z-module.

• Zn is a Z-module under the usual addition

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn).

Then scalar multiplication will be

m(a1, . . . , an) = (ma1, . . . ,man).

• Z/nZ is also a Z-module, with addition modulo n. Scalar multiplication
will then be described as

a · b = (ab modulo n) ∈ Z/nZ

for a ∈ Z and b ∈ Z/nZ.

In a module, it is not unusual that ax = 0 for a 6= 0 and x 6= 0. For
M = Z/nZ over R = Z, we have

n · 1 = 0 ∈ Z/nZ

while both n ∈ Z and 1 ∈ Z/nZ are nonzero. Here is one more example.

• Take R = Z[i], and take M = Z/13Z. If we define addition on M normally,
and scalar multiplication as

(a+ bi)x = (ax+ 5bx mod 13),

then M is an R-module. This is because 52 ≡ −1 mod 13. Here, we have
(5− i) · 1 = 0.

Definition 4.2.3. Let M and N be R-modules. A map f : M → N is called
R-linear or a R-module homomorphism if it satisfies

(L0) f(0) = 0,

(L1) f(x+ y) = f(x) + f(y) for all x, y ∈M ,

(L2) f(ax) = af(x) for all a ∈ R and x ∈M .
Linear maps are closed under
compositionExercise 4.2.A. Check that the identity map idM : M →M is always R-linear.

Also, check that the composition g ◦ f of two R-linear maps f : M1 →M2 and
g : M2 →M3 is R-linear.
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When we work with modules, we always need to be careful about multiplying
nonzero elements to get zero. But other than this, most of the construction we
have discussed in Chapter 2 works fine.

Definition 4.2.4. For as set S, we define the free module as

R⊕S = {(f : S → R) : f(s) 6= 0 only for finitely many s}.

(Compare with Definition 2.4.2.)
A map from a set is the same
as a linear map from the free
module

Exercise 4.2.B. There is a natural inclusion map ι : S → R⊕S of sets. Prove
the universal property for free modules. That is, if f : S → M is any set map,
show that there exists a unique R-linear map f̃ : R⊕S → M that extends f ,
i.e., satisfies f = f̃ ◦ ι.

S M

R⊕S

f

f̃

(Compare with Proposition 2.4.3.)

Definition 4.2.5. Let {Mi}i∈I be a set of vector spaces, where I is an indexing
set. Define their product as∏

i∈I
Mi = {(xi)i∈I : xi ∈Mi}.

Similarly, define their direct sum as⊕
i∈I

Mi = {(xi)i∈I : xi ∈Mi, xi 6= 0 only for finitely many i ∈ I}.

Exercise 4.2.C. Verify the universal properties for products and for direct
sums. (See Proposition 2.4.3 and Proposition 2.4.8.)

Definition 4.2.6. Let M be an R-module. Suppose that a subset N ⊆ M
satisfies

(SM1) 0 ∈ N ,

(SM2) x1, x2 ∈ N implies x1 + x2 ∈ N ,

(SM3) x ∈ N and a ∈ R implies ax ∈ N .

In this case, N inherits a R-module structure from M , and we call N a sub-
module of M .

An ideal is same as a sub-
module of the ring Exercise 4.2.D. Check that a submodule of R (considered as an R-module) is

the same thing as an ideal of R.
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Definition 4.2.7. For N ⊆M a submodule, we define the quotient as

M/N = M/(x ∼ x+ y for y ∈ N).

The module structure here is defined as [x] + [y] = [x+ y] and a[x] = [ax].

Exercise 4.2.E. Check that the quotient module is well-defined, and is indeed
a module.

So for instance, if a ⊆ R is an ideal, the quotient R/a is an R-module while
it is also a commutative ring itself.

Exercise 4.2.F. State and prove the universal property for quotients, which is
going to be the direct analogue of Exercise 2.5.H.

Definition 4.2.8. For an R-linear map f : M → N , we define their kernel,
image, cokernel as

ker(f) = {x ∈M : f(x) = 0} ⊆M,

im(f) = {f(x) ∈ N : x ∈M} ⊆ N,
coker(f) = N/ im(f).

Exercise 4.2.G. Prove the first isomorphism theorem for modules: if f : M →
N is an R-linear map, there exists a canonical isomorphism M/ ker(f) ∼= im(f).

Exercise 4.2.H. State and prove the universal properties of the kernel and the
cokernel. (See Exercise 2.6.E and Exercise 2.6.F.)

Definition 4.2.9. For M and N two R-modules, define

HomR(M,N) = {R-linear maps f : M → N}

as an R-module, with addition and scalar multiplication defined as

(f + g)(x) = f(x) + g(x), (af)(x) = af(x).

Linear maps from the ring is
the module itselfExercise 4.2.I. Show that HomR(R,M) ∼= M canonically, for all R-modules

M .
Hom is functorial

Exercise 4.2.J. Show that an R-linear map f : M1 → M2 naturally induces
R-linear maps f∗ : HomR(N,M1) → HomR(N,M2) and f∗ : HomR(M2, N) →
HomR(M1, N).

In fact, everything in Sections 2.4, 2.5, and 2.6 can be done in the context
of modules. If you are bored, you can always pick an arbitrary exercise in these
three sections and redo it in the context of modules.
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4.3 Classification of finitely generated modules
over a PID

For vector spaces, we had this classification theorem.

Theorem 4.3.1. Every vector space V over a field k is isomorphic to V ∼= k⊕S

for some set S. (In other words, every vector space has a basis.)

Can we expect this to be true for rings as well? For instance, take R = Z.
There are modules like Z⊕3, but there are also modules like Z/10Z. You can
also mix these sorts of modules and have Z⊕2⊕Z/2Z⊕Z/4Z. Such modules are
clearly not free, because a nonzero scalar like 4 can annihilate nonzero elements
of the module. But we still can expect some nice things to happen, in nice cases.

Definition 4.3.2. An R-module M is said to be finitely generated if there
exists a finite number of elements x1, . . . , xn ∈ M such that every x ∈ M can
be written as

x = a1x1 + · · ·+ anxn

for a1, . . . , an ∈ R.

The result we are going to prove is that if the base ring R is a principal ideal
domain and M is finitely generated over R, then M has a particular structure.

A finitely generated module
over a PID is a finite direct
sum of quotients by ideals

Theorem 4.3.3 (Classification of finitely generated modules over a PID). Let
R be a principal ideal domain. For every finitely generated module M over R,
there exists a nonnegative integer n ≥ 0 and a sequence of ideals

(0) ⊆ a1 ⊆ a2 ⊆ · · · ⊆ an ( R

such that
M ∼= (R/a1)⊕ (R/a2)⊕ · · · ⊕ (R/an).

Moreover, n and a1, . . . , an is uniquely determined by M .

Before start proving it, let us see what the theorem implies. Take R = Z.
Then every ideal a ⊆ Z looks like (d) ⊆ Z. So the sequence of ideals look like

(0) ⊆ (0) ⊆ · · · ⊆ (0) ⊆ (dr) ⊆ (dr−1) ⊆ · · · ⊆ (d1)

for d1, . . . , dr > 0. The conditions (di+1) ⊆ (di) imply that di | di+1. So then
M can be written like

M ∼= Z⊕(n−r) ⊕ (Z/d1Z)⊕ · · · ⊕ (Z/drZ),

where d1 | d2 | · · · | dr where d1, . . . , dr are positive integers. Once we have this
structure theorem, it can be used for explicit computations.

Exercise 4.3.A. Let M be a Z-module that is finite (as a set). Assume that
for each positive integer k > 0, there are at most k elements x ∈ M such that
kx = 0. Show that M must be of the form M ∼= Z/nZ for some n ≥ 0.
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Every prime number has a
primitive rootExercise 4.3.B. Let p be a prime number, and consider the field Fp = Z/pZ.

Take its multiplicative group

F×p = (Z/pZ)× = (Z/pZ) \ {[0]} = {[1], . . . , [p− 1]}.

(a) For any positive integer k, show that the equation xk ≡ 1 mod p has at
most k solutions x ∈ (Z/pZ)×.

(b) Using the previous exercise, show that (Z/pZ)× is isomorphic to Z/(p−1)Z
as a group. In other words, the prime p has a primitive root.

Let us now start proving the theorem. Because M is a finitely generated
module, there exists a surjective R-linear homomorphism

R⊕n �M → 0.

Then we can look at the kernel

0→ N ↪→ R⊕n �M → 0.

The kernel N is going to be a submodule of R⊕n.
A submodule of a free mod-
ule is freeTheorem 4.3.4. If R is a principal ideal domain, then every submodule of a

free module is free. Moreover, every submodule of a free module with finite basis
is free with finite basis.

By this theorem, we can find an isomorphism N ∼= R⊕k for some k. Hence
we may write our short exact sequence as

0→ R⊕k
A−→ R⊕n �M → 0.

The module M is the cokernel of the linear map A, so it will be useful to analyze
the linear map A up to composition by isomorphisms. Here, A : R⊕k → R⊕n

can be regarded as a n× k matrix with entries in R.
Every matrix can be made
into a diagonal matrix by
multiplying invertible matri-
ces

Theorem 4.3.5 (Smith normal form). Let R be a principal ideal domain, and
let A be a n× k matrix with entries in R. Then there exists an invertible n× n
matrix (i.e., an invertible linear map) P and an invertible k× k matrix Q such
that PAQ is of the form

PAQ =



d1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · dr 0 · · · 0
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0


,

where d1 | d2 | · · · | dr. This is sometimes called the Smith normal form of
A.

https://en.wikipedia.org/wiki/Primitive_root_modulo_n
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Recall that we have a short exact sequence

0→ R⊕k
A−→ R⊕n

B−→M → 0.

Because P and Q are isomorphisms from R⊕k and R⊕n to themselves, it is not
hard to see that

0→ R⊕k
PAQ−−−→ R⊕n

BP−1

−−−−→M → 0

is also short exact.

Exercise 4.3.C. Verify the above claim, that the modified sequence is short
exact.

As a consequence, we have an isomorphism

M ∼= R⊕n/ im(PAQ).

Because we know exactly what PAQ looks like, the right hand side can be
computed. It follows that

M ∼= R⊕(n−r) ⊕ (R/d1R)⊕ · · · ⊕ (R/drR).

If we let a1 = · · · = an−r = (0) and an−r+i = (di), then we can write this also
as

M ∼=
n⊕
i=1

(R/ai).

This proves the existence part of the classification theorem (Theorem 4.3.3).

Exercise 4.3.D. Compute R⊕n/ im(PAQ) and show that it is isomorphic to
R⊕(n−r) ⊕ (R/d1R)⊕ · · · ⊕ (R/drR).

I now owe you the proof of two theorems: Theorem 4.3.4 and Theorem 4.3.5.
Over a PID, a submodule of
a free module is free Theorem 4.3.4. If R is a principal ideal domain, then every submodule of a

free module is free. Moreover, every submodule of a free module with finite basis
is free with finite basis.

We need to prove that any submodule of R⊕S is free. But here, we will only
only prove this in the case when S is a finite set.

Proof. We show that any submodule of R⊕n is free, by induction on n. If n = 0,
we have R⊕n ∼= 0 and so there is nothing to prove.

Assume that the claim is true for n − 1. For an arbitrary submodule N ⊆
R⊕n, we want to prove that N is free. If we consider

N ′ = N ∩ ({0} ⊕R⊕(n−1)) ⊆ {0} ⊕R⊕(n−1),
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N ′

a0x0

Figure 4.1: Submodule of a free module is free

this is a submodule of R⊕(n−1). Then N ′ is a free module, because N ′ is a
submodule of R⊕(n−1).

Consider the composite R-linear map

ϕ : N ↪→ R⊕n
π1−→ R

where π1 : R⊕n → R is given by projection (x1, . . . , xn) 7→ x1. Then the image
of N → R is going to be submodule of R, which is going to be an ideal. Because
R is a principal ideal domain, imϕ = (a0) for some a0 ∈ R. Note that we have
a short exact sequence

0→ N ′ ↪→ N
ϕ−→ im(ϕ) = (a0)→ 0.

If a0 = 0, then imϕ = (0) and so N is actually contained in {0} ⊕R⊕(n−1).
Then N = N ′ is a free module.

Suppose now that a0 6= 0. Then a0 ∈ imϕ shows that there exists a x0 ∈ N
such that π1(x0) = a0. Using this, we may define the map

N ′ ⊕R→ N ; (x, a) 7→ x+ ax0.

This is clearly an R-linear map. We claim that it is bijective. To show that it is
injective, suppose that x+ax0 = 0. Applying π1 to both sides give 0 = π1(x) +
aπ1(x0) = aa0 because π1(x) = 0 for x ∈ N ′ and π1(x0) = a0. Then a0 6= 0 and
aa0 = 0 implies a = 0 because R is a PID. It follows that 0 = x+ ax0 = x.

To show that it is surjective, we consider an arbitrary y ∈ N and check that
it can be written as y = x + ax0 for x ∈ N ′ and a ∈ R. Because π1(y) ∈
imϕ = (a0), we can write π1(y) = aa0 for some a ∈ R. Then π1(y − ax0) =
π1(y) − aπ1(x0) = 0 and y − ax0 ∈ N because y ∈ N and x0 ∈ N . Therefore
x = y − ax0 ∈ N ′ so that y = x + ax0 for x ∈ N ′ and a ∈ R. This shows
that ϕ : N ′ ⊕ R → N is an isomorphism of R-modules. Because N ′ is free,
N ∼= N ′ ⊕R is also free.
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The intuition is that we can find a basis for N by looking at the sequence

N ∩ ({0} ⊕ · · · ⊕ {0}) = 0,

N ∩ ({0} ⊕ · · · ⊕ {0} ⊕R), . . . ,

N ∩ ({0} ⊕R⊕ · · · ⊕R),

N ∩ (R⊕ · · · ⊕R) = N ∩R⊕n = N

and extending the basis one at a time. To prove the theorem in the infinite rank
case, we need to use Zorn’s lemma.

Exercise 4.3.E. Prove the above theorem as follows. Let R⊕S be our free
module and N ⊆ R⊕S be the submodule. We want to show that N is free. For
a subset T ⊆ S, we have a submodule R⊕T ⊆ R⊕S . Consider the set

{(T,B) : B is a basis of N ∩R⊕T }

and equip it with the partial order defined by (T1,B1) ≺ (T2,B2) if and only
if T1 ⊆ T2 and B1 ⊆ B2. Apply Zorn’s lemma (Lemma 2.7.5) to this partially
ordered set.

Exercise 4.3.F. For n a nonnegative integer, consider a submodule N ⊆ R⊕n.
Show that there exists an integer k ≤ n such that N ∼= R⊕k. (We do not know
yet that k is uniquely determined by N .)

Recall the second ingredient of the proof.
Every matrix can be made
into a diagonal matrix by
multiplying invertible matri-
ces

Theorem 4.3.5. Let R be a principal ideal domain, and let A be a n×k matrix
with entries in R. Then there exists an invertible n×n matrix (i.e., an invertible
linear map) P and an invertible k × k matrix Q such that PAQ is of the form

PAQ =



d1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · dr 0 · · · 0
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0


,

where d1 | d2 | · · · | dr.

