
New Advanced Problems in KöMaL

September 1993 – May 1997

N. 1. Two players play the following game. They move alternately, writing a real coefficient in
polynomial

x10 + ∗ · x9 + ∗ · x8 + · · ·+ ∗ · x+ 1

to an empty ∗ place chosen by them. The first player wins if the polynomial obtained at the end
of the game has no real roots. Which player has a winning strategy?

N. 2. Find the triangle of smallest area with which one can cover any triangle that has sides at
most 1.

N. 3. Prove that for every real number 0 < α < 1 there exist integers 1 ≤ a1 < a2 < · · · < an ≤
2n−1 satisfying inequalities

[αa1] ≤ [α2a2] ≤ · · · ≤ [αnan].

N. 4. Let P be an inner point of triangle ABC, and denote the distances of P from sides a, b and
c by x, y and z, respectively. Find those points P for which the sum

a

x
+
b

y
+
c

z

is minimal.

N. 5. Let α be the greatest root of x3 − 3x2 + 1 = 0. Prove[
α1993

]
≡ 4 (mod 17),

i.e., that the integer part of α1993 leaves a remainder of 4 on division by 17.

N. 6. The black king is placed at the left upper corner of an m× n chessboard. Two players play
a game as follows: they move alternately with the king, and they may move only such fields that
have not been touched at an earlier stage of the game. The first one who cannot move, loses. Who
has a winning strategy?

N. 7. The bisectors of the angles of triangle ABC meet the opposite sides at points P,Q and R,
respectively. Prove that the perimeter of triangle PQR is at most the half of the perimeter of
triangle ABC.
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N. 8. Given a convex polygon, draw a straight line that halves the area of the polygon through
each vertex of the polygon. Suppose that any such line cuts the polygon at a segment which is at
most 1 unit long. Show that the area of the polygon is less than π/4.

N. 9. Let f1 and f2 denote the bisectors of two angle of a triangle, respectively. Let furthermore
s3 be the median starting at the third vertex of the triangle and s be the half of the perimeter.
Prove that

f1 + f2 + s3 ≤
√

3s.

N. 10. Let α be a fixed positive number. Suppose that the set A consisting of positive integers
satisfy

|A ∩ {1, 2, · · · , n}| ≥ αn

for every positive integer n. Prove that there exists a constant c dependent of α such that every
positive integer is the sum of at most c elements of A.

N. 11. Is it possible to cover the (3-dimensional) space by disjoint circles?

N. 12. Prove that for integers n ≥ 2,(
1 +

1

2
+ · · ·+ 1

n− 1

)
log(n+ 1) >

(
1 +

1

2
+ · · ·+ 1

n

)
log n

N. 13. Prove that an n×m board can be tiled by k× 1 dominoes if and only if it can be tiled by
translated copies of k × 1 dominoes(i.e., if k|m or k|n).

N. 14. Each element of the set {1, 2, · · · , n} is colored by one of three different colors so that each
color class contains more than n/4 elements. Show that there exist x, y and z of three different
color satisfying x+ y = z. What does happen if we replace “more than” by “at least”?

N. 15. Let a and b be integers and suppose that

x2 − ay2 − bz2 + abw2 = 0

has a nontrivial (not-all-0) integer solution. Prove that

x2 − ay2 − bz2 = 0

does so, too.
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N. 16. Let A denote a set consisting of positive integers. Let B(A, n) denote the number of
solutions of

a+ a′ = n (a, a′ ∈ A; a ≤ a′),

for each positive integer n. Show that there exist instances of infinite sets A such that B(A, n) is
even (resp. odd) only for finitely many positive integers n.

N. 17. The natural numbers are colored by finitely many colors. Show that there exist a color s
and an integer m so that for every positive integer k there exist a1, a2, · · · , ak of color s satisfying

0 < aj+1 − aj ≤ m (1 ≤ j ≤ k − 1).

N. 18. A bishop is wandering on a k × n chessboard. It starts at a white corner of the board,
moving diagonally. When it approaches an edge of the board, it is reflected. It stops wandering
when it approaches a corner of the board again. Describe all the pairs (n, k) for which the bishop
can wander all over the white fields of the board.

N. 19. There is a given set of n-tuples formed of positive integers. The n-tuple (a1, a2, · · · , an) is
called a minimal element of the set if there does not exist an other element (b1, b2, · · · , bn) in the
set with bi ≤ ai(1 ≤ i ≤ n). Prove that the set has only finitely many minimal elements.

N. 20. There are attached n2 bulbs in an n× n board, some of them are with light on. There is
a switch related to each row and column of the board. Turning a switch to its other position, it
changes the lights of the bulbs in the appropriate row or column to their opposite. Show that with
a suitable chain of switchings one can achieve that the difference between the number of shining
bulbs and the number of dark bulbs is at least

√
n3/2.

N. 21. Show that every positive integer k has an integer multiple in the interval [1, k4] the decimal
expression of which contains at most four different digits.

