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Inference Examples
In the remaining lectures, we consider applications that are centered around inference. In inference prob-
lems, we update probabilities of an event by conditioning on more information. We usually observe an
output and want to infer the corresponding input, where the input and output are related probabilistically.
An inference example we already covered is inferring whether or not a patient has a disease based on the
result of a medical diagnostic. We will focus on three examples in: communications, speech recognition
and tracking. We will cover the communication problem today.

Example 1: Communications
We want to send information through a medium (e.g. cable modem, the internet etc). The situation can
be modeled by probabilistically. Let X be the input bit, which can be a 0 or 1. The bit goes through a
communication channel that introduces some noise. The aim is to design a receiver which can infer X upon
observing Y , as well as to evaluate the performance of our receiver.

Noisy Channel Receiver- - -
X X̂Y

Figure 1: A communication channel

One of the simplest channels is the flip channel (or binary symmetric channel) which is shown in Figure 2.
In that channel, a 0 input goes to a 0 output with probability 1− p, and to a 1 with probability p (so flips
occur with probability p). Assume without loss of generality that p < 1

2 . The probabilities that appear on
the figure are conditional probabilities, such as P(Y = 0|X = 0) = 1− p. Equivalently, we can represent the
channel as:

Y = (X +Z) mod 2,

where Z is 0 with probability 1− p and 1 with probability p, and X and Z are independent.

To complete the model of the problem, we also assume that we have some probabilities on the input values.
Let P(X = 0) = α , and P(X = 1) = 1−α (our prior probabilities). These probabilities are analogous to the
fraction of people that have a disease in a population.
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Figure 2: Binary Symmetric Channel.

We now want to design our receiver. We observe Y = b, where b ∈ {0,1}. What shall we guess for X? Con-
ditioned on the event we observe Y = b, how do we decide what X is? We look at the posterior probabilities:
P(X = 0|Y = b) and P(X = 1|Y = b). A reasonable rule would be to set our estimate X̂ to the value that has
the largest posterior probability. Therefore, the receiver computes P(X = 0|Y = b) and P(X = 1|Y = b), and
using the following decoding rule:

X̂ =

{
0 P(X=0|Y=b) > P(X=1|Y=b),
1 otherwise.

These probabilities can be computed using Bayes’ rule:

P(X = 0|Y = b) =
P(Y = b|X = 0)P(X = 0)

P(Y = b)
, (1)

P(X = 1|Y = b) =
P(Y = b|X = 1)P(X = 1)

P(Y = b)
. (2)

However since P(X = 0|Y = b) and P(X = 1|Y = b) have the same denominator P(Y = b), we only need to
compute and compare the numerators. Therefore, our receiver rule can be simplified to comparing

P(Y = b|X = 0)P(X = 0)
X̂=0
≷

X̂=1
P(Y = b|X = 1)P(X = 1)

Flipping this equation around we obtain:

L(b) :=
P(Y = b|X = 0)
P(Y = b|X = 1)

X̂=0
≷

X̂=1

P(X = 1)
P(X = 0)

=
1−α

α
.

The term 1−α

α
is a constant threshold, and the left hand side term is called the likelihood ratio L(b), which

is a function of the observation value b. The receiver compares the likelihood to the threshold that depends
on the input priors. If the threshold is very large (meaning that 1 is much more likely to be the input than 0),
then we only decode to 1 if our likelihood is very large as well. Let us now compute the likelihood for both
values of b.

L(0) =
P(Y = 0|X = 0)
P(Y = 0|X = 1)

=
1− p

p

and

L(1) =
P(Y = 1|X = 0)
P(Y = 1|X = 1)

=
p

1− p
.
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At the receiver, we compute L(0) if a 0 was received, and L(1) otherwise. We compare the values obtained
to the threshold and infer X̂ .

How can we improve the performance of our channel? We can get better hardware which will give a cleaner
channel with a smaller p. Alternatively, we can process X before sending it through the channel. Instead of
sending the information bit directly, we can consider encoding X , as shown in Figure 3.

Encoder Noisy Channel Receiver- - - -
X Enc(X) X̂Ỹ

Figure 3: A communication channel with an encoder.

This code is supposed to help us improve the reliability of the system. What is the simplest possible code
we can think of? We could send each bit multiple times. This is called a repetition code and is illustrated in
Figure 4. The corresponding output will be n random variables Y1, . . . ,Yn.

Encoder Noisy Channel Receiver- - - -
X X · · ·X X̂Y1 · · ·Yn

Figure 4: A communication channel with a repetition encoder, that sends the same input n times.

