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Randomized algorithms: a virtual chapter
Surprisingly—almost paradoxically—some of the fastest andmost clever algorithms we have
rely on chance: at specified steps they proceed according to the outcomes of random coin
tosses. These randomized algorithms are often very simple and elegant, and their output is
correct with high probability. This success probability does not depend on the randomness
of the input; it only depends on the random choices made by the algorithm itself.
Instead of devoting a special chapter to this topic, in this book we intersperse randomized

algorithms at the chapters and sections where they arise most naturally. Furthermore,
no specialized knowledge of probability is necessary to follow what is happening. You just
need to be familiar with the concept of probability, expected value, the expected number
of times we must flip a coin before getting heads, and the property known as “linearity of
expectation.”
Here are pointers to the major randomized algorithms in this book: One of the earliest

and most dramatic examples of a randomized algorithm is the randomized primality test of
Figure 1.8. Hashing is a general randomized data structure that supports inserts, deletes,
and lookups and is described later in this chapter, in Section 1.5. Randomized algorithms
for sorting and median finding are described in Chapter 2. A randomized algorithm for the
min cut problem is described in the box on page 150. Randomization plays an important role
in heuristics as well; these are described in Section 9.3. And finally the quantum algorithm
for factoring (Section 10.7) works very much like a randomized algorithm, its output being
correct with high probability—except that it draws its randomness not from coin tosses, but
from the superposition principle in quantum mechanics.

Virtual exercises: 1.29, 1.34, 2.24, 9.8, 10.8.

1.4 Cryptography
Our next topic, the Rivest-Shamir-Adelman (RSA) cryptosystem, uses all the ideas we have
introduced in this chapter! It derives very strong guarantees of security by ingeniously ex-
ploiting the wide gulf between the polynomial-time computability of certain number-theoretic
tasks (modular exponentiation, greatest common divisor, primality testing) and the intractabil-
ity of others (factoring).
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The typical setting for cryptography can be described via a cast of three characters: Alice
and Bob, who wish to communicate in private, and Eve, an eavesdropper who will go to great
lengths to find out what they are saying. For concreteness, let’s say Alice wants to send a
specific message x, written in binary (why not), to her friend Bob. She encodes it as e(x),
sends it over, and then Bob applies his decryption function d(·) to decode it: d(e(x)) = x. Here
e(·) and d(·) are appropriate transformations of the messages.

Eve

BobAlice
Encoder Decoderx x = d(e(x))

e(x)

Alice and Bob are worried that the eavesdropper, Eve, will intercept e(x): for instance, she
might be a sniffer on the network. But ideally the encryption function e(·) is so chosen that
without knowing d(·), Eve cannot do anything with the information she has picked up. In
other words, knowing e(x) tells her little or nothing about what x might be.
For centuries, cryptography was based on what we now call private-key protocols. In such

a scheme, Alice and Bob meet beforehand and together choose a secret codebook, with which
they encrypt all future correspondence between them. Eve’s only hope, then, is to collect some
encoded messages and use them to at least partially figure out the codebook.
Public-key schemes such as RSA are significantly more subtle and tricky: they allow Alice

to send Bob a message without ever having met him before. This almost sounds impossible,
because in this scenario there is a symmetry between Bob and Eve: why should Bob have
any advantage over Eve in terms of being able to understand Alice’s message? The central
idea behind the RSA cryptosystem is that using the dramatic contrast between factoring and
primality, Bob is able to implement a digital lock, to which only he has the key. Now by
making this digital lock public, he gives Alice a way to send him a secure message, which only
he can open. Moreover, this is exactly the scenario that comes up in Internet commerce, for
example, when you wish to send your credit card number to some company over the Internet.
In the RSA protocol, Bob need only perform the simplest of calculations, such as multi-

plication, to implement his digital lock. Similarly Alice and Bob need only perform simple
calculations to lock and unlock the message respectively—operations that any pocket com-
puting device could handle. By contrast, to unlock the message without the key, Eve must
perform operations like factoring large numbers, which requires more computational power
than would be afforded by the world’s most powerful computers combined. This compelling
guarantee of security explains why the RSA cryptosystem is such a revolutionary develop-
ment in cryptography.
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An application of number theory?
The renowned mathematician G. H. Hardy once declared of his work: “I have never done
anything useful.” Hardy was an expert in the theory of numbers, which has long been re-
garded as one of the purest areas of mathematics, untarnished by material motivation and
consequence. Yet the work of thousands of number theorists over the centuries, Hardy’s in-
cluded, is now crucial to the operation of Web browsers and cell phones and to the security
of financial transactions worldwide.

1.4.1 Private-key schemes: one-time pad and AES
If Alice wants to transmit an important private message to Bob, it would be wise of her to
scramble it with an encryption function,

e : 〈messages〉 → 〈encoded messages〉.
Of course, this function must be invertible—for decoding to be possible—and is therefore a
bijection. Its inverse is the decryption function d(·).
In the one-time pad, Alice and Bob meet beforehand and secretly choose a binary string

r of the same length—say, n bits—as the important message x that Alice will later send.
Alice’s encryption function is then a bitwise exclusive-or, er(x) = x ⊕ r: each position in the
encoded message is the exclusive-or of the corresponding positions in x and r. For instance, if
r = 01110010, then the message 11110000 is scrambled thus:

er(11110000) = 11110000 ⊕ 01110010 = 10000010.

