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1 Lecture I: What is Erdős Magic?

Let’s talk about April 1946. This was not a very good time for Korea. Korea
was independent, but not really. This month is also when I was born, but this
is not the reason I wrote down this moth.

Suppose the edges of Kn are colored red and blue. If n is sufficiently large,
Ramsey’s theorem tells that there is either a blue Kk or a red Kl. Define R(k, l)
as the minimal n such that this property holds.

Theorem 1.1 (Erdős 1946/47). If
(
n
k

)
21−(k2) < 1, then n < R(k, k).

This theorem was proved in April 1946, and later published in 1947.

Proof. On Kn, color each edge red or blue, independently and each with equal
probability. For each subset S ⊆ {1, . . . , n}, |S| = k, consider the event

BadS : all edges between the vertices in S are of the same color,

Bad :
∨
S

BadS = there exists a monochromatic Kk.

It is clear that Pr[BadS ] = 21−(k2), and so we have an upper bound

Pr[Bad] ≤
∑
S

Pr[BadS ] =

(
n

k

)
21−(k2).

Now comes Erdős magic. If the probability of Bad is less than 1, there
certainly absolutely 100% exists a case that is not Bad. In other words, there is
a coloring of the edges with no monochromatic Kk.

We need to analyze this inequality in order to see what bound this gives
on n. But we are only interested in it asymptotically. We can näıvely give an
upper bound (

n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
< nk.

Using this, we see that if

nk2−k
2/2 < 1,

or equivalently n < 2k/2, then the inequality is satisfied. That is, we only have
to focus on n > 2k/2.

We can then give a better estimate on the binomial coefficient. Note that(
n

k

)
=
nk

k!

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− k − 1

n

)
.

If we assume k2 � n, then

log
(

1− 1

n

)
· · ·
(

1− k − 1

n

)
≈ − 1

n
− · · · − k − 1

n
≈ k2

2n
.
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So we get (
n

k

)
∼ nk

k!
e−k

2/2n

if k2 � n indeed.
In our case, we have n > 2k/2 � k2. So this estimate is tight and(

n

k

)
21−(k2) ≈ c nk√

kkke−k
2k(k−1)/2.

This is less than 1, asymptotically, when

n <
k

e
√

2
2k/2.

Theorem 1.2 (Erdős, 1946/47). R(k, k) >
k

e
√

2
2k/2.

We now look at tournaments. (A tournament is a Kk with each edge ori-
ented, or an complete oriented graph.) A tournament T has property Sk if for
any k players x1, . . . , xk, there is a player y (not equal to xi) who wins all of
them. (We exclude trivialities such as there being less than k players.)

There are some examples of small tournaments. For example, the graph on
seven vertices and i → j if and only if j − i is a quadratic residue modulo 7 is
has property S2. The question is, is there a graph with property S10? You may
or may not be able to solve this problem, but you’ll definitely get a headache.

Take Kn, and give each edge a random orientation so that we get a random
tournament. Given any k points, the probability that there is no point that
wins all of them is

(1− 2−k)n−k.

So the probability that the tournament is Bad, i.e., does not satisfy Sk, is

Pr[Bad] ≤
(
n

k

)
(1− 2−k)n−k.

By Erdős magic, we again conclude that if the right hand side is less than 1,
then there absolutely exists a tournament that satisfy Sk.

Now we need to do some asymptotic calculus to figure out the maximal k
asymptotically. Here, it turns out that just using

(
n
k

)
≤ nk doesn’t change the

asymptotics. (This is something you don’t know a priori.) So we want to find
the maximal n satisfying

nk(1− 2−k)n−k < 1.

Taking logarithms give
k log n− 2−kn < 0,

and so that right asymptotic is going to be n ∼ 2kk2 log 2.
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Theorem 1.3 (Erdős, 1963). There is a tournament on 2kk2 log 2(1 + o(1))
vertices satisfying property Sk.

On the other hand, any tournament satisfying Sk must have at least 2k+1−1
vertices. This is not probabilistic. Take the player x1 that wins at least half of
the time, and look at the set of players who wins x1. By how we picked x1, this
set is going to be at most half of the original set. In this set, take a player x2

who wins at least half of the players of this set. If you keep on, there is going to
be no player that wins all x1, . . . , xn. This shows that the right extremal value
for n is between 2k+1 and (log 2)k22k. The right asymptotic is not known.

Let us go back to Ramsey numbers. There is a technique called alteration.
This is first picking a random object and then fixing it if it is wrong.

Theorem 1.4. For any positive integers m, k, l, and a real number 0 ≤ p ≤ 1,

R(k, l) ≥ m−
(
m

k

)
p(
k
2) −

(
m

l

)
(1− p)(

l
2).

Proof. Pick a random coloring of the edges of Km, but here make the probability
of being red p and the probability of being blue 1− p. Let X be the number of
red Kk plus the number of blue Kl. Then the expected value of X is

E[X] =

(
m

k

)
p(
k
2) +

(
m

l

)
(1− p)(

l
2).

Now for each red Kk or blue Kl, pick a point from it, and remove it. Vertices
might be selected more than once, but we know at least that there is going to
be at least m −X vertices. Also there cannot be a red Kk or a blue Kl. The
expected of the remaining graph G is

E[|G|] ≥ m− E[X] = m−
(
m

k

)
p(
k
2) −

(
m

l

)
(1− p)(

l
2).

So by Erdős magic, there is a graph with no red Kk or blue Kl, with at least
that many vertices.

We now have to analyze the asymptotics, i.e., find the minimal n such that
there exists such a p asymptotically. This is not easy. It is a good exercise in
asymptotic calculus to find the right n for l = 2k.

2 Lecture II: More Erdős Magic

Let me continue and look at another favorite problem of Erdős. Here is a
theorem.

Theorem 2.1. Consider sets |Ai| = n for 1 ≤ i ≤ m. If m ≤ 2n−1, there exists
a red-blue coloring of the elements so that no Ai is monochromatic.
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Proof. Color the points randomly. The probability of Ai being monochromatic
is 21−n. So the probability that one of the sets is monochromatic is at most
m21−n < 1.

