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Two Killer Applications
In this lecture, we will see two “killer apps” of elementary probability in Computer Science.

1. Suppose a hash function distributes keys evenly over a table of size n. How many (randomly chosen)
keys can we hash before the probability of a collision exceeds (say) 1

2 ?

2. Consider the following simple load balancing scenario. We are given m jobs and n machines; we
allocate each job to a machine uniformly at random and independently of all other jobs. What is a
likely value for the maximum load on any machine?

As we shall see, both of these questions can be tackled by an analysis of the balls-and-bins probability space
which we have already encountered.

Application 1: Hash functions

As you may recall, a hash table is a data structure that supports the storage of sets of keys from a (large)
universe U (say, the names of all 250m people in the US). The operations supported are ADDing a key to the
set, DELETEing a key from the set, and testing MEMBERship of a key in the set. The hash function h maps U
to a table T of modest size. To ADD a key x to our set, we evaluate h(x) (i.e., apply the hash function to the
key) and store x at the location h(x) in the table T . All keys in our set that are mapped to the same table
location are stored in a simple linked list. The operations DELETE and MEMBER are implemented in similar
fashion, by evaluating h(x) and searching the linked list at h(x). Note that the efficiency of a hash function
depends on having only few collisions — i.e., keys that map to the same location. This is because the search
time for DELETE and MEMBER operations is proportional to the length of the corresponding linked list.
The question we are interested in here is the following: suppose our hash table T has size n, and that our
hash function h distributes U evenly over T .1 Assume that the keys we want to store are chosen uniformly at
random and independently from the universe U . What is the largest number, m, of keys we can store before
the probability of a collision reaches 1

2 ?
Let’s begin by seeing how this problem can be put into the balls and bins framework. The balls will be
the m keys to be stored, and the bins will be the n locations in the hash table T . Since the keys are chosen
uniformly and independently from U , and since the hash function distributes keys evenly over the table, we
can see each key (ball) as choosing a hash table location (bin) uniformly and independently from T . Thus
the probability space corresponding to this hashing experiment is exactly the same as the balls and bins
space.
We are interested in the event A that there is no collision, or equivalently, that all m balls land in different
bins. Clearly Pr[A] will decrease as m increases (with n fixed). Our goal is to find the largest value of m

1I.e., |U | = αn (the size of U is an integer multiple α of the size of T ), and for each y ∈ T , the number of keys x ∈U for which
h(x) = y is exactly α .
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such that Pr[A] remains above 1
2 . [Note: Really we are looking at different sample spaces here, one for each

value of m. So it would be more correct to write Prm rather than just Pr, to make clear which sample space
we are talking about. However, we will omit this detail.]
Let’s fix the value of m and try to compute Pr[A]. Since our probability space is uniform (each outcome has
probability 1

nm ), it’s enough just to count the number of outcomes in A. In how many ways can we arrange m
balls in n bins so that no bin contains more than one ball? Well, there are n places to put the first ball, then
n− 1 remaining places for the second ball (since it cannot go in the same bin as the first), n− 2 places for
the third ball, and so on. Thus the total number of such arrangements is

n× (n−1)× (n−2)×·· ·× (n−m+2)× (n−m+1).

This formula is valid as long as m ≤ n: if m > n then clearly the answer is zero. From now on, we’ll assume
that m ≤ n.
Now we can calculate the probability of no collision:

Pr[A] =
n(n−1)(n−2) . . . (n−m+1)

nm

=
n
n × n−1

n × n−2
n ×·· ·× n−m+1

n
=

(

1− 1
n

)

×
(

1− 2
n

)

×·· ·×
(

1− m−1
n

)

. (1)

Before going on, let’s pause to observe that we could compute Pr[A] in a different way, as follows. View the
probability space as a sequence of choices, one for each ball. For 1 ≤ i ≤ m, let A i be the event that the ith
ball lands in a different bin from balls 1,2, . . . , i−1. Then

Pr[A] = Pr[
⋂n

i=1 Ai] = Pr[A1]×Pr[A2|A1]×Pr[A3|A1 ∩A2]×·· ·×Pr[Am|
⋂m−1

i=1 Ai]

= 1× n−1
n × n−2

n ×·· ·× n−m+1
n

=
(

1− 1
n

)

×
(

1− 2
n

)

×·· ·×
(

1− m−1
n

)

.

