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A Brief Introduction to Continuous Probability
Up to now we have focused exclusively on discrete probability spaces Ω, where the number of sample points
ω ∈Ω is either finite or countably infinite (such as the integers). As a consequence we have only been able
to talk about discrete random variables, which take on only a finite (or countably infinite) number of values.

But in real life many quantities that we wish to model probabilistically are real-valued; examples include
the position of a particle in a box, the time at which an certain incident happens, or the direction of travel
of a meteorite. In this lecture, we discuss how to extend the concepts we’ve seen in the discrete setting to
this continuous setting. As we shall see, everything translates in a natural way once we have set up the right
framework. The framework involves some elementary calculus but (at this level of discussion) nothing too
scary.

Continuous uniform probability spaces
Suppose we spin a “wheel of fortune” and record the position of the pointer on the outer circumference of
the wheel. Assuming that the circumference is of length ` and that the wheel is unbiased, the position is
presumably equally likely to take on any value in the real interval [0, `]. How do we model this experiment
using a probability space?

Consider for a moment the (almost) analogous discrete setting, where the pointer can stop only at a finite
number m of positions distributed evenly around the wheel. (If m is very large, then presumably this is in
some sense similar to the continuous setting.) Then we would model this situation using the discrete sample
space Ω = {0, `

m , 2`
m , . . . , (m−1)`

m }, with uniform probabilities Pr[ω] = 1
m for each ω ∈ Ω. In the continuous

world, however, we get into trouble if we try the same approach. If we let ω range over all real numbers
in [0, `], what value should we assign to each Pr[ω]? By uniformity this probability should be the same for
all ω , but then if we assign to it any positive value, the sum of all probabilities Pr[ω] for ω ∈ Ω will be ∞!
Thus Pr[ω] must be zero for all ω ∈ Ω. But if all of our sample points have probability zero, then we are
unable to assign meaningful probabilities to any events!

To rescue this situation, consider instead any non-empty interval [a,b] ⊆ [0, `]. Can we assign a non-zero
probability value to this interval? Since the total probability assigned to [0, `] must be 1, and since we want
our probability to be uniform, the logical value for the probability of interval [a,b] is

length of [a,b]
length of [0, `]

=
b−a

`
.

In other words, the probability of an interval is proportional to its length.

Note that intervals are subsets of the sample space Ω and are therefore events. So in continuous probability,
we are assigning probabilities to certain basic events, in contrast to discrete probability, where we assigned
probability to points in the sample space. But what about probabilities of other events? Actually, by speci-
fying the probability of intervals we have also specified the probability of any event E which can be written
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as the disjoint union of (a finite or countably infinite number of) intervals, E = ∪iEi. For then we can write
Pr[E] = ∑i Pr[Ei], in analogous fashion to the discrete case. Thus for example the probability that the pointer
ends up in the first or third quadrants of the wheel is `/4

` + `/4
` = 1

2 . For all practical purposes, such events
are all we really need.1

Continuous random variables
Recall that in the discrete setting we typically work with random variables and their distributions, rather than
directly with probability spaces and events. The simplest example of a continuous random variable is the
position X of the pointer in the wheel of fortune, as discussed above. This random variable has the uniform
distribution on [0, `]. How, precisely, should we define the distribution of a continuous random variable?
In the discrete case the distribution of a r.v. X is described by specifying, for each possible value a, the
probability Pr[X = a]. But for the r.v. X corresponding to the position of the pointer, we have Pr[X = a] = 0
for every a, so we run into the same problem as we encountered above in defining the probability space.

The resolution is essentially the same: instead of specifying Pr[X = a], we instead specify Pr[a≤ X ≤ b] for
all intervals [a,b]2. To do this formally, we need to introduce the concept of a probability density function
(sometimes referred to just as a “density”, or a “pdf”).

Definition 18.1 (Density): A probability density function for a random variable X is a function f : R→ R
satisfying

Pr[a≤ X ≤ b] =
∫ b

a
f (x)dx for all a≤ b.

Let’s examine this definition. Note that the definite integral is just the area under the curve f between the
values a and b. Thus f plays a similar role to the “histogram” we sometimes draw to picture the distribution
of a discrete random variable.