This is a very pure form of the probabilistic method. The question is, what
if there are more sets? Define the function m(n) as m(n) > m if there does
exist a two-coloring. For example, consider all the n-element subset of a set Ω
with |Ω| = 2n− 1. This shows that

m(n) ≤
(

2n− 1

n

)
∼ c 4n√

n
.

Erdős came up with a way of constructive a random family. Let |Ω| = v,
where v is a parameter. Take random subsets A1, . . . , Am ⊆ Ω with |Ai| = n.
Fix a coloring χ : Ω → {R,B}, with a red points and b blue points. The
probability that a set A is monochromatic is

Pr[A monochromatic] =

(
a
n

)
+
(
b
n

)(
v
n

) ≥
2
(
v/2
n

)(
v
n

) .

So the probability that all A are not monochromatic is

Pr[all A not monochromatic] ≤
[
1−

2
(
v/2
n

)(
v
n

) ]m
.

But there are 2v possible colorings, and so the probability that there is a coloring
that makes no Ai monochromatic is

Pr[∃χ s.t. no Ai monochromatic] ≤ 2v
[
1−

2
(
v/2
n

)(
v
n

) ]m
.

So the theorem is, by Erdős magic, that if 2v[1−2
(
v/2
n

)
/
(
v
n

)
]m < 1 then there

exist A1, . . . , Am with no coloring. If you work out, the optimal m is around

m ∼ v log 2

2
(
v/2
n

)
/
(
v
n

) .
Now we need to optimize v. Note that

2
(
v/2
n

)(
v
n

) = 2

n−1∏
i=0

v/2− i
v − i

= 21−n
n−1∏
i=0

v − 2i

v − i
.

Here if v = cn2, then

log

n−1∏
i=0

v − 2i

v − i
=

n−1∑
i=0

log
(

1− i

v − i

)
∼
n−1∑
i=0

− i
v
∼ − 1

2c
.
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The right choice of c is c = 1/2 and get

m(n) ≤ e log 2

4
n22n.

This is the best result known.
The lower bound can be improved. Here is a recent argument by Kozik–

Cherkashin. They are going to define a randomized algorithm. Erdős magic
then tells us that if the probability that the algorithm fails is less than 1, then
there exists a coloring. Let m = 2n−1k, and suppose A1, . . . , Am ⊆ Ω. Here is
the surprisingly dumb algorithm.

(1) Order the elements of Ω randomly.

(2) Sequentially color the elements. If coloring v red creates a red A, then
color v blue. Else, color v red.

The analysis of the algorithm is quite subtle. The algorithm fails when it creates
a blue set f . Look at the first point in the ordering of f . Why was this colored
blue? It is because it couldn’t be colored red, i.e., there was a set e that was
already colored red except for that element. Let us call this event Blame[e, f ].

Now we want to bound Pr[Blame[e, f ]]. We may assume that the elements
of Ω are ordered randomly by assigning a uniform i.i.d. variables. Then

Pr[Blame[e, f ]] ≤
∫ 1

0

yn−1(1− y)n−1dy ∼ c

22n
√
n
.

It follows that

Pr
[∨
e,f

Blame[e, f ]
]
≤ m2cn−1/22−2(n−1) = ck2n−1/2.

Therefore the conclusion is that if k < c1n
1/4, the probability that the algorithm

fails is less than 1 and hence there is a coloring.

Theorem 2.2. c12n−1n1/4 ≤ m(n) ≤ c22n−1n2.

The lower bound actually can be improved to c2n−1n1/2/ logc n, with a more
careful analysis of the same algorithm. This is due to Kozik–Cherkashin.

Now I would like to talk about asymptotics of the binomial coefficients. The
exact formula is (

n

k

)
=
nk

k!
A with A =

k−1∏
i=0

(
1− i

n

)
.

Here, we also have

B = logA =

k−1∑
i=0

log
(

1− i

n

)
.

If i is small, log(1− i
n ) = − i

n +“small”. So if k = o(
√
n) then B ∼ 0 and A ∼ 1.

For larger k, k = o(n2/3), we need to look at the next term in the Taylor series.
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We are then going to get B ∼ − k2

2n and A ∼ e−
k2

2n . If k = o(n3/4), we have

B ∼ − k2

2n −
k3

6n2 and A ∼ e−
k2

2n−
k3

6n2 . At times calculations become extremely
delicate and we need these.

3 Lecture III: Asymptopia

Let Z be a random variable with zero mean. By Markov’s inequality,

Pr[Z ≥ a] = Pr[eλZ ≥ eλa] ≤ E[eλZ ]e−λa.

This is called the Chernoff bound. They key is that this works for every λ, so
you pick the best λ.

Now let Xi = ±1 uniformly and i.i.d., and let Z =
∑N
i=1Xi. In this case,

because the Xi’s are mutually independent,

E[eλZ ] = E
[ N∏
i=1

eλXi
]

=

N∏
i=1

E[eλXi ] = (coshλ)n.

Here we have a nice inequality

eλ + e−λ

2
= 1 +

1

2
λ2 + · · · ≤ 1 +

λ2

2
+ · · · = eλ

2/2.

So using this inequality we can write

Pr[Z ≥ a
√
n] ≤ eλ

2 n
2−λa

√
n = e−a

2/2,

after picking λ = a/
√
n. This result is useful because it works for every a and

every n. The central limit theorem works for constant a and growing n, but
here we can let a grow with n.

More generally, suppose Z =
∑N
i=1 Yi where Yi are mutually independent

with E[Yi] = 0, Var[Yi] = σ2
i , and σ =

∑N
i=1 σ

2
i = Var[Z]. The Chernoff bound

gives
Pr[Z ≥ aσ] ≤ E[eλZ ]e−λaσ.

