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Inference of Link Delay in Communication Networks
Ye Xia and David Tse

Abstract—This paper studies the feasibility and algorithms for
inferring the delay at each link in a communication network based
on a large number of end-to-end measurements. The restriction is
that we are not allowed to measure directly on each link and can
only observe the route delays. It is assumed that we have consider-
able flexibility in choosing which routes to measure. We investigate
two different cases: 1) each link delay is a constant and 2) each
link delay is modeled as a random variable from a family of distri-
butions with unknown parameters. We will answer whether such
indirect inference is possible at all, and when possible, how it can
be carried out. The emphasis is on developing the maximum-like-
lihood estimators for scenario 2) when the link delays are mod-
eled by exponential random variables or mixtures of exponentials.
We have derived solutions based on the EM algorithm and demon-
strated that, even though they do not necessarily reflect the true
model parameters, they do seem to maximize the likelihood in most
cases and that the resulting probability density functions match the
true functions on regions where the probability mass concentrates.

Index Terms—Expectation maximization (EM) algorithm, max-
imum-likelihood estimator, network delay measurement, network
tomography.

I. INTRODUCTION

A. Motivation

AS THE Internet grows, it becomes increasingly important
to monitor the network performance and identify failures.

These must be based on the knowledge of the complete or par-
tial topology of the network and on the measurement of some
quantities of the network. In this paper, we study the issue of
network measurement, given that the network topology is com-
pletely known. The useful information that one might want to
know about the network includes packet delay, packet loss ratio,
link capacity and throughput, etc. One might be interested in
the end-to-end information on some route or localized infor-
mation at some routers or links. For information with random-
ness, it is also possible to distinguish its longtime average and
instantaneous value. In building a network measurement infra-
structure, there is a choice about the measurement locations,
where the measurement software or hardware are placed. We
can think of placing them: 1) in every network router and end-
hosts; 2) only in the end-hosts at the edge of the network; or
3) in selected routers and end-hosts. The constraints are, first,
it might never be possible to have a consistent measurement in-
frastructure throughout the entire Internet, which is partitioned

Manuscript received October 1, 2005; revised April 22, 2006.
Y. Xia is with the Department of Computer and Information Science and

Engineering, University of Florida, Gainesville, FL 32611-6120 USA (e-mail:
yxl@cise.ufl.edu).

D. Tse is with the Department of Electrical Engineering and Computer
Science, University of California, Berkeley, Berkeley, CA 94720-1770 USA
(e-mail: dtse@eecs.berkeley.edu).

Digital Object Identifier 10.1109/JSAC.2006.884022

into a disparate array of administrative domains, and second,
it is costly and practically difficult to install, maintain, and up-
grade the measurement related software and hardware in a large
number of routers and computers.

This paper addresses the choice of measurement locations,
in particular, the feasibility of measuring every link of the en-
tire network, perhaps indirectly, from a subset of the network
nodes. The object of measurement, which we call the link at-
tribute, is additive in the sense that the combined attribute on
multiple links is the sum of the individual link attributes. The in-
stantaneous delay, the average delay, and the number of packet
loss are all additive. Loss ratio and throughput are examples of
nonadditive link attributes. We will consider delay as the proto-
type of an additive link attribute.

We will specifically investigate a special case of choice 2)
above. The measurement agents are at selected end-hosts at the
edge of the network. The following is a typical question we
would like to answer. Suppose we do not have a direct measure-
ment of the average delay on a particular link, but we do have the
end-to-end delay measurement on many routes that pass through
that link. Can we, then, calculate the link delay based on the
end-to-end measurement?

At the abstract level, the problem addressed in this paper is
to obtain the vector in given that the vector and
the matrix are known. Here, is the routing matrix whose

th entry is an integer representing the number of times link
appears in route , is the vector of route delays, and is the

vector of link delays. There are two versions of the problem:
is deterministic or is a random vector. In the latter version,
we are particularly interested in the case where the distribution
of is from a known parametric family, such as the exponen-
tial family or Gaussian family. This is known as the parametric
model. In this version, we assume the components of are sta-
tistically independent.

