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Proofs
Intuitively, the concept of proof should already be familiar. We all like to assert things, and few of us like to
say things that turn out to be false. A proof provides a means for guaranteeing such claims.
Proofs in mathematics and computer science require a precisely stated proposition to be proved. But what
exactly is a proof? How do you show that a proposition is true? Recall that there are certain propositions
called axioms or postulates, that we accept without proof (we have to start somewhere). A formal proof is a
sequence of statements, ending with the proposition being proved, with the property that each statement is
either an axiom or its truth follows easily from the fact that the previous statements are true. For example,
in high school geometry you may have written two-column proofs where one column lists the statements
and the other column lists the justifications for each statement. The justifications invoke certain very simple
rules of inference which we trust (such as if P is true and Q is true, then P∧Q is true). Every proof has these
elements, though it does not have to be written in a tabular format. And most importantly, the fact that each
step follows from the previous step is so straightforward, it can be checked by a computer program.
A formal proof for all but the simplest propositions is too cumbersome to be useful. In practice, mathemati-
cians routinely skip steps to give proofs of reasonable length. How do they decide which steps to include in
the proof? The answer is sufficiently many steps to convince themselves and the reader that the details can
easily be filled in if desired. This of course depends upon the knowledge and skill of the audience. So in
practice proofs are socially negotiated.
During the first few weeks of the semester, the proofs we will write will be quite formal. Once you get more
comfortable with the notion of a proof, we will relax a bit. We will start emphasizing the main ideas in our
proofs and sketching some of the routine steps. This will help increase clarity and understanding and reduce
clutter. A proof, for the purposes of this class, is essentially a convincing argument. Convincing to whom?
First, to you, the author, second, to your classmates, third, to your professor and your TA.
In this lecture you will see some examples of proofs. The proofs chosen are particularly interesting and
elegant, and some are of great historical importance. But the purpose of this lecture is not to teach you about
these particular proofs (and certainly not for you to attempt to memorize any of them!). Instead, you should
see these as good illustrations of various basic proof techniques. You will notice that sometimes when it is
hard to even get started proving a certain proposition using one proof technique, it is easy using a different
technique. This will come in handy later in the course when you work on homework problems or try to
prove a statement on your own. If you find yourself completely stuck, rather than getting discouraged you
might find that using a different proof technique opens doors that were previously closed.
We now begin with a few definitions pertaining to proofs.
A theorem, informally speaking, is a true proposition that is guaranteed by a proof. If you believe that a
statement is true but can’t prove it, call it a conjecture, essentially an educated guess.
A concept useful for writing up complicated proofs is that of a lemma, which is a little theorem that you use
in the proof of a bigger theorem. A lemma is to proofs what a subroutine is to programming.
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An axiom is a statement we accept as true without proof.
There are many different types of proofs, as we shall see. The basic structure of these different types of
proofs is best expressed in terms of propositional logic.

Direct Proof
Let us start with a very simple example.
Theorem: If x is an odd integer, then x+1 is even.
Following the notation introduced in the previous Note, this statement is equivalent to

(∀x ∈ Z)(x is odd =⇒ x+1 is even).

(Here Z denotes the set of all integers.) For each x, the proposition that we are trying to prove is of the
form P(x) =⇒ Q(x). A direct proof of this starts by assuming P(x) for a generic value of x and eventually
concludes Q(x) through a chain of implications:

Direct Proof of P =⇒ Q
Assume P

...
Therefore Q

Let us proceed with a direct proof of the simple example given above:
Proof: Assume x is odd. Then by definition, x = 2k + 1 for some k ∈ Z. Adding one to both sides, we get
x+1 = 2k +2 = 2(k +1). Therefore, by definition, x+1 is an even number. ♠

Before turning to our next example, we recall that integer d divides n (denoted d|n) iff there exists some
integer q such that n = dq.
For the following, let n be a postive integer less than 1000.
Theorem: If the sum of the digits of n is divisible by 9, then n is divisible by 9.
Note: The theorem is true for arbitary n. We’re just doing the three digit case here to keep the notation from
getting distracting.
As in the previous example, this statement is equivalent to

(∀n ∈ Z
+)(sum of n’s digits divisible by 9 =⇒ n divisible by 9).