In order for the definition to make sense, f must obey certain properties. Some of these are technical in
nature, which basically just ensure that the integral is always well defined; we shall not dwell on this issue
here since all the densities that we will meet will be well behaved. What about some more basic properties
of f ? First, it must be the case that f is a non-negative function; for if f took on negative values we could
find an interval in which the integral is negative, so we would have a negative probability for some event!
Second, since the r.v. X must take on some value everywhere in the space, we must have

∫ ∞

−∞
f (x)dx = Pr[−∞ < X < ∞] = 1. (1)

I.e., the total area under the curve f must be 1.

A caveat is in order here. Following the “histogram” analogy above, it is tempting to think of f (x) as a
“probability.” However, f (x) doesn’t itself correspond to the probability of anything! For one thing, there
is no requirement that f (x) be bounded by 1 (and indeed, we shall see examples of densities in which f (x)
is greater than 1 for some x). To connect f (x) with probabilities, we need to look at a very small interval
[x,x+δ ] close to x; then we have

Pr[x≤ X ≤ x+δ ] =
∫ x+δ

x
f (z)dz≈ δ f (x). (2)

1A formal treatment of which events can be assigned a well-defined probability requires a discussion of measure theory, which
is beyond the scope of this course.

2Note that it does not matter whether or not we include the endpoints a,b; since Pr[X = a] = Pr[X = b] = 0, we have Pr[a < X <
b] = Pr[a≤ X ≤ b].
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Thus we can interpret f (x) as the “probability per unit length” in the vicinity of x.

Now let’s go back and put our wheel-of-fortune r.v. X into this framework. What should be the density
of X? Well, we want X to have non-zero probability only on the interval [0, `], so we should certainly have
f (x) = 0 for x < 0 and for x > `. Within the interval [0, `] we want the distribution of X to be uniform, which
means we should take f (x) = c for 0 ≤ x ≤ `. What should be the value of c? This is determined by the
requirement (1) that the total area under f is 1. The area under the above curve is

∫ ∞
−∞ f (x)dx =

∫ `
0 cdx = c`,

so we must take c = 1
` . Summarizing, then, the density of the uniform distribution on [0, `] is given by

f (x) =





0 for x < 0;
1/` for 0≤ x≤ `;
0 for x > `.

Expectation and variance of a continuous random variable
By analogy with the discrete case, we define the expectation of a continuous r.v. as follows:

Definition 18.2 (Expectation): The expectation of a continuous random variable X with probability density
function f is

E(X) =
∫ ∞

−∞
x f (x)dx.

Note that the integral plays the role of the summation in the discrete formula E(X) = ∑a aPr[X = a].

Example: Let X be a uniform r.v. on the interval [0, `]. Then

E(X) =
∫ `

0
x

1
`

dx =
[

x2

2`

]`

0
=

`

2
.

This is certainly what we would expect!

We will see more examples of expectations of continuous r.v.’s in the next section.

Since variance is really just another expectation, we can immediately port its definition to the continuous
setting as well:

Definition 18.3 (Variance): The variance of a continuous random variable X with probability density
function f is

Var(X) = E((X−E(X))2) = E(X2)−E(X)2 =
∫ ∞

−∞
x2 f (x)dx −

(∫ ∞

−∞
x f (x)dx

)2

.

Example: Let’s calculate the variance of the uniform r.v. X on the interval [0, `]. From the above definition,
and plugging in our previous value for E(X), we get

Var(X) =
∫ `

0
x2 1

`
dx−E(X)2 =

[
x3

3`

]`

0
−

(
`

2

)2

=
`2

3
− `2

4
=

`2

12
.

The factor of 1
12 here is not particularly intuitive, but the fact that the variance is proportional to `2 should

come as no surprise. Like its discrete counterpart, this distribution has large variance.
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An application: Buffon’s needle
Here is a simple application of continuous random variables to the analysis of a classical procedure for
estimating the value of π known as Buffon’s needle, after its 18th century inventor Georges-Louis Leclerc,
Comte de Buffon.