B. Previous Research and Our Contribution

Our work is inspired by [1], which studies how to infer packet
loss ratios on individual links in a multicast tree based on the
observed loss statistics on end-to-end routes. Our work is inde-
pendently done from a few other works ([2] and [3]) on the same
subject of inferring link delays based on end-to-end delays. As
far as we know, the deterministic analysis of Section II has no
counterpart in other works.

Nonparametric models are considered in [2] and [3], where
each link delay is a random variable but its distribution is not
from any parametric family. In [2], the variances of the link de-
lays are estimated using a moment method. Similar methods are
also discussed briefly in Section III-B2 of this paper. It is in-
teresting to note that [2] does not give a moment method for
estimating the mean of the link delays. As a corollary of our
results on the deterministic case, we show that, in the nonpara-
metric case, it is generally not possible to estimate the mean
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of the link delay based on end-to-end measurement using mo-
ment-type methods. In [3], the objective is to construct the link
delay distributions (histograms) based on end-to-end measure-
ment, under the assumption that link delay has a positive prob-
ability of taking the value 0. The problem and techniques in-
volved are fairly different from this paper.

In the study of parametric delay models in Section III, our
main effort is on applying the expectation maximization (EM)
algorithm to infer the parameters of the link delay distributions.
The authoritative reference on the general EM algorithm is [4].
In [5], Vardi applies the EM algorithm in a similar network set-
ting but his objective is to estimate the traffic matrix. Such a
problem is to estimate the traffic rates of all end-to-end con-
nections based on the knowledge of routing and the observed
traffic rates on the links at the routers. At the abstract level, the
problem is to estimate in the equation given and

, where is the transpose of . Notice that the observed and
unobserved data are switched, compared with the link delay in-
ference problem.

From the statistical inference perspective, link delay infer-
ence and traffic matrix estimation are similar problems. In [5],
Vardi uses a Poisson model for the unobserved variables and we
consider exponential and mixture of exponential models. In [6],
the unobserved variables are Gaussians. This does not contradict
one of our results in the paper that states the Gaussian model is
not identifiable, because our result, in fact, says the Gaussian
mean is not identifiable. In [6], the mean of each Gaussian vari-
able depends on its variance, which can be identified using, for
instance, the method of moment (see Section III-B2). In [7],
Castro et al. develop a pseduo-likelihood approach together with
a pseduo-EM algorithm, with the objective of reducing compu-
tational complexity. Such an approach is also applied to the link
delay inference problem under the same nonparametric model
used in [3]. Some other related studies in traffic matrix estima-
tion can be found in [8]–[11].

Our main contributions are as follows. In the deterministic
analysis in Section II, we show that, under fairly general con-
dition, the internal deterministic link attributes cannot be iden-
tified based on end-to-end measurement from the edge of the
network, regardless how much power the observer has in set-
ting up redundant measurement routes. In Section III, we con-
sider parametric probabilistic models. Based on the result in the
deterministic case, we show that, if the link attributes are in-
dependently and identically distributed (iid) Gaussian random
variables, the Gaussian mean cannot be identified, and hence,
the Gaussian model is not identifiable.

We next consider two other parametric models, the exponen-
tial model (Section III-B) and the mixture of exponential model
(Section III-C), which constitute the main part of the paper.
Maximum-likelihood estimators for these models pose both an-
alytical and computational challenges. In both models, we give
detailed solutions based on the EM algorithm. Our implementa-
tion of the EM algorithm avoids both numerical integration and
exponential dependence on the number of model parameters. In
the case of the exponential model, we also give several methods
of moment, and suggest some other techniques, such as Succes-
sive EM Algorithm.

We stress that, with the parametric model, the intention is
not necessary to discover the true model parameters. We show

with numerical experiments (Section IV) that the strength of
the EM algorithm is not in finding the true model parameters,
but in excellent curve-fitting to the probability density functions
(pdf) of both the observed and unobserved random variables.
This curve-fitting ability could, in practice, be more relevant
to our problem, where the link attributes may not come from a
well-specified probability family or cannot be represented para-
metrically. Under this circumstance, we can use the mixture
model and/or the sum of exponential model, both of which have
been suggested for modeling the link delays, to approximate the
underlying true distribution function, and use the EM algorithm
to find good fit.