(Here Z+ denotes the set of positive integers, {1,2, . . .}.) So once again we start by assuming, for a generic
value of n, that the sum of n’s digits is divisible by 9. Then we perform a sequence of steps to conclude that
n itself is divisible by 9. Here is the proof.

Proof: Suppose we have n such that the sum of the digits of n is divisible by 9. Let a be the hundred’s
digit of n, b the ten’s digit, and c the one’s digit. Then n = 100a+10b+ c. Now suppose that the sum of the
digits of n is divisible by 9. Then,

a+b+ c = 9k,k ∈ Z.
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Adding 99a+9b to both sides of the equation, we get

100a+10b+ c = n = 9k +99a+9b = 9(k +11a+b).

So n is divisible by 9. ♠
In this case the converse of the theorem is also true: If n is divisible by 9, the sum of its digits is divisible
by 9, too. In other words, the sum of the digits of n is divisible by 9 if and only if 1 n is divisible by 9. In
general, to prove P ⇐⇒ Q, you have to do two proofs: You must show that P =⇒ Q and then, separately,
you must also show that Q =⇒ P.

Theorem: n is divisible by 9 if and only if the sum of the digits of n is divisible by 9.

Proof: We already proved above that if the sum of the digits of n is divisible by 9 then n is divisible by 9. So
we only need to prove the converse. We use the same notation for the digits of n as we used in the previous
proof:
n is divisible by 9
=⇒ n = 9l, l ∈ Z

=⇒ 100a+10b+ c = 9l
=⇒ 99a+9b+(a+b+ c) = 9l
=⇒ a+b+ c = 9l −99a−9b
=⇒ a+b+ c = 9(l −11a−b)
=⇒ a+b+ c = 9k, k = l −11a−b ∈ Z
=⇒ a+b+ c is divisible by 9. ♠
Note that, in this simple example, the proof of Q =⇒ P is essentially the same as the proof of Q =⇒ P “run
backwards.” In such a case, you may be able to get away with proving both of the implications at the same
time (using the symbol ⇐⇒ at every step of the proof). However, be very careful if you do this: for the
proof to be legitimate, the steps have to make just as much sense backwards as forwards! (Go back and read
the last proof again, starting with the last line and ending with the first, and convince yourself that it also
works backwards.) To avoid potential pitfalls, it is recommended that you always prove a statement of the
form P ⇐⇒ Q using two separate proofs. This will in any case be necessary in more interesting examples,
where the proofs of P =⇒ Q and of Q =⇒ P might look very different

Proof by Contraposition
In the last lecture, we learned that a statement of the form P =⇒ Q is logically equivalent to its contrapos-
itive: ¬Q =⇒ ¬P. This means that proving an implication is equivalent to proving the contrapositive. A
proof by contraposition of P =⇒ Q is just a direct proof of its contrapositive ¬Q =⇒ ¬P:

Proof by Contraposition of P =⇒ Q
Assume ¬Q

...
Therefore ¬P
So ¬Q =⇒¬P ≡ P =⇒ Q

1The phrase “if and only if” is often abbreviated to “iff”.
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Sometimes proving the contrapositive of a statement is easier than proving the statement directly. Here is an
illustrative example.
Let n be an integer and let d divide n.
Theorem: If n is odd then d is odd.
Proving this directly would be difficult. We would assume n is odd but what then? Proving the contrapositive
of the statement, however, is very straightforward. The contrapositive is: If d is even then n is even.
Proof: Suppose d is even, then (by definition) d = 2k for some k ∈ Z.
Because d|n, n = dl, for some l ∈ Z.
Combining these two statements, we have n = dl = (2k)l = 2(kl).
So n is even. So if d is even then n is even. Therefore if n is odd then d is odd. ♠

Proof by contraposition is a very common technique. When proving implications (P =⇒ Q) the con-
trapositive gives us a second option for how to approach the problem. As a warning, do not confuse the
contrapositive with the converse! To give some intuition using English, consider the statement “If it is
sunny, then it is daytime.” The contrapositive is “If it is nighttime, then it is not sunny,” and the converse is
“If it is daytime, then it is sunny.” We know the original statement is true, and its contrapositive is also true.
However the converse is simply false (for example, a summer afternoon in San Francisco!).

Proof by Contradiction
Proof by contradiction is also called reductio ad absurdum (reduction to an absurdity). The idea is to
assume the opposite of what one is trying to prove and then show that this leads to something that is clearly
nonsensical: a contradiction.