Fortunately, we get the same answer as before! [You should make sure you see how we obtained the
conditional probabilities in the second line above. For example, Pr[A3|A1 ∩A2] is the probability that the
third ball lands in a different bin from the first two balls, given that those two balls also landed in different
bins. This means that the third ball has n−2 possible bin choices out of a total of n.]
Essentially, we are now done with our problem: equation (1) gives an exact formula for the probability of
no collision when m keys are hashed. All we need to do now is plug values m = 1,2,3, . . . into (1) until we
find that Pr[A] drops below 1

2 . The corresponding value of m (minus 1) is what we want.
But this is not really satisfactory: it would be much more useful to have a formula that gives the “critical”
value of m directly, rather than having to compute Pr[A] for m = 1,2,3, . . .. Note that we would have to do
this computation separately for each different value of n we are interested in: i.e., whenever we change the
size of our hash table.
So what remains is to “turn equation (1) around”, so that it tells us the value of m at which Pr[A] drops
below 1

2 . To do this, let’s take logs: this is a good thing to do because it turns the product into a sum, which
is easier to handle. We get

ln(Pr[A]) = ln
(

1− 1
n

)

+ ln
(

1− 2
n

)

+ · · ·+ ln
(

1− m−1
n

)

, (2)
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where “ln” denotes natural (base e) logarithm. Now we can make use of a standard approximation for
logarithms: namely, if x is small then ln(1− x) ≈−x. This comes from the Taylor series expansion

ln(1− x) = −x− x2

2 − x3

3 − . . . .

So by replacing ln(1−x) by −x we are making an error of at most ( x2

2 + x3

3 + · · · ), which is at most 2x2 when
x ≤ 1

2 . In other words, we have
−x ≥ ln(1− x) ≥−x−2x2.

And if x is small then the error term 2x2 will be much smaller than the main term −x. Rather than carry
around the error term 2x2 everywhere, in what follows we’ll just write ln(1− x) ≈−x, secure in the knowl-
edge that we could make this approximation precise if necessary.
Now let’s plug this approximation into equation (2):

ln(Pr[A]) ≈ −1
n − 2

n − 3
n − . . .− m−1

n

= −1
n

m−1

∑
i=1

i

= −m(m−1)

2n

≈ −m2

2n . (3)

Note that we’ve used the approximation for ln(1−x) with x = 1
n , 2

n , 3
n , . . . , m−1

n . So our approximation should
be good provided all these are small, i.e., provided n is fairly big and m is quite a bit smaller than n. Once
we’re done, we’ll see that the approximation is actually pretty good even for modest sizes of n.
Now we can undo the logs in (3) to get our expression for Pr[A]:

Pr[A] ≈ e−
m2
2n .

The final step is to figure out for what value of m this probability becomes 1
2 . So we want the largest m such

that e−m2
2n ≥ 1

2 . This means we must have

−m2

2n ≥ ln( 1
2 ) = − ln2, (4)

or equivalently

m ≤
√

(2ln 2)n ≈ 1.177
√

n.

So the bottom line is that we can hash approximately m = b1.177
√

nc keys before the probability of a colli-
sion reaches 1

2 .
Recall that our calculation was only approximate; so we should go back and get a feel for how much error
we made. We can do this by using equation (1) to compute the exact value m = m0 at which Pr[A] drops
below 1

2 , for a few sample values of n. Then we can compare these values with our estimate m = 1.177
√

n.

n 10 20 50 100 200 365 500 1000 104 105 106

1.177
√

n 3.7 5.3 8.3 11.8 16.6 22.5 26.3 37.3 118 372 1177
exact m0 4 5 8 12 16 22 26 37 118 372 1177
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From the table, we see that our approximation is very good even for small values of n. When n is large, the
error in the approximation becomes negligible.

Why 1
2 ?

Our hashing question asked when the probability of a collision rises to 1
2 . Is there anything special about 1

2 ?
Not at all. What we did was to (approximately) compute Pr[A] (the probability of no collision) as a function
of m, and then find the largest value of m for which our estimate is smaller than 1

2 . If instead we were
interested in keeping the collision probability below (say) 0.05 (= 5%), we would just replace 1

2 by 0.95 in
equation (4). If you work through the last piece of algebra again, you’ll see that this gives us the critical
value m =

√

(2ln(20/19))n ≈ 0.32
√

n, which of course is a bit smaller than before because our collision
probability is now smaller. But no matter what “confidence” probability we specify, our critical value of m
will always be c

√
n for some constant c (which depends on the confidence).

The birthday paradox revisited

Recall from a previous lecture the birthday “paradox”: what is the probability that, in a group of m people,
no two people have the same birthday? The problem we have solved above is essentially just a generalization
of the birthday problem: the bins are the birthdays and the balls are the people, and we want the probability
that there is no collision. The above table at n = 365 tells us for what value of m this probability drops
below 1

2 : namely, 23.