Here we are given a needle of length `, and a board ruled with horizontal lines at distance ` apart. The
experiment consists of throwing the needle randomly onto the board and observing whether or not it crosses
one of the lines. We shall see below that (assuming a perfectly random throw) the probability of this event is
exactly 2/π . This means that, if we perform the experiment many times and record the proportion of throws
on which the needle crosses a line, then the Law of Large Numbers (Lecture 16) tells us that we will get a
good estimate of the quantity 2/π , and therefore also of π .

To analyze the experiment, we first need to specify the probability space. Let’s go straight to random
variables. Note that the position where the needle lands is completely specified by two random variables:
the vertical distance Y between the midpoint of the needle and the closest horizontal line, and the angle Θ
between the needle and the vertical. The r.v. Y ranges between 0 and `/2, while Θ ranges between −π/2
and π/2. Since we assume a perfectly random throw, we may assume that their joint distribution has density
f (y,θ) that is uniform over the rectangle [0, `/2]× [−π/2,π/2]. Since this rectangle has area π`

2 , the density
should be

f (y,θ) =

{
2/π` for (y,θ) ∈ [0, `/2]× [−π/2,π/2];
0 otherwise.

(3)

As a sanity check, let’s verify that the integral of this density over all possible values is indeed 1:

∫ ∞

−∞

∫ ∞

−∞
f (y,θ)dydθ =

∫ π/2

−π/2

∫ `/2

0

2
π`

dydθ =
∫ π/2

−π/2

[
2y
π`

]`/2

0
dθ =

∫ π/2

−π/2

1
π

dθ =
[

1θ
π

]π/2

π/2
= 1.

This is an analog of equation (1) for our joint distribution; rather than the area under the simple curve f (x),
we are now computing the area under the “surface” f (y,θ). But of course the result should again be the total
probability mass, which is 1.

Now let E denote the event that the needle crosses a line. How can we express this event in terms of the
values of Y and Θ? Well, by elementary geometry the vertical distance of the endpoint of the needle from
its midpoint is `

2 cosΘ, so the needle will cross the line if and only if Y ≤ `
2 cosΘ. Therefore we have

Pr[E] = Pr[Y ≤ `
2 cosΘ] =

∫ π/2

−π/2

∫ (`/2)cosθ

0
f (y,θ)dydθ .
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Substituting the density f (y,θ) from equation (3) and performing the integration we get

Pr[E] =
∫ π/2

−π/2

∫ (`/2)cosθ

0

2
π`

dydθ

=
∫ π/2

−π/2

[
2y
π`

](`/2)cosθ

0
dθ

=
∫ π/2

−π/2

2
π`

`

2
cosθdθ

=
1
π

∫ π/2

−π/2
cosθdθ

=
1
π

[sinθ ]π/2
−π/2

=
2
π

.

This is exactly what we claimed at the beginning of the section!

Joint distribution and independence for continuous random variables
In analyzing the Buffon’s needle problem, we used the notion of joint density of two continuous random
variables without formally defining the concept. But its definition should be obvious at this point:

Definition 18.4 (Joint Density): A joint density function for two random variable X and Y is a function
f : R2 → R satisfying

Pr[a≤ X ≤ b,c≤ Y ≤ d] =
∫ d

c

∫ b

a
f (x,y)dxdy for all a≤ b and c≤ d.

So in the previous example, a uniform joint density on the rectangle [0, `/2]× [−π/2,π/2] simply means
that the probability of landing in any small rectangle in that rectangle is proportional to the area of the small
rectangle.

In analogy with (2), we can connect f (x,y) with probabilities by looking at a very small square [x,x+δ ]×
[y,y+δ ] close to (x,y); then we have

Pr[x≤ X ≤ x+δ ,y≤ Y ≤ y+δ ] =
∫ y+δ

y

∫ x+δ

x
f (u,v)dudv≈ δ 2 f (x,y). (4)

Thus we can interpret f (x,y) as the “probability per unit area” in the vicinity of (x,y).

Recall that in discrete probability, two r.v.’s X and Y are said to be independent if the events X = a and Y = c
are independent for every a,c. What about for continuous r.v.’s?