Recall from Section 3.4 that multiplying an elementary matrix from the left
is doing an elementary row operation.

An elementary column oper-
ation is right multiplication
by an elementary matrix

Exercise 4.3.G. Similarly, define what an elementary column operation is,
and verify that multiplying an elementary matrix from the right is doing an
elementary column operation.
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So what we need to do is to take an arbitrary matrix A, multiply invertible
matrices or do elementary row and elementary column operations, and make
it into a diagonal matrix. One thing to be careful is that we need all our
operations to be invertible. So when we do the second operation, i.e., multiplying
a row/column by a constant, we are allowed to only multiply by an element that
divides 1. (These are called units.) To keep things simple, we just won’t use
the second elementary operation.

The proof is really combinatorial in nature. We first study some basic prop-
erties of princial ideal domains.

Lemma 4.3.6. Let R be a principal ideal domain, and consider x1, . . . , xn ∈ R.
Then there exists an element d ∈ R satisfying the following:

(a) d divides x1, . . . , xn.

(b) there exist a1, . . . , an ∈ R such that d = a1x1 + · · ·+ anxn.

(c) if e ∈ R divides x1, . . . , xn, then e divides also d.

Proof. Consider the ideal

I = {a1x1 + · · ·+ anxn : a1, . . . , an ∈ R} ⊆ R.

Because R is a principal ideal, there exists a d ∈ R such that I = (d). Then (a)
follows from x1, . . . , xn ∈ I = (d), and (b) follows from d ∈ (d) = I. It is also
clear that (b) implies (c).

Definition 4.3.7. Let R be a principal ideal domain. If x1, . . . , xn ∈ R, we will
call this d = gcd(x1, . . . , xn) from Lemma 4.3.6 a greatest common divisor
of x1, . . . , xn. (Note that a greatest common divisor is not unique, since it is
possible that (d) = (d′) for d 6= d′.)

A PID is Noetherian, i.e., ev-
ery ascending chain of ideals
converges

Lemma 4.3.8. Let R be a principal ideal domain. If

a1 ⊆ a2 ⊆ a3 ⊆ · · · ⊆ R

is a sequence of ideals, then there exists a positive integer n such that an =
an+1 = · · · . (This is saying that R is Noetherian.)

Proof. If we define

a =

∞⋃
i=1

ai,

this is an ideal of R. Because R is a principal ideal domain, we have a = (x) for
some x. This means that x ∈ a =

⋃∞
i=1 ai, so x ∈ an for some n. It follows that

(x) ⊆ an ⊆ a = (x), so an = an+1 = · · · .

Let us now describe the process.

https://en.wikipedia.org/wiki/Noetherian_ring
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Lemma 4.3.9. Let R be a principal ideal domain and consider x1, . . . , xn ∈ R.
Let d = gcd(x1, . . . , xn). Then there exists an n × n invertible matrix P such
that

P


x1

x2

...
xn

 =


d
0
...
0

 .
Proof. We do this by induction on n. If n = 1, there is nothing to do. For n = 2,
we can do this explicitly. Let x1 = dy1 and x2 = dy2, so that gcd(y1, y2) = 1.
Then what we are finding is a 2× 2 invertible matrix P such that

dP

[
y1

y2

]
= d

[
1
0

]
.

Because gcd(y1, y2) = 1, there exist z1, z2 ∈ R such that y1z1 + y2z2 = 1. Then
we have

d

[
z1 z2

−y2 y1

] [
y1

y2

]
= d

[
1
0

]
.

We check that the matrix is invertible because[
z1 z2

−y2 y1

] [
y1 −z2

y2 z1

]
=

[
1 0
0 1

]
.

Now assume we can find P for n − 1. Then there exists a matrix P0 such
that

P0

[
xn−1

xn

]
=

[
gcd(xn−1, xn)

0

]
.

This means that if we put 1s on the diagonal, we can build a n × n matrix P1

such that

P1


x1

...
xn−1

xn

 =


x1

...
gcd(xn−1, xn)

0

 .
Now we can apply the inductive hypothesis and find another n × n matrix P2

so that

(P2P1)


x1

x2

...
xn

 = P2


x1

...
gcd(xn−1, xn)

0

 =


gcd(x1, . . . , xn−2, gcd(xn−1,xn

))
0
...
0

 .
This is what we want, by the next exercise.

Exercise 4.3.H. Assume thatR is a principal ideal domain. Then for x1, . . . , xn ∈
R we have

gcd(x1, . . . , xn) = gcd(x1, . . . , xn−2, gcd(xn−1, xn)).
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Theorem 4.3.10. Let R be a principal ideal domain, and let A be a n × k
matrix with entries in R. By multiplying invertible matrices on the left and
right of A, one can make A into the form described in Theorem 4.3.5.

Proof. Let me describe the algorithm for doing this.
Step 1. First, we use Lemma 4.3.9 on the first column of A. Then we can

multiply an invertible matrix on the left of A to make it into
d1 ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

 .
If we use Lemma 4.3.9 on the first row, we can multiply an invertibel matrix on
the right and make it into 

d2 0 · · · 0
∗ ∗ · · · ∗
...

...
. . .

...
∗ ∗ · · · ∗

 .
Here, d2 = gcd(d1, ∗, . . . , ∗) and so d2 | d1. Now we do this again and make it
into 

d3 ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

 .
As we repeat this process, we get a sequence of ideals

(d1) ⊆ (d2) ⊆ (d3) ⊆ · · ·

and thus by Lemma 4.3.8, the sequence stabilizes. In other words, (da+1) = (da)
for some a. Because da+1 is the greatest common divisor of everything in the
first column and row, this means that when da is the first row first column
entry, every entry in the first row or column is divisible by da. Without loss of
generality, we may assume that the matrix looks like

da dax2 · · · daxk
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

 .
By doing the elementary column operation that adds (−xi) times the first col-
umn to the ith column, we can make the matrix into

da 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

 .
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Step 2. Rewrite e1 = da. Our matrix currently looks like
e1 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

 .
If all the ∗ are divisible by e1, we are happy. If not, assume that the ith row jth
column entry is not divisible by e1. Add the jth column to the first column, so
that not all entries in the first column is divisible by e1. That is, the matrix is

e1 0 · · · 0
•2 ∗ · · · ∗
...

...
. . .

...
•n ∗ · · · ∗


where •2, . . . , •n are not all divisble by e1. Now do Step 1 at this point. At
the first application of Lemma 4.3.9, the first row first column entry becomes
gcd(e1, •2, . . . , •n).

Let us denote the result of Step 1 by
e2 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

 .
Because e2 | gcd(e1, •2, . . . , •n), we have (e1) ( (e2). If we repeat this process,
we get a strictly ascending chain of ideals

(e1) ( (e2) ( · · · .

This contradicts Lemma 4.3.8, and this means that the process cannot continue
infinitely. That is, we arrive at a point where that matrix is

eb 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗


where all ∗ are divisible by eb.

Step 3. Once we have this, we do this on the (n− 1)× (k− 1) matrix of ∗.
Then what we inductively get is a matrix that looks likef1 0 · · ·

0 f2 · · ·
...

...
. . .


with f1 | f2 | · · · .
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Exercise 4.3.I. Let R = Z, which is a principal ideal domain. Using the
algorithm described in the proof, find invertible matrices P and Q such that

P

 1 −1 3
3 1 −1
−3 1 −3

Q
is diagonal with entries dividing one another. If you’re energetic, repeat this for
other matrices or try to write a compute program that does this.

This is what we have proven so far.

Proposition 4.3.11. Let R be a principal ideal domain. For every finitely
generated module M over R, there exists a nonnegative integer n ≥ 0 and a
sequence of ideals

(0) ⊆ a1 ⊆ a2 ⊆ · · · ⊆ an ( R

such that

M ∼= (R/a1)⊕ (R/a2)⊕ · · · ⊕ (R/an).

What we are missing is the uniqueness part. We need to show that M
uniquely determine the integer n and the ideals a1, . . . , an. Suppose we have a
Z-module

M = Z⊕2 ⊕ Z/2Z⊕ Z/4Z.

Note that the moduleM can be generated by the four elements (1, 0, 0, 0), . . . , (0, 0, 0, 1),
but it cannot be generated by three elements. We will prove that this minimal
number is equal to n. Then, if we look at im(×2 : M →M), this is isomorphic
to Z⊕2 ⊕ 0 ⊕ Z/2Z and now can be generated by three elements. We will see
how M determines the ideals ak using this marvelous idea that we can extract
a lot of information by looking at the minimal number of generators of im(×x),
where x varies in R.

Definition 4.3.12. Let R be a ring and let M be a finitely generated R-
module. The minimal number of generators of M is defined as the minimal
nonnegative integer n such that there exist generators x1, . . . , xn of M .

Every proper ideal is con-
tained in a maximal ideal, in
a PID

Lemma 4.3.13. Let R be a principal ideal domain,1 and let a ( R be an ideal.
Then there exists a larger ideal a ⊆ b ( R such that R/b is a field.

Proof. If R/a is a field, we can set b = a and we are done. If not, there exists a
nonzero element [x1] ∈ R/a such that [x1] does not divide [1]. This means that
we have

a ( a1 = a + (x1) ( R.

1We actually don’t need this assumption. R can be an arbitrary ring, but then we need to
use Zorn’s lemma.
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(We have a ( a1 because [x1] 6= [0] in R/a, and we have a1 ( R because [x1]
does not divide [1].) If R/a1 is a field, we are done, otherwise we can find a
larger ideal

a ( a1 ( a2 ( R.

This process cannot continue forever by Lemma 4.3.8. This means that R/ai is
a field for some i.

The number of summands in
the classification of finitely
generated modules is the
minimal number of genera-
tors

Lemma 4.3.14. Let R be a principal ideal domain, and let

(0) ⊆ a1 ⊆ a2 ⊆ · · · ⊆ an ( R

be a sequence of ideals. Define the R-module

M = (R/a1)⊕ · · · ⊕ (R/an).

Then the minimal number of generators of M is exactly n.

Proof. It is clear that there exists a set of generators of size n, namely ([1], [0], . . . , [0])
through ([0], [0], . . . , [1]).

We now have to show that there is no set of generators of size n−1. Suppose
there exists such a set of generators. Then by definition there is a surjective
homomorphism

R⊕(n−1) � (R/a1)⊕ · · · ⊕ (R/an).

Using Lemma 4.3.13, we find an ideal

a1 ⊆ a2 ⊆ · · · ⊆ an ⊆ b ( R.

Now there is a surjective linear map R/ai � R/b. We can direct sum these
maps together and define

ϕ : R⊕(n−1) � (R/a1)⊕ · · · ⊕ (R/an) � (R/b)⊕n.

So there is this surjective R-linear map ϕ : R⊕(n−1) � (R/b)⊕n. Let us
write b = (e). Then for any x ∈ R⊕(n−1) we have

ϕ(ex) = eϕ(x) = 0

because multiplication by e turns everything in (R/b)⊕n to zero. This means
that ker(ϕ) contains the module b⊕(n−1) ⊆ R⊕(n−1). Using the module version
of Exercise 2.5.H, we can factor ϕ as

ϕ : R⊕(n−1) → R⊕(n−1)/b⊕(n−1) = (R/b)⊕(n−1) ψ−→ (R/b)⊕n.

Here, the R-linear map ψ : (R/b)⊕(n−1) � (R/b)⊕n is surjective because ϕ is
surjective.

But recall that we have set k = R/b to be a field. This means that
(R/b)⊕(n−1) and (R/b)⊕n are vector spaces over k. The map ψ : k⊕(n−1) � k⊕n

is R-linear, and for any [a] ∈ k we have

[a]ψ(x) = aψ(x) = ψ(ax) = ψ([a]x).

So ψ : kn−1 → kn is a surjective k-linear morphism. This contradicts Corol-
lary 2.7.13 because dimk k

n−1 = n− 1 is smaller than dimk k
n = n.
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This lemma can be used to recover the ideals from the module. For an ideal
ai ⊆ R, consider the R-module R/ai. For some element d ∈ R, what is the
image of ×d : R/ai → R/ai? We have a surjective map

R� R/ai
×d−−→ im(×d : R/ai → R/ai).

The kernel of this is the ideal

bi = {x ∈ R : dx ∈ ai} ⊆ R.

Thus the first isomorphism theorem (Exercise 4.2.G) gives an isomorphism

im(×d : R/ai → R/ai) ∼= R/bi.

Now let M be the R-module

M = (R/a1)⊕ · · · ⊕ (R/an)

where a1 ⊆ · · · ⊆ an ( R. Then the image of ×d : M →M is given by

im(×d : M →M) ∼= (R/b1)⊕ · · · ⊕ (R/bn)

where bi is as defined above. Also, b1 ⊆ · · · ⊆ bn ⊆ R. Lemma 4.3.14 imme-
diately implies that the number of minimal generators of im(×d : M → M) is
the number of i such that bi ( R. Also, it is not hard to see from the definition
that bi = R if and only if d ∈ ai. Therefore the minimal number of generators
of im(×d : M →M) is

#{1 ≤ i ≤ n : d /∈ ai}.

Exercise 4.3.J. From the above discussion, deduce the following. If R is a
principal ideal domain, and a1 ⊆ · · · ⊆ an ( R, and consider the R-module

M = (R/a1)⊕ · · · ⊕ (R/an).

Then n is the minimal number of generators of M , and the ideal ai can be
identified as

ai = {d ∈ R : minimal number of generators of im(×d : M →M) is < i}.

It immediately follows that M uniquely determines n and the ideals ai. This
finishes the proof of Theorem 4.3.3.

4.4 Frobenius and Jordan normal form

Let us come back to the situation of a finite-dimensional vector space over a
field. Let k be a field, and let V be a finite-dimensional vector space over k.
Fix a linear map T : V → V . We want to know how T acts on V . For instance,
can we choose a nice basis of V so that T is represented by a relatively simple
matrix?
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Here is another way to think about what we are trying to do. First choose
an arbitrary basis of V , so that T becomes a square matrix. A change of basis
is given by a conjugation by an invertible matrix, i.e., PTP−1. So we are trying
to find an invertible matrix P such that PTP−1 is a “relatively simple matrix”.

Our strategy is to combine the data of a vector space V along with the data
of a linear map T : V → V , and make it into a data of a single module. Recall
the polynomial ring.

Definition 4.4.1. Let k be a field. The ring of polynomials k[t] is defined
as

k[t] = {a0 + a1t+ · · ·+ ant
n : a0, . . . , an ∈ k}

with natural addition and multiplication.

Given a vector space V and a linear map T : V → V , we can define a
k[t]-module structure on V as

(a0 + · · ·+ ant
n) · v = a0v + a1T (v) + a2T (T (v)) + · · ·+ anT

n(v)

for x ∈ V and a0, . . . , an ∈ k.

Exercise 4.4.A. Verify that this is indeed a k[t]-module structure.