N. 22. Let there be given n points along a circle of unit radius so that the product of the distances
of these points from any point on the circle is at most 2. Prove that the points form a regular
n-gon.

N. 23. Show that every positive rational number is the sum of the cubes of three suitable positive
rational numbers.

N. 24. Does there exist any triangle with the following property: whenever it is decomposed to
similar triangles, these triangles should be similar to the original one, too?
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N. 25. Find those obtuse angles γ for which every triangle that has an angle γ satisfies

T√
a2b2 − 4T 2

+
T√

b2c2 − 4T 2
+

T√
c2a2 − 4T 2

≥ 3
√

3

2
,

where a, b, c and T denotes the sides and the area of the triangle, respectively.

N. 26. Let p be a polynomial of degree at least two having rational coefficients. Let q1, q2, · · · be
rational numbers so that qn = p(qn+1) for every integer n ≥ 1. Show that the sequence (qn) is a
periodic one, i.e. there exists a positive integer k such that qn+k = qn (n ≥ 1).

N. 27. An interval I is the union of not necessarily disjoint intervals I1, I2, · · · , In. Prove that
a) the “left halves” of the intervals I1, I2, · · · , In (i.e. the intervals determined by the midpoints
and the left endpoints of I1, I2, · · · , In, respectively) cover at least half of the length of interval I;
b) omitting an arbitrary half (left or right) of each of the intervals I1, I2, · · · , In, the remaining
halves of the intervals cover at least the third part of I.

N. 28. Find those integers n for which a regular hexagon can be divided into n parallelograms
that have equal areas.

N. 29. Prove that
(
n
k

)
and

(
n
l

)
have a common divisor greater than 1, whenever 1 ≤ k, l < n are

integers.

N. 30. Show that there exist infinitely many composite number n such that n|2n − 2.

N. 31. The positive numbers a1, a2, · · · , an add up to 1. Prove that(
1

a21
− 1

)(
1

a22
− 1

)
· · ·
(

1

a2n
− 1

)
≥
(
n2 − 1

)n
.

N. 32. Decompose a (planer) convex polygon M into finitely many convex polygons. The net
obtained this way is called realizable if there exists a convex polytope such that M is a face of the
polytope, and the orthogonal projection of the other faces to the plane of M gives the net at issue.
a) Show that if each polygon in the net is inscribed into a circle, containing the center of that
circle, then the net is realizable.
b) Construct a net which is not realizable.

N. 33. Find the smallest number m, depending on n, with the following property. Given arbitrary
positive integers a1 < a2 < · · · < an, any number can be written as the sum of some consecutive
ai’s at most m different ways.
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N. 34. Assuming that n > 1994, show that the number of the pairwise non-isomorphic trees on
n vertices lies between 2n and 4n. (Two graphs are isomorphic if there exists an edge preserving
bijection between their vertex sets.)

N. 35. Finitely many switches and a bulb are attached to a table. The bulb can give red, blue and
green light. Each switch has three different positions: red, blue and green. When all the switches
are in the same positions, the bulb gives light of that color. In any combination of the positions
of the switches, alterations of the positions of all the switches yield the change of the color of the
bulb. Prove that there exists a switch which in itself determines the color of the bulb.

N. 36. Let a and n denote integers greater than 1. Show that the number of proper fractions
having denominator an − 1 in their simplest form is divisible by n.

N. 37. Does there exist a sequence of natural number which contains each natural number in-
finitely many times and is periodic mod m for each positive integer m?

N. 38. Two ellipses have a common focus. Given their foci and major axes, construct their
common tangents.

N. 39. Let n > 3 be an integer. Prove that 2ϕ(n) − 1 has a (proper) divisor which is prime to
n. (For any positive integer n, ϕ(n) denotes the number of positive integers prime to n and not
greater than n; ϕ is the so-called Euler function.)

N. 40. Find those nonnegative integer valued functions f defined on the set of nonnegative integers
which satisfy

(i) f(1) > 0;

(ii) f(m2 + n2) = f(m)2 + f(n)2

for arbitrary nonnegative integers m and n.

N. 41. The point P,Q and R divide the perimeter of triangle ABC to three equal parts. Prove
that the area of triangle PQR is greater than 2/9 the area of triangle ABC. Is constant 2/9 best
possible?

N. 42. Show that every positive integer can be expressed with the help of at most three 4’s,
applying the first four rules of arithmetic, extracting square roots and taking integer parts.
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N. 43. Let k denote a positive integer. Describe the range of values of function f(n) = [(n +
n1/k)1/k] + n defined on the set of natural numbers.

N. 44. Is it true that the Euler function ϕ takes the whole range of its values when restricted to
the odd numbers?

N. 45. The nonzero sequence a1, a2, · · · satisfy the recurrence relations an+2 = |an+1|−an. Show
that after a certain point the sequence is periodic and its least period is of length 9.

