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Some Important Distributions
The first important distribution we learnt in the last lecture note is the binomial distribution Bin(n, p). This
is the distribution of the number of Heads in n tosses of a biased coin with probability p to be Head. Its
expectation is np. In this Note, we explore other important distributions. The next one is also associated
with a coin tossing experiment.

Geometric Distribution
Question: A biased coin with Heads probability p is tossed repeatedly until the first Head appears. What is
the distribution and the expected number of tosses?

As always, our first step in answering the question must be to define the sample space Ω . A moment’s
thought tells us that

Ω = {H,T H,T T H,T T T H, . . .},
i.e., Ω consists of all sequences over the alphabet {H,T} that end with H and contain no other H’s. This is
our first example of an infinite sample space (though it is still discrete).

What is the probability of a sample point, say ω = T T H? Since successive coin tosses are independent (this
is implicit in the statement of the problem), we have

Pr[T T H] = (1− p)× (1− p)× p = (1− p)2 p.

And generally, for any sequence ω ∈ Ω of length i, we have Pr[ω] = (1− p)i−1 p. To be sure everything is
consistent, we should check that the probabilities of all the sample points add up to 1. Since there is exactly
one sequence of each length i≥ 1 in Ω , we have

∑
ω∈Ω

Pr[ω] =
∞

∑
i=1

(1− p)i−1 p = p
∞

∑
i=0

(1− p)i = p× 1
1− (1− p)

= 1,

as expected. [In the second-last step here, we used the formula for summing a geometric series.]

Now let the random variable X denote the number of tosses in our sequence (i.e., X(ω) is the length of ω).
Its distribution has a special name: it is called the geometric distribution with parameter p (where p is the
probability that the coin comes up Heads on each toss).

Definition 14.1 (geometric distribution): A random variable X for which

Pr[X = i] = (1− p)i−1 p for i = 1,2,3, . . .

is said to have the geometric distribution with parameter p. This is abbreviated as X ∼ Geom(p).

If we plot the distribution of X (i.e., the values Pr[X = i] against i) we get a curve that decreases monotoni-
cally by a factor of 1− p at each step. See Figure 1.
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Figure 1: The Geometric distribution.

Our next goal is to compute E(X). Despite the fact that X counts something, there’s no obvious way to write
it as a sum of simple r.v.’s as we did in many examples in an earlier lecture note. (Try it!) In a later lecture,
we will give a slick way to do this calculation. For now, let’ s just dive in and try a direct computation of
E(X). Note that the distribution of X is quite simple:

Pr[X = i] = (1− p)i−1 p for i = 1,2,3, . . .

So from the definition of expectation we have

E(X) = (1× p)+(2× (1− p)p)+(3× (1− p)2 p)+ · · · = p
∞

∑
i=1

i(1− p)i−1.

This series is a blend of an arithmetic series (the i part) and a geometric series (the (1− p)i−1 part). There
are several ways to sum it. Here is one way, using an auxiliary trick (given in the following Theorem) that
is often very useful. [Ask your TA about other ways.]

Theorem 14.1: Let X be a random variable that takes on only non-negative integer values. Then

E(X) =
∞

∑
i=1

Pr[X ≥ i].

Proof: For notational convenience, let’s write pi = Pr[X = i], for i = 0,1,2, . . .. From the definition of
expectation, we have

E(X) = (0× p0)+(1× p1)+(2× p2)+(3× p3)+(4× p4)+ · · ·
= p1 +(p2 + p2)+(p3 + p3 + p3)+(p4 + p4 + p4 + p4)+ · · ·
= (p1 + p2 + p3 + p4 + · · ·)+(p2 + p3 + p4 + · · ·)+(p3 + p4 + · · ·)+(p4 + · · ·)+ · · ·
= Pr[X ≥ 1]+Pr[X ≥ 2]+Pr[X ≥ 3]+Pr[X ≥ 4]+ · · · .

In the third line, we have regrouped the terms into convenient infinite sums. You should check that you
understand how the fourth line follows from the third. [Note that our “. . .” notation here is a little informal,
but the meaning should be clear. We could give a more rigorous, but less clear proof using induction.] 2

Using Theorem 14.1, it is easy to compute E(X). The key observation is that, for our coin-tossing r.v. X ,

Pr[X ≥ i] = (1− p)i−1. (1)
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Why is this? Well, the event “X ≥ i” means that at least i tosses are required. This is exactly equivalent to
saying that the first i−1 tosses are all Tails. And the probability of this event is precisely (1− p)i−1. Now,
plugging equation (1) into Theorem 14.1, we get

E(X) =
∞

∑
i=1

Pr[X ≥ i] =
∞

∑
i=1

(1− p)i−1 =
1

1− (1− p)
=

1
p
.