Conversely, suppose we are given a k[t]-module V . Then V is naturally a
k-vector space because k ⊆ k[t]. Also, we can recover the linear map T : V → V
by T (v) = t · v. These are inverse constructions, and thus we can translate
between these two structures.A vector space with a linera

map is the same as a module
over the polynomial ring

{
a k-vector space V

plus a linear map T : V → V

}
←→

{
a k[t]-module V

}
Exercise 4.4.B. Let V1 be a k[t]-module, corresponding to a k-linear map
T1 : V1 → V1, and let V2 be a k[t]-module corresponding to a k-linear map T2 :
V2 → V2. If P : V1 → V2 is k[t]-linear and bijective, show that PT1P

−1 = T2,
as k-linear maps. This means that analyzing the k[t]-module structure of V1

amounts to studying the k-linear map T1 up to conjugation.

Exercise 4.4.C. Let A be an n×n matrix with entries in k. Then tIn−A can
be considered as an n×n matrix with entries in k[t]. Show that the k[t]-module
corresponding to A : kn → kn is isomorphic to

coker(k[t]⊕n
tIn−A−−−−→ k[t]⊕n).

Because V is a finite-dimensional k-vector space, it is finitely generated as a
k[t]-module. We would like to apply the classification theory of finitely generated
modules over a principal ideal domain.

The polynomial ring over a
field is a PID Theorem 4.4.2. Let k be a field. Then k[t] is a principal ideal domain.
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Proof. Take an ideal a ⊆ k[t]. We need to show that a = (f) for some f ∈ k[t].
If a = {0}, we can set f = 0. If a ) (0), take a nonzero polynomial f ∈ a
with minimal degree. Then we first have (f) ⊆ a because f ∈ a. For the other
containment, take an arbitrary element g ∈ a. By polynomial division, we can
find q, r ∈ k[t] such that

g = fq + r, deg r < deg f.

Because f, g ∈ a, we have r = g − fq ∈ a. But deg r < deg f contradicts the
minimality of f , unless r = 0. This means that g = fq ∈ (f), for every g ∈ a.
This shows that (f) = a.

By Theorem 4.3.3, it immediately follows that any V (a k[t]-module that is
a finite-dimensional k-vector space) is isomorphic to

V ∼= k[t]⊕r ⊕ k[t]/(p1(t))⊕ · · · ⊕ k[t]/(ps(t))

as a k[t]-module. But k[t] is an infinite-dimensional k-vector space. Because V
is finite-dimensional, we must have r = 0. Moreover, note that (cpi) = (pi) for
c ∈ k× \ {0} a nonzero constant. This shows that we may assume that pi are
all monic, i.e., have leading coefficient 1.

Exercise 4.4.D. Consider k[t]-module V = k[t]/(p(t)). If d = deg p, then show
that [1], [t], [t2], . . . , [td−1] form a basis of the k-vector space V .

Exercise 4.4.E. Consider the k[t]-module V = k[t]/(p1(t))⊕ · · · ⊕ k[t]/(ps(t)).
Show that

dimk V = deg p1 + · · ·+ deg ps.

What does this structure theory imply? Consider the ith component Vi =
k[t]/(pi(t)), which is itself a k[t]-module and thus corresponds to a vector space
plus a linear map. Write

pi(t) = tdi + ai,di−1t
di−1 + · · ·+ ai,1t+ ai,0.

and consider the basis vi,0 = [1], vi,1 = [t], . . . , vi,di−1 = [tdi−1] of Vi. Recall
that the k-linear map T : V → V is multiplication by t. So we have

Tvi,0 = vi,1, T vi,1 = vi,2, . . . , T vi,di−2 = vi,di−1,

T vdi−1 = [tdi ] = −ai,di−1[tdi−1]− · · · − ai,1[t]− ai,0[1]

= −ai,di−1vi,di−1 − · · · − ai,1vi,1 − ai,0vi,0.

With this basis vi,0, . . . , vi,di−1, the linear map T : V → V can be represented
by the matrix

B [T ]B =


0 0 · · · 0 −ai,0
1 0 · · · 0 −ai,1
0 1 · · · 0 −ai,2
...

...
. . .

...
...

0 0 · · · 1 −ai,di−1

 .

https://en.wikipedia.org/wiki/Polynomial_long_division
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Definition 4.4.3. A square matrix A is said to be in Frobenius normal form
or rational canonical form if it is of the block form

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · As


with each di × di square matrix Ai being of the form

Ai =


0 0 · · · 0 −ai,0
1 0 · · · 0 −ai,1
0 1 · · · 0 −ai,2
...

...
. . .

...
...

0 0 · · · 1 −ai,di−1

 .

Using the classification theorem and applying the above discussion to each
component, we obtain the following result.

Every linear map on a finite-
dimensional can be put in
Frobenius normal form

Theorem 4.4.4. Let V be a finite-dimensional vector space over k, and let
T : V → V be a linear map. Then T can be put in a Frobenius normal form, by
choosing a suitable basis.

This also means that any square matrix can be put in a Frobenius normal
form by conjugating it with an invertible matrix.

Exercise 4.4.F. Consider k = Q. Find a 3× 3 matrix (with entries in k = Q!)
such that

P

 1 0 4
2 −3 1
−1 2 0

P−1

is in Frobenius normal form.
Every matrix is conjugate to
its transpose Exercise 4.4.G. Let A be an n× n matrix with entries in k. Show that there

exists an n× n invertible matrix P (with entries in k) such that

PAP−1 = A∗.

(Hint: Use Exercise 4.4.C and put the matrix tIn −A into Smith normal form.
The transpose of a diagonal matrix is itself.)

We now look at when k has a particularly nice property.

Definition 4.4.5. Let k be a field. We say that k is algebraically closed if
any polynomial p ∈ k[t] of degree at least 1 has a root, that is, for every nonzero
p(t) ∈ k[t] with deg p ≥ 1 there exists a α ∈ k such that p(α) = 0.
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Here is one example, although we will not prove it.
The field of complex num-
bers is algebraically closedTheorem 4.4.6 (Fundamental theorem of algebra). The field k = C is alge-

braically closed.

Exercise 4.4.H. Let p ∈ k[t] be a nonzero polynomial with deg p ≥ 1. If
p(α) = 0, then we can factorize

p(t) = (t− α)q(t)

for some q ∈ k[t].
Any polynomial over an al-
gebraically closed field can
be factored into linear terms

Exercise 4.4.I. Let k be an algebraically closed field. Show that any nonzero
polynomial p ∈ k[t] can be written in the form

p(t) = c(t− α1) · · · (t− αn).

So if k is algebraically closed, any k[t]-module that is a finite-dimensional
k-vector space looks like

V ∼= k[t]/((t− α1)d1 · · · (t− αk)dr )⊕ · · · .

At this point, we cannot do much more than the Frobenius normal form.
But we are going to use a generalized version of the Chinese remainder theorem
to further decomose the module.

The Chinese remainder the-
orem works for relatively
prime ideals

Theorem 4.4.7 (Chinese remainder theorem). Let R be a commutative ring,
and let a, b ⊆ R be ideals such that a + b = R as ideals. There are natural
projection maps R/(a ∩ b)→ R/a and R/(a ∩ b)→ R/b. The induced map

R/(a ∩ b)→ (R/a)× (R/b)

is an isomorphism.

Proof. Because a + b = 1, there exist a ∈ a and b ∈ b such that a + b = 1.
Consider the R-linear projection map

ϕ : R→ (R/a)× (R/b).

We claim that this is surjective. Consider any ([x], [y]) in (R/a)×(R/b). Because
a+ b = 1, we have x− y = (x− y)(a+ b) and hence

z = x+ (y − x)a = y + (x− y)b.

This means that z is mapped to ([z], [z]) = ([x], [y]). Hence ϕ is surjective.
By the first isomorphism theorem(Exercise 4.2.G), we have

(R/a)× (R/b) ∼= R/ ker(ϕ).

Here it is clear that ker(ϕ) = a ∩ b.
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Let’s apply this theorem to R = k[t].

Exercise 4.4.J. Let k be a field. For nonzero polynomials f, g ∈ k[t] with
gcd(f, g) = 1, show that (f)+(g) = (1) and (f)∩ (g) = (fg). As a consequence,
show that

R/(fg) ∼= (R/(f))⊕ (R/(g)).
Over an algebraically closed
field, two polynomials are
coprime if and only if they
have no common roots

Exercise 4.4.K. Let k be an algebraically closed field. If f, g ∈ k[t] are nonzero
polynomials, show that gcd(f, g) = 1 if and only if f(t) = 0 and g(t) = 0 do not
share a common root.

Exercise 4.4.L. Let k be an algebraically closed field. If f ∈ R = k[t] is
factorized as

f(t) = (t− α1)d1 · · · (t− αk)dk

with α1, . . . , αk pairwise distinct, show that we may express

R/(f) ∼= R/((t− α1)d1)⊕ · · · ⊕R/((t− αk)dk).

So if k is algebraically closed, we can write any k[t]-module V that is finite-
dimensional over k as

V ∼= k[t]/((t− α1)d1)⊕ · · · k[t]/((t− αk)dk).

Here, the numbers αi need not be distinct from each other. This is because V
is a direct sum of several modules that look like k[t]/(f).

Let us now represent the k[t]-module V = k[t]/((t− αi)di) in a nice matrix
form. Let T : V → V be multiplication by t. We pick the basis

vi,1 = [(t− αi)di−1], vi,2 = [(t− αi)di−2], . . . , vi,di = [1].

Then the matrix T acts on the vectors as

Tvi,1 = [t(t− αi)di−1] = [(t− αi)di ] + [αi(t− αi)di−1] = 0 + αivi,1,

T vi,2 = [t(t− αi)di−2] = [(t− αi)di−1] + [αi(t− αi)di−2] = vi,1 + αivi,2,

...

Tvi,di = [t] = [t− αi] + [αi] = vi,di−1 + αivi,di .

It follows that if we choose the basis vi,1, . . . , vi,di , we get the matrix

T =



αi 1 0 · · · 0 0
0 αi 1 · · · 0 0
0 0 αi · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · αi 1
0 0 0 · · · 0 αi


.
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Definition 4.4.8. A square matrix A is said to be in Jordan normal form
if it is of the block form

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ak


where each di × di matrix Ai being of the form

Ai =


αi 1 0 · · · 0
0 αi 1 · · · 0
0 0 αi · · · 0
...

...
...

. . .
...

0 0 0 · · · αi

 .

From the discussion above, we obtain the following theorem.
Every matrix can be put in
Jordan normal formTheorem 4.4.9. Let V be a finite-dimensional vector space over k, where k is

algebraically closed. Let T : V → V be a linear map. Then T can be put in a
Jordan normal form, by choosing a suitable basis.

Exercise 4.4.M. Consider k = C. Find a 3× 3 matrix such that

P

 1 0 4
2 −3 1
−1 2 0

P−1

is in Jordan normal form.

4.5 Eigenvalues and eigenvectors

Eigenvectors and eigenvalues are useful tools for analyzing how a linear map
acts on a vector space.

Definition 4.5.1. Let V be a vector space over k and let T : V → V be
a k-linear map. We say that λ ∈ k is an eigenvalue of T if there exists a
vector v ∈ V with v 6= 0 such that Tv = λv. In this case, we say that v is an
eigenvector for λ.

If v ∈ V is an eigenvector for T with eigenvalue λ, then we inductively have

Tnv = λnv

for all n ≥ 0. Moreover, for any polynomial p(t) ∈ k[t] with coefficients in k, we
have

p(T )v = p(λ)v.
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There are linear maps with-
out eigenvectors Exercise 4.5.A. An eigenvector need not exist. For instance, consider the

matrix T : R2 → R2 given by

T =

[
0 1
−1 0

]
.

Verify that T does not have an eigenvector.

But if the base field k is algebraically closed, the theorem about Jordan
normal form implies that every vector space (of positive finite dimension) has an
eigenvector. It moreover tells us exactly what the eigenvectors and eigenvalues
are.

Exercise 4.5.B. Let V be a finite-dimensional vector space over k, where k is
algebraically closed. Show that the set of eigenvalues of A : V → V is the same
as the set of diagonal entries of any Jordan normal form of A.

Before analyzing the situation for algebraically closed field, let us set up
a bit of notation. Fix a finite-dimensional vector space V over a field k (not
necessarily algebraically closed), and fix a linear map T : V → V .

Definition 4.5.2. For each scalar λ ∈ k, define the eigenspace as

Vλ = ker(λ · id−T ) = {v ∈ V : Tv = λv}.

Exercise 4.5.C. Check that Vλ is a subspace of V , as a k-vector space. Verify
also that λ is an eigenvalue if and only if dimk Vλ > 0.

The interesting fact is that the spaces Vλ are all linearly independent from
each other. Let me make this statement precise.

The eigenspaces of a linear
map are linearly independent Exercise 4.5.D. Fix a finite-dimensional k-vector space V and a linear map

T : V → V . Consider the eigenspaces Vλ ⊆ V for each λ ∈ k.

(a) Show that if λ1, . . . , λn ∈ k are different scalars, and vi ∈ Vλi for all
1 ≤ i ≤ n, then

v1 + v2 + · · ·+ vn = 0

implies v1 = v2 = · · · = vn = 0. (Hint: use Lagrange interpolation)

(b) The family of inclusion maps Vλ ↪→ V induce a k-linear map⊕
λ∈k

Vλ → V.

Show that this map is injective.

It will be great if the linear map
⊕

λ∈k Vλ → V is an isomorphism. However,
we should not expect this to hold in generality even if k is algebraically closed.
For instance,

T : C2 → C2, T =

[
0 1
0 0

]

https://en.wikipedia.org/wiki/Lagrange_polynomial
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has Vλ = 0 for λ 6= 0 and V0 = span((1, 0)). So dim
⊕

λ∈k Vλ = 1 while dimV =
2. On the other hand, in Chapter 5, we prove a theorem that

⊕
λ∈k Vλ → V is

indeed an isomorphism if T is self-adjoint. But without an assumption on the
linear map T , we do not have such a result.

The solution to this problem is to look at a bigger subspace, called the
generalized eigenspace.

Definition 4.5.3. Let V be a finite-dimensional vector space and T : V → V
be a linear map. For each λ ∈ k, define the generalized eigenspace as

V(λ) =
⋃
n≥1

ker((λ · id−T )n) = {v ∈ V : (λ− T )nv = 0 for some n ≥ 1}.

Exercise 4.5.E. Check that V(λ) is a linear subspace of V . Also verify that λ
is an eigenvalue if and only if dimVλ > 0 if and only if dimV(λ) > 0.

Although we have enlarged each of the spaces Vλ to V(λ), generalized eigenspaces
still satisfy the linear independence property.

Generalized eigenspaces of a
linear map are linearly inde-
pendent

Exercise 4.5.F. Let V be a finite-dimensional space, and T : V → V be a
linear map.

(a) Show that if 0 6= v ∈ V(λ) and λ 6= κ ∈ k, then (κ − T )v ∈ V(λ) and
(κ− T )v 6= 0.