This function er is a bijection from n-bit strings to n-bit strings, as evidenced by the fact that
it is its own inverse!

er(er(x)) = (x ⊕ r) ⊕ r = x ⊕ (r ⊕ r) = x ⊕ 0 = x,

where 0 is the string of all zeros. Thus Bob can decode Alice’s transmission by applying the
same encryption function a second time: dr(y) = y ⊕ r.
How should Alice and Bob choose r for this scheme to be secure? Simple: they should pick

r at random, flipping a coin for each bit, so that the resulting string is equally likely to be any
element of {0, 1}n. This will ensure that if Eve intercepts the encoded message y = er(x), she
gets no information about x. Suppose, for example, that Eve finds out y = 10; what can she
deduce? She doesn’t know r, and the possible values it can take all correspond to different
original messages x:

00

01

10

11

x

10

e11

e01

e00

y

e10
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So given what Eve knows, all possibilities for x are equally likely!
The downside of the one-time pad is that it has to be discarded after use, hence the name.

A second message encoded with the same pad would not be secure, because if Eve knew x ⊕ r
and z ⊕ r for two messages x and z, then she could take the exclusive-or to get x ⊕ z, which
might be important information—for example, (1) it reveals whether the two messages begin
or end the same, and (2) if one message contains a long sequence of zeros (as could easily be
the case if the message is an image), then the corresponding part of the other message will be
exposed. Therefore the random string that Alice and Bob share has to be the combined length
of all the messages they will need to exchange.

The one-time pad is a toy cryptographic scheme whose behavior and theoretical properties
are completely clear. At the other end of the spectrum lies the advanced encryption standard
(AES), a very widely used cryptographic protocol that was approved by the U.S. National
Institute of Standards and Technologies in 2001. AES is once again private-key: Alice and
Bob have to agree on a shared random string r. But this time the string is of a small fixed
size, 128 to be precise (variants with 192 or 256 bits also exist), and specifies a bijection er

from 128-bit strings to 128-bit strings. The crucial difference is that this function can be used
repeatedly, so for instance a long message can be encoded by splitting it into segments of 128
bits and applying er to each segment.
The security of AES has not been rigorously established, but certainly at present the gen-

eral public does not know how to break the code—to recover x from er(x)—except using tech-
niques that are not very much better than the brute-force approach of trying all possibilities
for the shared string r.

1.4.2 RSA
Unlike the previous two protocols, the RSA scheme is an example of public-key cryptography:
anybody can send a message to anybody else using publicly available information, rather like
addresses or phone numbers. Each person has a public key known to the whole world and a
secret key known only to him- or herself. When Alice wants to send message x to Bob, she en-
codes it using his public key. He decrypts it using his secret key, to retrieve x. Eve is welcome
to see as many encrypted messages for Bob as she likes, but she will not be able to decode
them, under certain simple assumptions.

The RSA scheme is based heavily upon number theory. Think of messages from Alice to
Bob as numbers modulo N ; messages larger than N can be broken into smaller pieces. The
encryption function will then be a bijection on {0, 1, . . . ,N − 1}, and the decryption function
will be its inverse. What values of N are appropriate, and what bijection should be used?

Property Pick any two primes p and q and let N = pq. For any e relatively prime to (p −
1)(q − 1):

1. The mapping x &→ xe mod N is a bijection on {0, 1, . . . ,N − 1}.

2. Moreover, the inverse mapping is easily realized: let d be the inverse of e modulo (p −
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1)(q − 1). Then for all x ∈ {0, . . . ,N − 1},

(xe)d ≡ x mod N.

The first property tells us that the mapping x &→ xe mod N is a reasonable way to encode
messages x; no information is lost. So, if Bob publishes (N, e) as his public key, everyone else
can use it to send him encrypted messages. The second property then tells us how decryption
can be achieved. Bob should retain the value d as his secret key, with which he can decode all
messages that come to him by simply raising them to the dth power modulo N .

Example. Let N = 55 = 5 · 11. Choose encryption exponent e = 3, which satisfies the condition
gcd(e, (p − 1)(q − 1)) = gcd(3, 40) = 1. The decryption exponent is then d = 3−1 mod 40 = 27.
Now for any message x mod 55, the encryption of x is y = x3 mod 55, and the decryption of y
is x = y27 mod 55. So, for example, if x = 13, then y = 133 = 52 mod 55. and 13 = 5227 mod 55.

Let’s prove the assertion above and then examine the security of the scheme.
Proof. If the mapping x &→ xe mod N is invertible, it must be a bijection; hence statement 2
implies statement 1. To prove statement 2, we start by observing that e is invertible modulo
(p − 1)(q − 1) because it is relatively prime to this number. To see that (xe)d ≡ x mod N , we
examine the exponent: since ed ≡ 1 mod (p − 1)(q − 1), we can write ed in the form 1 + k(p −
1)(q − 1) for some k. Now we need to show that the difference

xed − x = x1+k(p−1)(q−1) − x

is always 0 modulo N . The second form of the expression is convenient because it can be
simplified using Fermat’s little theorem. It is divisible by p (since xp−1 ≡ 1 mod p) and likewise
by q. Since p and q are primes, this expression must also be divisible by their productN . Hence
xed − x = x1+k(p−1)(q−1) − x ≡ 0 (mod N), exactly as we need.
The RSA protocol is summarized in Figure 1.9. It is certainly convenient: the computa-

tions it requires of Alice and Bob are elementary. But how secure is it against Eve?
The security of RSA hinges upon a simple assumption:
Given N, e, and y = xe mod N , it is computationally intractable to determine x.

This assumption is quite plausible. How might Eve try to guess x? She could experiment
with all possible values of x, each time checking whether xe ≡ y mod N , but this would take
exponential time. Or she could try to factor N to retrieve p and q, and then figure out d by
inverting emodulo (p−1)(q−1), but we believe factoring to be hard. Intractability is normally
a source of dismay; the insight of RSA lies in using it to advantage.

1.5 Universal hashing
We end this chapter with an application of number theory to the design of hash functions.
Hashing is a very useful method of storing data items in a table so as to support insertions,
deletions, and lookups.