II. DETERMINISTIC CASE

In this section, we consider link attributes as constant quan-
tities, and hence, are subject to deterministic analysis. We will
study the possibility of determining the link attributes through
end-to-end measurement. The main results are Proposition 2.2
and Corollary 2.3.

The deterministic analysis is motivated by the consideration
of nonparametric probability model of link delays. We give two
motivating examples here. In the first example, we would like to
determine the empirical distribution of each link delay through
end-to-end measurement. For each measured end-to-end delay
sample, we normally need to determine the delay due to each
link on that end-to-end route. In a slightly different example,
suppose we have the average delay on an end-to-end route and
would like to find the average delay of each link on the route. In
the following, we will state the problem more formally.

A. Some Standard Graph Theory Definitions

A directed graph is defined to be a set whose
elements are called nodes (or vertices) and a set whose ele-
ments are called edges. Each edge is directed and is represented
by an ordered pair of vertices.

Suppose is a directed graph. A path of length is a se-
quence of edges, , where ,
and , . A
simple path is a path in which no node appears more than once.
A circuit (also known as simple cycle) is a closed path whose
initial and final nodes coincide, and in which no other nodes are
visited more than once. The distance from node to node
is the length of the shortest path from to .

For each , define to be the number of edges
starting from , and to be the number of edges ending at .

An undirected graph, or simply a graph is a pair ,
where is the set of nodes and is a set of edges. Each edge
is undirected and is represented by an unordered pair of nodes.

B. Statement of the Problem and Key Results

We represent a network as a directed graph ,
where is the set of routers and end-hosts, and is the set of
communication links between elements of . Note that a link
in this paper is considered directed, represented by a directed
edge in the directed graph. Hence, a physical link in the network
that allows data transmission in both directions is considered
two links in this paper, and is represented by two edges going
in opposite directions in the directed graph representation. The
reason is that we allow the attributes, such as delays, on the two
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directions of the physical link to be different. Let be
the set of end-hosts that are designated to send packets, called
senders, and let be the set of end-hosts that are desig-
nated to receive packets, called receivers. We call the elements
in sender nodes, the elements in receiver nodes, and,
together, they are called measurement nodes. Any node with

and is called a router node. Because a
router node has at least one incoming link and at least one out-
going link, it is capable of forwarding packets from an incoming
link to an outgoing link. Let us associate with each link, ,
a constant , which represents a fixed attribute of the link ,
such as the expected delay. Assuming the attributes are additive
when multiple links are involved, our objective is to study the
feasibility of determining each , for , when the accumu-
lated attributes from the senders to the receivers on all possible
paths are given. An example is that we want to know whether the
expected delay on each link can be recovered simply by sending
packets at the senders and observing the received packets at the
receivers, taking the difference between the packet sending and
receiving time instances.

Definition 2.1:: A route from to is a path in
the directed graph in which any circuit appears at
most once. The route attribute is the accumulated attributes of
the links on the route. (If a link appears on a route times, its
link attribute is accumulated times.)

Lemma 2.1: Given a finite directed graph , the
sets and , the total number of routes is finite.

Proof: Let be the number of nodes in . A circuit can
traverse at most distinct nodes. The number of circuits that
each traverse distinct nodes is bounded by

. Therefore, the total number of distinct circuits is finite. The
total number of simple paths of length is bounded by

. So, the total number of distinct simple paths is
also finite. Notice each route consists a finite number of nodes.
At each node, the possible number of distinct circuits is also
finite. Hence, the total number of routes must be finite.

Although a path in which some circuits appear more than
once is not considered as a valid route, the definition of the route
is not restrictive for the problem we are considering. This is be-
cause the accumulation of the link attributes around a circuit,
called the circuit attribute, can be observed. The accumulated
attributes on two paths that differ only in the number of times
a circuit is traversed differ by a known constant. Note that al-
lowing circuits in the definition of the route potentially leads
to much greater number of possible routes on which end-to-end
measurement can be made. The main results in this section show
that we are not made more powerful in our ability to infer in-
ternal link attributes based on end-to-end measurement.