(b) Show that the linear map ⊕
λ∈k

V(λ) → V

induced by the inclusions V(λ) ↪→ V is injective. (Hint: suppose it is not
injective, and look at nonzero vectors v1, . . . , vn that add up to 0 and
contained in different generalized eigenspaces, such that n is smallest as
possible. Derive a contradiction by applying a suitable (T − λ)n to it.)

Exercise 4.5.G. Find an example of a vector space V and a linear map T :
V → V such that the linear map

⊕
λ∈k V(λ) → V is not an isomorphism.

Let us now assume that k is an algebraically closed closed field. In this case,
we will show that the map

⊕
λ∈k V(λ) → V is an isomorphism.

Generalized eigenspaces
form a decomposition of the
original vector space

Theorem 4.5.4. Let V be a finite-dimensional vector space over k, where k
is algebraically closed. Consider a linear map T : V → V and the generalized
eigenspaces V(λ) with repsect to T . Then the linear map⊕

λ∈k

V(λ) → V

induced by the inclusion maps V(λ) ↪→ V is an isomorphism.
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Proof. Consider the vector space V with linear map T as a k[t]-module, where
multiplication by t acts as applying T . By the discussion around the Jordan
normal form, we see that V has a decomposition

V ∼=
n⊕
i=1

k[t]/((t− αi)di)

as k[t]-modules, where αi ∈ k and di ≥ 1. For each i, we may consider k[t]/((t−
αi)

di) ⊆ V as a subspace. Then for any v ∈ k[t]/((t−αi)di), applying (T −αi)di
to v gives

(T − αi)div = (t− αi)div = 0 ∈ k[t]/((t− αi)di).

This implies that k[t]/((t−αi)di) ⊆ V(αi). Because the subspaces k[t]/((t−αi)di)
generate V , it follows that the subspaces V(λ) also generate V . Combining with
Exercise 4.5.F, we obtain the desired result.

Exercise 4.5.H. In the above proof, show that actually we can identify V(λ)

directly as

V(λ) =
⊕
αi=λ

k[t]/((t− αi)di).

Hence it immediately follows that
⊕

λ V(λ)
∼= V .

There is an application of the above discussion, called the Jordan–Chevalley
decomposition. The theorem is useful in representation theory, but we use it
only as a demonstration of the theory we developed so far. To state the theorem,
we make some definitions.

Definition 4.5.5. Let k be an algebraically closed field, and let V be a finite-
dimensional vector space over k. A linear map T : V → V is said to be
diagonalizable or semisimple if the linear map⊕

λ∈k

Vλ → V

induced by the inclusions is an isomorphism of vector spaces. (Vλ are the ordi-
nary eigenspaces for T .)

We have seen an example of linear map that is not semisimple, namely
T = [ 0 1

0 0 ]. On the other hand, most matrices (if the entries are chosen randomly)
are semisimple.

Exercise 4.5.I. Show that T is semisimple if and only if, the matrix in Jordan
normal form obtained by conjugating T is a diagonal matrix.

Most linear maps are
semisimple Exercise 4.5.J. Let T be an n × n matrix with entries in k, where k is alge-

braically closed. If the polynomial det(tI − T ) in the variable t has n distinct
roots in k, show that T is semisimple.
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Definition 4.5.6. Let k be an algebraically closed field, and let V be a finite-
dimensional vector space over k. A linear map T : V → V is said to be
nilpotent if Tn = 0 for some n ≥ 1.

Exercise 4.5.K. Show that T : V → V is nilpotent if and only if V(0) = V .

We now state the main theorem.
Every linear map decom-
poses into a sum of a
semisimple and a nilpotent
that commute

Theorem 4.5.7 (Jordan–Chevalley decomposition). Let V be a finite-dimensional
vector space over an algebraically closed field k. Then for every linear map
T : V → V there is a decomposition

T = Tss + Tn

into a semisimple map Tss and a nilpotent map Tn such that TssTn = TnTss.
Moreover, such a decomposition is unique.

We prove this theorem in a series of exercises.

Exercise 4.5.L. Consider the decomposition V ∼=
⊕
V

(T )
(λ) with respect to T .

Define Tss by setting

Tssv = λv

if v ∈ V (T )
(λ) , and then extending linearly.

(a) Show that the eigenspaces with respect to Tss are V
(Tss)
λ = V

(T )
(λ) . Deduce

that Tss is indeed semisimple.

(b) Show that TssT = TTss.

(c) Define Tn = T − Tss. Show that for every v ∈ V (T )
(λ) , there exists a k ≥ 1

such that T knv = 0. Conclude that Tn is nilpotent.

(d) Show that TssTn = TnTss.

Exercise 4.5.M. In the other direction, suppose that T = Tss +Tn, where Tss
is semisimple, Tn is nilpotent, and they commute.

(a) Show that T and Tss commute, i.e., TTss = TssT .

(b) Show that if v ∈ V (Tss)
λ , then v ∈ V (T )

(λ) . That is, V
(Tss)
λ ⊆ V (T )

(λ) .

(c) From the decompositions V ∼=
⊕

λ V
(T )
(λ) and V ∼=

⊕
λ V

(Tss)
λ , show that

V
(Tss)
λ = V

(T )
(λ) .

(d) Conclude that Tss has to be the linear map constructed in the previous
exercise.

There is a similar multiplicative version of the Jordan–Chevalley decompo-
sition.
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Definition 4.5.8. Let k be an algebraically closed field, and let V be a finite-
dimensional vector space over k. A linear map T : V → V is said to be
unipotent if T − id is nilpotent.

Every invertible linear map
decomposes into a product
of a semisimple and a unipo-
tent that commute

Exercise 4.5.N (multiplicative Jordan–Chevalley decomposition). Let V be a
finite-dimensional vector space over an algebraically closed field k. Prove that
for every linear map T : V → V there is a decomposition

T = TssTu

into a semisimple map Tss and a unipotent map Tu such that TssTu = TuTss.
Moreover, show that such a decomposition is unique.



Chapter 5

Linear algebra over R and C

When the base field is k = R or k = C, we can do analysis in the vector
spaces. Well, not really hard analysis like differentiation or integration, but
stuff like comparing sizes of numbers or taking the supremum. When we mix
linear algebra with a bit of analysis, we get interesting consequences.

In this chapter, we will only deal with finite-dimensional vector spaces. There
is a theory of infinite-dimensional topological vector spaces, and many of the
things we shall discuss will be generalizable to that case. But we will not worry
about such spaces. If you are interested in the infinite-dimensional case, go and
study functional analysis. You will deal with spaces like the vector space of
continuous functions [0, 1]→ R.

5.1 A bit of analysis

Given two real numbers, we can compare them, and so there is a notion of
smallness.

Definition 5.1.1. Let {an}n≥0 be an infinite sequence of real numbers. We
say that its limit is L if for every ε > 0, there exists a sufficiently large Nε > 0
such that

|an − L| < ε

for all n ≥ Nε. In this case, we write

lim
n→∞

an = L.

Of course, some sequences do not have limits. For instance, an = (−1)n

does not have a limit. But if a limit exists, it is unique.
Limits commute with
termwise sumsExercise 5.1.A. Show that if limn→∞ an = a and limn→∞ bn = b, then

limn→∞(an + bn) = a+ b.
Limits commute with
termwise productsExercise 5.1.B. Show that if limn→∞ an = a and limn→∞ bn = b, then

limn→∞(anbn) = ab.

109
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It is a sort of definition that the real numbers are complete.

Definition 5.1.2. A Cauchy sequence is a sequence of real numbers {an}n≥0

such that for any ε > 0, there exists a sufficiently large Nε > 0 such that

|an − am| < ε

for all n,m ≥ Nε.
Cauchy sequences converge

Theorem 5.1.3 (Completeness of R). Every Cauchy sequence in R has a limit.
Bounded monotone se-
quences have limits Exercise 5.1.C. Let a0, a1, . . . be a bounded nondecreasing sequence of real

numbers. In other words, ai ≤ ai+1 for all i ≥ 0, and there exists a universal
constant C such that ai ≤ C for all i ≥ 0. Show that the limit limn→∞ an
exists.

Bounded sets have supre-
mums Exercise 5.1.D. Let S ⊆ R be a nonempty subset such that there exists a

constant C such that x < C for all x ∈ S. Show that there exists a real number
M such that

(i) x ≤M for all x ∈ S,

(ii) for any M ′ < M , there exists a x ∈ S such that x > M ′.

Such M is called the supremum of S and we write M = supS.

We have thus defined the limit of a sequence of real numbers. Let us now
define a limit of vectors.

Definition 5.1.4. Let {vk}k≥0 be a sequence of vectors in Rn. Write vk =
(vk,1, . . . , vk,n) ∈ Rn. We say that the limit of the sequence is x = (x1, . . . , xn) ∈
Rn if

xi = lim
k→∞

vk,i

and all the limits exist. In this case, we write

x = lim
k→∞

vk.

Exercise 5.1.E. Consider {zk}k≥0 be a sequence of complex numbers. Show
that the following are equivalent:

(1) When C is considered as a real vector space, limk→∞ zk = z.

(2) For every ε > 0, there exists a suffuciently large Nε > 0 such that |zn−z| <
ε for all n > Nε.

But what about in general vector spaces that are not canonically isomorphic
to Rn?
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Limits commute with linear
mapsProposition 5.1.5. Let T : Rn → Rm be an R-linear map. If {vk}k≥0 is a

sequence with x = limk→∞ vk, then

Tx = lim
k→∞

Tvk.

Proof. Write T as a matrix T = (tij), and let vk = (vk,1, . . . , vk,n). Then the
ith component of Tvk is given by

(Tvk)i =
∑
j

tijvk,j .

Because limk→∞ vk,j = xj , we have

lim
k→∞

(Tvk)i =
∑
j

tij lim
k→∞

vk,j =
∑
j

tijxj = (Tx)i

by the commutation of limits with addition and multiplication. This shows that
Tx = limk→∞ Tvk.

Definition 5.1.6. Let V be a finite-dimensional vector space over R. For a
sequence {vk}k≥0 of vectors in V , we say that

v = lim
k→∞

vk

if Tv = limk→∞ Tvk for a choice of isomorphism T : V → Rn.

What if we choose another isomorphism S : V → Rn? Because ST−1 :
Rn → Rn is a linear map, applying ST−1 shows that Tv = limk→∞ Tvk implies
Sv = limk→∞ Svk. Also, applying TS−1 implies the other direction. Therefore
Tv = limk→∞ Tvk if and only if Sv = limk→∞ Svk. This means that the limit
does not depend on the choice of isomorphism T : V → Rn.

Definition 5.1.7. Let V and W be finite-dimensional vector spaces over R. We
say that a function f : V →W (not necessarily a linear map) is continuous if
v = limk→∞ vk implies f(v) = limk→∞ f(vk).

What we proved in Proposition 5.1.5 is that a linear map is always continu-
ous.

The composition of continu-
ous maps is continuousExercise 5.1.F. Let V,W,U be finite-dimensional vector spaces over R. Let

f : V → W be a continuous map, and let g : W → U be a continuous map.
Show that g ◦ f : V → U is continuous as well.

The square root is continu-
ousExercise 5.1.G. Show that the function f : R→ R defined by f(x) =

√
|x| is

continuous.

We end with a useful theorem.
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A continuous function on a
closed bounded set has a
maximum

Theorem 5.1.8 (Heine–Borel). Let V be a finite-dimensional vector space over
R, and let S ⊆ V be a subset satisfying the following two properties:

(a) The set S is bounded, i.e., there exists an isomorphism T : V → Rn and
a large real number L such that S ⊆ T−1([−L,L]n).

(b) The set S is closed, i.e., for every sequence {vk}k≥0 with a limit, if vk ∈ S
then limk→∞ vk ∈ S.

Then for any continuous function V → R, the functions has a maximal value
on S. That is, there exists a x ∈ S such that f(x) ≥ f(s) for all s ∈ S.

5.2 Inner products

We all know about inner products in R3, or maybe Rn. Given two vectors
~a = (a1, . . . , an) and ~b = (b1, . . . , bn), we define their inner product as

〈~a,~b〉 = a1b1 + · · ·+ anbn.

But given a general finite-dimensional vector space V over R, what is the inner
product? One cannot define an inner product canonically, but we can try to
think about what it means to be an inner product.

Definition 5.2.1. Let V be a finite-dimensional vector space over a field k. A
symmetric bilinear form is an element of Sym2 V ∗ ∼= (Sym2 V )∗. In other
words, it is a bilinear map

〈−,−〉 : V × V → k

such that 〈v, w〉 = 〈w, v〉 for all v, w ∈ V .

This can be defined over a general field k. But for k = R, we can further
impose a positivity condition.

Definition 5.2.2. Let V be a finite-dimensional vector space over R, and let
〈−,−〉 be a symmetric bilinear form. We say that 〈−,−〉 is positive definite
or an inner product if

〈v, v〉 > 0

for all v 6= 0.

Example 5.2.3. The standard inner product on Rn defined by

〈v, w〉 = v1w1 + · · ·+ vnwn

is indeed an inner product on Rn. This is because v2
i ≥ 0 and equality holds if

and only if vi = 0.
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This is for real vector spaces V . For complex vector spaces, we could regard
it as a real vector space and look at inner products. But then we forget the
complex structure of V , and we do not want to do this. So we make a somewhat
peculiar definition.

Definition 5.2.4. Let V be a finite-dimensional vector space over C. A Her-
mitian sesquilinear form is a R-bilinear map

〈−,−〉 : V × V → C

such that

〈w, v〉 = 〈v, w〉, 〈cv, w〉 = c̄〈v, w〉, 〈v, cw〉 = c〈v, w〉

for all c ∈ C and v, w ∈ V .

The reason we are putting in complex conjugation is because this is when
it makes sense to put a positive-definite condition. If 〈−,−〉 was bilinear, we
would always have 〈iv, iv〉 = i2〈v, v〉 = −〈v, v〉.

Definition 5.2.5. Let V be a finite-vector space over C, and let 〈−,−〉 be
a sesquilinear form. We say that 〈−,−〉 is an inner product (sometimes a
Hermitian inner product to emphasize that we are working over C) if

〈v, v〉 ≥ 0

for all v 6= 0. (The condition 〈v, v〉 ≥ 0 includes the fact that 〈v, v〉 is a real
number.)

Example 5.2.6. The standard inner product on Cn defined by

〈v, w〉 = v̄1w1 + · · ·+ v̄nwn

is indeed an inner product on Cn as a complex vector space. This is because
v̄ivi = |vi|2 ≥ 0 with equality holding if and only if vi = 0.

Technically speaking, the definitions of an inner product on a R-vector space
and of an inner product over a C-vector space are different. We are giving them
the same name because they express the same idea and share useful properties.

Inner products form a cone
Exercise 5.2.A. Let V be a finite-dimensional vector space over R or C. Show
that the sum of any two inner products on V is again an inner product of V .
Here, we add inner products as elements of Sym2 V ∗, so that the sum of 〈−,−〉a
and 〈−,−〉b is given by 〈v, w〉a+b = 〈v, w〉a + 〈v, w〉b.