We can’t completely analyze E[eλYi ], but we hope

E[eλYi ] = 1 +
λ2

2
σ2
i + (stuff) < e

λ2

2 σ
2
i (1+ε),

which oftentimes work. When this does work, we would have

Pr[Z ≥ aσ] ≤ e a
2

2 (1+ε)e−a
2

= e−
a2

2 (1−ε).

When a = o(σ), then λ = o(1) and the (stuff) is often small.
Let me look at another example, and we move on the applications. Consider

the Gaussian normal distribution N . The Chernoff bound is

Pr[N ≥ a] ≤ E[eλN ]e−λa = e
λ2

2 −λa = e−a
2/2
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where we set λ = a.
Consider a tournament Tn and a ranking (a permutation) σ. We want to

find the best ranking, the σ that minimizes

Fit[TN , σ] = #nonupset−#upset.

Now define F (N) = minTN maxσ Fit[TN , σ].

Theorem 3.1 (Erdős–Moon). F (n) ≤ n3/2
√

log n, i.e., there exists a Tn such
that all σ have Fit[Tn, σ] ≤ n3/2

√
log n.

We will see what β is.

Proof. Take a random tournament Tn. For a fixed σ, the distribution for
Fit[Tn, σ] is

Fit[Tn, σ] ∼
(n2)∑
i=1

Xi.

The Chernoff bound gives

Pr[Fit[Tn, σ] ≥ a
√(

n
2

)
] ≤ e−a

2/2.

So if

Pr
[∨
σ

Fit[Tn, σ] ≥ a
√(

n
2

)]
≤ n!e−a2/2 < 1,

then we can use Erdős magic. This happens when a >
√

2n log n.

So there are tournaments that can’t be ranked with more than 51% accuracy.
The log n can actually be removed, and then the bound is correct.

Theorem 3.2 (Spencer). F (n) = Θ(n3/2).

Suppose that Xi is a general random variable with E[Xi] = 0, but assume
that we know |Xi| ≤ 1 always. In this case we again have

E[eλXi ] ≤ E[cosh(λ) + sinh(λ)Xi] = cosh(λ).

Hence by the old argument,

Pr[Z ≥ a
√
n] ≤ e−a

2/2.

Theorem 3.3. Consider n vectors ~vi ∈ Rd with |~vi| ≤ 1. Then there signs
ε1, . . . , εn ∈ {−1,+1} such that

|ε1~v1 + · · ·+ εN~vN | ≤
√
N.
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Proof. Consider uniform i.i.d. variables ε1, . . . , εN ∈ {−1,+1}. Set

Z =
∣∣∣ N∑
i=1

εi~vi

∣∣∣2 =

N∑
i,j=1

(εi~vi) · (εj~vj) =

N∑
i,j=1

εiεj(~vi · ~vj).

Its expectation can be computed as

E[Z] =

N∑
i,j=1

~vi · ~vjE[εiεj ] =
∑
i

~vi · ~vi ≤ N.

Then we use a form of Erdős magic that says that a value less than or equal to
the expectation can be realized.

Consider a game played on an n × n array of lights. Paul sets each of the
lights either on or off, and Carole only can pull switches on each row and each
column. When a switch is pulled, the lights on the corresponding columns and
rows are changed. The payoff for Carole is the number of lights on minus the
number of lights off. What is the maximum payoff Carole can get? Also why
did a spell Carole in this funny way?

4 Lecture IV: Random Graphs

The reason for Carole is that it is an anagram of “oracle”. Now we give strategies
for both Paul and Carole. Write xi = 1 if Carole doesn’t switch row i and
xi = −1 if Carole does switch row i. Likewise define yi for column i. Then the
payoff is going to be ∑

i,j

aijxiyj .

For Paul, take aij = ±1 uniform i.i.d., and for each fixed x1, . . . , xn and
y1, . . . , yn, define

Bad(~x, ~y) :
∑
i,j

aijxiyj > β.

Note that the random variable
∑
aijxiyj has the distribution∑

i,j

aijxiyj ∼ Sn2 ,

where we use the standard notation SN =
∑N
i=1Xi. The Chernoff bound tells

us
Pr[Sn2 ≥ an] ≤ e−a

2/2

and thus

Pr

[∨
~x,~y

∑
i,j

aijxiyj > β

]
< 4ne−a

2/2 = 1
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when a =
√

2n log 4. So if we let β = an = c1n
3/2, we can use Erdős magic.

This means that Paul initially set the lights so that Carole does not take more
than c1n

3/2.
It is interesting that there is also a probabilistic strategy for Carole. Fix any

aij = ±1. Take y1, . . . , yn = ±1 uniformly and independently. Now the row
sum has distribution

Ri =

n∑
j=1

aijyj ∼ Sn.

This is not good because the expectation of Sn is zero, but E[|Ri|] = E[|Sn|] ∼
c
√
N . Select xi so that xiRi = |Ri|, i.e., she flips the columns randomly and

then flips the rows to make them positive. Now the expected payoff is

E
[∑
|Ri|

]
∼ cn3/2.

Again by Erdős magic, there exists a y1, . . . , yn so that
∑
i|Ri| ≥ cn3/2. I

like to call it “chaos from order”. There are ways to make Carole’s strategy
algorithmic.

Consider the random graph G(n, p). This is actually a probability space
with edges draw with probability p mutually independently. We are going to
look at the event

A : there exists a K4.

Erdős and Rényi discovered that there is a threshold value for p where the
probability for A jumps from 0 to 1.

First consider, for any |S| = 4,

XS =

{
1 if S is K4,

0 else,
X =

∑
|S|=4

XS .

Then we immediately have E[X] =
(
n
4

)
p6. If p ∼ cn−2/3, then

E[X] =

(
n

4

)
p6 = µ ∼ c6

24
.

If p(n)� n−2/3, then we get

Pr[A] = Pr[X ≥ 1] ≤ E[X]→ 0.

But what about the other side? Knowing that E[X]→∞ doesn’t mean that
Pr[X = 0]→ 0. To say this, we look at the variance. Suppose µ = Θ(n4p6)→
∞. If the variance is small enough, the distribution is concentrated near µ and
so the probability that X = 0 is small. In particular, we have Chebyshev’s
inequality

Pr[|X − µ| ≥ λσ] ≤ λ−2.