We hope to get a better performance out of this scheme. How do we model the relationship between X and
all the Yi variables? A natural assumption is that each Yi is the output of a binary symmetric channel with X
as the input, and the Yi’s are mutually independent conditional on the input. Equivalently,

Yi = (X +Zi) mod 2

where Zi = 1 with probability p and Zi = 0 otherwise and the Zi’s are mutually independent and independent
of X .

We now have our model. How do we make our decision in this new setting? Before, we computed the
posterior probabilities of the form P(X = 0|Y = b) and P(X = 1|Y = b) and compared them. Which posterior
probabilities should we consider in this case? Since we now observe n channel outputs, we should now
condition on all their values, and the rule is therefore:

P(X = 0|Y1 = b1, · · · ,Yn = bn)
X̂=0
≷

X̂=1
P(X = 1|Y1 = b1, · · · ,Yn = bn).
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We apply the same logic, use Bayes’ rule and cancel the common denominator. The decoder rule is equiva-
lent to :

L(b1 · · ·bn) := P(Y1=b1,··· ,Yn=bn|X=0)
P(Y1=b1,··· ,Yn=bn|X=1)

X̂=0
≷

X̂=1

1−α

α
.

This can be easily simplified because the Y1, . . . ,Yn are conditionally independent given the input. The
overall likelihood can be decomposed as the product of the likelihoods of the individual received symbols:

L(b1, · · · ,bn) =
P(Y1 = b1|X = 0) · · ·P(Yn = bn|X = 0)
P(Y1 = b1|X = 1) · · ·P(Yn = bn|X = 1)

= L(b1)L(b2) · · ·L(bn).

We want to convert this into an addition which is aesthetically nicer as it corresponds to aggregating infor-
mation from each of the received output. So let as define the log-likelihood ratio as:

LLR(b) := logL(b) =

log(1−p
p ) if bi = 0,

− log
(

1−p
p

)
if bi = 1.

,

and

LLR(b1, · · · ,bn) := log(L(b1 · · ·bn)) =
n

∑
i=1

LLR(bi)
X̂=0
≷

X̂=1
log
(

1−α

α

)
.

The sum of the log likelihood ratios above can just be expressed in terms of 2 random variables, the number
of 0s and the number of 1s that are observed at the output sequence. Let us define: U as the number of 0s
received, and V as the number of 1s received. Then

∑
i

LLR(bi) =U× log
(

1− p
p

)
+V ×

(
− log

(
1− p

p

))
.

The rule becomes

U−V
X̂=0
≷

X̂=1

log
(1−α

α

)
log
(

1−p
p

) .
The rule simplifies even further when α = 1

2 , meaning when we are equally likely to transmit a 0 or 1. When
α = 1

2 , the threshold becomes equal to log(1) = 0. So the rule becomes:

U
X̂=0
≷

X̂=1
V,

which is the majority rule.

Now suppose we have a target performance for the communication system we are designing. We want to
make sure that our error probability is less than 0.1%. How many times do we need to repeat each bit in order
to achieve that? Let’s analyze this in the case where α = 1

2 . What is the error probability pe := P(X̂ 6= X)
of our rule when α = 1

2 in terms of U and V ? There are two ways in which an error can happen: if 1 is
transmitted and X̂ = 0, or if a 0 is transmitted and X̂ = 1.

pe = P(X 6= X̂)

= P(U >V |X = 1)P(X = 1)+P(U <V |X = 0)P(X = 0)

= P(U <V |X = 0)
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The receiver makes a mistake when more than half of the bits get flipped. This corresponds to the event that
more than half of the Zis are equal to 1:

P(U <V |X = 0) = P(
n

∑
i=1

Zi >
n
2
).

We now have a sum of random variables: Sn := ∑
n
i=1 Zi ∼ Bin(n, p). We want to compute P(Sn >

n
2) This

can be computed numerically with the binomial distribution. The central limit theorem can also be used to
approximate this summation. We know E[Sn] = np and Var(Sn) = np(1− p). Therefore,

P(Sn >
n
2
) = P

(
Sn−np√
np(1− p)

>
n
2 −np√
np(1− p)

)
= Q

(
n/2−np√
np(1− p)

)
= Q

(
0.5− p√
p(1− p)

·
√

n

)
,

where Q(x) is the probability that a N(0,1) random variable exceeds x. Note that this error probability
decreases with n. We simply choose n so that

Q

(
0.5− p√
p(1− p)

·
√

n

)
< 0.001.
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