In the rest of the section, we are going to fix a finite-dimensional vector
space V over R or C, and an inner product 〈−,−〉 on V . This is called a
finite-dimensional Hilbert space.
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Definition 5.2.7. Fix k = R or k = C. A finite-dimensional Hilbert space
is a finite-dimensional vector space V over k along with a choice of an inner
product 〈−,−〉.

In general, Hilbert spaces can be infinite-dimensinal—this is why we are
adding the cumbersome adjective “finite-dimensional”. The true story is that
a Hilbert space needs to satisfy more properties suitable for analysis, but they
are automatically satisfied for finite-dimensional vector spaces.

Let k = R or k = C. Given a finite-dimensional Hilbert space V over k
(where the inner product is implicit) and a vector v ∈ V , we have a k-linear
functional

〈v,−〉 : V → k; w 7→ 〈v, w〉.

Note that the functional 〈−, v〉 might not be C-linear if k = C, because we have
〈cw, v〉 = c̄〈w, v〉. Functionals satisfying such identities are called conjugate-
linear instead of linear.

Every linear functional can
be uniquely represented by a
vector

Theorem 5.2.8 (Riesz representation theorem). Let k = R or k = C, and let
V be a finite-dimensional Hilbert space over k. The map

Φ : V → V ∗; v 7→ 〈v,−〉

is a bijection.

Note that Φ is not k-linear in general; rather, it is conjugate-linear.

Proof. Even if Φ is conjugate-linear over k, it is R-linear because conjugation
does nothing on R. That is, when we regard both V and V ∗ as R-vector spaces,
Φ is a linear map. Now let us compare dimension over R on both sides. If
k = R, then dimR V = dimR V

∗. If k = C, we only have dimC V = dimC V
∗, but

when take a C-vector space of dimension n and consider it as a R-vector space,
we have dimR V = 2 dimC V . Likewise we have dimR V

∗ = 2 dimC V
∗, and this

implies dimR V = dimR V
∗. Therefore

dimR V = dimR V
∗

in both cases.
To show that the linear map Φ : V → V ∗ is an isomorphism, it now suffices to

show that ker Φ = 0. Suppose 〈v,−〉 = 0 = 〈0,−〉. Evaluating this functional on
v gives 〈v, v〉 = 0, and this implies v = 0 because 〈−,−〉 is an inner product. This
shows that ker Φ = 0, which immediately implies that Φ is an isomorphism.

The original Riesz representation theorem holds for all Hilbert spaces, not
only finite-dimensional ones.

Definition 5.2.9. Let V be a finite-dimensional Hilbert space over k, and let
W ⊆ V be a subspace over k. We define the orthogonal complement of W
as

W⊥ = {v ∈ V : 〈v, w〉 = 0 for all w ∈W}.
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It is not hard to verify that W⊥ again is a k-vector space.

Exercise 5.2.B. In the above situation, prove the following statements.

(a) dimV = dimW + dimW⊥.

(b) (W⊥)⊥ = W .

(c) For any v ∈ V there exist unique w ∈ W and w′ ∈ W⊥ such that v =
w + w′.

In a Hilbert space, we can assign to each vector a length. Recall how
Euclidean length was defined in Rn. The length of (a1, . . . , an) is given by√
a2

1 + · · ·+ a2
n. So maybe a good definition is to define length so that its

square is equal to the inner product with itself. This make sense, because one
of our conditions stated that 〈v, v〉 ≥ 0 for all v.

Definition 5.2.10. Let V be a finite-dimensional Hilbert space over k = R or
k = C. Then we define a norm map

‖−‖ : V → R≥0; ‖v‖ =
√
〈v, v〉.

The norm satisfies many of the properties we are used to from Euclidean
geometry.

Cauchy–Schwartz for Hilbert
spacesExercise 5.2.C (Cauchy–Schwartz). Let V be a finite-dimensional Hilbert

space, and let v, w ∈ V . Show that

|〈v, w〉| ≤ ‖v‖‖w‖.

(Hint: the quadratic polynomial P (λ) = ‖v − λw‖2 is nonnegative for all λ)
Norm satisfies the triangle
inequalityExercise 5.2.D. Let V be a finite-dimensional Hilbert space, and let v, w ∈ V .

Show that
‖v + w‖ ≤ ‖v‖+ ‖w‖.

Norm is a continuous func-
tionExercise 5.2.E. Show that the norm map on a finite-dimensional Hilbert space,

as a map V → R, is continuous.

Let V be a finite-dimensional Hilbert space over k, and let W ⊆ V be a
subspace. We have shown in Exercise 5.2.B that every v ∈ V has a unique
decomposition v = projW (v) + (v − projW (v)) such that v − projW (v) ∈ W⊥.
We call projW (v) the orthogonal projection of v onto W .

Exercise 5.2.F. In the above setting, prove the following statements.

(a) The projection map projW : V →W is k-linear.

(b) The vector projW is characterized by

‖v − projW (v)‖ = min
w∈W
‖v − w‖.
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It is sometimes useful to choose and work with a basis. Because a Hilbert
space has an additional structure of an inner product, we will impose a condition
on the inner products between the basis vectors.

Definition 5.2.11. Let V be a finite-dimensional vector space over k = R or
k = C. An orthonormal basis is a basis v1, v2, . . . , vn of V such that

〈vi, vj〉 = δij =

{
1 i = j

0 i 6= j.

Having an orthonormal basis is a useful thing, because once we write down
the vector as a linear combination of the basis, we can easily compute the inner
product. Let v1, . . . , vn be an orthonormal basis. Then

〈a1v1 + · · · anvn, b1v1 + · · ·+ bnvn〉 =

n∑
i,j=1

āibj〈vi, vj〉 = ā1b1 + · · ·+ ānbn.

So the Hilbert space V looks like the standard Hilbert space Rn or Cn when we
choose an orthonormal basis.

The next question to ask is, does an orthonormal basis always exist? In fact,
we can give a better answer. Given any basis, there is a procedure for producing
an orthonormal basis. This is called the Gram–Schmidt process.

We start with an arbitrary basis v1, . . . , vn of V . Because vi might not be
of length 1, we first normalize this as

w1 =
v1

‖v1‖

so that ‖w1‖ = 1. Then, we want to make v2 into a unit length vector orthogonal
to v1. This can be done by defining

w2 =
v2 − 〈w1, v2〉w1

‖v2 − 〈w1, v2〉w1‖
.

Then clearly w2 has length 1, and its inner product against w1 is

〈w1, w2〉 =
1

‖v2 − 〈w1, v2〉w1‖
(〈w1, v2〉 − 〈w1, v2〉〈w1, w1〉) = 0.

Moreover, we have the property that span(v1, v2) = span(w1, w2). We can
similarly inductively define the vectors

wk =
vk − 〈w1, vk〉w1 − 〈w2, vk〉w2 − · · · − 〈wk−1, vk〉wk−1

‖vk − 〈w1, vk〉w1 − 〈w2, vk〉w2 − · · · − 〈wk−1, vk〉wk−1‖
.

At the end, we get an orthonormal basis w1, . . . , wn of V with the additional
property span(v1, . . . , vk) = span(w1, . . . , wk).
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Exercise 5.2.G. Consider R3 equipped with the inner product given by

〈(a1, a2, a3), (b1, b2, b3)〉 =
[
a1 a2 a3

] 1 1
2

1
2

1
2 1 1

2
1
2

1
2 1

b1b2
b3

 .
Find an orthonormal basis for this Hilbert space.

Exercise 5.2.H. Let V be a finite-dimensional Hilbert space, and let v1, . . . , vn
be a linear basis for V . Show that there uniquely exist one-dimensional sub-
spaces W1, . . . ,Wn ⊆ V satisfying

(i) the subspaces Wi are orthogonal to each other,

(ii) span(v1, . . . , vk) = W1 ⊕W2 ⊕ · · · ⊕Wk as subspaces of V , for all k (see
Exercise 2.5.D).

An orthonormal basis of a
subspace can be exteded to
an orthonormal basis

Exercise 5.2.I. Let V be a finite-dimensional Hilbert space, and W ⊆ V a
linear subspace. Show that any orthonormal basis of W can be exteded to an
orthonormal basis of V . More precisely, if v1, . . . , vk is a orthonormal basis of
W , then show that there exist vectors vk+1, . . . , vn such that w1, . . . , vn is an
orthonormal basis of V .

Lastly, we define a notion of an isomorphism of Hilbert spaces. This should
be a map that preserves all inner products while being an isomorphism of vector
spaces.

Definition 5.2.12. Let V,W be Hilbert spaces. A linear map T : V → W is
called an isometry if it is an isomorphism of vector spaces, and

〈Tv1, T v2〉W = 〈v1, v2〉V

for all v1, v2 ∈ V .

Exercise 5.2.J. Let V be a finite-dimensional Hilbert space. Show that the
linear map T : k⊕n → V induced by n vectors v1, . . . , vn ∈ V is an isometry if
and only if v1, . . . , vn form an orthonormal basis for V .

Note that the condition 〈Tv1, T v2〉W = 〈v1, v2〉V is not enough to conclude
that T is an isometry.

Exercise 5.2.K. Let V,W be Hilbert spaces and let T : V → W be a linear
map satisfying 〈Tv1, T v2〉 = 〈v1, v2〉 for all v1, v2 ∈ V . Show that T is injective.
Find an example when T is not surjective. In general, such T is called an
isometric embedding.

Inner products are deter-
mined by the normExercise 5.2.L. Show that if T : V → W is an isometric embedding if and

only if
‖Tv‖W = ‖v‖V

for all v ∈ V . (Hint: express the real part <〈v, w〉 in terms of ‖v‖, ‖w‖, and
‖v + w‖.)
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When the isometry is from V to itself, we use several names.

Definition 5.2.13. Let V be a finite-dimensional Hilbert space over k = R.
An isometry T : V → V is called orthogonal if k = R and unitary if k = C.

Exercise 5.2.M. Show that a n × n real matrix, considered as a linear map
Rn → Rn, is an isometry if and only if its columns form an orthonormal basis
for Rn.

Every matrix has a QR de-
composition Exercise 5.2.N (QR decomposition). Let A be a n×n matrix with real entries.

Show that there exists a decomposition

A = QR

where Q is an orthogonal matrix (considered as Rn → Rn) and R is an upper
triangular matrix (if R = (rij) then rij = 0 for i > j).

Similar statements to the previous two exercises hold also for k = C.

5.3 Operators on Hilbert spaces

We are now going to discuss linear maps between Hilbert spaces. In most
contexts, Hilbert spaces are spaces of functions. So a linear map between Hilbert
spaces is usually called a linear operator instead of a linear map. The map
f 7→ df

dx being called a differential operator explains the terminology.
Given an operator between Hilbert spaces, we want to define how “large”

that operator is. More precisely, this measures how large Tv can be compared
to v.

Definition 5.3.1. Let V,W be finite-dimensional vector spaces over k, where
k = R or k = C. Assume that dimV ≥ 1. For a linear operator T : V →W , we
define its norm as

‖T‖ = max
‖v‖V ≤1

‖Tv‖W = max
v 6=0

‖Tv‖W
‖v‖V

.

(Here, ‖Tv‖W is the norm of Tv with respect to the inner product in W , and
‖v‖V is the norm of v with respect to the inner product in V .)

But before we start using this definition, we need to ask if there really is a
maximum. Why cannot ‖Tv‖W be indefinitely large with ‖v‖V ≤ 1? What if
‖Tv‖W can take every value smaller than 1 but never 1, for instance? This is
where we need the Heine–Borel theorem (Theorem 5.1.8). The unit ball

B = {v ∈ V : ‖v‖V ≤ 1}

is clearly bounded. To see that B is closed, we use the fact that the norm is
continuous. (See Exercise 5.2.E.) If b1, b2, . . . ∈ B and limk→∞ bk = b then
‖b‖V = limk→∞‖bk‖V ≤ 1 because |bk|V ≤ 1 for all k. Therefore B is bounded
and closed, and Heine–Borel implies that our definition makes sense. This means
that ‖Tv‖W ≤ ‖T‖‖v‖V for all v ∈ V , and there exists a v 6= 0 such that
‖Tv‖W = ‖T‖‖v‖V .
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Exercise 5.3.A. Consider the Hilbert space R2, with the standard inner prod-
uct. Compute the norm of the linear operator[

1 2
3 4

]
.

Exercise 5.3.B. Let V,W,U be finite-dimensional Hilbert spaces, and let T :
V →W and S : W → U be linear operators. Show that

‖ST‖ ≤ ‖S‖‖T‖,

and find examples of S and T such that ‖ST‖ < ‖S‖‖T‖.

Exercise 5.3.C. Let V,W be finite-dimensional Hilbert spaces, and let T, S :
V →W be linear operators. Show that

‖T + S‖ ≤ ‖T‖+ ‖S‖.

Let V,W be finite-dimensional Hilbert spaces, and fix T : W → V a linear
operator. For each vector v ∈ V , there is a linear functional

〈v, T (−)〉V : W → k; w 7→ 〈v, Tw〉V .

By the Riesz representation theorem (Theorem 5.2.8), this linear functional is
uniquely representable.

Definition 5.3.2. Let V,W be finite-dimensional Hilbert spaces, and let T :
W → V be a linear operator. The adjoint operator T † of T is defined to
satisfy

〈v, Tw〉V = 〈T †v, w〉W
for all v ∈ V and w ∈W .

Exercise 5.3.D. Show that the adjoint operator T † : V → W is linear. (The
above definition is at the level of sets.)

The adjoint of the adjoint is
itselfExercise 5.3.E. In the above setting, show that (T †)† = T .

Exercise 5.3.F. Let V,W,U be finite-dimensional Hilbert spaces, and let T :
V →W and S : W → U be linear operators. Show that

(ST )† = T †S†.

Take V = Cn and W = Cm (with standard inner products), and write
T : W → V as a n×m matrix T = (tij) with complex entries. Its adjoint will
be a linear map T † : V → W , which will be a m × n matrix. What matrix is
this going to be? The equation 〈v, Tw〉V = 〈T †v, w〉W can be written as

n∑
i=1

v̄i

m∑
j=1

tijwj =

m∑
j=1

(T †v)jwj ,
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and this shows that (T †v)j =
∑n
i=1 t̄ijvi. That is, T † is the conjugate trans-

pose of T defined so that the ith column jth row entry of T † is the complex
conjugate of the jth column ith row entry of T . We can also write T † = T̄ ∗ if
we wish, where ∗ means transpose and means taking complex conjugate of all
the entries.

Exercise 5.3.G. Let V,W be finite-dimensional Hilbert spaces over k. We can
define an inner product structure on V ⊕W by

〈(v1, w1), (v2, w2)〉 = 〈v1, v2〉+ 〈w1, w2〉,

and V ⊕W is a finite-dimensional Hilbert space with this inner product. Let
T : W → V be a linear operator, and define subspaces X,Y ⊆ V ⊕W as

X = {(Tw,w) : w ∈W}, Y = {(v,−T †v) : v ∈ V }.