Application 2: Load balancing

One of the most pressing practical issues in distributed computing is how to spread the workload in a
distributed system among its processors. This is a huge question, still very much unsolved in general. Here
we investigate an extremely simple scenario that is both fundamental in its own right and also establishes a
baseline against which more sophisticated methods should be judged.
Suppose we have m identical jobs and n identical processors. Our task is to assign the jobs to the processors
in such a way that no processor is too heavily loaded. Of course, there is a simple optimal solution here: just
divide up the jobs as evenly as possible, so that each processor receives either d m

n e or bm
n c jobs. However, this

solution requires a lot of centralized control, and/or a lot of communication: the workload has to be balanced
evenly either by a powerful centralized scheduler that talks to all the processors, or by the exchange of many
messages between jobs and processors. This kind of operation is very costly in most distributed systems.
The question therefore is: What can we do with little or no overhead in scheduling and communication cost?
The first idea that comes to mind here is. . . balls and bins! I.e., each job simply selects a processor uniformly
at random and independently of all others, and goes to that processor. (Make sure you believe that the
probability space for this experiment is the same as the one for balls and bins.) This scheme requires no
communication. However, presumably it won’t in general achieve an optimal balancing of the load. Let X
be the maximum loading of any processor under our randomized scheme. Note that X isn’t a fixed number:
its value depends on the outcome of our balls and bins experiment.2 So, as designers or users of this load
balancing scheme, what should be our question?

Q: Find the smallest value k such that
Pr[X ≥ k] ≤ 1

2 .

2In fact, X is called a random variable: we’ll define this properly in the next lecture.
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If we have such a value k, then we’ll know that, with good probability (at least 1
2 ), the maximum load on

any processor in our system won’t exceed k. This will give us a good idea about the performance of the
system. Of course, as with our hashing application, there’s nothing special about the value 1

2 : we’re just
using this for illustration. As you can check later, essentially the same analysis can be used to find k such
that Pr[X ≥ k] ≤ 0.05 (i.e., 95% confidence), or any other value we like. Indeed, we can even find the k’s for
several different confidence levels and thus build up a more detailed picture of the behavior of the scheme.
To simplify our problem, we’ll also assume from now on that m = n (i.e., the number of jobs is the same as
the number of processors). With a bit more work, we could generalize our analysis to other values of m.
From Application 1 we know that we get collisions already when m ≈ 1.177

√
n. So when m = n the

maximum load will certainly be larger than 1 (with good probability). But how large will it be? If we try to
analyze the maximum load directly, we run into the problem that it depends on the number of jobs at every
processor (or equivalently, the number of balls in every bin). Since the load in one bin depends on those in
the others, this becomes very tricky. Instead, what we’ll do is analyze the load in any one bin, say bin 1; this
will be fairly easy. Call the load in bin 1 X1 (another random variable). What we’ll do is find k such that

Pr[X1 ≥ k] ≤ 1
2n . (5)

Since all the bins are identical, we will then know that, for the same k,

Pr[Xi ≥ k] ≤ 1
2n for i = 1,2, . . . ,n,

where Xi is the load in bin i. But now, since the event X ≥ k is exactly the union of the events Xi ≥ k (why?),
we can use the “Union Bound” from the previous lecture:

Pr[X ≥ k] = Pr[
⋃n

i=1(Xi ≥ k)]
≤ ∑n

i=1 Pr[Xi ≥ k]
= n× 1

2n
= 1

2 .

It’s worth standing back to notice what we did here: we wanted to conclude that Pr[A] ≤ 1
2 , where A is

the event that X ≥ k. We couldn’t analyze A directly, but we knew that A =
⋃n

i=1 Ai, for much simpler
events Ai (namely, Ai is the event that Xi ≥ k). Since there are n events Ai, and all have the same probability,
it is enough for us to show that Pr[Ai] ≤ 1

2n ; the union bound then guarantees that Pr[A] ≤ 1
2 . This kind of

reasoning is very common in applications of probability in Computer Science.
Now let’s get back to our problem. Recall that we’ve reduced our task to finding k such that

Pr[X1 ≥ k] ≤ 1
2n ,

where X1 is the load in bin 1. It’s not hard to write down an exact expression for Pr[X1 = j], the probability
that the load in bin 1 is precisely j:

Pr[X1 = j] =

(

n
j

)

(1
n
) j (1− 1

n
)n− j

. (6)

This can be seen by viewing each ball as a biased coin toss: Heads corresponds to the ball landing in bin 1,
Tails to all other outcomes. So the Heads probability is 1

n ; and all coin tosses are (mutually) independent.
As we saw in earlier lectures, (6) gives the probability of exactly j Heads in n tosses.
Thus we have

Pr[X1 ≥ k] =
n
∑
j=k

Pr[X1 = j] =
n
∑
j=k

(

n
j

)

( 1
n
) j (1− 1

n
)n− j

. (7)
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Now in some sense we are done: we could try plugging values k = 1,2, . . . into (7) until the probability drops
below 1

2n . However, as in the hashing example, it will be much more useful if we can massage equation (7)
into a cleaner form from which we can read off the value of k more directly. So once again we need to do a
few calculations and approximations:

Pr[X1 ≥ k] =
n

∑
j=k

(

n
j

)

(1
n
) j (1− 1

n
)n− j

≤
n
∑
j=k

(

ne
j

) j
( 1

n
) j

=
n

∑
j=k

(

e
j

) j
(8)

In the second line here, we used the standard approximation3 ( n
j )

j ≤
(n

j
)

≤ ( ne
j ) j , and we also tossed away

the (1− 1
n )n− j term. It will turn out that we didn’t lose too much by doing these things.