Suppose the links in the directed graph are labeled as
, where is the total number of links. Suppose the

routes are also indexed from 1 to , where is the number of
routes. Let the vector in represent all
link attributes, and let in represent
all route attributes, and let be the number of times link

appears on route . Let be the set of links on route
. Then

(1)

Let be the matrix whose th entry is , called
the route matrix for . We can write (1) in vector format

(2)

Definition 2.2: The directed graph is said to be identifiable
if (2) has an unique solution; otherwise, we say is unidentifi-
able. is said to be strongly unidentifiable if no component of

is uniquely determined by (2).
We now state the main results of the section but postpone the

proof of Proposition 2.2 to Section II-D.
Proposition 2.2: Suppose, for any and

, where , the distance from to is at least
2. Then, is strongly unidentifiable.

The condition for Proposition 2.2 says that no two measure-
ment nodes are adjacent, i.e., are connected by a link. The focus
of the deterministic analysis is to prove Proposition 2.2 and to
point out its consequences. One necessary condition for solving
the set of linear equations in (2) uniquely is to have ,
i.e., the number of routes is no less than the number of links. We
therefore assume this to be true. We point out here in advance
that, in the special case of a symmetric network, the conclusion
is different: A symmetric network is identifiable. This will be
elaborated in Section II-C.

Corollary 2.3: If at least one link in does not directly con-
nect two measurement nodes, then is unidentifiable.

Proof: Remove all links which directly connect any pair
of measurement nodes. Then, delete nodes which have no links
attached. Links that do not directly connect two measurement
nodes, together with the nodes to which they are attached,
survive the deletion process. The resulting directed graph has
at least one connected component, and in every connected
component, all measurement nodes are separated by a min-
imum distance of 2. The resulting graph is, therefore, strongly
unidentifiable.

The proof of Corollary 2.3 also shows that, because every link
that does not directly connect two measurement nodes will sur-
vive the deletion process, we cannot identify its attribute based
on end-to-end measurement. Suppose each measurement node
is a measuring site, where the measurement software or hard-
ware is placed. By the above comment, the only way to uniquely
determine the attribute of a particular link is to measure it at the
two nodes directly attached to it. All nodes are required to be-
come measurement sites in order to monitor the entire network.
It is not possible to monitor the network from the edge relying
on the redundancy of routes.

The unidentifiability result should not be confused with the
so-called ill-posed inverse problem in traffic matrix estimation,
that is, to find the solution for the vector in (see [11]).
In that case, the vector normally has much higher dimension
than , and the solution is not unique. In the current problem
of finding from , the matrix can have much more
rows than columns, giving hope that the columns are linearly
independent, and hence, the solution is unique. Our result shows
that this isn’t so except for trivial situations.

We next make the some assumptions about the directed graph
to be considered, which do not reduce the generality of our

results but simplify the exposition.
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Definition 2.3: A node or a link in is reachable if it is on
at least one route.

Assumption 2.1: 1) The directed graph is connected when
viewed as an undirected graph. 2) Every link is reachable.

In the case where is not connected as a graph, we can look
at each connected component separately. When a link is not
reachable, it certainly cannot be identified, and it will not af-
fect the identifiability of other links. Hence, we can remove it
from . A consequence of the assumptions is that every node is
reachable. For, if a node is not reachable, none of the links con-
nected to it is reachable. Also, every node which is not a mea-
surement node must be a router node. Otherwise, all the links
connected to it are not on any routes.

C. Symmetric Networks

Certain special networks are easily identifiable. We say a net-
work is symmetric if its directed graph representation,

, has the property that, for any two nodes and
, if is an edge in , then is also an edge in ,

and moreover, the attribute of is identical to that of .
In other words, between adjacent nodes and , there is exactly
one link from to and one from to , and they have the same
attributes. Under Assumption 2.1, we have the following.

Proposition 2.4: If two nodes and are connected by a
link from to and also by a link from to , and if the two
links have identical attributes, then either link attribute can be
uniquely determined.