N. 46. Let x and y be real numbers and suppose that xn−yn
x−y has integer values for four consecutive

positive integers n. Prove that it has integer values for all positive integers n.

N. 47. Show that there exist infinitely many integers n such that every prime divisor of n2 + 3
has an integer multiple of the form k2 + 3, where 0 ≤ k ≤

√
n is an integer.

N. 48. The circles k1, k2, · · · , k6 touch circle k at points P1, P2, · · · , P6, respectively in that order.
Assuming furthermore that k1 touches k2, k2 touches k3, · · · and k6 touches k1, prove that the
segments P1P4, P2P5 and P3P6 are concurrent.

N. 49. Find the positive integer solutions of the system of equations

a2 + b2 = c2 − d2
ab = cd

N. 50. How close can a number of form√
2±

√
2± · · · ±

√
2

be to 1?

N. 51. Show that there exists a polynomial P (x, y, z) satisfying

P (t1993, t1994, t+ t1995) = t.

N. 52. Let f1, f2, · · · denote an arbitrary (infinite) sequence of real functions. Prove that there
exist functions ϕ1, ϕ2, · · · , ϕ1994 such that each f∗ is a composite function of some of them (the
same function ϕi may be used several times.)
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N. 53. Does there exist an arithmetic progression consisting of 1995 different terms, each of which
is a proper power of a positive integer? What can we say about infinite sequences?

N. 54. There are n line segments in the plane, the sum of their lengths is 1. Prove that there
exists a straight line so that the sum of the lengths of their projections to the line is less than 2/π.

N. 55. Does there exist a polynomial with integer coefficients that does not have an integer root,
but has a root modulo n for every positive integer n?

N. 56. There is a tiny invisible flea skipping on a square grid. Starting at the origin, it either skips
away by one of the vectors u1, u2, u3 or stays motionless at the twentieth second of every minute.
We know vectors u1, u2, u3, they do not lie in the same halfplane. We may poison two points of
the grid at the fortieth seconds of each minute. If the flea is staying on one of those points, or
visits such a point later, it groans “YUPP!”, and perishes. Can we kill the flea for sure?

N. 57. We are given a quadrilateral inscribed in a circle, and an other circle that intersects every
side of the quadrilateral at two inner points. Consider the four arcs of the circle lying inside the
quadrilateral. Prove that the sum of the lengths of the opposites arcs are equal.

N. 58. We call a number to an almost perfect square if it is of the form pq where integers p and
q satisfy |p/q− 1| < 1/1995. Show that there exist infinitely many 6-tuples of consecutive integers
that are almost perfect squares.

N. 59. On an electric circuit panel, chips P,Q,R and S are connected every possible way. For
economical reasons, the wire connecting Q and S is on the back side of the panel, the others lie
on the front side. Starting at chip P , an electron chooses among the three possible directions at
every chip it reaches with equal probabilities. Find the probability of the even that the electron
first gets to the back side of the panel at the 1995th step.

N. 60. Is it possible to choose 4 points in the plane so that all the distances they determine are
odd integers?

N. 61. Find those numbers that can be written as the product of finitely many not necessarily

different numbers of the form n2−19952
n2−19942 , where n > 1995 is an integer.

N. 62. A lattice point is called visible (from the origin) if its coordinates are coprime numbers.
Is there any lattice point the distance of which from each visible lattice point is at least 1995?
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N. 63. A rook is moving on an n × n chessboard, it may move either down or to the right. It
starts at the upper left corner of the board. Prove that the number of different ways it can get
through to the lower right corner is at most 9n. May the number 9 be replaced by any smaller
one?

N. 64. A quadrilateral is inscribed in a circle, it has integer sides and its area is equal to its
perimeter. Find all quadrilaterals that have these properties.

N. 65. The sum of the reciprocals of n positive integers is 1. Prove that each of them is less than
n2

n

.

N. 66. Show that a triangle shaped sheet of paper can be folded “in half” such a way that the
area covered by the folded sheet is at most 3/5-th of the area covered by the original sheet.

N. 67. Prove that there exist infinitely many pairs of positive integers (m,n) for which both
divisibility relations n|m2 + 1 and m|n2 + 1 hold.

N. 68. Let H be a finite set consisting of integers. Let H+ and H− denote the sets formed by the
sums resp. difference of pairs in H. (We pairs of identical numbers as well as negative differences.)
Prove that

|H| · |H−| ≤ |H+|2.

(|X| means the number of elements of set X.)

N. 69. In an inscribed quadrilateral ABCD let P denote the intersection point of sides AB and
CD and let Q denote the intersection point of BC and DA. Let E and F be those points of sides
AB resp. CD for which PE resp. PF is the harmonic mean of PA and PB resp. PC and PD.
Show that points Q, E and F are collinear.

N. 70. Let a, b, c and d denote distinct positive integers. Prove that the positive integers of the
form a · cn + b · dn have infinitely many prime factors altogether.