Definition 18.5 (Independence for Continuous R.V.’s): Two continuous r.v.’s X ,Y are independent if the
events a≤ X ≤ b and c≤ Y ≤ d are independent for all a,b,c,d.

What does this definition say about the joint density of independent r.v.’s X and Y ? Applying (4) to connect
the joint density with probabilities, we get, for small δ :

δ 2 f (x,y) ≈ Pr[x≤ X ≤ x+δ ,y≤ Y ≤ y+δ ]
= Pr[x≤ X ≤ x+δ ]Pr[y≤ Y ≤ y+δ ]
≈ δ f1(x)×δ f2(y) = δ 2 f1(x) f2(y),
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where f1 and f2 are the (marginal) densities of X and Y respectively. So for independent r.v.’s, the joint
density is the product of the marginal densities (cf. the discrete case, where joint distributions are the product
of the marginals).

In the Buffon’s needle problem, it is easy to check that Y and Θ are independent r.v.’s , each of which is
uniformly distributed in its respective range.

Two more important continuous distributions
We have already seen one important continuous distribution, namely the uniform distribution. In this section
we will see two more: the exponential distribution and the normal (or Gaussian) distribution. These three
distributions cover the vast majority of continuous random variables arising in applications.

Exponential distribution: The exponential distribution is a continuous version of the geometric distribu-
tion, which we have already met. Recall that the geometric distribution describes the number of tosses of a
coin until the first Head appears; the distribution has a single parameter p, which is the bias (Heads proba-
bility) of the coin. Of course, in real life applications we are usually not waiting for a coin to come up Heads
but rather waiting for a system to fail, a clock to ring, an experiment to succeed etc.

In such applications we are frequently not dealing with discrete events or discrete time, but rather with
continuous time: for example, if we are waiting for an apple to fall off a tree, it can do so at any time at
all, not necessarily on the tick of a discrete clock. This situation is naturally modeled by the exponential
distribution, defined as follows:

Definition 18.6 (Exponential distribution): For any λ > 0, a continuous random variable X with pdf f
given by

f (x) =

{
λe−λx if x≥ 0;
0 otherwise.

is called an exponential random variable with parameter λ .

Like the geometric, the exponential distribution has a single parameter λ , which characterizes the rate at
which events happen. We shall illuminate the connection between the geometric and exponential distribu-
tions in a moment.

First, let’s do some basic computations with the exponential distribution. We should check first that it is a
valid distribution, i.e., that it satisfies (1):

∫ ∞

−∞
f (x)dx =

∫ ∞

0
λe−λxdx =

[−e−λx]∞
0 = 1,

as required. Next, what is its expectation? We have

E(X) =
∫ ∞

−∞
x f (x)dx =

∫ ∞

0
λxe−λxdx =

[−xe−λx]∞
0 +

∫ ∞

0
e−λxdx = 0+

[
−e−λx

λ

]∞

0

=
1
λ

,

where for the first integral we used integration by parts.

To compute the variance, we need to evaluate

E(X2) =
∫ ∞

−∞
x2 f (x)dx =

∫ ∞

0
λx2e−λxdx =

[−x2e−λx]∞
0 +

∫ ∞

0
2xe−λxdx = 0+

2
λ

E(X) =
2

λ 2 ,

where again we used integration by parts. The variance is therefore

Var(X) = E(X2)−E(X)2 =
2

λ 2 −
1

λ 2 =
1

λ 2 .
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Let us now explore the connection with the geometric distribution. Note first that the exponential distribution
satisfies, for any t ≥ 0,

Pr[X > t] =
∫ ∞

t
λe−λxdx =

[−e−λx]∞
t = e−λ t . (5)

In other words, the probability that we have to wait more than time t for our event to happen is e−λ t , which
is a geometric decay with rate λ .

Now consider a discrete-time setting in which we perform one trial every δ seconds (where δ is very small—
in fact, we will take δ → 0 to make time “continuous”), and where our success probability is p = λδ . Making
the success probability proportional to δ makes sense, as it corresponds to the natural assumption that there
is a fixed rate of success per unit time, which we denote by λ = p/δ . The number of trials until we get a
success has the geometric distribution with parameter p, so if we let the r.v. Y denote the time (in seconds)
until we get a success we have

Pr[Y > kδ ] = (1− p)k = (1−λδ )k for any k ≥ 0.