So if µ→∞ and σ2 = o(µ2) then Pr[X = 0]→ 0.
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We can compute the variance as

Var[X] =
∑

Var[XS ] +
∑
S 6=T

Cov[XS , XT ].

Firstly,
∑

Var[XS ] ≤
∑

E[XS ] = µ = o(µ2). Also, the covariance of indepen-
dent variables is zero, so Cov[XS , XT ] = 0 unless |S ∩ T | = 2 or 3. If it is
nonzero, we can bound

Cov[XS , XT ] ≤ E[XSXT ] = Pr[S and T are both K4].

This shows that

Var[X] ≤ µ+O(n6p11) +O(n5p9) = o((n4p6)2),

if you figure things out. So if p(n)� n−2/3 then Pr[A]→ 1.

Definition 4.1. A threshold function for A is a function p0(n) such that

(i) if p(n)� p0(n) then Pr[A]→ 0,

(ii) if p(n)� p0(n) then Pr[A]→ 1.

So the threshold function for the event A is p0(n) = n−2/3.
Many interesting events have threshold functions, but sometimes the expec-

tation does not give the right answer. For example, consider the fish. The
expectation is around n5p7 but the threshold is not p0(n) = n−5/7, because
there is not even a K4 in that case.

Figure 1: The fish

Definition 4.2. A graph H with v vertices is (strictly) balanced if for all
subgraphs H ′ with v′ vertices and e′ edges, we have

e′

v′
≤ e

v
.

Theorem 4.3. If H is balanced (which is actually more than strictly balanced),
then p = n−v/e is a threshold function for containing H as a subgraph.

The proof is exactly the same as that of for K4.
Consider the interesting event

A : the graph is connected.
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Theorem 4.4 (Erdős–Rényi). If p =
log n

n
+
c

n
then Pr[A]→ e−e

−c
.

Denote by Xi the event that i is isolated, and define X =
∑
iXi. Then in

this case,
E[Xi] = (1− p)n−1 ∼ e−pn = e−logn−c = e−cn−1.

Then µ = E[X] = e−c. It turns out that this is like a Poisson distribution and
so the probability that there is no isolated point is like e−µ.

5 Lecture V: The Erdős–Rényi Phase Transition
I

Here is a picture of what happens for different regions of p.

n−2 n−3/2 n−4/3 · · · n−1+o(1) n−2/3 · · ·

c = 1c < 1 c > 1

p = c/nSubcritical Supercritical

· · ·
log n/n

Connected

Critical window

p = 1
n + λ

n4/3

Barely supercritical

λ→ +∞

Barely subcritical

λ→ −∞

Figure 2: Different regions of p

This is like the bible. At day −2, let there be an edge. At day −3/2, trees
with three vertices appear. At different times different stuff appears. In the
second picture, we focus on p = c/n. This is a very natural thing to consider,
because the average degree is going to be c. It turns out that the behavior for
c < 1 is quite different from the behavior for c > 1. The region c < 1 is called
the subcritical region and c > 1 is called the supercritical region. This is
like ice turning into water. For some time Erdős and Rényi thought the cases
c < 1, c = 1, c > 1 deal eveyrthing. But one can open up the case c = 1 and
parametrize p = N−1 +λN−4/3. Constant λ is called the critical window and
the cases λ → −∞ and λ → +∞ are called barely subcritical and barely
supercritical. I will try to justify why −3/4 is the right parametrization.

Let us look again at connectivity. Let p = log n/n+ cn−1 and define Xi as
the characteristic function of the event of i being isolated. We have seen that

µ = E[X] ∼ n(1− p)n−1 ∼ e−c.
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By the inclusion-exclusion principle,

Pr[X = 0] = 1− S1 + S2 − S3 + · · · ± Sn, Sr =
∑

{i1,...,ir}

E[Xi1 · · ·Xir ].

For fixed r and n→∞, we have

Sr =

(
n

r

)
(1− p)r(n−1)−(r2) → [n(1− p)n−1]r

r!
1→ µr

r!
.

But we have a subtle issue, because this works for r fixed. To make the argu-
ment work, we use the Bonferoni inequalities, which say that the truncations
of the inclusion-exclusion series alternately overestimate and underestimate the
actual value. So for any r,

1− S1 + S2 − · · · − S2r−1 ≤ Pr[X = 0] ≤ 1− S1 + S2 − · · ·+ S2r.

As we send n→∞ first and then r →∞, we get Pr[X = 0]→ e−µ.
We need to also take care of 2-point components, 3-point components, etc.

This is a bit technical, and let’s only consider the 2-point component. The
expected number of a 2-point component is

E[#(2-point component)] =

(
n

2

)
p(1− p)2(n−2) ∼ [n(1− p)n−1]2

p

2
=
µ2

2

log n

n

which goes to 0 because of the p term. You need to add them up for k-point
components.

Let us now look at p = c/n. For the random graph, let us write the connected
components as

|C1| = L1 ≥ |C2| = L2 ≥ · · · .

Also, let us call a connected graph simple if it is a tree or unicyclic, complex
otherwise, and define its complexity as e − v + 1. For c < 1, the subcritical
region, we have:

• L1 ∼ L2 = Θ(log n),

• all components are simple,

• the number of unicyclic components are bounded.

For c > 1, the supercritical region, we have:

• there is a giant component L1 ∼ yn, where 1− y = e−cy,

• L2 = Θ(log n),

• C1 is complex and all others are simple.

The Poisson distribution Po(c) is a discrete variable defined by

Pr[Po(c) = k] = e−c
ck

k!
.
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This is interesting because it is a limit of the binomial distribution. As n→∞,
we have

Bin
[
n− o(n),

c

n

]
→ Po(c).