Proof by Contradiction of P
Assume ¬P

...
R
...

¬R
Contradiction
Therefore P

Before proceeding to an example, let us try to understand the logic behind a proof by contradiction. We
assume ¬P, and then prove both R and ¬R. But for any proposition R, R∧¬R ≡ False. So we have shown
that ¬P =⇒ False. The only way this implication can be true is if ¬P is false. i.e., P is true.
Our first example of a proof by contradiction dates back more than 2000 years—to Euclid. (Note that it is
not of the form P =⇒ Q so contraposition is not an option.)
Theorem: There are infinitely many prime numbers.
Proving this directly would be difficult. How do we construct infinitely many prime numbers? But, as we
will see, bad things happen when we assume that this statement is false: that there are only finitely many
primes. Before we prove the theorem, we will state a simple lemma that we’ll use without proof. We will

CS 70, Fall 2009, Note 2 4



prove it next week when we learn about induction.
Lemma: Every natural number greater than one is either prime or has a prime divisor (greater than one).
Now for the proof of the theorem.

Proof: Suppose (in order to get a contradiction) that there are only finitely many primes. Then, we can
enumerate them: p1, p2, p3, . . . , pk . (Here k is the total number of primes.)
Consider the number q = p1 p2 p3 . . . pk + 1, the product of all the primes plus one. Note that q cannot be
prime because it is strictly larger than all the primes. Thus, by the lemma, it has a prime divisor, p. (This
will be our statement R, or, more precisely R is the assertion that p > 1.) Because p1, p2, p3, . . . , pk are all
the primes, p must be equal to one of them, so p is a divisor of their product.
So we have that p divides p1 p2 p3 . . . pk, and p divides q, but that means p divides their difference, which
is 1. Therefore, p ≤ 1 (this is ¬R). Contradiction. Therefore there are infinitely many primes. ♠.

Note that in the proof, q need not be prime, tempting as it might be to say so. It’s certainly not the case that a
product of primes plus one must always be prime (think of 7 ·2+1). When writing a proof, it is important to
carefully think through each step, ensuring that it’s logically justified. The most important part of learning
mathematics is learning a habit of thinking clearly and precisely.
Let’s look at another classic proof by contradiction. A rational number is a number that can be expressed
as the ratio of two integers. For example, 2

3 , 3
5 , and 9

16 are all rational numbers. In fact, any number with a
finite or recurring decimal representation is a rational. [Exercise: Can you prove this?] Numbers that cannot
be expressed as fractions are called irrational.
Theorem:

√
2 is irrational.

Proof: Assume (for the sake of contradiction) that
√

2 is rational. By the definition of rational numbers,
there are integers a and b with no common factor other than 1, such that

√
2 = a/b. (This will be our

assertion R.)
For any numbers x and y, we know that x = y =⇒ x2 = y2. Hence 2 = a2/b2.
Multiplying both sides by b2, we have a2 = 2b2.
b is an integer, hence b2 is an integer, hence a2 is even (by the definition of evenness).
Hence, a is even (by the lemma below).
Therefore, by the definition of evenness, there is an integer c such that a = 2c.
Hence 2b2 = 4c2, hence b2 = 2c2.
Since c is an integer, c2 is an integer, hence b2 is even.
Thus, b is even (by the lemma below).
Thus a and b have a common factor 2, contradicting the assertion that a and b have no common factor other
than 1. This shows that the original assumption that

√
2 is rational is false, and hence that

√
2 must be

irrational. ♠
Lemma: If a2 is even, then a is even.
Can you prove this lemma? First try a direct proof? How would you proceed? Now try a proof by contra-
position.
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Proof by Cases
Sometimes we don’t know which of a set of possible cases is true, but we know that at least one of the cases
is true. If we can prove our result in each of the cases, then we have a proof. The English phrase “damned
if you do and damned if you don’t” sums up this proof method. Here’s a nice example:
Theorem: For some irrational numbers x and y, xy is rational.
Proof: This is our first example in this Note of a theorem that is existentially quantified (“for some”). In
other words, the statement may be written as

(∃x)(∃y)(x is irrational∧ y is irrational∧ xy is rational).