N. 71. Let a1, a2, · · · , an be real numbers and

f(x) = cos a1x+ cos a2x+ · · ·+ cos anx.

Prove that there exists a positive integer k ≤ 2n for which

|f(k)| ≥ 1

2
.
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N. 72. Show that the vertex set of a simple graph G can be divided into two distinct part so that
deleting the edges between the two parts we obtain a graph G′ every vertex of which has an even
degree.

N. 73. Is there any irrational number c in the interval (0, 1) such that neither c nor
√
c has a digit

0 in its fractional part?

N. 74. A positive integer is called varied if multiplied by any positive integer m the product
contains all the 10 positive digits. It is n-varied if it has the required property for every integer
1 ≤ m ≤ n.
a) Prove that varied numbers do not exist.
b) Does there exist any 1995-varied number?

N. 75. Find the maximum ratio of the product of the sides and the product of the diagonals of
an inscribed pentagon.

N. 76. For every positive integer n, prove that there exists a polynomial of degree n with integer
coefficients of absolute value at most n, which admits 1 as a root with multiplicity of at least [

√
n].

N. 77. Define a linear order ≺ on the set of positive integers so that a ≺ b ≺ c implies 2b 6= a+ c.
The relation ≺ is a linear order if a) every pair a, b satisfies one and only one of the relations a ≺ b
, b ≺ a and a = b and b) a ≺ b and b ≺ c implies a ≺ c.

N. 78. Given a circle, construct its center with the help of a single compass.

N. 79. A solution of the system of equations

x31 + x32 + x33 = y31 + y32 + y33 ,

x1 + x2 + x3 = y1 + y2 + y3

is called trivial if the triplets x1, x2, x3 and y1, y2, y3 differ only in the order of the three numbers.
Show that there exists an integer n ≥ 1995 for which at least 99 percent of the solutions are trivial
among the numbers 1, 2, · · · , n.

N. 80. Define sequences (an), (bn) and (cn) in the following recursive manner. a1 = 1, b1 = 2, c1 =
4; furthermore, for every integer n > 1, an is the smallest positive integer other than a1, · · · , an−1,
b1, · · · , bn−1, c1, · · · , cn−1; bn is the smallest positive integer other than a1, · · · , an, b1, · · · , bn−1,
c1, · · · , cn−1; and cn = n+ 2bn − an. Prove that 0 < (1 +

√
3)n− bn < 2.

9



N. 81. Let z denote a complex number of absolute value 1. Prove that there exists a polynomial
of degree 1995, all the coefficients of which are +1 or −1, so that |p(z)| ≤ 4.

N. 82. Show that there exists, for infinitely many n, a polynomial of degree n with the following
properties: its coefficients are integers, its leading coefficient is less than 3n, and it has n distinct
roots in the interval (0, 1).

N. 83. Is it true that every irrational number has an (integer) multiple among the decimals of
which there are either infinitely many ‘0’ digits or infinitely many ‘9’ digits?

N. 84. In the interior of the unit square ABCD, two points P and Q are given. Prove that

13(PA+QC) + 14PQ+ 15(PB +QD) > 38.

N. 85. We are given an n×n array of numbers +1 and −1 with the following property. Whenever
we compare two rows of the array, the number of positions at which they coincide is the same as
the number of positions at which they differ from each other. Prove that the sum of the entries of
the array is not greater than n3/2.

N. 86. We have two sand-glasses that can measure p and q minutes, respectively, where p and
q are coprime positive integers. Our intention is to use them to measure n minutes. Initially, all
the sand can be found in the lower parts of the glasses. When we start an experiment, and later,
when one of our sand-glasses stops, we are allowed to turn upside down either any one or both of
the glasses. Show that we can measure the required time, if n ≥ pq/2.

N. 87. We are given a lattice rectangle the sides of which are not necessarily parallel to the
coordinate axes. It is partitioned into lattice triangle of area 1/2. Show that some of these
triangles are right-angle ones, in fact, the number of right triangles in the decomposition is at least
2/
√

5 times the length of the shorter side of the given rectangle.

N. 88. Is there any continuous function f : [0, 1] → R that attains every element of its range an
(finite) even number of times?

N. 89. Let, by definition a word be any finite sequence of letters. Given a word, we may repeatedly
apply the following operations: a) We may erase either the first or the last letter of the word; b)We
may ‘double’ the word, i.e. we may concatenate two identical copies of the word. Is it possible to
alter the word ABCD · · ·XY Z into the word ZY X · · ·DCBA in this way?
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N. 90. A convex polygon is orthogonally projected onto a plane. Show that its projection can be
covered by a congruent copy of the polygon.

N. 91. Prove that for every positive integer n, there exists a polynomial p of degree at most 100n,
satisfying

|p(0)| > |p(1)|+ |p(2)|+ · · ·+ |p(n2)|.

