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Communications Example Continued
In the previous lecture, we covered an application in communication. We will now wrap up our communica-
tion example on the binary symmetric channel (BSC), where p represents the flip probability in the channel.
What is the noisiest channel? When p = 1 and p = 0, the channel is perfect because we know exactly what
the input is given the output. However, when p = 0.5, the output does not tell us anything about the input to
the channel.

Our detection rule uses p, but how do we know p in practice? We can try to estimate it by sending a sequence
of 0 bits. The output will contain some 0s and 1s, from which we can estimate

p̂ =
number of 1s received

number of 0s sent
,

which is the fraction of ones received. This process is called training in the communication language. It
is called supervised learning in machine learning. Once we estimate p, then we can use the channel to
communicate data.

Typically, any probabilistic model we use in an application has some parameters θ1, . . . ,θk. There are two
steps to using of the probability model:

1. First, we get some data and try to estimate the parameters. The first such question we tackled was in
the polling example, where we estimated p, the fraction of Democrats in the population. The channel
estimation example is another one. (Mathematically, they are actually identical problems. Why?)

2. Second, based on the model. we can design algorithms to solve whatever problem that is at hand, like
communications, speech recognition or tracking, and analyze the performance of the algorithms.

The above channel estimate p̂ is called the maximum likelihood estimate (MLE). We are actually choosing
as an estimate the value of p that maximizes the probability of observing the data:

p̂ML = argmaxp P(observation; p).

Why? P(observation; p) = pk(1− p)n−k, where n is the total number of training bits sent, and k is the total
number of 1s observed at the output of the channel. By simple calculus,

argmaxp pk(1− p)n−k =
k
n
,

which is the intuitive estimate we came up with earlier.
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Example 2: Speech Recognition
Today, we will cover another important application of probability: speech recognition. How does Siri
understand what we are saying? We speak into the iPhone microphone, which samples the analog sound
waveform. Now, the iPhone needs to figure out what we told it. The goal is to transform the analog waveform
into the command "driving directions to Stanford" for example. There is a lot of randomness involved in
this problem: the accent of the user, the different characteristics of his voice or the ambient noise etc.

We want to design a speech recognition algorithm. How do we approach this problem? We need to under-
stand the structure of the spoken language. Each word is a natural unit into which we can decompose the
sentence. We can also decompose the words into smaller units. From a phonetic point of view, a word is
decomposed into phonemes, that can contain vowels and consonants. For example ’dr’ in the word driving
is a phoneme. There are around 30 or 40 phonemes in english. Therefore the problem becomes figuring out
the sequence of phonemes in the sentence. The sequence of phonemes forms the set of random variables
that we want to estimate.

Let Xi be the ith phoneme in the sentence that we want to recognize. We have X1, · · · ,Xn random variables
representing the sentence we want to recognize. We need to relate the signal that we picked up on the
microphone to this sequence of variables. Each phoneme roughly corresponds to 10ms. We chop the
analog signal into 10ms intervals. Then, we take the signal in each 10ms interval and extract some key
features from it. The relevant information contained in speech is most apparent in the frequency domain. So
usually, a short window fourier analysis is done on the sampled signal from each 10 ms time interval, and
the corresponding fourier coefficients are extracted. These coefficients serve as features in the frequency
domain, or spectral information to describe the phoneme in that 10ms interval.

Typically there are multiple features for the signal in each 10ms interval, corresponding to multiple Fourier
coefficients for example. But let us simplify the story by assuming there is only a single feature. Moreover,
we will assume that the value of the feature is quantized so that this can be represented by a discrete random
variable. (We will consider the case when Yi is continuous later on.) Let Yi be the value of the feature in the
ith interval. The system diagram can be represented as:

Channel Speech recognition algorithm- - -
X1 · · ·Xn X̂1, · · · , X̂nY1 · · ·Y n

Figure 1: A system diagram for the speech recognition problem.

We need to specify two things to be able to derive our speech recognition algorithm:

(1) A prior probability on the input

(2) A relation between the input and the output, which , by analogy with the communication application,
can be considered as a channel.

Let us start by characterizing our channel. We assume that each Yi only depends on its corresponding input
Xi. That is, conditional on Xi, Yi is independent of the other inputs. Let us define Q(b|a) := P(Yi = b|Xi = a).

EE 178/278A, Spring 2014, Lecture 16 2



Using the conditional independence assumption, we write:

P(Y1 = b1 · · ·Yn = bn|X1 = a1 · · ·Xn = an) = P(Y1 = b1|X1 = a1) · · ·P(Yn = bn|Xn = an)

= Q(b1|a1) · · ·Q(bn|an).