Show that X⊥ = Y in V ⊕W .

Exercise 5.3.H. Let V be a finite-dimensional Hilbert space and let T : V → V
be a linear operator. Show that T is unitary (or orthogonal) if and only if
T−1 = T †.

So a square matrix Q with real entries is orthogonal if and only if QQ∗ =
Q∗Q = I and a sqaure matrix U with complex entries is unitary if and only if
UU† = U†U = I.

We now consider the case when V = W . In this case, we can compare the
two linear operators T, T † : V → V .

Definition 5.3.3. Let V be a finite-dimensional Hilbert space over k and let
T : V → V be a linear operator. We say that T is self-adjoint if T = T †.
When k = R, a synonym for self-adjoint is symmetric and when k = C, a
self-adjoint operator is also called a Hermitian operator.

The condition T = T † just means

〈Tv,w〉 = 〈v, Tw〉

for all v, w ∈ V . If V = Cn, the n × n matrix T is Hermitian if and only if its
conjugate transpose is itself.

Why are we interested in self-adjoint operators? The main reason is that the
spectral theorem, which we will learn in the next section, applies to self-adjoint
operators. Let us get a glimpse of the theorem.

Exercise 5.3.I. Let V be a finite-dimensional Hilbert space, and let T : V → V
be a self-adjoint operator. Show that every eigenvalue of T is real, i.e., if Tv = λv
for v 6= 0 and v ∈ k then λ ∈ R. (This statement is nontrivial only when k = C.)
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Exercise 5.3.J. Let V be a finite-dimensional Hilbert space, and let T : V → V
be a self-adjoint operator. If v1 is an eigenvector with eigenvalue λ1, v2 is an
eigenvector with eigenvalue λ2, and λ1 6= λ2, show that v1 and v2 are orthogonal,
i.e., 〈v1, v2〉 = 0.

This is what it means. When V is a finite-dimensional Hilbert space with T
an operator on it, for each λ ∈ R we can define

Vλ = ker(T − λI) = {v ∈ V : Tv = λv}.

Then Vλ is nonzero only for finitely many λ, and all these vector spaces are
orthogonal to each other.

Exercise 5.3.K. Let V be a finite-dimensional Hilbert space with T an operator
on it. For a vector v ∈ V , show that there exists at most one representation

v = v1 + v2 + · · ·+ vn

with each vi 6= 0 an eigenvector with eigenvalue λi, and λ1 < λ2 < · · · < λn.

5.4 The spectral theorem

Given an abstract vector space V and a linear map T : V → V , many of the
important properties of T are determined by the k[x]-module structure on V .
The module structure is then almost characterized by the set of eigenvalues of
T (with multiplicity).

In the context of analysis, the set of eigenvalues is called the spectrum of
a linear operator. Let us look at one example. Consider the Hilbert space

H = {complex-valued 1-periodic functions on R}
= {(f : R→ C) : f(x) = f(x+ 1) for all x ∈ R}.

Well, this is only a vector space over a C and we need to specify the inner
product. We can define the inner product as

〈f, g〉 =

∫ 1

0

f̄(x)g(x)dx.

Consider the differential operator

T = d2

dx2 : H → H; f 7→ d2f

dx2
.

Technically, not all functions are differentiable, and hence the operator is not
really defined. But let us overlook this issue. We have

〈f ′′, g〉 =

∫ 1

0

f̄ ′′gdx = −
∫ 1

0

f̄ ′g′dx =

∫ 1

0

f̄g′′dx = 〈f, g′′〉
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by integration by parts, and this shows that T = d2

dx2 is self-adjoint. What is
the spectrum of this operator? To answer this question, we need to solve the
differential equation

d2f

dx2
= λf

where λ is a constant. It turns out that a solution exists only when λ = 4π2n2

and f(x) = ce2πin, with n ∈ Z. This set {0, 4π2, 4π2, 16π2, 16π2, . . .} is then the
spectrum of T .

Before stating the spectral theorem, we state and prove a lemma that will
be used in its proof.

Lemma 5.4.1. Let V be a finite-dimensional Hilbert space, and let T : V → V
be a self-adjoint linear operator. If dimV ≥ 1, then there exists a nonzero v ∈ V
such that

Tv = ±‖T‖v.

Proof. By the definition of ‖T‖ (and Heine–Borel), there exists a v 6= 0 such
that ‖Tv‖ = ‖T‖‖v‖. Note that T 2v = (T 2v − ‖T‖2v) + ‖T‖2v. Observe that
the inner product of the two summands is

〈T 2v−‖T‖2v, ‖T‖2v〉 = ‖T‖2〈T 2v, v〉−‖T‖4〈v, v〉 = ‖T‖2‖Tv‖2−‖T‖4‖v‖2 = 0

because 〈T 2v, v〉 = 〈Tv, Tv〉. This implies that the length of T 2v can be ex-
pressed as

‖T 2v‖2 = ‖T 2v − ‖T‖2v‖2 + ‖T‖4‖v‖2 ≥ ‖T‖4‖v‖2.

On the other hand,

‖T 2v‖2 ≤ ‖T‖2‖Tv‖2 ≤ ‖T‖4‖v‖2.

Therefore all the inequalities are equalities. In particular, T 2v − ‖T‖2v = 0.
If Tv = −‖T‖v, we are done. Hence assume that

w = Tv + ‖T‖v 6= 0.

Then
Tw = T 2v + ‖T‖Tv = ‖T‖Tv + ‖T‖2v = ‖T‖w

finishes the proof.

Exercise 5.4.A. Without the self-adjointness assumption, find a counterexam-
ple to the above lemma.

Exercise 5.4.B. Let V be a nonzero finite-dimensional Hilbert space and T :
V → V be a self-adjoint operator. Show that

‖T‖ = max
‖v‖≤1

|〈Tv, v〉|.

Moreover, show that if |〈Tv, v〉| = ‖T‖‖v‖2 then Tv = ±‖T‖v.
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Let us now state and prove the spectral theorem.
A self-adjont operator has an
orthonormal set of eigenvec-
tors

Theorem 5.4.2 (spectral theorem). Let V be a finite-dimensional Hilbert space,
and let T : V → V be a self-adjoint operator. Then there exist and orthonormal
basis v1, v2, . . . , vn ∈ V of eigenvectors, so that

〈vi, vj〉 =

{
1 i = j

0 i 6= j,
Tvi = λivi

where λi are (not necessarily distinct) real numbers.

Proof. The idea is to find one eigenvector at a time. We induct on dimV . If
dimV = 0, the statement is trivial. If dimV ≥ 1, Lemma 5.4.1 finds a nonzero
vector v ∈ V such that Tv = λv where λ = ±‖T‖.

Take the orthogonal complement of v,

W = v⊥ = {w ∈ V : 〈w, v〉 = 0} ⊆ V.

Then for an arbitrary w ∈W , we have

〈Tw, v〉 = 〈w, Tv〉 = 〈w, λv〉 = λ〈w, v〉 = 0.

This shows that T sends a vector in W to W . Hence we may restrict T to a
self-adjoint operator T : W →W , where dimW = dimV − 1. By the induction
hypothesis, we can find an orthonormal basis of W consisting of eigenvectors.
Together with v/‖v‖, they form an orthonormal basis of V consisting of eigen-
vectors.

Exercise 5.4.C (spectral decomposition). LetA be a n×nHermitian (resp. sym-
metric) matrix with complex (resp. real) entries. Show that there exists a uni-
tary (resp. orthogonal) matrix U (resp. Q) and a diagonal matrix Λ such that

A = UΛU−1 (resp. QΛQ−1).

Exercise 5.4.D. Consider the symmetric real matrix

A =

1 2 3
2 3 4
3 4 5

 .
Find an orthogonal matrix Q and a diagonal matrix Λ such A = QΛQ−1.

There is another way to state the spectral theorem. Consider the eigenspace

Vλ = ker(T − λI) = {v ∈ V : Tv = λv} ⊆ V.

Then dimVλ > 0 if and only if λ is an eigenvalue of T .
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Exercise 5.4.E. Show that
V =

⊕
λ∈R

Vλ,

where the spaces Vλ are orthogonal to each other. (Translation: for each v ∈ V
there uniquely exist vectors vλ ∈ Vλ, zero except for finitely many λ, such that
v =

∑
λ vλ.)

Commuting self-adjoint op-
erators can be simultane-
ously diagonalized

Exercise 5.4.F (simultaneous diagonalization). Let V be a finite-dimensional
Hilbert space, and let X,Y : V → V be self-adjoint operators. Suppose that X
and Y commutes, i.e., XY = Y X.

(a) Consider the eigenspaces Vλ = ker(X − λI) with respect to X so that
V =

⊕
λ Vλ. Show that Y sends everything in Vλ into Vλ, i.e., Y restricts

to Y : Vλ → Vλ for each λ ∈ R.

(b) Consider the simultaneous eigenspaces

Vλ,κ = ker(X − λI) ∩ ker(Y − κI) = {v ∈ V : Xv = λv, Y v = κv}.

Show that V =
⊕

λ,κ Vλ,κ where the spaces Vλ,κ are all orthogonal to each
other.

(c) Show that there exists an orthonormal basis v1, . . . , vn of V such that each
vk is an eigenvector of both X and Y .

(d) IfX,Y are n×n Hermitian matrices andXY = Y X, show that there exists
a unitary matrix U such that both U−1XU and U−1Y U are diagonal.

The spectral theorem applies only to self-adjoint operators. If the base field
is k = R, diagonalization by an orthogonal operator exists if and only if the
operator is symmetric.

Exercise 5.4.G. Let V be a finite-dimensional Hilbert space over k = R. Show
that for a linear operator T : V → V , the following are equivalent:

(a) The operator T is symmetric.

(b) There exists an orthonormal basis v1, . . . , vn consisting of eigenvectors.

(c) There exists an isometryQ : Rn → V and an diagonal matrix Λ : Rn → Rn
such that T = QΛQ−1.

However for k = C, there is a larger class of matrices that can be diagonalized
by a unitary matrix. The reason is that self-adjoint operators can only have
real eigenvalues. If we take a unitary matrix U , a diagonal matrix Λ with
non-real entries, and consider the linear operator T = UΛU−1, it will have an
orthonormal set of eigenvectors but not necessarily self-adjoint.

Definition 5.4.3. Let V be a finite-dimensional Hilbert space over k = C. We
say that a linear operator T : V → V is normal if T †T = TT †.
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Proposition 5.4.4. Let V be a finite-dimensional Hilbert space over k = C,
and let T : V → V be a linear operator. The following are equivalent:

(i) T is normal.

(ii) The Hermitian part X = 1
2 (T + T †) and skew-Hermitian part Y = 1

2 (T −
T †) commutes, i.e., XY = Y X.

(iii) ‖Tv‖ = ‖T †v‖ for all v ∈ V .

(iv) T is diagonalizable by a unitary matrix, i.e., there exists an isometry U :
kn → V and a diagonal matrix Λ such that T = UΛU−1.

Proof. (i) ⇔ (ii) We compute

XY − Y X =
1

4
[(T + T †)(T − T †)− (T − T †)(T + T †)] =

1

2
(T †T − TT †).

So XY = Y X if and only if T †T = TT † if and only if T is normal.
(i) ⇔ (iii) Define S = T †T − TT †, which is easily seen to be a self-adjoint

operator. Then

‖Tv‖2 − ‖T †v‖2 = 〈Tv, Tv〉 − 〈T †v, T †v〉 = 〈v, (T †T − TT †)v〉 = 〈v, Sv〉.

If T is normal so that S = 0, then this is always zero. Conversely, suppose that
〈v, Sv〉 = 0 for all v ∈ V . By Exercise 5.4.B, this implies that ‖S‖ = 0, that is,
S = 0.

(ii) ⇒ (iv) We note that X† = 1
2 (T † + T ) = X, i.e., X is Hermitian. On

the other hand, Y † = −Y shows that iY is Hermitian. By Exercise 5.4.F, there
exists a unitary matrix U such that U−1XU and U−1(iY )U are both diagonal
matrices. Then

T = X + Y = U [U−1XU + (−i)(U−1(iY )U)]U−1,

where U−1XU+(−i)(U−1(iY )U) is a sum of diagonal matrices, hence diagonal.
(iv) ⇒ (i) This can be verified directly. If T = UΛU−1 then

TT † = (UΛU−1)(UΛ†U−1) = U(ΛΛ†)U−1 = U(Λ†Λ)U−1 = T †T.

Here, Λ†Λ = ΛΛ† because Λ is a diagonal matrix.
Commuting normal matrices
can be simultaneously diag-
onalized

Exercise 5.4.H (simultaneous diagonalization). Let V be a finite-dimensional
Hilbert space over k = C. Suppose T1, T2, . . . , Tk are normal operators V → V
such that TiTj = TjTi for all 1 ≤ i, j ≤ k. Show that there exists an isometry
U : Cn → V such that U−1TiU is a diagonal matrix for all 1 ≤ i ≤ k.

5.5 Positivity of operators

We now restrict our attention further to a smaller class of operators.
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Definition 5.5.1. Let V be a finite-dimensional Hilbert space. An operator
T : V → V is called

• positive definite if it is self-adjoint and 〈v, Tv〉 > 0 for all nonzero v ∈ V ,

• positive semi-definite if it is self-adjoint and 〈v, Tv〉 ≥ 0 for all v ∈ V .

Clearly, being positive definite is a stronger condition than being positive
semi-definite, as the terminology suggests.

Positive definite operators
correspond to inner products Exercise 5.5.A. Let V be a finite-dimensional Hilbert space. Show that the

sesquilinear form

V × V → k; (x, y) 7→ 〈x, Ty〉

defines an inner product on V if and only if T : V → V is positive definite.

Exercise 5.5.B. Let V,W be finite-dimensional Hilbert spaces, and let T :
V →W be a linear operator. Show that T †T : V → V is positive semi-definite.

Exercise 5.5.C. Let V be a finite-dimensional Hilbert space and T : V → V
be a self-adjoint operator.

(a) Show that T is positive definite if and only if all the eigenvalues of T are
positive.

(b) Show that T is positive semi-definite if and only if all the eigenvalues of
T are nonnegative.

Positive semi-definite plus
invertible is positive definite Exercise 5.5.D. Let V be a finite-dimensional Hilbert space, and T : V → V

be a positive semi-definite operator. If T is invertible, show that T is posi-
tive definite. Conversely, show that a positive definite operator is necessarily
invertible.

The good thing about positive definite or semi-definite operators is that
there are many things we can do with positive numbers, e.g., taking the square
root. Let T : V → V be a positive semi-definite operator. Apply the spectral
theorem to get a decomposition

T = UΛU−1.