N. 92. Let a1, a2, · · · , an be n different numbers. Derive

n∑
i=1

ai ·∏
j 6=i

1

ai − aj

 = 0.

N. 93. Define the Lucas numbers by

L0 = 2, L1 = 1, Ln+2 = Ln+1 + Ln (n = 0, 1, · · · ).

Prove that if n is even, then every prime factor of Ln − 2 is a divisor of Ln+1 − 1, too.

N. 94. Find a positive number z for which [zn]−n is an even number for every positive integer n.

N. 95. Let n ≥ 3 be an integer. Show that one can partition a square into more than 2n rectangles
so that any line parallel to a side of the square intersects the interior of at most n rectangles. Prove
furthermore, that no partition of the square into more than 3n rectangles has the same property.

N. 96. Prove that there is no arithmetic progression consisting of four different perfect squares.

N. 97. Define a sequence (an) by

a0 = 3, a1 = 0, a2 = 2, an+3 = an+1 + an (n = 0, 1, 2, · · · ).

Prove that, for any prime number p, p|ap.

N. 98. Let p denote a polynomial with integer coefficients. Prove that for arbitrary integers m
and n, n divides p(m+ n)− p(m). Is there any function p : Z→ Z that is not a polynomial with
integer coefficients, yet has the previous property?

N. 99. Show that, for infinitely many positive integers L, every term of the sequence

a0 = 0, an+1 =
1

L− an
(n = 0, 1, 2, · · · )
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can be written as the ratio of two successive Fibonacci numbers.

N. 100. There are given 3k + 2 points in the plane, no three of them are collinear. Prove that
there is one point which determines at least k + 1 different distances with the other points.

N. 101. Prove
r∑
j=0

(
d

j

)(
d− r − j − 1

r − j

)
=

2r

r!

r−1∏
k=0

(d− (1 + 2k))

N. 102. Choose 1996 straight lines in the plane such a way that any two of them are intersecting
and no three of them are concurrent. The lines divide the planes into regions. Find the minimum
resp. the maximum number of angular regions that may arise in this way.

N. 103. Call a (simple, connected) graph randomly Eulerian if whichever way we walk along its
(consecutive) edges, taking care that we visit every edge only once, we visit every edge of the graph
sooner or later. Find all randomly Eulerian graphs.

N. 104. The terms of a sequence (an) satisfy∑
d|n

ad = 2n (n = 1, 2, · · · ).

Prove that n|an for every positive integer n.

N. 105. We are given lot of different sets, their number is large enough (i.e. greater than a certain
sufficiently large number.) Prove that among the given sets one can find 1996 sets so that no one
of them is obtained as the union of two other sets.

N. 106. In a graph of 1996 vertices that does not contain an isolated vertex(i.e. a vertex with
degree zero) we select a subset of vertices at random. Prove that they form a covering system with
probability less than 0.51, that is, the probability having an edge in the graph without an endpoint
belonging to the selected set of vertices is greater than 0.49.

N. 107. Given a graph, we may walk on the vertices of the graph according to the following rules.
In each step we may move from a vertex to one of its neighbors (if there is any) that we have
not visited before. Call a graph randomly Hamiltonian if whichever way we walk on its vertices
(according to the above described rule), we visit every vertex of the graph sooner or later. Find
all randomly Hamiltonian graphs.
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N. 108. On the surface of a sphere there is a given closed curve that intersects with every great
circle of the sphere. Prove that the length of the curve is not less than the circumference of a great
circle of the sphere.

N. 109. A positive integer is called “almost perfect” if the sum of its divisors exceeds twice the
number by 1. Prove that every almost perfect number is odd.

N. 110. Find those positive integer parameter λ for which

x2 + y2 + z2 + v2 = λxyzv

has a positive integer solution.

N. 111. Find the minimum number of edges a graph on 10 vertices must have if any 5 of its
vertices induce at least 2 edges.

N. 112. We are given a complete graph of n ≥ 3 vertices. Find the smallest possible value of k
for which the edges of the graph can be colored by k given colors so that
1) there is no color which is assigned to each and every edge of the graph,
2) there is no edge which is colored by all the k given colors, and
3) in every triangle, each color is assigned to an odd number of edges.

N. 113. A certain polynomial p of degree n assigns k
k+1 to k for k = 0, 1, · · · , n. Find p(n+ 1).

N. 114. Let p denote a prime number of the form 3k+ 1. Prove that there exist positive integers
a < b <

√
p such that a3 ≡ b2 (mod p).

N. 115. Given two nonnegative fractions, there median is a nonnegative fraction whose numerator
and denominator are obtained as the sum of the numerators resp. the sum of denominators of the
given fractions, assuming that they are written in their simplified form, respectively. Consider of
sequence of three fractions so that the middle one is the median of the other two fractions. Delete
one of the outer ones and write their median in between the remaining ones to form a sequence
similar to the original one. We may apply this procedure repeatedly. Prove that if 0 < q < 1 is
an arbitrary fraction then, starting with the sequence ( 0

1 ,
1
2 ,

1
1 ), there is a unique way to use the

above described method in order to obtain a sequence whose middle term is q.

