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I.I.D. Random Variables
Estimating the bias of a coin
Question: We want to estimate the proportion p of Democrats in the US population, by taking a small
random sample. How large does our sample have to be to guarantee that our estimate will be within (say)
10% (in relative terms) of the true value with probability at least 0.95?

This is perhaps the most basic statistical estimation problem, and shows up everywhere. We will develop
a simple solution that uses only Chebyshev’s inequality. More refined methods can be used to get sharper
results.

Let’s denote the size of our sample by n (to be determined), and the number of Democrats in it by the
random variable Sn. (The subscript n just reminds us that the r.v. depends on the size of the sample.) Then
our estimate will be the value An = 1

n Sn.

Now as has often been the case, we will find it helpful to write Sn = X1 + X2 + · · ·+ Xn, where Xi ={
1 if person i in sample is a Democrat;
0 otherwise.

Note that each Xi can be viewed as a coin toss, with Heads probability p (though of course we do not know
the value of p!). And the coin tosses are independent.1

What is the expectation of our estimate?

E(An) = E(1
n Sn) = 1

n E(X1 +X2 + · · ·+Xn) = 1
n × (np) = p.

So for any value of n, our estimate will always have the correct expectation p. [Such a r.v. is often called an
unbiased estimator of p.] Now presumably, as we increase our sample size n, our estimate should get more
and more accurate. This will show up in the fact that the variance decreases with n: i.e., as n increases, the
probability that we are far from the mean p will get smaller.

To see this, we need to compute Var(An). But An = 1
n ∑n

i=1 Xi, which is just a constant times a sum of
independent random variables. So we can compute Var(An) using the technology we established in the last
lecture note:

Var(An) = Var(1
n

n

∑
i=1

Xi) = (1
n)2Var(

n

∑
i=1

Xi) = (1
n)2

n

∑
i=1

Var(Xi) =
σ2

n
,

where we have written σ 2 for the variance of each of the Xi. So we see that the variance of An decreases
linearly with n. This fact ensures that, as we take larger and larger sample sizes n, the probability that we
deviate much from the expectation p gets smaller and smaller.

Let’s now use Chebyshev’s inequality to figure out how large n has to be to ensure a specified accuracy
in our estimate of the proportion of Democrats p. A natural way to measure this is for us to specify two

1We are assuming here that the sampling is done “with replacement”; i.e., we select each person in the sample from the entire
population, including those we have already picked. So there is a small chance that we will pick the same person twice.
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parameters, ε and δ , both in the range (0,1). The parameter ε controls the error we are prepared to tolerate
in our estimate, and δ controls the confidence we want to have in our estimate. A more precise version of
our original question is then the following:

Question: For the Democrat-estimation problem above, how large does the sample size n have to be in order
to ensure that

Pr[|An− p| ≥ ε p]≤ δ ?

In our original question, we had ε = 0.1 and δ = 0.05. Notice that ε measures the relative error, i.e., the
error as a ratio of the target value p. This seems like a more reasonable convention than the absolute error
(based on Pr[|An− p| ≥ ε]). This is because a given absolute error (say, ±0.1) might be quite small in the
context of measuring a large value like p = 0.5, but very large when measuring a small value like p = 0.05.
In contrast, the relative error treats all values of p equally.

Let’s apply Chebyshev’s inequality to answer our more precise question above. Since we know Var(An),
this will be quite simple. From Chebyshev’s inequality, we have

Pr[|An− p| ≥ ε p]≤ Var(An)
(ε p)2 =

σ2

np2ε2 .

To make this less than the desired value δ , we need to set

n≥ σ2

p2 ×
1

ε2δ
. (1)

Now recall that σ2 = Var(Xi) is the variance of a single sample Xi. So, since Xi is a 0/1-valued r.v., we have
σ2 = p(1− p), and inequality (1) becomes

n≥ 1− p
p

× 1
ε2δ

. (2)

Plugging in ε = 0.1 and δ = 0.05, we see that a sample size of n = 2000× 1−p
p is sufficient.