The condition that T is positive semi-definite is equivalent to all the diagonal
entries of Λ being nonnegative. Then we can define

√
Λ as the diagonal matrix

with diagonal entries the square root of the diagonal entries of Λ. Then it is
clear that (

√
Λ)2 = Λ. Moreover, if we define the square root of T as

√
T = U

√
ΛU−1,

then
√
T is positive definite and (

√
T )2 = T . An uncomfortable fact about this

construction is that the decomposition T = UΛU−1 is not unique. However,
the following proposition tells us that the square root is well-defined.
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Positive square root of a
positive semi-definite opera-
tor is unique

Proposition 5.5.2. Let V be a finite-dimensional Hilbert space, and let T :
V → V be a positive semi-definite operator. Then there exists a unique positive
semi-definite operator S : V → V such that S2 = T .

Proof. Existence of S is demonstrated by the above construction. Let us now
consider a positive semi-definite S such that S2 = T . Since both S and T are
positive semi-definite, the spectral theorem gives decompositions

V =
⊕
λ≥0

V
(S)
λ , V

(S)
λ = ker(S − λI),

V =
⊕
λ≥0

V
(T )
λ , V

(T )
λ = ker(T − λI).

Then for v ∈ V (S)
λ we have S2v = S(λv) = λ2v, and hence V

(T )
λ2 ⊆ V

(S)
λ . Since

V =
⊕

λ≥0 V
(S)
λ =

⊕
λ≥0 V

(T )
λ2 , we have V

(T )
λ2 = V

(S)
λ for all λ ≥ 0. Therefore

Sv =
√
λv for v ∈ V (T )

λ = V
(S)√
λ

. This uniquely determines S.

Obviously, if we do not require S to be positive semi-definite, there can by
many self-adjoint S such that S2 = T . For instance, take S = ±I and T = I.

In this case, we will have V
(T )
λ = V

(S)√
λ
⊕ V (S)

−
√
λ

in the above proof.
One can take the cube root
of a self-adjoint operatorExercise 5.5.E. Let V be a finite-dimensional Hilbert space and T : V → V

be a self-adjoint operator (not necessarily positive definite). Show that there
exists a unique self-adjoint operator S : V → V such that S3 = T . Moreover,
show that S is positive semi-definite if T is positive semi-definite.

We have noted that T †T is positive semi-definite for every linear operator
T . There is a decomposition based on this fact.

Every linear operator has a
polar decompositionTheorem 5.5.3 (polar decomposition). Let V be a finite-dimensional Hilbert

space, and let T : V → V be a linear operator. There exists a unitary operator
U : V → V and a positive semi-definite operator P : V → V such that

T = UP.

Moreover, if T is invertible, such a decomposition is unique.

Proof. Note that if T = UP then T †T = (PU−1)(UP ) = P 2. So the only choice

we have is P =
√
T †T , which makes sense since T †T is positive semi-definite.

It now suffices to show that there is a unitary matrix U such that

T = U
√
T †T .

By Lemma 5.5.4, we need only check that ‖Tv‖ = ‖
√
T †Tv‖. But

‖Tv‖2 = 〈Tv, Tv〉 = 〈v, T †Tv〉 = 〈v, (
√
T †T )2v〉 = ‖

√
T †Tv‖2
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because
√
T †T is self-adjoint.

If T is invertible, U is uniquely determined by the formula U = TP−1.

Lemma 5.5.4. Let V,W be finite-dimensional Hilbert spaces, and let T, S :
V →W be linear operators. If ‖Tv‖ = ‖Sv‖ for all v ∈ V , then there exists an
isometry U : W →W such that S = UT .

Proof. The condition implies that Tv = 0 if and only if Sv = 0, i.e., kerT =
kerS. By the first isomorphism theorem, there exists a linear isomorphism
U0 : imT → imS such that U0T = S.

V imT

imS

T

S
U0

∼=

The condition ‖Tv‖ = ‖Sv‖ implies that U0 is further an isometry.
Let w1, . . . , wn be an orthonormal basis of W such that w1, . . . , wk is an or-

thonormal basis of imT ⊆W . Since U0 is an isometry, the images U0w1, . . . , U0wk
form an orthonormal basis of imS ⊆ W . We now extend U0w1, . . . , U0wk to
an orthonormal basis U0w1, . . . , U0wk, w̃k+1, . . . , w̃n of W . Now we can extend
U0 : imT → imS to U : W →W by defining

Uwi =

{
U0wi if 1 ≤ i ≤ k
w̃i if k + 1 ≤ i ≤ n.

Because U sends an orthonormal basis to an orthonormal basis, it is an isometry.
Moreover, S = UT by construction.

Exercise 5.5.F. Find a polar decomposition for the matrix

T =


3 4 4 3
1 −2 −2 1
3 2 −2 −3
1 0 0 −1

 .
Exercise 5.5.G. Let V be a finite-dimensional Hilbert space, and let T : V →
V be a linear operator. Show that there exist isometries U : kn → V and
W : V → kn and a n× n diagonal matrix Λ with nonnegative diagonal entries
such that

T = UΛW.

Exercise 5.5.H. Let V be a finite-dimensional Hilbert space, and let T : V →
V be a linear operator. Show that the eigenvalues of T †T and of TT † are
identical.

The above decomposition T = UΛW is called singular value decomposi-
tion. But the interesting fact is that this decomposition holds for rectangular
matrices as well.
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Every linear operator has a
singular value decompositionTheorem 5.5.5 (singular value decomposition). Let H,G be finite-dimensional

Hilbert spaces (possibly of different dimension) and let T : H → G be a linear
operator. Then there exist isometries U : km → G and V : H → kn, and a
diagonal matrix with nonnegative diagonal entries Σ : kn → km such that

T = UΣV.

(Here, a diagonal rectangular matrix is a matrix Σ = (σij) such that σij = 0 if
i 6= j.)

Proof. Note that if we have a singular decomposition for T †, say T † = UΣV ,
then we can take the adjoint of both sides and get

T = V †Σ†U†.

Here, V † and U† are isometries as well, and hence we get a singular decomposi-
tion for T . Thus we may prove existence of a singular decomposition either for
T or T †, and hence we may as well assume that n = dimH ≤ dimG = m.

Because dimH ≤ dimG, there exists a linear subspace G0 ⊆ G such that
imT ⊆ G0 and dimG0 = dimH. Let us factor T : H → G as T0 : H →
G0 composed with i : G0 ↪→ G. Sending an orthonormal basis of H to an
orthonormal basis of G0 defines an isometry Φ : G0 → H.

H G0 G

H

T0 i

ΦΦ−1

We can now apply Exercise 5.5.G to the operator ΦT0 : H → H. This gives
a decomposition

ΦT0 = UΣV, T0 = (Φ−1U)ΣV.

But this T0 is an operator H → G0, and to get the original T , we need to
compose with the inclusion i : G0 ↪→ G. So

T = i(Φ−1U)ΣV.

We need to take care of the embedding i. At this point, the operator
(Φ−1U) : kn → G0 is a composition of isometries, hence also isometry. Then we
extend this isometry Φ−1U to an isometry Ũ : km → G so that the following
diagram commutes.

kn kn G0

km G

Σ

Σ̃

Φ−1U

i

Ũ

(To see existence of Ũ , we can use Lemma 5.5.4. It is not hard to verify that
the two operators kn → km and iΦ−1U satisfy the assumptions.) Now the
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composition Σ̃ : kn
Σ−→ km ↪→ km is a diagonal matrix, and Ũ is a unitary

operator so that iΦ−1UΣ = Ũ Σ̃. Then

T = Ũ Σ̃V.

This finishes the proof.

Exercise 5.5.I. Show that in the singular value decomposition of T , the diago-
nal entries of Σ (including multiplicities) does the depend on the decomposition.
The set of diagonal entries is called the singular values of T .

For instance, the singular values of a self-adjoint operator is the same as its
eigenvalues, because the decomposition T = UΛU−1 is a singular decomposition.

Exercise 5.5.J. Find the singular value decomposition of the matrix

T =

1 7 −1 −7
7 −1 −7 1
5 5 5 5

 .
Singular values measure the
distance from the space of
operators with small rank

Exercise 5.5.K. Let V,W be finite-dimensional Hilbert spaces, and let T :
V →W be a linear operator. Let the singular values of T be

s1 ≥ s2 ≥ · · · ≥ sn ≥ 0,

where n = min(dimV,dimW ). Show that

sk = min{‖T − L‖ : (L : V →W ) is a linear operator with rankL < k},

for 1 ≤ k ≤ n.

5.6 Duality in linear programming



Epilogue

Congratulations, and thank you for going through this book. As I have said in
the preface, linear algebra is a universal prerequisite for most mathematics. This
also means that once you become familiar with linear algebra, there are many
directions in which you can proceed. I would like to discuss what advanced
mathematics one can learn having digested linear algebra.

Calculus in higher dimensions

We will assume that the reader already knows calculus in a single variable. To
do calculus in many variables, we can simply use Rn, but let me introduce the
concept of a manifold.

Imagine being a physicist. You are faced with the problem of modeling the
universe. Everyone knows that there are three linearly independent directions
in which we can move. So the natural candidate for the universe is R3. But
you look back and think about the age when people thought the Earth is flat.
Well, you can walk in two linearly independent directions at any point on Earth,
but R2 turns out to be a terribly wrong model. Why can’t this happen for the
universe?

Definition 5.6.1. Let n ≥ 1 be an integer. A manifold of dimension n is a
space that locally looks like Rn.

Of course this is a non-rigorous description, but it captures a important idea
that we only want a space to locally look like Euclidean space. Let us look at a
few examples. The circle

S1 = {(x, y) : x2 + y2 = 1}

is a 1-manifold. The set

X = [−1, 1]× {0} ∪ {0} × [−1, 1] ⊆ R2

is not, because near (0, 0) it doesn’t look like a line. The doughnut

T 2 = {(x, y, z) : z2 + (
√
x2 + y2 − 1)2 = 0.5} ⊆ R3

is a 2-manifold.

131
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S1

1-manifold

X

non-manifold

T 2

2-manifold

Figure 5.1: Manifolds and non-manifolds

Let us now fix an n-dimensional manifold M and consider an infinitely dif-
ferentiable function f : M → R. Let us think about how we may define the
derivative df of f . When M = R, the derivative f ′ was defined as

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x
.

But for a general manifold M , what does ∆x mean? It should be an infinitesimal
displacement of x, so that x+ ∆x is a point very close to x. So we take ∆x to
be a tangent vector to the manifold at x.

It is difficult to precisely describe what a tangent vector is, but it should be
considered as a “direction” with which a point can move, also remembering the
“speed”. A tangent vector defines a differential operator by taking the difference
quotient,

Dv(f) = lim
ε→0

f(p+ εv)− f(p)

ε
.

This is sometimes called the directional derivative of f .
If we denote by C∞(M) the vector space of infinitely differentiable functions

on M , then the R-linear functional Dv : C∞(M) → R can be considered a
differential operator. It is characterized by satisfying the Leibniz identity

Dv(fg) = Dv(f)g(p) + f(p)Dv(g).

The set of tangent vectors at a fixed point p ∈ M naturally forms an n-
dimensional R-vector space (by Dv+w = Dv + Dw and Dcv = cDv), and this
vector space TpM is called the tangent space of M at p.

So given a function f ∈ C∞(M) (i.e., a function f : M → R), we get a linear
map

df |p : TpM → R; v 7→ Dv(f).

That is, for each point p ∈ M , we get an element of the dual tangent space
T ∗pM = (TpM)∗, also called the cotangent space. This assignment to each
point p ∈M an element of TpM is called a 1-form.

Using the language of 1-forms, we can also formulate the fundamental the-
orem of calculus. Consider a curve γ in M , which is a smooth function γ :
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[a, b] → M for some interval [a, b] ⊆ R. Then for a partition a = a0 < a1 <
· · · < ak−1 < ak = b, we can write

f(γ(b))− f(γ(a)) =

k−1∑
i=0

(
f(γ(ai+1))− f(γ(ai))

)
≈
k−1∑
i=0

(df)(γ(ai+1)− γ(ai)),

where the summand is evaluating the “tangent vector” γ(ai+1) − γ(ai) at df .
As maxi(ai+1 − ai)→ 0. The right hand side can be adequately interpreted as
the integral

∫
γ
df . Then the equation can be rewritten as

f(γ(b))− f(γ(a)) =

∫
γ

df.

There even is a higher-dimensional analogue of the fundamental theorem of
calculus. This is now a bit complicated to explain, and hence we will only state
the theorem without any explanation.

Definition 5.6.2. Let M be a manifold. A k-form ω is an assignment to each
point p ∈M an element ω|p ∈

∧
kT ∗pM .

So a 0-form is just a function f : M → R, and a 1-form is an assignment
to each p ∈ M an element ωp ∈ T ∗pM . It turns out there is a way to take an
arbitrary k-form ω and take its derivative to get a (k + 1)-form dω.

Theorem 5.6.3 (Stokes’s theorem). Let M be a manifold of dimension m, and
let N be a manifold with boundary of dimension n. Let ω be a (n− 1)-form on
M , and consider a smooth map ϕ : M → N . Then∫

∂N

ω =

∫
N

dω,

where ∂N is the boundary of N .

Consider the case when n = 1 and N is a interval. The differential form
ω = f is a 0-form, which is a function, and the boundary of N is the two
points γ(a) and γ(b). In this case, the integral of f over the two points is
f(γ(b)) − f(γ(a)) and the right hand side is just

∫
γ
df . So we recover the

fundamental theorem of calculus.

• For calculus with a single variable, there is Rudin’s classic textbook Prin-
ciples of Mathematical Analysis, which provides a rigorous and compre-
hensive introduction to analysis. It starts from scratch and also develops
multivariable calculus near the end.

• There is a series of books on multivariable calculus written by Spivak.
There is Calculus on Manifolds, which leads up to Stokes’s theorem in the
context of manifolds. There also is the more advanced book A Compre-
hensive Introduction to Differential Geometry, Volume One that discusses
the topic in a geometric manner.

• Lee’s Introduction to Smooth Manifolds contains almost the same mate-
rial as in Spivak’s A Comprehensive Introduction, but takes a differential
topology perspective.
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Representation theory

The Frobenius normal form, Jordan normal form, and related theorems convey
information about the possible ways a linear map can act on a finite-dimensional
vector space. More precisely, they tell us that we can find a suitable basis such
that the linear map takes a certain form.

But what if there are many linear maps, and some of them has a certain
relation they need to satisfy? To elucidate what I am trying to say, let us make
a definition.

Definition 5.6.4. A group G is a set G along with a multiplication map
µ : G×G→ G satisfying the following axioms: (we denote µ(x, y) = xy)

(G1) There exists an identity element e ∈ G such that eg = ge = g for all g ∈ G.

(G2) For all g1, g2, g3 ∈ G, we have (g1g2)g3 = g1(g2g3).

(G3) For every g ∈ G, there exists an inverse g−1 ∈ G such that gg−1 = g−1g =
e.