Hence, for any t > 0, we have

Pr[Y > t] = Pr[Y > ( t
δ )δ ] = (1−λδ )t/δ ≈ e−λ t ,

where this final approximation holds in the limit as δ → 0 with λ = p/δ fixed. (We are ignoring the detail
of rounding t

δ to an integer since we are taking an approximation anyway.)

Comparing this expression with (5) we see that this distribution has the same form as the exponential dis-
tribution with parameter λ , where λ (the success rate per unit time) plays an analogous role to p (the
probability of success on each trial)—though note that λ is not constrained to be ≤ 1. Thus we may view
the exponential distribution as a continuous time analog of the geometric distribution.

Normal Distribution: The last continuous distribution we will look at, and by far the most prevalent in
applications, is called the normal or Gaussian distribution. It has two parameters, µ and σ .

Definition 18.7 (Normal distribution): For any µ and σ > 0, a continuous random variable X with pdf f
given by

f (x) =
1√

2πσ2
e−(x−µ)2/2σ2

is called a normal random variable with parameters µ and σ . In the special case µ = 0 and σ = 1, X is said
to have the standard normal distribution.

A plot of the pdf f reveals a classical “bell-shaped” curve, centered at (and symmetric around) x = µ , and
with “width” determined by σ . (The precise meaning of this latter statement will become clear when we
discuss the variance below.)

Let’s run through the usual calculations for this distribution. First, let’s check equation (1):
∫ ∞

−∞
f (x)dx =

1√
2πσ2

∫ ∞

−∞
e−(x−µ)2/2σ2

= 1. (6)

The fact that this integral evaluates to 1 is a routine exercise in integral calculus, and is left as an exercise
(or feel free to look it up in any standard book on probability or on the internet).

What are the expectation and variance of a normal r.v. X? Let’s consider first the standard normal. By
definition, its expectation is

E(X) =
∫ ∞

−∞
x f (x)dx =

1√
2π

∫ ∞

−∞
xe−x2/2dx =

1√
2π

(∫ 0

−∞
xe−x2/2dx+

∫ ∞

0
xe−x2/2dx

)
= 0.
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The last step follows from the fact that the function e−x2/2 is symmetrical about x = 0, so the two integrals
are the same except for the sign. For the variance, we have

Var(X) = E(X2)−E(X)2 =
1√
2π

∫ ∞

−∞
x2e−x2/2dx

=
1√
2π

[−xe−x2/2]∞
−∞ +

1√
2π

∫ ∞

−∞
e−x2/2dx

=
1√
2π

∫ ∞

−∞
e−x2/2dx = 1.

In the first line here we used the fact that E(X) = 0; in the second line we used integration by parts; and in
the last line we used (6) in the special case µ = 0, σ = 1. So the standard normal distribution has expectation
E(X) = 0 = µ and variance Var(X) = 1 = σ 2.

Now suppose X has normal distribution with general parameters µ,σ . We claim that the r.v. Y = X−µ
σ has

the standard normal distribution. To see this, note that

Pr[a≤ Y ≤ b] = Pr[σa+ µ ≤ X ≤ σb+ µ] =
1√

2πσ2

∫ σb+µ

σa+µ
e−(x−µ)2/2σ2

dx =
1√
2π

∫ b

a
e−y2/2dy,

by a simple change of variable in the integral. Hence Y is indeed standard normal. Note that Y is obtained
from X just by shifting the origin to µ and scaling by σ . (And we shall see in a moment that µ is the mean
and σ the standard deviation, so this operation is very natural.)

Now we can read off the expectation and variance of X from those of Y . For the expectation, using linearity,
we have

0 = E(Y ) = E
(

X−µ
σ

)
=

E(X)−µ
σ

,

and hence E(X) = µ . For the variance we have

1 = Var(Y ) = Var
(

X−µ
σ

)
=

Var(X)
σ 2 ,

and hence Var(X) = σ2.