So, the expected number of tosses of a biased coin until the first Head appears is 1
p . For a fair coin, the ex-

pected number of tosses is 2.

For posterity, let’s record two important facts we’ve learned about the geometric distribution:

Theorem 14.2: For a random variable X having the geometric distribution with parameter p,

1. E(X) = 1
p ; and

2. Pr[X ≥ i] = (1− p)i−1 for i = 1,2, . . ..

The geometric distribution occurs very often in applications because frequently we are interested in how long
we have to wait before a certain event happens: how many runs before the system fails, how many shots
before one is on target, how many poll samples before we find a Democrat, how many retransmissions of a
packet before successfully reaching the destination, etc. The next section discusses a rather more involved
application, which is important in its own right.

The Coupon Collector’s Problem
Question: We are trying to collect a set of n different baseball cards. We get the cards by buying boxes of
cereal: each box contains exactly one card, and it is equally likely to be any of the n cards. How many boxes
do we need to buy until we have collected at least one copy of every card?

The sample space here is similar in flavor to that for our previous coin-tossing example, though rather more
complicated. It consists of all sequences ω over the alphabet {1,2, . . . ,n}, such that

1. ω contains each symbol 1,2, . . . ,n at least once; and

2. the final symbol in ω occurs only once.

[Check that you understand this!] For any such ω , the probability is just Pr[ω] = 1
ni , where i is the length

of ω (why?). However, it is very hard to figure out how many sample points ω are of length i (try it for the
case n = 3). So we will have a hard time figuring out the distribution of the random variable X , which is the
length of the sequence (i.e., the number of boxes bought).

Fortunately, we can compute the expectation E(X) very easily, using (guess what?) linearity of expectation,
plus the fact we have just learned about the expectation of the geometric distribution. As usual, we would
like to write

X = X1 +X2 + . . .+Xn (2)

for suitable simple random variables Xi. But what should the Xi be? A natural thing to try is to make Xi

equal to the number of boxes we buy while trying to get the ith new card (starting immediately after we’ve
got the (i−1)st new card). With this definition, make sure you believe equation (2) before proceeding.

What does the distribution of Xi look like? Well, X1 is trivial: no matter what happens, we always get a new
card in the first box (since we have none to start with). So Pr[X1 = 1] = 1, and thus E(X1) = 1.
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How about X2? Each time we buy a box, we’ll get the same old card with probability 1
n , and a new card with

probability n−1
n . So we can think of buying boxes as flipping a biased coin with Heads probability p = n−1

n ;
then X1 is just the number of tosses until the first Head appears. So X1 has the geometric distribution with
parameter p = n−1

n , and

E(X2) =
n

n−1
.

How about X3? This is very similar to X2 except that now we only get a new card with probability n−2
n (since

there are now two old ones). So X3 has the geometric distribution with parameter p = n−2
n , and

E(X3) =
n

n−2
.

Arguing in the same way, we see that, for i = 1,2, . . . ,n, Xi has the geometric distribution with parameter
p = n−i+1

n , and hence that

E(Xi) =
n

n− i+1
.

Finally, applying linearity of expectation to equation (2), we get

E(X) =
n

∑
i=1

E(Xi) =
n
n

+
n

n−1
+ · · ·+ n

2
+

n
1

= n
n

∑
i=1

1
i
. (3)

This is an exact expression for E(X). We can obtain a tidier form by noting that the sum in it actually has a
very good approximation1, namely:

n

∑
i=1

1
i
≈ lnn+ γ,

where γ = 0.5772 . . . is Euler’s constant.

Thus the expected number of cereal boxes needed to collect n cards is about n(lnn+ γ). This is an excellent
approximation to the exact formula (3) even for quite small values of n. So for example, for n = 100, we
expect to buy about 518 boxes.

The Poisson distribution
Throw n balls into n

λ bins (where λ is a constant). Let X be the number of balls that land in bin 1. Then X
has the binomial distribution with parameters n and p = λ

n , and its expectation is E(X) = np = λ . (Why?)

Let’s look in more detail at the distribution of X (which is a special case of the binomial distribution, in
which the parameter p is of the form λ

n ). For convenience, we’ll write pi = Pr[X = i] for i = 0,1,2, . . ..
Beginning with p0, we have

p0 = Pr[all balls miss bin 1] =
(

1− λ
n

)n

→ e−λ as n→ ∞.

So the probability of no balls landing in bin 1 will be very close to the constant value e−λ when n is large.