This is similar to our communication channel where the output at time i only depended on the input bit at
time i. We will assume for today that we are given these Q function values. In the next lecture, we will
explain how to estimate these values from the data. But note that by making the conditional independence
assumption, we are drastically reducing the number of parameters that needs to be estimated. If each Xi and
Yi can take on say 40 values and n = 500 (correspond to 5 seconds of speech), then the number of parameters
to specify the full conditional distribution P(Y1 = b1 · · ·Yn = bn|X1 = a1 · · ·Xn = an) is (402)500, while the
number of parameters to specify under the conditional independence assumption is 402, the number of
parameters Q(b|a)!
How do we model the input sequence X1 · · ·Xn? One natural way of doing it is assuming that these ran-
dom variables are independent. We tried this trick before many times, like with independent coin flips for
example. However, this is not a good idea in this application. Some phonemes are more likely to follow
other phonemes. For example the phoneme th is more likely to be followed by an ”e” rather than a ”s”.
So assuming the random variables to be independent seems like a very poor model. How are we going to
capture the dependency, while still having a small number of parameters in our model?

Consider P(Xn = an|X1 = a1 · · ·Xn−1 = an−1). This is the probability conditioning the present upon the past.
We are going to assume that the dependence of Xn on the past is entirely through the random variable Xn−1
that immediately precedes it. So the simplification we make is to suppose

P(Xn = an|X1 = a1, · · · ,Xn−1 = an−1) = P(Xn = an|Xn−1 = an−1) for all a1, · · · ,an.

For n = 3 for example, it reduces to

P(X3 = a3|X1 = a1,X2 = a2) = P(X3 = a3|X2 = a2) for all a1,a2,a3.

This is equivalent to saying that X3 is independent of X1 conditional on X2. This is called the Markov
property, and the corresponding figure that illustrates the relation between the variables is

X1−X2−X3

This is called a graphical model, with the random variables as nodes of the graph. The interpretation of the
graph is that when if one disconnects the graph into two subgraphs G1 and G2 by removing a node Xi, then
the random variables in G1 and G2 are independent conditional on Xi.

Going back to the speech recognition problem, recall we are assuming Xn is independent of all the past given
Xn−1. More generally, we will assume that Xi is independent of all the past given Xi−1 for all i. We can now
write the joint probability distribution as:

P(X1 = a1,X2 = a2 · · ·Xn = an)

= P(Xn = an|X1 = a1, · · · ,Xn−1 = an−1)P(X1 = a1, · · · ,Xn−1 = an−1)

= P(Xn = an|Xn−1 = an−1)P(Xn−1 = an−1|Xn−2 = an−2) · · ·P(X2 = a2|X1 = a1)P(X1 = a1)

In other words, the relation between all our random variables is represented by the graphical model:

X1−X2−X3 · · ·−Xn,
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where Xi+1 is independent of Xi−1, · · · ,X1 given Xi. This is called a Markov chain. To specify a Markov
chain, we need to specify:

(1) Transition probabilities

P(a′|a) := P(Xi = a′|Xi−1 = a) for all a,a′.

(2) Initial distribution
π(a) := P(X1 = a) for all a.

Consider an example of a Markov chain with Xi ∈ {1,2}, shown in the figure below. Suppose it has the
transition probabilities: P(2|1) = P(1|2) = 0.3, and P(1|1) = P(2|2) = 0.7. The value Xi takes on is called
the state of the system at time i. If we want to predict how the Markov chain will go forward, we only need
to know the current value and not the past. The figure below is called the state transition diagram of the
Markov chain.

1

20.7

0.3

0.3

0.7

Finally, we can put all the random variables of the problem into an overall graphical model for the speech
recognition problem:

Y1 Y2
| |

X1−X2
· · ·

Yn−1 Yn
| |

Xn−1−Xn

Note that if we remove the node Xi, the node Yi will be disconnected from the rest of the graph. This reflects
the fact that Yi depends on other random variables only through Xi.

Now the speech recognition problem is from the sequence of Yi’s , we want to estimate the sequence of Xis.
We do not want the complexity of our algorithm to increase exponentially with the number of phonemes.
Ideally the complexity should grow linearly.

One last question about the model before we talk about the speech recognition algorithm: is the observation
sequence Y1 · · ·Yn a Markov chain? No (why?). But the underlying sequence that we want to figure out is a
Markov chain. That is the reason for calling this a Hidden Markov Model (HMM).
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