The bottom line, then, is that the normal distribution has expectation µ and variance σ2. (This explains the
notation for the parameters µ , σ .)

The fact that the variance is σ2 (so that the standard deviation is σ ) explains our earlier comment that σ
determines the “width” of the normal distribution. Namely, by Chebyshev’s inequality, a constant fraction
of the distribution lies within distance (say) 2σ of the expectation µ .

Note: The above analysis shows that, by means of a simple origin shift and scaling, we can relate any normal
distribution to the standard normal. This means that, when doing computations with normal distributions,
it’s enough to do them for the standard normal. For this reason, books and online sources of mathematical
formulas usually contain tables describing the density of the standard normal. From this, one can read off
the corresponding information for any normal r.v. X with parameters µ,σ 2, from the formula

Pr[X ≤ a] = Pr[Y ≤ a−µ
σ ],

where Y is standard normal.

The normal distribution is ubiquitous throughout the sciences and the social sciences, because it is the
standard model for any aggregate data that results from a large number of independent observations of the
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same random variable (such as the heights of females in the US population, or the observational error in a
physical experiment). Such data, as is well known, tends to cluster around its mean in a “bell-shaped” curve,
with the correspondence becoming more accurate as the number of observations increases. A theoretical
explanation of this phenomenon is the Central Limit Theorem, which we next discuss.

The Central Limit Theorem
Recall from Lecture Note 17 the Law of Large Numbers for i.i.d. r.v.’s Xi’s: it says that the probability of
any deviation α of the sample average An := 1

n ∑n
i=1 Xi from the mean, however small, tends to zero as the

number of observations n in our average tends to infinity. Thus by taking n large enough, we can make the
probability of any given deviation as small as we like.

Actually we can say something much stronger than the Law of Large Numbers: namely, the distribution of
the sample average An, for large enough n, looks like a normal distribution with mean µ and variance σ2

n .
(Of course, we already know that these are the mean and variance of An; the point is that the distribution
becomes normal.) The fact that the standard deviation decreases with n (specifically, as σ√

n ) means that the
distribution approaches a sharp spike at µ .

Recall from last section that the density of the normal distribution is a symmetrical bell-shaped curve cen-
tered around the mean µ . Its height and width are determined by the standard deviation σ as follows: the
height at the mean is about 0.4/σ ; 50% of the mass is contained in the interval of width 0.67σ either side of
the mean, and 99.7% in the interval of width 3σ either side of the mean. (Note that, to get the correct scale,
deviations are on the order of σ rather than σ2.)

To state the Central Limit Theorem precisely (so that the limiting distribution is a constant rather than
something that depends on n), we shift the mean of An to 0 and scale it so that its variance is 1, i.e., we
replace An by

A′n =
(An−µ)

√
n

σ
=

Sn−nµ
σ
√

n
.

The Central Limit Theorem then says that the distribution of A′n converges to the standard normal distribu-
tion.

Theorem 18.1: [Central Limit Theorem] Let X1,X2, . . . ,Xn be i.i.d. random variables with common
expectation µ = E(Xi) and variance σ 2 = Var(Xi) (both assumed to be < ∞). Define A′n = ∑n

i=1 Xi−nµ
σ
√

n . Then
as n → ∞, the distribution of A′n approaches the standard normal distribution in the sense that, for any
real α ,

Pr[A′n ≤ α]→ 1√
2π

∫ α

−∞
e−x2/2dx as n→ ∞.

The Central Limit Theorem is a very striking fact. What it says is the following. If we take an average
of n observations of absolutely any r.v. X , then the distribution of that average will be a bell-shaped curve
centered at µ = E(X). Thus all trace of the distribution of X disappears as n gets large: all distributions,
no matter how complex,3 look like the Normal distribution when they are averaged. The only effect of the
original distribution is through the variance σ2, which determines the width of the curve for a given value
of n, and hence the rate at which the curve shrinks to a spike.

In class, we saw experimentally how the distribution of An behaves for increasing values of n, when the Xi

have the geometric distribution with parameter 1
6 .

3We do need to assume that the mean and variance of X are finite.
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