At this point you should be worried. Why? Because our formula for the sample size contains p, and this
is precisely the quantity we are trying to estimate! But we can get around this as follows. We just pick a
value p′ that we know for sure is less than p. (For example, in the Democrats problem we could certainly
take p′ = 1

3 .) Then we use p′ in place of p in equation (2). Since p′ is less than p, this will always lead us to
take at least enough samples (why?). In the Democrats example, with p′ = 1

3 , this means we would take a
sample size of n = 2000×2 = 4000.

Estimating a general expectation
What if we wanted to estimate something a little more complex than the proportion of Democrats in the
population, such as the average wealth of people in the US? Then we could use exactly the same scheme
as above, except that now the r.v. Xi is the wealth of the ith person in our sample. Clearly E(Xi) = µ , the
average wealth (which is what we are trying to estimate). And our estimate will again be An = 1

n ∑n
i=1 Xi, for

a suitably chosen sample size n. Once again the Xi are i.i.d. random variables2, so we again have E(An) = µ
and Var(An) = σ2

n , where σ 2 = Var(Xi) is the variance of the Xi. (Recall that the only facts we used about
the Xi was that they were independent and had the same distribution — actually the same expectation and
variance would be enough: why?)

2The standard acronym “i.i.d.” stands for “independent, identically distributed.”
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From equation (1), it is enough for the sample size n to satisfy

n≥ σ2

µ2 ×
1

ε2δ
. (3)

Here ε and δ are the desired error and confidence respectively, as before. Now of course we don’t know the
other two quantities, µ and σ2, appearing in equation (3). In practice, we would use a lower bound on µ
and an upper bound on σ 2 (just as we used a lower bound on p in the Democrats problem). Plugging these
bounds into equation (3) will ensure that our sample size is large enough.

For example, in the average wealth problem we could probably safely take µ to be at least (say) $20k
(probably more). However, the existence of people such as Bill Gates means that we would need to take
a very high value for the variance σ2. Indeed, if there is at least one individual with wealth $50 billion,
then assuming a relatively small value of µ means that the variance must be at least about (50×109)2

250×106 = 1013.

(Check this.) However, this individual’s contribution to the mean is only 50×109

250×106 = 200. There is really no
way around this problem with simple uniform sampling: the uneven distribution of wealth means that the
variance is inherently very large, and we will need a huge number of samples before we are likely to find
anybody who is immensely wealthy. But if we don’t include such people in our sample, then our estimate
will be way too low.

As a further example, suppose we are trying to estimate the average rate of emission from a radioactive
source, and we are willing to assume that the emissions follow a Poisson distribution with some unknown
parameter λ — of course, this λ is precisely the expectation we are trying to estimate. Now in this case we
have µ = λ and also σ 2 = λ (see the previous lecture note). So σ2

µ2 = 1
λ . Thus in this case a sample size of

n = 1
λε2δ suffices. (Again, in practice we would use a lower bound on λ .)

The Law of Large Numbers
The estimation method we used in the previous two sections is based on a principle that we accept as part
of everyday life: namely, the Law of Large Numbers (LLN). This asserts that, if we observe some random
variable many times, and take the average of the observations, then this average will converge to a single
value, which is of course the expectation of the random variable. In other words, averaging tends to smooth
out any large fluctuations, and the more averaging we do the better the smoothing.

Theorem 17.1: [Law of Large Numbers] Let X1,X2, . . . ,Xn be i.i.d. random variables with common expec-
tation µ = E(Xi). Define An = 1

n ∑n
i=1 Xi. Then for any α > 0, we have

Pr [|An−µ| ≥ α]→ 0 as n→ ∞.

Proof: Let Var(Xi) = σ 2 be the common variance of the r.v.’s; we assume that σ 2 is finite3. With this
(relatively mild) assumption, the LLN is an immediate consequence of Chebyshev’s Inequality. For, as we
have seen above, E(An) = µ and Var(An) = σ2

n , so by Chebyshev we have

Pr [|An−µ| ≥ α]≤ Var(An)
α2 =

σ2

nα2 → 0 as n→ ∞.

This completes the proof. 2

3If σ2 is not finite, the LLN still holds but the proof is much trickier.
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Notice that the LLN says that the probability of any deviation α from the mean, however small, tends to
zero as the number of observations n in our average tends to infinity. Thus by taking n large enough, we can
make the probability of any given deviation as small as we like.
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