Here is an example. Take the set Z with µ(x, y) = x + y. One can readily
check that it is a group. Here is a slightly more complicated example. Consider

Sn = {(f : {1, . . . , n} → {1, . . . , n}) bijective}

with composition as multiplication. For instance, τ ∈ S3 is defined as τ(1) = 2,
τ(2) = 1, τ(3) = 3, and σ ∈ S3 is defined as σ(1) = 2, σ(2) = 3, σ(3) = 1, then
we have the identities

τ2 = 1, σ3 = 1, τστ = σ2.

Once we have a group G, such as G = S3, we might want to represent it as
a matrix. For instance, if we associate

τ =

[
0 1
1 0

]
, σ =

[
0 −1
1 −1

]
,

then the identities τ2 = 1, σ3 = 1, τστ = σ2 are all satisfied.

Definition 5.6.5. Let G be a group, and let k be a field. A representation
ρ of G is a finite-dimensional k-vector space V along with a function ρ : G →
Homk(V, V ) satisfying

ρ(gh) = ρ(g)ρ(h)

for all g, h ∈ G.

If (V1, ρ1) and (V2, ρ2) are both representations of a group G, we can form
the direct sum V1 ⊕ V2, and the representation

(ρ1 ⊕ ρ2)(g) = ρ1(g)⊕ ρ2(g).

It can be easily checked that this construction gives a representation of G.
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Definition 5.6.6. Let G be a finite group. An irreducible representation
of G is a representation V such that V cannot be expressed as V = V1 ⊕ V2 as
representations, where dimk V1,dimk V2 > 0.

Representations of finite groups over k = C has a nice characterization.
First of all, all representations can be written as a direct sum of irreducible
representations. This means that to study representations, it is enough to study
irreducible representations. Here is the big theorem.

Theorem 5.6.7. Let G be a finite group, and consider set of equivalence classes
under the equivalence relation g ∼ hgh−1. The number of isomorphism classes
of irreducible representations of G over k = C is equal to the number of equiv-
alence classes of g ∼ hgh−1. Moreover, if we denote by V1, . . . , Vk all the irre-
ducible representations, then

(dimC V1)2 + · · ·+ (dimC Vk)2 = |G|.

Let me demonstrate the theorem with the group S3. There are three equiv-
alence classes for g ∼ hgh−1,

{e}, {σ, σ2}, {τ, στ, σ2τ}.

Then there should be three irreducible representations. These are

ρ1(τ) =
[
1
]
, ρ1(σ) =

[
1
]
,

ρ2(τ) =
[
−1
]
, ρ2(σ) =

[
1
]
,

ρ3(τ) =

[
0 1
1 0

]
, ρ3(σ) =

[
0 −1
1 −1

]
.

And we have 12 + 12 + 22 = 6, which is the size of the group.
This theorem pretty much tells us everything about finite-dimensional rep-

resentations of finite groups over C. A more interesting topic to study is repre-
sentations of Lie groups or of Lie algebras.

Definition 5.6.8. A Lie group is a smooth manifold that is also a group.

Let us take S1 for example. We may identify S1 with the unit complex
numbers.

S1 ↔ {z ∈ C : |z| = 1}
Then S1 naturally has a multiplicative structure, and it can be easily verified
that this is a group. Another example is

SU(2) = {2×2 complex matrices U such that UU† = U†U = I and detU = 1}.

Because the product of unitary matrices is unitary, and the determinant is
multiplicative, this is a group. It is harder to show that SU(2) is manifold, but
it turns out that SU(2) ∼= S3.

We might ask what are the finite-dimensional irreducible representations of
SU(2) over C. It turns out that there is a nice answer to this.
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Theorem 5.6.9 (represntation theory of SU(2)). For each integer n ≥ 1, there
exists an n-dimensional representation (Vn, ρn) such that V1, V2, . . . are all the
irreducible representations up to isomorphism. Moreover, we have

Vn ∼= Symn−1 V2.

Such a nice description exists when the Lie group G is compact and simply
connected.

• For an introduction with many concrete examples, take a look at Fulton
and Harris’s Representation Theory: A First Course. The book starts
with the representation theory of finite groups at the beginning, and later
also discusses Lie groups and Lie algebras.

• There is also Introduction to Representation Theory written by Etingof
et al., which is legally freely available on the internet. This book also
begins with representation theory of finite groups, but delves into the
combinatorial aspects of representations instead of Lie algebras.

• Kirillov’s book Introduction to Lie Groups and Lie Algebras focuses on
Lie algebras, Lie groups, and their representations. A preliminary version
of the book is available for free from the author’s website.

Functional analysis

In Chapter 5, we talked about finite-dimensional Hilbert spaces in detail. But
we alluded that there is a notion of an infinite-dimensional Hilbert space.

Definition 5.6.10. Let k = R or k = C. A Hilbert space is a vector space V
over k is a vector space over k together with an inner product 〈−,−〉 such that

(H1) every Cauchy sequence in V (with respect to the norm) converges to a
vector in V ,

(H2) there exists a sequence of vectors v1, v2, . . . ∈ V such that for any v ∈ V
and ε > 0 there exists vk such that ‖v − vk‖ < ε.

Here is an example. Consider the space

C0(S1) = {(f : R→ k) continuous : f(x) = f(x+ 1) for all x ∈ R},

and the inner product

〈f, g〉 =

∫ 1

0

f(x)g(x)dx.

This is an inner product space that is infinite-dimensional, but it does not satisfy
(H1). So we “complete” the vector space by adding in vectors if a Cauchy
sequence does not converge. Define

L2(S1) = completion of C0(S1) with respect to the L2-norm.
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This satisfies (H1) by construction, and it also satisfies (H2) because the set of
piecewise linear functions with rational slope and bending points is both dense
and countable.

For Hilbert spaces, many of the theorem we discuss holds.

Theorem 5.6.11 (Riesz represetation). Let V be a Hilbert space, and let T :
V → k be a bounded linear operator. (Bounded means finite operator norm.)
Then there exists a vector v0 ∈ V such that

T = 〈v0,−〉.

Moreover, ‖T‖ = ‖v0‖.

There is also a spectral theorem in this context. However, we need a some-
what restrictive condition to make the proof work.

Definition 5.6.12. Let V be a Hilbert space. A bounded linear operator
T ;V → V is called compact if for any sequence of v1, v2, . . . ∈ V with ‖vi‖ ≤ 1,
there exists a subsequence vn1

, vn2
, . . . ∈ V with n1 < n2 < · · · such that

Tvn1
, T vn2

, . . . converges.

Theorem 5.6.13 (spectral theorem for compact operators). Let V be an infinite-
dimensional Hilbert space, and let T : V → V be a compact self-adjoint operator.
Then there exists an orthonormal basis of V consisting of eigenvectors for T .
Moreover, if we denote the corresponding eigenvalues by λ1, λ2, . . . where

|λ1| ≥ |λ2| ≥ |λ3| ≥ · · ·

then limn→∞ λn = 0.

Although such a theorem seems satisfactory from a theoretic point of view,
it is not very useful when doing analysis. We said that the differential operator

T : ∂2

∂x2 is roughly a self-adjoint operator because integration by parts gives∫
f̄ ′′g = −

∫
f̄ ′g′ =

∫
f̄g′′.

In the attempt to apply the spectral theorem to this operator, the first problem
we encounter is that T : L2(S1) → L2(S1) is not really defined on the entire
domain. A function has to be twice-differentiable for its image under T to be
defined. This is closely related to the fact that T is not a bounded operator.

There is no universal constant C > 0 such that we have an inequality
∫ 1

0
|f ′′|2 <

C
∫ 1

0
|f |2. Once the operator is not bounded, there is no hope for it to be

compact.
One remedy to this issue is to try and apply the spectral theorem to (π2 +

T )−1 instead of T . But what is (π2 + T )−1? If we define the operator

(Sf)(x) =

∫ 1

0

K(x, y)f(y)dy, K(x, y) =
1

2π
sin(π|x− y|),
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then it is not difficult to check that (π2+T )Sf = f if f is continuous. Moreover,
when we consider S as a operator S : L2(S1) → L2(S1) (which makes sense
now), it turns out that it is a compact operator. Applying the spectral theorem
to S gives the eigenvectors and eigenvalues

fn(x) = e2πnix, λn =
1

π2(1 + 4n2)
.

Indeed, the functions fn(x) form an orthonormal basis of L2(S1), and λn → 0
asn→ ±∞. Because these are the eigenvalues for S = (π2 +T )−1, we may take
fn to be eigenvectors for T with eigenvalues 4π2n2.

As you might notice, to make analysis rigorous takes a lot of care and energy.
There are various complicated spaces and operators that are tailored to be useful
in each situation. The entire theory was developed as an abstract foundation for
solving differential equations, and hence I personally think it will be meaningless
to study only topological vector spaces without context.

• Most constructions of Hilbert spaces, especially those used when solving
differential equations, involve measure theory. There is a short introduc-
tion at the end of Rudin’s Principles of Mathematical Analysis, and a
neat formal development appears at the beginning of Real and Complex
Analysis written by the same author.

• Stein and Shakarchi’s books are great ways to learn real analysis. As-
suming background in differentiation and Riemann integration, the third
volume Real Analysis starts with a discussion of measure theory, develops
the theory of Hilbert spaces, and discuss applications. The fourth vol-
ume Functional Analysis goes into studying Banach spaces, in particular
Lp spaces, distributions, and applications in constant coefficient partial
differential equations.

• Rudin has a third textbook Functional Analysis, which focuses more on
the algebraic aspects of the theory with less applications to differential
equations.

• If you are specifically interested in learning solving differential equations,
there is the standard textbook Partial Differential Equations by Evans.

Homological algebra of modules

Recall that we had this theorem about exact sequences inducing exact sequences.

Theorem 5.6.14 (Exercise 2.8.F). If 0 → V1 → V2 → V3 → 0 is a short
exact sequence of vector spaces, then any other vector space W induces an exact
sequence

0← Hom(V1,W )← Hom(V2,W )← Hom(V3,W )← 0.
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This theorem uses the fact that W has a basis in an essential way. Hence
in the context of modules, where bases need not exist, the theorem is false. For
instance, let us look at the ring R = Z and the exact sequence

0→ Z ×2−−→ Z→ Z/2Z→ 0.

If we apply Hom(−,Z/2Z) to this sequence, we get

0← Z/2Z ×2←−− Z/2Z ×1←−− Z/2Z← 0,

which is not exact at the left Z/2Z. (The kernel of Z/2Z→ 0 is Z/2Z, but the

image of Z/2Z ×2−−→ Z/2Z is 0.) In fact, we only have the following.

Theorem 5.6.15 (Similar to Exercise 2.6.S). If 0 → M1 → M2 → M3 → 0 is
a short exact sequence of modules, then any other module N induces an exact
sequence

Hom(M1, N)← Hom(M2, N)← Hom(M3, N)← 0.

This asymmetry between the left and the right side is a bit annoying. Even if
we want to know something about the cokernel of Hom(M2, N)→ Hom(M1, N),
we can’t say much about it.

But it turns out that there is a way to extend this exact sequence further.
Given two R-modules A and B, and an integer n ≥ 1, there is a way to construct
an R-module Extn(A,B). These collection of modules satisfy the following
pleasant properties.

(1) If 0 → M1 → M2 → M3 → 0 is a short exact sequence, then any module
N induces a long exact sequence

· · · ← Ext2(M2, N)← Ext2(M3, N)←
← Ext1(M1, N)← Ext1(M2, N)← Ext1(M3, N)←
← Hom(M1, N)← Hom(M2, N)← Hom(M3, N)← 0.

(2) If 0 → M1 → M2 → M3 → 0 is a short exact sequence, then any module
N induces a long exact sequence

0→ Hom(N,M1)→ Hom(N,M2)→ Hom(N,M3)→
→ Ext1(N,M1)→ Ext1(N,M2)→ Ext1(N,M3)→
→ Ext2(N,M1)→ Ext2(N,M2)→ · · · .

(3) If A or B is a free R-module, then Extn(A,B) = 0 for all n ≥ 1.

The construction of these Extn(A,B) are quite complicated. You first find
an exact sequence

0→ B →M0 →M1 → · · ·
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of R-modules, where all Mi are free R-modules, and then define

Extn(A,B) =
ker(Hom(A,Mn)→ Hom(A,Mn+1))

im(Hom(A,Mn−1)→ Hom(A,Mn))
.

It turns out that this does not depend on the choice of Mi, and satisfies all the
properties above. Moreover, we have Extn(A,B) = 0 for all n ≥ 2, if the ring
R is a principal ideal domain. So for instance, for R = Z we only have

0→ HomZ(N,M1)→ HomZ(N,M2)→ HomZ(N,M3)

→ Ext1
Z(N,M1)→ Ext1

Z(N,M2)→ Ext1
Z(N,M3)→ 0.

The construction and yoga of these modules Extn (there is also something
called Torn) is called homological algebra. It might seem that the subject is quite
dry and unmotivated, but homological algebra provides a lot of tools for finding
invariants of geometric objects. In algebraic topology, there is something called
singular (co)homology, that associates to each topological space an R-module,
and in algebraic geometry, there is something called sheaf cohomology that
associates to each sheaf on a variety a vector space. These invariants contain a
lot of information about the spaces.

• It might be useful to get familiar with the language of categories. In fact,
you might already be familiar with some concepts, if you went through
this book. The first half of Mac Lane’s Categories for the Working Math-
ematician is a great introduction.

• Weibel’s An introduction to homological algebra goes straight into devel-
oping the formal framework of homological algebra.

• While it is possible to learn homological algebra purely algebraically, it is
useful to know the applications (or motivations) for the subject. The stan-
dard introductory textbook in algebraic topology is Hatcher’s Algebraic
Topology, freely available on the author’s website.

• Maybe you might want to know more about commutative rings before
learning homological algebra. The study of commutative rings is called
commutative algebra, and Atiyah and MacDonald’s Introduction to Com-
mutative Algebra is a concise and dense introduction.

• On the algebraic geometry side, Vakil’s Foundations of Algebraic Geometry
is a friendly and comprehensive introduction to algebraic geometry. The
first chapter is a great reference for basic category theory and homological
algebra language.
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singular value decomposition, 128
size of set, 4
skew-symmetric map, 63
Smith normal form, 87
span, 34
spectral decomposition, 123
spectral theorem, 123, 137
spectrum, 121
square root of an operator, 126
Stokes’s theorem, 133
submodule, 84
subset, 1
subspace, 27
superset, 1
supremum, 110
surjective, 3

symmetric algebra, 65
symmetric bilinear form, 112

positive definite, 112
symmetric map, 63
symmetric operator, 120
symmetric power, 64

tangent space, 132
target, 2
tensor product, 57
trace, 61
transpose, 48
transposition, 63

union, 2
unipotent, 108
unitary, 118
universal property

for cokernels, 30
for coproducts, 9, 26
for direct sums, 26
for free modules, 84
for free vector spaces, 22
for kernels, 30
for products, 8, 25
for quotients, 11, 29, 85
for tensor products, 57

vector, 16
vector space, 15

direct sum, 25
dual, 44
exterior power, 66
free, 22
product, 24
quotient, 28
subspace, 27
symmetric power, 64
tensor product, 57

Zorn’s lemma, 35
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