N. 116. The ground-plan of a gallery is shaped like a concave n-gon. Guards should be placed in
the room so that each point of each wall would be visible from at least one of the posts. Fine the
maximum number of guards we may need to satisfy this requirement.
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N. 117. The positive integers ak ( 1 ≤ k ≤ 2n) satisfy ak ≤ k Prove that the sequence
a1, a2, · · · , a2n contains a monotone increasing subsequence of length n+ 1.

N. 118. Find those positive integers d for which there exists a positive integer divisible by d ·21996
that can be written in decimal system using only the digits 1 and 2.

N. 119. Find a triangle-free graph whose vertices cannot be colored properly using 4 colors. A
coloring of the vertices of a graph is called proper if adjacent (i.e., neighboring) vertices have
different colors.

N. 120. Given a positive integer n, let f(n) denote the number of ways n can be represented as
the sum of terms 2a5b (a, b are nonnegative integers) so that no term divides any other term in
the summation. Two representations are considered to be the same if they differ only in the order
of the addends. Prove that f(n) is not bounded.

N. 121. A disc of radius 2000 is divided into smaller parts by 1996 straight lines. Prove that a
disc of 1 can be placed into one of these parts.

N. 122. Let a, b and c denote integers, not all of which are 0. Prove∣∣∣ 3
√

4a+
3
√

2b+ c
∣∣∣ ≥ 1

4a2 + 3b2 + 2c2
.

N. 123. A certain simple graph has the following property: given any nonempty subset H of its
vertex set, there is a vertex x of the graph (x may belong to H) so that the number of edges
connecting x with the points in H is odd. Prove that the graph has an even number of vertices.

N. 124. Prove (
2n
0

)
x

+

(
2n
2

)
x+ 2

+ · · ·+
(
2n
2n

)
x+ 2n

>

(
2n
1

)
x+ 1

+

(
2n
3

)
x+ 3

+ · · ·+
(

2n
2n−1

)
x+ 2n− 1

where x > 0 and n is a positive integer.

N. 125. Given that f : R → R is a continuous function and the sequence f(a), f(2a), f(3a), · · ·
converges to 0 for any positive real number a, prove that limx→∞ f(x) = 0.

N. 126. A cuboid, or a rectangular box, is partitioned into smaller cuboids. Given that each of
the smaller cuboids has an edge of integer length, prove that the original cuboid has an edge of
integer length, too.
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N. 127. Each entry of a given n × n array is either +1,−1 or 0. If we consider the sum of the
entries in each row resp. column of the array, we find that the 2n results obtained this way are all
different. Prove that n is an even number.

N. 128. There are given n points in the plane, no three of which are collinear. Each line segment
determined by them is colored with one of two given colors. Prove that the graph obtained this
way contains a monochromatic spanning tree no two edges of which cross each other. (A spanning
tree of a graph is a connected cycle-free graph, i.e., a tree, the vertex set of which coincides with
that of the original graph, and the edges of which belong to the edge set of the original graph.)

N. 129. The sequence a1, a2, · · · consists of positive integers. Suppose that an ≤ n for every n.
Prove that there exists a non-constant arithmetic progression every element of which can be written
as the signed sum of a few initial terms of the sequence (an), i.e., in the form ±a1 ± a2 ± · · · ± ak.
Show that the statement does not remain valid under the weaker assumption that the sequence
(an/n) is bounded.

N. 130. Let an and bn denote positive integers defined by

an =

(
n

0

)
+

(
n

3

)
+

(
n

6

)
+ · · ·+

(
n

3
⌊
n
3

⌋)

bn =

(
n

0

)
+

(
n

5

)
+

(
n

10

)
+ · · ·+

(
n

5
⌊
n
5

⌋)
respectively. Prove that the sequence (an− 2n/3) is bounded, but the sequence (bn− 2n/5) is note
bounded.

N. 131. Prove that if k > 1 and 0 < x < π/K, then

sinKx

sinx
< Ke−

K2−1
6 x2

.

N. 132. The point (a1, a2, a3) is said to be above (resp. below) the point (b1, b2, b3) if a1 =
b1, a2 = b2 and a3 > b3 (resp. a3 < b3). Suppose that none of the pairwise skew straight lines
e1, e2, · · · , e2k (k ≥ 2) is parallel to the z-axis. Suppose furthermore that among their orthogonal
projections to the xy-plane there are neither two parallel lines, nor three concurrent ones. May it
happen that moving along one of the given lines, those points, above resp. below which a point of
another line ei can be found, appear in an alternating order?

N. 133. Prove that for all prime numbers p > 3,
(
2p−1
p−1

)
− 1 is divisible by p3.