Now we’re already down to a much cleaner form in (8). To finish up, we just need to sum the series. Again,
we’ll make an approximation to simplify our task, and hope that it doesn’t cost us too much. The terms in
the series in (8) go down at each step by a factor of at least e

k . So we can bound the series by a geometric
series, which is easy to sum:

n

∑
j=k

(

e
j

) j
≤

( e
k
)k

(

1+ e
k +

( e
k
)2

+ · · ·
)

≤ 2
( e

k
)k

, (9)

where the second inequality holds provided we assume that k ≥ 2e (which it will be, as we shall see in a
moment).
So what we have now shown is the following:

Pr[X1 ≥ k] ≤ 2
( e

k
)k (10)

(provided k ≥ 2e). Note that, even though we have made a few approximations, inequality (10) is completely
valid: all our approximations were “≤”, so we always have an upper bound on Pr[X1 ≥ k]. [You should go
back through all the steps and check this.]
Recall from (5) that our goal is to make the probability in (10) less than 1

2n . We can ensure this by choosing k
so that

( e
k
)k ≤ 1

4n . (11)
Now we are in good shape: given any value n for the number of jobs/processors, we just need to find the
smallest value k = k0 that satisfies inequality (11). We will then know that, with probability at least 1

2 , the
maximum load on any processor is at most k0. The table below shows the values of k0 for some sample
values of n. It is recommended that you perform the experiment and compare these values of k0 with what
happens in practice.

n 10 20 50 100 500 1000 104 105 106 107 108 1015

exact k0 6 6 7 7 8 8 9 10 11 12 13 19
ln(4n) 3.7 4.4 5.3 6.0 7.6 8.3 10.6 13.9 15.2 17.5 19.8 36

2ln n
ln lnn 5.6 5.4 5.8 6.0 6.8 7.2 8.2 9.4 10.6 11.6 12.6 20

3Computer scientists and mathematicians carry around a little bag of tricks for replacing complicated expressions like
(n

j
)

with
simpler approximations. This is just one of these. It isn’t too hard to prove the lower bound, i.e., that

(n
j
)

≥ ( n
j )

j . The upper bound
is a bit trickier, and makes use of another approximation for n! known as Stirling’s approximation, which implies that j! ≥ ( j

e ) j.
We won’t discuss the details here.
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Can we come up with a formula for k0 as a function of n (as we did for the hashing problem)? Well, let’s
take logs in (11):

k(lnk−1) ≥ ln(4n). (12)

From this, we might guess that k = ln(4n) is a good value for k0. Plugging in this value of k makes the left-
hand side of (12) equal to ln(4n)(ln ln(4n)−1), which is certainly bigger than ln(4n) provided ln ln(4n) ≥ 2,
i.e., n ≥ 1

4 ee2 ≈ 405. So for n ≥ 405 we can claim that the maximum load is (with probability at least 1
2 )

no larger than ln(4n). The table above plots the values of ln(4n) for comparison with k0. As expected, the
estimate is quite good for small n, but becomes rather pessimistic when n is large.
For large n we can do better as follows. If we plug the value k = lnn

ln lnn into the left-hand side of (12), it
becomes

lnn
ln lnn (ln lnn− ln ln lnn−1) = lnn

(

1− ln ln lnn+1
ln lnn

)

. (13)

Now when n is large this is just barely smaller than the right-hand side, ln(4n). Why? — Because the second
term inside the parentheses goes to zero as n → ∞,4 and because ln(4n) = lnn+ ln4, which is very close to
lnn when n is large (since ln4 is a fixed small constant). So we can conclude that, for large values of n, the
quantity lnn

ln lnn should be a pretty good estimate of k0. Actually for this estimate to become good n has to be
(literally) astronomically large. For more civilized values of n, we get a better estimate by taking k = 2ln n

ln lnn .
The extra factor of 2 helps to wipe out the lower order terms (i.e., the second term in the parenthesis in (13)
and the ln4) more quickly. The table above also shows the behavior of this estimate for various values of n.
Finally, here is one punchline from Application 2. Let’s say the total US population is about 250 million.
Suppose we mail 250 million items of junk mail, each one with a random US address. Then (see the above
table) with probability at least 1

2 , no one person anywhere will receive more than about a dozen items!

4To see this, note that it is of the form ln z+1
z where z = ln lnn, and of course lnz

z → 0 as z → ∞.
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