Proof: The attribute of any circuit can be uniquely iden-
tified because of the following. Given a route with the circuit,
remove the circuit and we get another route. The attribute of the
circuit is the difference of the attributes of the two routes. The
attribute of the link from to is half of the attribute of the cir-
cuit .

Corollary 2.5: Suppose the directed graph represents a
symmetric network. Then, is identifiable.

Proof: The attribute of every link can be uniquely deter-
mined according to the previous proposition.

In reality, communication links almost always come in pairs
between adjacent network nodes. However, the attributes of the
forward and backward links are usually not identical. For in-
stance, the link delay depends on the traffic load, which is rarely
symmetric. Consequently, the results about the symmetric net-
work do not generally apply. On the other hand, by the proof
of Proposition 2.4, the combined attributes of the forward and
backward links can be uniquely determined between any two
adjacent nodes. For purposes such as fault discovery, this can
be adequate.

D. Strong Unidentifiability of Asymmetric Networks

In this section, we will prove Proposition 2.2. Again, we as-
sume that satisfies Assumption 2.1.

The dimension of matrix is , where is equal
to the number of routes, and is the number of links. Let the
rows of be vectors , and let the columns of
be vectors . For each , define
vectors to be of the form with 1
in the th location.

Lemma 2.6: Every column vector of can be expressed as a
linear combination of other column vectors.

Proof: Let us fix , for . The th column
vector of corresponds to link in the directed graph

. Let and be the two nodes to which link
is connected. Since all measurement nodes are separated by

a distance of at least 2, at least one of these nodes, say , is
not a measurement node. Then, must be a router node by the
assumption that every link including link must be on at least
one route. Let be the set of outgoing links starting
from node , and be the set of incoming links to node

. Then, we have the following identity:

(3)

To show this, let us fix a for .
is the number of times the th route, numbered

by the rows of matrix , enters node . Here, denotes
the th component of vector . Similarly, is
the number of times the th route leaves node . Since is a
router node and is not a measurement node, any route which
enters it must leave it. Hence, we get the equality of (3). Since
link is either in or in , by rearranging (3), we get

if

if
(4)

Corollary 2.7: is unidentifiable.
Proof: By Lemma 2.6, matrix does not have full rank.

Lemma 2.8: For every ,
.

Proof: We need to show that there is not a nonzero row
vector such that .

Note that, if we write , then
. Since all components of are 0’s

except that the th component is a 1, it is sufficient to show
that, for any , for every necessarily implies

. By Lemma 2.6, we can write ,
for some . Then

Finally, we are in the position to show strong unidentifiability.
Proof: (Proposition 2.2) Let us view as a linear transfor-

mation from to . It is sufficient to show that, for each
, there exists a vector such

that . This is enough because if for a fixed
, then the th entry of must be nonzero.

Then, if the vector is a solution to (2), is also a so-
lution, for any real constant . In particular, the th entries for
all these solutions are different. That is, the attribute of link
cannot be determined uniquely. Letting vary, we can conclude
that the directed graph is strongly unidentifiable.

Let us call the span of the row space of the
linear transformation . It is a well-known fact that
and are orthogonal complement of each other.
For every such that , it must be true that

[12, p. 138].
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By Lemma 2.8, , for every
. Therefore, for each , there exist a vector

, such that . Otherwise, would be in
.

E. Conclusion of Deterministic Analysis and Its Relevance
to Probabilistic Models

In summary, the results of this section show that the deter-
ministic, additive attribute of a link in an asymmetric network
cannot be observed unless we measure it directly from the two
nodes it is attached to. We loosely say the network cannot be
completely observed from a proper subset of the nodes.

Knowing in advance (through other means) the attributes of a
subset of the links is generally insufficient for identifying the
attributes of all other links. However, it is likely that the at-
tributes of some links can be identified by the following suc-
cessive graph reduction algorithm. In each directed graph, we
remove those links whose attributes are known. For each re-
moved link, we merge the two nodes attached to the link into
one node. The attribute of the removed link is subtracted from
every end-to-end measurement whose corresponding route con-
tains the removed link. If, in the resulting reduced graph, some
link connects two measurement nodes directly, then its attribute
becomes known by measurement. Such links can be removed in
the same fashion, resulting in another reduced graph. The pro-
cedure is repeated until we cannot proceed further. The final
reduced graph is strongly unidentifiable.