N. 134. Let an denote the number of occurrences of digit 1 in their binary expression of 32
n

.
Prove that limn→∞ an =∞.
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N. 135. Let A ⊂ (0, 1) be the union of a finite number of intervals whose lengths add up to 1/3.
Let B = {{x − y} : x, y ∈ A}, that is, the set consisting of the fractional parts of the pairwise
differences of the elements of A. Prove that B is also a finite union of intervals, and the sum of
the lengths of these intervals is at least 2/3.

N. 136. Let a < b be arbitrary positive integers. Prove that there exists a prime after the division
by which the remainder of a is greater than that of b.

N. 137. Prove that for every positive integer k there exist positive integers a1 < a2 < · · · < ak
such that ai − aj |a1997i for 1 ≤ i, j ≤ k, i 6= j. Prove, furthermore, that for all such sequences
ak > 2ck holds with a positive constant c.

N. 138. We are given a function f : R → R. If a, b, c are different real numbers, then 2c 6= a+ b
implies 2f(c) 6= f(a) + f(b) and then

f

(
2ab− ac− bc
a+ b− 2c

)
=

2f(a)f(b)− f(a)f(c)− f(b)f(c)

f(a) + f(b)− 2f(c)

holds. Prove that f is a linear function.

N. 139. Find the number of those permutations of the numbers 1, 2, · · · , n which do not preserve
the original order of any three elements.

N. 140. The positive integers a1 < a2 < · · · < a9 have the following property: all sums (of at
least one but at most nine different summands) that can be formed of them are different. Prove
that a9 > 100.

N. 141. There are given n ≥ 6 points on a circle such that any possible distance among them
occurs at most twice. Prove that at least bn/2c − 2 of these distances occur only once.

N. 142. Let n denote any positive integer. Prove that every polynomial can be expressed as
a signed sum of the nth powers of n appropriate polynomials. (By a polynomial we mean a
polynomial with real coefficients.)

N. 143. Is there any positive integer n for which all prime divisors of 2n−1 are less than 2n/1997?
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Hints

1. The second player wins. The second player first uses up all the even degree coefficients.

2. The answer is 1
2 cos 10◦, when AC = 1, BC = 2√

3
cos 10◦ and ∠C = 60◦.

3. Consider two cases: α ≥ 1/2 and α < 1/2.

4. Let S denote the area of triangle ABC. It is obvious that ax+ by + cz = 2S.

5. Let α > β > γ be the three real roots of x3−3x2+1 = 0. Observe the sequence an = αn+βn+γn.
Also note that x3 − 3x2 + 1 ≡ (x− 4)(x− 5)(x+ 6) (mod 17).

6. Try to partition the whole board into dominoes. If one places the king on an unused domino,
the other places the king to the second field of the domino. The first player wins if and only if mn
is even.

7. It can be proved that QR ≤ (BR+CQ)/2 both geometrically and algebraically. For the geomet-
rical solution, consider the intersections of line BC with the circumcircles of triangles BRQ and
CRQ.

8. Consider the butterfly shaped region cut by two ‘adjacent’ ‘midlines’ of the polygon. Let θ be
the angle of the butterfly and prove that the area is less than 1

4 sin θ < θ/4.

9. Let the length of the sides be a, b and c. Since f21 = ((b + c)2 − a2)bc/(b + c)2, we have
f1 ≤ 1/2

√
(b+ c)2 − a2.

10. The greatest such α in this problem is called the Schnirelmann density of the set A. For a
set A, denote its Schnirelmann density by σA. It is sufficient to prove σ(A ∪ B ∪ (A + B)) ≥
σA+ σB − σAσB.

11. It is possible. First prove that if u, v are distinct points on S2, then S2 \ {u, v} is coverable by
disjoint circles and use this fact to cover the whole space.

12. Note that log(1 + 1
n ) =

∫ n+1

n
1/x dx > 1

n+1 and that 1 + · · ·+ 1
n−1 > log n+ 1/4.

13. At the ith row, j column square, assign a weight of ζi+j where ζ = e2πi/k.

14. Suppose the contrary and let 1, 2, · · · , k be colored in blue while k + 1 is colored in red. If
k ≥ 2, then there cannot be a lot of green numbers.

15. The condition states that there exist two integers of the form x2 − ay2 whose ratio is b. We
need to prove that there exists an integer of the form x2−ay2 which is a product of b and a perfect
square. Note that the form x2 − ay2 is closed under multiplication.

16. Just inductively construct such a set, being careful not to make it finite.

17. Call a set S good if there exists an m such that there exists a1, · · · , ak ∈ S such that the
distance between adjacent two numbers are at most m for every k. Show that if a good set is
partitioned into two sets, one of the two is also good.

18. The pairs for which gcd(n− 1, k− 1) = 1. Extend the board to twice its original size and make
the bishop wander around a torus.