There is a process called the Galton–Watson process, which was moti-
vated by the question of whether the British aristocracy will eventually die out.
There is a root node, and each node has a number of children, independently dis-
tributed as Po(c). To analyze this, consider i.i.d. variables Z1, Z2, . . . ∼ Po(c).
We are going to do a breath-first search, and assume that a person dies af-
ter it makes children. Set Zi to be the children of the ith node, and Y0 = 1,
Yi = Yi−1 + Zi − 1. Then the society ends when Yt becomes 0, i.e., when
T = min{t : Yt = 0} is finite. Now this is a random walk. If c < 1, there is
a negative drift and so Pr[T < ∞] = 1 and if c > 1, there is positive drift and
Pr[T =∞] > 0.

Zi 3 0 2 0 0 0
Yi 1 3 2 3 2 1 0

Figure 3: Example of a Galton–Watson process

We can exactly compute y = Pr[T = ∞] for c > 1. If we define z = 1 − y,
then

z =

∞∑
k=0

e−cck

k!
zk = e−cecz.

So y is the positive root of 1− y = e−cy.
We can compute the probability of T being k is

Pr[TPo
c = k] =

e−ck(ck)k−1

k!
.

At the critical c = 1, we have

Pr[TPo
1 = k] =

e−kkk−1

k!
∼ 1√

2π
k−3/2.

This does go to 0, but it has a heavy tail. In particular, E[T ] =∞.
Now what does this have to do with random graphs? Consider the random

graph G(n, c/n) and look at the size of the component of v. At the beginning,
v is connected to Bin(n − 1, p) ≈ Po(c) number of vertices, and the next is
connected to Bin(n− 4, p) ≈ Po(c) number of vertices, and so on. But there is
an ecological limitation, because the total number of vertices is n. This has to
be analyzed.



Summer School on Probabilistic Methods 15

6 Lecture VI: The Erdős–Rényi Phase Transi-
tion II

Let us write TGr
n,p = |C(v)|, where Gr stands for graph. When the ecological

constraint is insignificant, we have

TGr
n,p = |C(v)| ≈ TPo

c .

But we always have
Pr[TGr

n,p ≥ a] ≤ Pr[TPo
c ≥ a].

This is because you can imagine TPo
c as doing the random graph, but replen-

ishing the reservoir by adding virtual points in to make the size of the reservoir
always n. In the subcritical case c < 1, we have

Pr[TGr
n,p ≥ a] ≤ Pr[TPo

c ≥ a] ≤ e−κa

for some constant κ. Pick a large constant K such that Kκ > 1 and pick
a = K log n. Then

Pr[|C(v)| ≥ K log n] = o(n−1)

and this means that L1 = max|C(v)| ≤ K log n.
What about the supercritical case? Either the process dies out early, or it

gets infinite. The picture is that the infinite ones all connect up and form the
giant component.

Theorem 6.1. Pr[|C(v)| = t] ≤ Pr[Bin[n− 1, (1− p)t] = n− t].

Proof. Consider the process as points trying to join the tree. Again we do
a breath-first search starting at v, but at each step of the search, the points
outside the tree flips a coin to decide whether to be a child of the current node.
A necessary condition for the connected component having size t is that the
points outside C(v) got t consecutive tails and the points inside C(v) got at
least one heads in the first t flips.

There is no middle ground for that probability. That value is o(n−1) unless
either t = O(log n) or t ∼ yn. If t is small, we have 1− (1− c/n)t ∼ tc/n. Then
the probability for

Bin
[
n,
tc

n

]
= t

drops exponentially in t. In particular, it is o(n−1) if t ≥ K log n.
If t ∼ wn, then 1 − (1 − c/n)wn ∼ 1 − e−cw. Then we are looking at the

probability that
Bin[n− 1, 1− e−cw] = wn.

This is exponentially small unless 1−e−cw = w, which is w = y(c). This implies
that the components are either of size yn or O(log n).

We still need to exclude the possibility of there being only small components.
But we have a good approximation of the probability that the component is
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small by the Galton–Watson process. This is going to be around the probability
that the Galton–Watson process is finite. We know that this is around 1− y(c).
Thus the small components should populate around (1− y(c))n points. Making
this precise becomes a bit technical, but this is the rough argument.

There was a third picture, which was discovered in the 1980s. You can make
a computer simulation for this. When λ = −4, you will see an asteroid field.
When λ = +4, there is going to be a dominant component, a Ceres growing to
a Jupiter. As λ grows, the asteroids are sucked to the Jupiter. In fact, the size
of the second largest component sometimes decreases because it is merged to
the largest component.

There is some interesting physics. Consider two components of size cn2/3

and dn2/3. The probability that these two components collide is going to be

cn2/3dn2/3(dλ)n−4/3 = cd(dλ).

In the computer you should be able to see these colliding by tracking the top
ten components. It is a fast program.

I still need to justify why n−4/3 is the important scaling. Recall that in the
Galton–Watson process,

Pr[TPo
c = k] = Pr[TPo

1 = k]
(ce1−c)k

c
.

Say that c = 1 + ε. We are interested when start seeing the different between c
and 1, i.e., criticality and near-criticality. Taylor expansion gives

(1 + ε)e−ε = (1 + e)
(

1− ε+
ε2

2
+ · · ·

)
= 1− ε2

2
+ · · · .

So

Pr[TPo
c = k] ∼ 1√

2π
k−3/2e−(ε2/2)k.

This means that the behavior is polynomial when k � ε−2 and exponential
when k � ε−2. On the other hand, the large component was around yn, and
with c = 1 + ε, you can check that y ∼ 2ε.

Now to talk about “no middle ground”, the small components and the giant
component has to have significantly different size. The small component is when
TPo

1+ε < ∞. This is around |C| < Kε−2. The giant component has probability
around Pr[TPo

1+ε = ∞] = y(1 + ε) ∼ 2ε. So the maximal component has size

|Cmax| ∼ 2εn. For these two to be similar, we need ε = λn−1/3, and they
become distinguished when λ→∞.