What about the other pi? Well, we know from the binomial distribution that pi =
(n

i

)
(λ

n )i(1− λ
n )n−i. Since

we know how p0 behaves, let’s look at the ratio p1
p0

:

p1

p0
=

n× λ
n × (1− λ

n )n−1

(1− λ
n )n

=
λ

1− λ
n

=
nλ

n−λ
→ λ as n→ ∞.

1This is another of the little tricks you might like to carry around in your toolbox.
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[Recall that we are assuming λ is a constant.] So, since p0 → e−λ , we see that p1 → λe−λ as n→ ∞.

Now let’s look at the ratio p2
p1

:

p2

p1
=

(n
2

)× (λ
n )2× (1− λ

n )n−2

n× (λ
n )× (1− λ

n )n−1
=

n−1
2

× λ
n
× 1

(1− λ
n )

=
n−1
n−λ

× λ
2
→ λ

2
as n→ ∞.

So p2 → λ 2

2 e−λ as n→ ∞.

For each value of i, something very similar happens to the ratio pi
pi−1

:

pi

pi−1
=

(n
i

)× (λ
n )i× (1− λ

n )n−i

( n
i−1

)
(λ

n )i−1(1− λ
n )n−i+1

=
n− i+1

i
× λ

n
× n

n−λ
=

n− i+1
n−λ

× λ
i
→ λ

i
as n→ ∞.

Putting this together, we see that, for each fixed value i,

pi → λ i

i!
e−λ as n→ ∞.

[You should check this!] I.e., when n is large compared to i, the probability that exactly i balls fall into bin 1
is very close to λ i

i! e−λ . This motivates the following definition:

Definition 14.2 (Poisson distribution): A random variable X for which

Pr[X = i] =
λ i

i!
e−λ for i = 0,1,2, . . . (4)

is said to have the Poisson distribution with parameter λ . This is abbreviated as X ∼ Poiss(λ ).

To make sure this definition is valid, we had better check that (4) is in fact a distribution, i.e., that the
probabilities sum to 1. We have

∞

∑
i=0

λ i

i!
e−λ = e−λ

∞

∑
i=0

λ i

i!
= e−λ × eλ = 1.

[In the second-last step here, we used the Taylor series expansion ex = 1+ x+ x2

2! + x3

3! + · · · .]
What is the expectation of a Poisson random variable X? This is a simple hands-on calculation, starting
from the definition of expectation:

E(X) = ∑∞
i=0 i×Pr[X = i]

= ∑∞
i=0 i λ i

i! e−λ

= e−λ ∑∞
i=1

λ i

(i−1)!

= λe−λ ∑∞
i=1

λ i−1

(i−1)!

= λe−λ eλ

= λ .

So the expectation of a Poisson r.v. X with parameter λ is E(X) = λ .

A plot of the Poisson distribution reveals a curve that rises monotonically to a single peak and then decreases
monotonically. The peak is as close as possible to the expected value, i.e., at i = bλc.
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We have seen that the Poisson distribution arises as the limit of the number of balls in bin 1 when n balls are
thrown into n

λ bins. In other words, it is the limit of the binomial distribution with parameters n and p = λ
n

as n→ ∞, with λ being a fixed constant.

The Poisson distribution is also a very widely accepted model for so-called “rare events”, such as mis-
connected phone calls, radioactive emissions, crossovers in chromosomes, etc. This model is appropriate
whenever the occurrences can be assumed to happen randomly with some constant density λ in a continuous
region (of time or space), such that occurrences in disjoint subregions are independent. One can then show
that the number of occurrences in a region of unit size should obey the Poisson distribution with parameter λ .

To see this in a concrete setting, suppose we want to model the number of cell phone users initiating calls in
a network during a time period, of duration say 1 minute. There are many paying customers in the network,
and all of them can potentially make a call during this time period. However, only a very small fraction of
them actually will. Under this scenario, it seems reasonable to make two assumptions:

• The probability of having more than 1 customer initiating a call in any small time interval is negligible.

• The initiation of calls in disjoint time intervals are independent events.

Then if we divide the one-minute time period into n disjoint intervals, than the number of calls X in that
time period can be modeled as binomially distributed with parameter n and probability of success p, the
probability of having a call initiated in a time interval of length 1/n. But what should p be in terms of
the relevant parameters of the problem? If calls are initiated at an average rate of λ calls per minute, then
E(X) = λ and so np = λ , i.e. p = λ

n . So X ∼ Bin(n, λ
n ). By choosing n large, it is thus reasonable to model

the number of call initiations during a one-minute period to be Poisson with parameter λ .

Notice that the Poisson distribution arises naturally in (at least) two distinct important contexts. Along with
the binomial and the normal distributions (which we shall meet soon), the Poisson distribution is one of the
three distributions you are most likely to find yourself working with.
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