Link attributes such as delay are often non-negative. In Propo-
sition 2.2, we did not impose the constraint of non-negativity. If
such a constraint is imposed, and if all link attributes are strictly
positive, Proposition 2.2 is still valid, since the vector of link
attributes has an open neighborhood in , where is the
set of non-negative real number. If some link attributes are zero,
then it is possible that all link attributes can be uniquely deter-
mined. This last point makes determining a nonparametric prob-
abilistic model possible, as also noted in [3]. We elaborate this
in the following.

Suppose all link delays are random and independent from
each other, and suppose we wish determine the delay distribu-
tion, given route delay samples obtained on end-to-end routes.
According to the deterministic analysis, this can not be done, in
general, if we do not know any probabilistic structure of the de-
lays. One of the simplest such structures is that, for every link,
there is nonzero probability that the link delay is zero. This turns
out to be sufficient for determining the link delay distributions.
The intuition is that, for every link , one can always find an
end-to-end measurement sample in which the following is true:
There is one route containing link such that all links on the
route except have zero delay. This idea has been fully devel-
oped in [3], where the objective is to recover the (nonparametric)
distributions of the link delays.

Of course, we can assume much richer probabilistic structure.
For instance, the probability distribution is from a known family,
such as the exponential random variables. This so-called para-
metric model is the subject of the next section. It has the advan-
tage over the nonparametric model in that only a small number
of parameters need to be identified.

III. PROBABILISTIC CASE—PARAMETRIC MODELS

Link attributes, such as delay, are often random, which, on
one hand, alters the objectives we can pursue, and on the other
hand, adds a different set of information that we can utilize. It is
entirely possible that the network can be observed from a subset
of the nodes. In this section, we will study the case where the
link attributes can be specified by some parametric probability
models. The objective is to recover the unknown parameters of
the model through statistical inference.

A parametric probability model is one whose distribution
function has known functional form with some parameters.
The distribution is completely specified if the parameters are
known. Parametric models pose certain difficulties to our
problem. First, often times, the model only becomes useful if
we determine all its parameters. This can be analytically and/or
computationally difficult for additive link attributes, since it is
often difficult to handle the sum of random variables. Second,
by stipulating that the link attribute follows a parametric model,
we have made a very strong assumption. Even if we can esti-
mate the parameters correctly and efficiently, the contribution
may not be great if the model is invalid when compared with
the reality. However, there is also a more relaxed view about
parametric models. Suppose the true probability distribution
of the link attribute is not from the family of models that we
specify. We may even suppose that it can only be described
nonparametrically, which is most likely the case in reality.
We can still apply the parametric model and choose suitable
parameters to “curve-fit” the true distribution. What we achieve
is a parsimonious and approximate description of the true
distribution. We will see in Section IV that it is in this view that
our exploration of the parametric models is more useful.

Throughout the discussion on the probabilistic models, in-
cluding both the parametric and nonparametric models, we as-
sume all link attributes are independent of each other at all time
instances, and attributes of the same link at different time in-
stances are independent.

A. Gaussian Model

Let be the directed graph representing the net-
work. Suppose Assumption 2.1 is satisfied. Suppose there are
total links in numbered as , and there are total
routes, numbered as . For each link , let its link at-
tribute be a Gaussian random variable with mean and vari-
ance . Since are independent, they are mul-
tivariate Gaussian with the mean vector
and covariance matrix . Let

. Let be the route matrix associated with
, and let be the route attributes on

routes . Since , is also multivariate
Gaussian with the mean vector and covariance matrix

.
Denote by the multivariate Gaussian distribution for the

random vector with parameter , where is the param-
eter space. In this case, .

Definition 3.1: A parametric model is said to be identifiable
if implies , for all , . Otherwise,
we say it is unidentifiable.

Then, we have the following theorem.
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Theorem 3.1: If no measurement nodes are adjacent in the
directed graph , the Gaussian model specified above is
unidentifiable.