7 Lecture VII: Games Mathematicians Play

Mathematicians play games, and my favorite game is the Liar game. There are
two players, Paul and Carole, and there are three parameters N , Q, and K.
Carole thinks of a number x ∈ {1, . . . , N}, and Paul has Q chances of asking a
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yes/no question. Paul wins if he has a strategy of always guessing the number
correctly, and Carole tries to prevent this. This problem is simple; Paul splits
splits splits, so Paul wins if and only if N ≤ 2Q.

But Carole is allowed to lie at most K times. (The case K = 1 is called the
Diplomat’s game, because a diplomat can lie but only once.) For fixed Q and
K, we can try to find the maximal N such that Paul wins.

Theorem 7.1. If K = 1 and 2Q < N(Q+ 1) then Carole wins.

Proof. We fix a strategy for Paul, and Carole plays randomly. She doesn’t listens
to Paul, flips a coin and says yes or no. But if Carole “cheats”, we consider it
as Carole losing. (For instance, Carole can’t say yes, no, yes, no to “Is x 11?”
asked four times.) For 1 ≤ i ≤ N , consider the random variable

Xi =

{
1 if i viable at the end,

0 if not.

Then Carole wins if and only if X =
∑N
i=1Xi ≥ 2. The expectation of Xi is

E[Xi] = Pr[Bin[Q, 1
2 ] ≤ 1] =

Q+ 1

2Q
.

So Pr[X > 1] > 0.
Now this is a perfect information game, so either Paul has a strategy that

wins all the time, or Carole has a strategy that wins all the time. But this
argument shows that Carole always has a positive chance of winning, i.e., Paul
cannot have a strategy that wins all the time. This shows that Carole must
have a positive change of winning.

But this doesn’t tell us what the strategy is. Let’s do the derandomization
and find what the strategy for Carole is. In the middle of the game, let x be the
number of possible numbers with no lie, and let y be the number of possibilities
with one lie. Let’s call this state ~P = (x, y). The initial state is going to be
(N, 0). Consider the weight function, with R questions remaining,

WR(x, y) =
x(R+ 1)

2R
+

y

2R
.

The interpretation is, if Carole suddenly starts flipping coins again, the expected
number of viable answers at the end.

Suppose Paul plays (a, b), i.e., he selects a numbers from the x no-lie numbers
and b numbers from the y one-lie numbers and asks if the number is in that set.
If Carole said yes, the state would change to

~P yes = (a, b+ (x− a)),

and if she said no, the state would change to

~P no = (x− a, (y − b) + a).
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The claim is that

WR(~P ) =
1

2
(WR−1(~P yes) +WR−1(~P no)).

You can calculate and check this, but you can go back to the probability inter-
pretation of the weights.

Now the strategy for Carole is, play so that WR−1(~P new) ≥WR(~P old)! This
is possible because at each time this is the average. At the start of the game,
we are assuming that WQ(N, 0) > 1. So W0(x, y) = x+ y > 1. Then x+ y ≥ 2
because it is an integer.

We can also turn this around and give a strategy for Paul. Suppose N(Q+

1) ≤ 2Q. The idea is that Paul asks questions so thatWR−1(~P yes) ≈WR−1(~P no).
If x and y are even, Paul can set a = x/2 and b = y/2. But there is a com-
plication when the numbers are odd. Look at N = Q = 5. Here the best
split Paul can make is 2 and 3. Then if Carole plays (3, 2), the weight is
W4(3, 2) = 17/16 > 1.

Let us now look at the Vector Balancing game. Paul and Carole play
N rounds with ~P init = ~0 ∈ RN . At the ith round, Paul picks a vector
~i ∈ {−1,+1}N and Carole replace ~P new = ~P old + ~vi. The payoff for Paul is

|~P final|∞.

Theorem 7.2. Carole can make so that Paul gets at most β =
√

2N logN
points.

Proof. Again, Carole plays randomly. Then we will get xi ∼ SN and so

Pr[|Sn| ≥ β] < e−β
2/2N =

1

N
.

Consider

Ii =

{
1 if |xfinal

i | ≥ β,
0 otherwise,

Z =

N∑
i=1

Ii.

Then E[Z] < 1 and so there exist moves of Carole so that Z < 1.

Again you can derandomize to get a deterministic strategy.

8 Lecture VIII: Needles in Exponential Haystacks

There is a set Ω with |Ω| = n and for each point r ∈ Ω there is an information
Info(r), mutually independent. (For example, red/blue or true/false.) There are
sets Aα ⊆ Ω, α ∈ I and bad events Badα. We want there to be an event with
no bad, i.e., ∧

α∈I
Badα 6= ∅. (∗)

We write α ∼ β if Aα ∩Aβ 6= ∅, which is when Badα and Badβ are related.
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Theorem 8.1 (Lovász Local Lemma, symmetric). If all Pr[Badα] ≤ p, each α
has at most d many β with α ∼ β, and edp < 1, then (∗).

For example, if Aα ⊆ Ω have size |Aα| = n and Badα is the event that Aα
is monochromatic, then p = 21−n. So if each Aa overlaps at most d < 2n−1/e
other sets, then there is a coloring with no monochromatic sets.

There was a recent breakthrough by Robin Moser, who gave an algorithm
for finding this needle in an haystack. Here is the FIX− IT algorithm.

(1) Randomly assign each variable.

(2) While set is bad,

(3) Select one of the bad sets and reassign everything that is in that set.

Let us call Log the list (in order) of sets reassigned in (3), and let TLog the
length of Log. If we can prove that E[TLog] <∞, then we get a good algorithm
and there exists a solution.

Consider the example Ω = {1, . . . , 8} and A = {1, 2, 3}, . . . , F = {6, 7, 8}.
Suppose Log = ADCFECBF . We can do Tetris on this structure:

1 2 3 4 5 6 7 8

A AA D DD

C CC F FF

E EE

C CC

B BB

F FF

Figure 4: Example of a Tetris

We can define the “pyramid” as the string of blocks that support the last
element. In this case, the pyramid is going to be ADCFEF . Note that the
pyramids of the prefixes of Log are all distinct. This implies

E[TLog] =
∑

s string

Pr[s is a pyramid of a prefix].