Thus to prove the theorem we only need to prove the existence of at least one example of values x,y that
satisfy the claim. (For this reason, proofs of existentially quantified statements are often—but not always—a
little easier than proofs of universally quantified ones.)
Consider the case x =

√
2 and y =

√
2. Clearly, either

(a)
√

2
√

2 is rational; or

(b)
√

2
√

2 is irrational.

In case (a), we have shown irrational numbers x and y such that xy is rational, so we are done.
In case (b), consider the new values x =

√
2
√

2 and y =
√

2. We have

xy = (
√

2
√

2
)
√

2

=
√

2
√

2
√

2 by the axiom (xy)z = xyz

=
√

2
2
= 2

Hence we have again shown irrational numbers x and y such that xy is rational.
Since one of cases (a) and (b) must be true, and since in both cases we have exhibited irrational numbers x
and y such that xy is rational, we can conclude that such numbers must always exist. ♠
Notice that even after the proof, we still don’t know which of the two cases is true, so we can’t actually
exhibit any irrational numbers satisfying the theorem. This is an example of a nonconstructive proof: one
in which an existential theorem is proved without constructing an explicit example.

Non-proof
Failure to logically structure a proof or note the justification for each step can lead easily to “non-proofs.”
Consider the following examples.
Theorem: (not!) −2 = 2.
Proof: Assume −2 = 2. Squaring both sides, we get (−2)2 = 22, or 4 = 4 which is true. Therefore, −2 = 2.
♠
The theorem is obviously false, so what did we do wrong? Our arithmetic is correct, and it seems like each
step follows from the previous step. The problem with this proof does not lie in the arithmetic, but rather the
logic. We assumed the very theorem we were trying to prove was true! As you can see, logical soundness
and structure are extremely important when proving propositions.
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The next proof is incorrect for a different reason.
Theorem: (not!) 1 = −1

Proof: 1 =
√

1 =
√

(−1)(−1) =
√
−1

√
−1 =

√
−12

= −1. ♠
This proof appears to be logically sound, so the error lies elsewhere. Since we have concluded a falsehood,
at least one of these steps must be false. Indeed, it is simply untrue that √xy =

√
x√y. If you think carefully

through each step of your proofs, you can avoid such missteps.
Other classic errors:

• Dividing both sides of an equation by a variable. For example:

ax = bx hence a = b.

The “axiom” to which this step implicitly appeals is false, because if x = 0, the claim a = b is not
necessarily true. So in this case, either x = 0 or a = b (consider writing the above as x(a− b) = 0).
Some extra work may be needed to prove x 6= 0.

• Dividing both sides of an inequality by a variable. This is even worse! For example:

ax < bx hence a < b.

Here the claim a < b is false if x < 0, and unproven if x = 0.

• More generally, forgetting about 0. Forgetting to account for the possibility of variables being zero
causes lots of headaches (including the above).

Style and substance in proofs
We conclude with some general words of advice. First, get in the habit of thinking carefully before you
write down the next sentence of your proof. If you cannot explain clearly why the step is justified, you are
making a leap and you need to go back and think some more. In theory, each step in a proof must be justified
by appealing to a definition or general axiom. In practice the depth to which one must do this is a matter
of taste. For example, we could break down the step, “Since a is an integer, (2a2 + 2a) is an integer,” into
several more steps. [Exercise: what are they?] A justification can be stated without proof only if you are
absolutely confident that (1) it is correct and (2) the reader will automatically agree that it is correct.
Notice that in the proof that

√
2 is irrational, we used the result, “For any integer n, if n2 is even then n is

even,” twice. This suggests that it may be a useful fact in many proofs. A subsidiary result that is useful in
a more complex proof is called a. It is often a good idea to break down a long proof into several lemmas.
This is similar to the way in which large programming tasks should be divided up into smaller subroutines.
Furthermore, make each lemma (like each subroutine) as general as possible so it can be reused elsewhere.
The dividing line between lemmas and theorems is not clear-cut. Usually, when writing a paper, the theorems
are those propositions that you want to “export” from the paper to the rest of the world, whereas the lemmas
are propositions used locally in the proofs of your theorems. There are, however, some lemmas (for example,
the Pumping Lemma and the Lifting Lemma) that are perhaps more famous and important than the theorems
they were used to prove.
Finally, you should remember that the point of this lecture was not the specific statements we proved, but
the different proof strategies, and their logical structure. Make sure you understand them clearly; you will
be using them when you write your own proofs in homework and exams.
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