19. Use induction on the dimension.

20. Let ri be the difference of shining bulbs and dark bulbs in the ith column. By a column
switchings, we can obtain a total difference of r1 + · · · + rn. Thus it is sufficient to prove that a
suitable chain of row switching results in r1 + · · ·+ rn ≥

√
n3/2.

21. The difference of two numbers whose digits consist of 0 and 1 has only 0, 1, 8 and 9 as digits.
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22. Interpret the condition as a inequality on a complex polynomial. Add some of the values and
prove that the average is at least 2.

23. An old result of Ryley. Let u = x+ y + z, v = y + z and write x3 + y3 + z3 in terms of u, v,
and z.

24. There does exist. Focus on the angles of the triangle, and see what happens if the angles of
original triangle are linearly independent over the rationals.

25. The left hand side is 1
2 (tanA+ tanB + tanC).

26. Let qi = ai/bi where ai and bi are relatively prime. Prove that bi must be bounded and that qi
is also bounded. Then show that there are only finitely many possibilities for qi.

27. Let the union of the left(resp. arbitrary) halves be J1, · · · , Jk. Suppose that the sum of the
lengths do not exceed one half(resp. one third) of the length of I and prove that I1, · · · , In cannot
cover I.

28. Prove that the sum of areas of the parallelograms of specific orientation is one third the area
of the hexagon.

29. Suppose that k, l ≤ n/2. Then we have
(
n
k

)(
n−k
l

)
=
(
n
l

)(
n−l
k

)
.

30. If n satisfies the condition, then 2n − 1 also satisfies the condition.

31. Multiply a21a
2
2 · · · a2n to both sides and use AM-GM.

32. Incomprehensible.

33. The maximum value among the consecutive numbers should decrease if the number of numbers
increase. The answer is dm/2e.

34. Use Cayley’s formula to prove that the number exceeds 2n. For the 4n side, just make a root
and read from top to bottom, left to right, making notes when the parent node changes. Then the
notes determine a tree while at most 2n bits are used in the notes.

36. In the multiplicative group (Z/(an − 1)Z)×, the order of a is n.

42. Show that every integer can be represented in the form of [(4/(42
−n − 1))2

−m].

43. Since f(n + 1) ≥ f(n) + 1, we only need to check when f(n + 1) > f(n) + 1. The answer is
3N for k = 1, and N \ {mk : m ∈ N} for k > 1.

50. Always choose the ‘−’.

71. Let (x2 − 2 cos a1x+ 1) · · · (x2 − 2 cos anx+ 1) = c2nx
2n+ c2n−1x

2n−1 + · · ·+ c1x+ c0. Then∑2n
i=0 cif(x + i) = 0 for all x. Let |ct| be the maximum absolute value among the numbers. Then

let x = −t and prove that |f(k)| ≥ 1
2 for some k, noting f(x) = f(−x).

74. a) Since every integer has a multiple of the form 99 · · · 90 · · · 0. b) Yes. Show that 1000000
990000 · · · 02000001 is a 1999-varied number.

76. Since f admits 1 as a root with multiplicity m if and only if f(1) = f ′(1) = · · · = f (m−1)(1) =
0, the problem is equivalent to proving that a0 ~v0 + · · ·+ an ~vn = 0 for some non-trivial a0, · · · , an,
where ~vi = (

(
0
i

)
,
(
1
i

)
, · · · ,

(
n
i

)
). Now proceed using the pigeonhole principle.

77. For a = ktkt−1 · · · k1k0 in base 2, let f(a) = 0.k0k1 · · · kt in base 2. Let a ≺ b if and only if
f(a) < f(b).

81. Use the fact that |1 + z + · · ·+ zk| ≤ 2/|1− z|. One can even attain the bounds |p(z)| ≤
√

2.

83. Yes. It is not difficult to prove that if α is a irrational number, any digit kα becomes 0 or 9
for a suitable k ≤ C.
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84. It is not difficult to show that by translating P and Q so that the center of the square is the
midpoint of PQ, we may decrease the left hand side. Then, the problem reduces to finding the
least value of 13PA+ 14PO+ 15PB, where O is the center of the square. Let K be a point which
satisfies the conditions KA = 15/14,KB = 13/14. Using Ptolemy’s theorem on KAPB, we obtain
the value 2

√
192 + 22 as the minimum.

85. Sum up the inner product of the rows. Let ri be the i row. Then |
∑
ri|2 = n2 +

∑
ri · rj. Use

Cauchy’s inequality to obtain the result.

88. Yes. Let f(x) ≥ 0 for all x and f(x) = −x if x ≤ 0. It is not difficult to construct one.

89. If α, β, γ are words, show that one can transform αβγ to αγβ.

92. Consider the Lagrange interpolation of f(ai) = a2i . Obviously f(x) = x2 and f(0) = 0.

93. With a bit of algebraic number theory, the problem becomes trivial. Since Ln = αn +βn where
α = (1 +

√
5)/2, β = (1−

√
5)/2, we can easily show p|αn − 1 when p|αn + βn − 2.

19