To analyze the probability, we assume that each xj chooses countably many
assignments in advance. The probability of X1 · · ·Xt being a pyramid of a
prefix is at most pt, because all the assignments are independent.

Here there is an interesting algebra. Consider the free semialgebra generated
by the tetris blocks, with the relation that X and Y commute if they have no
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overlap. It can be shown that two elements are the same if and only if they
have the same tetris picture. This implies

E[TLog] ≤
∑

s∈algebra

p− length(s).

When is the right hand side finite? If we denote by wn[X] the sum over s
of length at most n ending in X, then it can be proved that

wn[X] ≤ p[X]wn−1[X] + p[X]
∏
X∼Y

(1 + wn−1[Y ]).

So in the symmetric case, if there exists a w ≥ p with

w ≥ pw + p(1 + w)d,

then wn[X] ≤ x for all n and X. This condition is satisfied if p ∼ 1/ed and
w ∼ 1/d.

Even if the adversary is prescient, i.e., knows what the coin flips are going
to be, the adversary can’t stop the algorithm from terminating.

Theorem 8.2 (Spencer, 1985). Consider S1, . . . , Sn ⊆ {1, . . . , n}. For a set
S ⊆ {1, . . . , n} and a coloring χ : {1, . . . , n} → {−1,+1}, define its discrepancy
as

disc(S) =

∣∣∣∣∑
j∈S

χ(j)

∣∣∣∣.
Then there exists a χ such that disc(Si) ≤ 6

√
n for all 1 ≤ i ≤ n.

I conjectured that you can’t find this coloring χ in polynomial time. But in
2010 this was disproved by Bansal.

Let me outline the argument. We look at a vector formulation. Vectors
~r1, . . . , ~rn ∈ Rn with |~ri|∞ ≤ 1 are given. We want to show that if ~z ∈ [−1,+1]n

(in particular ~z = ~0) then there exists a ~x ∈ {−1,+1}n with

|~ri · (~x− ~z)| ≤ K
√
n

for all 1 ≤ i ≤ n.
In Phase I, we find an ~x ∈ [−1,+1]n with at least n/2 coordinates ±1. Start

at ~x = ~z, and we are going to move ~x in a “controlled” Brownian motion. If
|xi| ≥ 1− ε, we “freeze” the coordinate xi. Define

Lj = [n−1/2~rj ] · [~x− ~z]

so that we would want all |Lj | ≤ K.
We control the Brownian motion by restricting the space V of allowable

moves ~y = (y1, . . . , yn). If i is frozen, we set yi = 0. We also set ~y orthogonal
to the current ~x, and also ~y orthogonal to ~rj for j with the top n/4 values of
|Lj |. After analyzing this martingale, we see that the probability of ending with
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fewer than n/5 many j ever have |Lj | ≥ K. But because we always freeze the
top n/4 coordinates, this implies that all j has |Lj | ≤ K.

In Phase s, we set m = 21−sn. We are going to start ~z with at most m
coordinates frozen and end with at most m/2 coordinates frozen. Effectively we
can get |~rj | ≤ m. This sum converges.

9 Lecture IX: Zero-One Laws I

From yesterday recall the game on a vector ~P ∈ Rn, where Paul picks a vector
~v ∈ {−1,+1}n, Carole either adds or subtracts that vector from ~P , and the

payoff for Paul is |~P final|∞. We showed that Carole can make the payoff be at
most

√
2n log n.

There is also a strategy for Paul. We are going to derandomize the ramdom-
ized strategy. Define the weight function as

Wr(~P ) =

n∑
i=1

Pr[|xi + Sr| ≥ β].

Paul wants to pick ~v so that Wr−1(~P +~v) and Wr−1(~P −~v) are “close” enough.
We don’t know completely if we can do this.

Let us define, for each coordinate,

∆i = Pr[|xi + 1 + Sr−1| ≥ β]− Pr[|xi − 1 + Sr−1| ≥ β].

If ~v = (v1, . . . , vn), we will have

Wr−1(~P + ~v)−Wr−1(~P − ~v) =

n∑
i=1

vi∆i.

But look at ∆i. The event that |xi + 1 + Sr−1| ≥ β but not |xi − 1 + Sr−1| is
when Sr−1 is exactly one value. (The parity of Sr−1 is the parity of r − 1.) So
we get

|∆i| ≤ cr−1/2.

If Paul picks vi sequentially, he can make |
∑
vi∆i| ≤ cr−1/2. Then whatever

Carole does, the new weight is going to be at least

Wr−1(~P new) ≥Wr(~P
old)− c1r−1/2.

Every round, we lose around r−1/2 and so Paul can play so that

W0(~P final) ≥Wn(~0)−
n∑
r=1

c1r
−1/2 ≥ nPr[|Sn| ≥ β]− c2n1/2.

Theorem 9.1. If nPr[|Sn| ≥ β] > c2n
1/2 then Paul wins. The optimal β is

around (1 + o(1))
√
n log n.
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The value is then between
√
n log n and

√
2n log n. The right constant is not

known.
Now let us turn to the Ehrenfeucht game. There are two players, Spoiler and

Duplicator. There are two graphs G1 and G2, and there are k rounds. On round
i, Spoiler picks either xi ∈ G1 or yi ∈ G2, and Duplicator picks a point in the
other graph. The goal of Duplicator is to pick the points so that xi and xj are
adjacent if and only if yi and yj are adjacent. Duplicator wins if she manages to
completely duplicate the graph. We are going to call this game EHR[G1, G2; k].
This is a perfect information game, so either Spoiler wins or Duplicator wins.
So why is this an interesting game? Glad you asked.

I want talk about first order logic and graphs. In this language, there are
variables x, y, z, . . ., two relations x = y, x ∼ y (∼ means adjacent), the usual
boolean stuff ∨,∧,¬, . . ., and quantifiers ∀,∃. But very critically, the variables
can only be vertices, not sets. Let us look at a few examples.

no isolated point : ∀x ∃y x ∼ y
there is a K4 : ∃x ∃y ∃z ∃w x ∼ y ∧ · · · ∧ z ∼ w

radius at most 2 : ∀x ∀y [y = x ∨ y ∼ x ∨ ∃z(x ∼ z ∧ z ∼ y)]

Connectivity is not expressible by first order logic. For a sentence A, we con-
sider the quantifier depth qd(A), which is the maximal number of nested
quantifiers. For instance, the sentence

A = ∃x ∃y (y = x ∨ y ∼ x) ∨ ∀z ∃w (w ∼ z)

has qd(A) = 2.

Theorem 9.2. Duplicator wins EHR[G1, G2; k] if and only if G1 and G2 satisfy
the same A of quantifier quantifier depth at most k.

The proof gets a bit technical, because it will need to actually define first
order logic. But let me look at an example. Let A be the “radius at most 2”,
which has quantifier depth 3. Suppose A is true in G1 but false on G2. The claim
is that Spoiler wins EHR[G1, G2; 3]. First Spoiler picks two points y1, y2 ∈ G2,
that has distance at least 3. Spoiler then should have picked two points in G1,
not connected. Then Spoiler picks the point x3 ∈ G1 that is connected to both
x1 and x2. Then Duplicator loses.

Taking this as a black box, let us now look at random graphs.

Theorem 9.3 (Fagin; Glebskii et al.). Fix a number 0 < p < 1 and let A be
any first order statement. Then

lim
n→∞

Pr[G(n, p) � A] = 0 or 1.

Here � A can be thought of as “satisfies A”. What this means is

Theorem 9.4. Let G1 ∼ G(n, p) and G2 ∼ G(m, p) be independent random
graphs. Fix a k. Then

lim
n,m→∞

Pr[Duplicator wins EHR[G1, G2; k]] = 1.
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I’m going to prove the second statement and then show you why the second
implies the first.

10 Lecture X: Zero-One Laws II

Consider the sentence

A` : ∀a, b, a+ b = ` ∀x1, . . . , xa, y1, . . . , yb

∃z z ∼ x1 ∧ · · · ∧ z ∼ xn ∧ ¬z ∼ y1 ∧ · · · ∧ ¬z ∼ yb.

We claim that
lim
n→∞

Pr[G(n, p) � Ak−1] = 1.

This is because the probability of Ak−1 not being satisfied is

Pr[G(n, p) 2 Ak−1] ≤ 2k−1

(
n

k − 1

)
(1− 21−k)n−k+1 → 0.

It immediately follows that

Pr[G(n, p) � Ak−1 and G(m, p) � Ak−1]→ 0

as n,m→∞.
For the Ehrenfeucht game EHR[G(n, p), G(m, p), k], Duplicate can use a very

unsophicated strategy. She never looks ahead and just duplicate, which is always
going to be possible. This can always be done. This prove the second theorem.

Now let’s see how this implies the first result. Suppose not and assume that

lim[G(n, p) � A] = α ∈ (0, 1).

(Here I’m slightly cheating and you should use lim sup and lim inf instead.) If
this happens,

lim
n,m→∞

Pr[G(n, p) � A and G(m, p) � ¬A] = α(1− α) > 0

and

Pr[Duplicator wins EHR[G(n, p), G(m, p), qd(A)]]

≥ Pr[G(n, p) � A and G(m, p) 2 A]→ α(1− α) > 0.

So we get a contradiction.
For logicians, this is the end of the story. But for us working in random

graphs, p constant is only one case. There are threshold functions, and at these
functions, you won’t have a zero one law. I haven’t proved this, but exactly
at the threshold function, the probability that there is a K4 is some nonzero
non-one constant.

So for p that is not a threshold function, there is going to be some zero-one
law. People came up with threshold functions, and many of them seem to be a
rational power of n. So I made a conjecture, and later with Shelah managed to
prove it.
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Theorem 10.1 (Shelah–Spencer, 1988). Let p(n) = n−α, where 0 < α < 1 and
α /∈ Q. Let A be any first order statement. Then

lim
n→∞

Pr[G(n, n−α) � A] = 0 or 1.

I won’t prove it because this is not a two-week summer school. We also only
have to show that the probability that Duplicator wins EHR goes to 1. But here
Duplicator needs to look ahead.

For example, take α = 1
2 + ε an irrational number. Then

Pr[∀x, y ∃z x ∼ z ∼ y]→ 0.

Suppose Duplicator is not smart enough and just duplicates. Here is a strategy
for Spoiler. Secretly Spoiler finds a shape x1 ∼ x3 ∼ x2 in G1 and first picks
x1, x2. Duplicator will not see this trap and pick arbitrary y1, y2 ∈ G2. Then
Spoiler picks x3 and poor Duplicator loses. This shows that Duplicator has to
be smart and look out for the “dangerous” traps. It is quite complicated.

Recall that came where ~P = 0 ∈ Rn initially and we can either add or
subtract a vector ~v that hands Carole. We can interpret this as an on-line
algorithm, i.e.,

Let us look at the Tenure game. There are a few pawns at level 0 (tenures),
1 (associate professors), 2 (senior assistant professors), 3 (assistant professors),
etc. Paul is the chair of the department, and he wants there to be at least one
tenure, in which case he wins. Carole wants there to be no tenure.

At each year, Paul write to Carole to promote some subset of the faculty.
Carole then can either

• promote the list and fire the rest, or

• fire the list and promotes the list.

0 1 2 3 4

· · ·

Figure 5: An initial position where Paul wins

For an initial position (x1, . . . , xn), if
∑
xi2
−i < 1 then Carole wins. Her

strategy is going to be playing randomly. The derandomization is going to be
the weight function

W =
∑
i

xi2
−i,

can Carole plays so that W new ≤ W old. In this game, the nice thing is that
Paul can exactly balance and so the weight is exact.
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Theorem 10.2. Paul wins if and only if
∑
xi2
−i ≥ 1.

This depends on a lemma that if there are coins of value 1/2, 1/4, . . . that
add up to at least 1, they can be split into two pile each of which add up to at
least 1/2.
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