Proof: Let . By Proposition 2.2, . This
implies we can select routes so that any route vector (i.e.,
a row in ) is a linear combination of the selected routes.
Therefore, without the loss of generality, we can assume is
a route matrix with full row rank. From ,
is a multivariate Gaussian with mean and covariance matrix

. is invertible. The distribution of is com-
pletely determined by its mean vector and the covariance matrix.
It depends on through . Since , there exist
vectors such that .

Theorem 3.1 is a rather disappointing result. Multivariate
Gaussian random variables have some nice properties that make
many calculations simpler. For instance, the joint distribution
is completely specified by the mean and the covariance matrix.
A linear transformation of the multivariate Gaussian random
variables is also Gaussian. The mean and covariance of the
transformed Gaussian can be obtained by linear transformations
on the original mean and covariance. These nice properties
works against us in this case, where the linear transformation
by is not injective.

It might be worth pointing out that the variances of link at-
tributes can be identified in certain networks, as will be shown
in Section III-B2. In studying the traffic matrix estimation
problem, [6] considers a Gaussian model where the mean of
each Gaussian random variable depends on its variance. Such a
model can be identifiable.

B. Exponential Model

The exponential model is a often assumed model for
the distributions of link delays. Suppose that, for each

, the attribute of link , , is character-
ized by an exponential distribution with parameter , denoted
by , and suppose are indepen-
dent. Since the parameters ’s are from the space of positive
real numbers, and there are a finite number of links in question,
we will assume that all ’s are distinct. We will first investigate
the identifiability issue of a single route.

Lemma 3.2: The distribution of any route attribute is identi-
fiable up to an ordering.

Proof: Without loss of generality, let us assume the route
in question, denoted by , has links, . The link at-
tributes are independent exponential random
variables with parameter . Let be the route at-
tribute, i.e., . Since the moment generating func-
tion for an exponential random variable with parameter is

, the moment generating function for is

(5)

If the set is not the same as the set
, the resulting moment generating func-

tions will be different, also. Since we can find the unique distri-
bution function corresponding to the moment generating func-
tion of the form in (5), by the definition of identifiability, the

Fig. 1. A binary tree.

distribution of any route attribute is identifiable if we ignore the
order of the links in the route.

Suppose it is possible to estimate the (unordered) set of ’s
correctly on all routes. It is not difficult to determine the corre-
spondence between the links and the parameters ’s on some
directed graphs. Consider the graph of a binary tree in Fig. 1
with one sender node at the root, eight receiver nodes at the
leaves, seven intermediate router nodes, and 15 links. There are
eight routes, each associated with one of the receivers. Number
the routes from left to the right. Suppose the es-
timates of based on the observations on each
route are exact so that we can consider the estimates and the
true parameter values are equivalent. Since the estimation based
on route 1 yields and the estimation based on
route 2 yields , we can conclude that must
be associated with and that must be associated with .
In this fashion, we can find the parameters ’s for all links at
the bottom level. Recursively, we can move one level up in the
graph and identify the parameters for , , , and . For
example, consider route 1, which is associated with the param-
eter set , and route 3, which is associated with
the parameter set . Since we have identified
with and with when we consider the bottom level,
we can conclude that must be associated with and that

must be associated with .
The above reasoning leads to the following lemma.
Lemma 3.3: For an exponential model in which all param-

eters ’s are distinct, it is possible to construct an identifiable
directed graph in which the measurement nodes are not neces-
sarily adjacent.

This is in contrast with both the deterministic case and the
Gaussian model.

In order to estimate the parameters of link attributes based
on the observations of the route attribute, it is natural to con-
sider a maximum-likelihood estimator. However, maximizing
the likelihood of the sum of independent exponentials is diffi-
cult. Consider the following example. Let the random variable

be the sum of three independent exponential random vari-
ables with parameters , , and . Suppose we make
independent observations of , and let denote the th ob-
servation. Let the random vector .
Let denote the density of . is
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also known as the likelihood function. After some algebra, we
get

We want to obtain the parameters that maximize the likelihood
function or the log-likelihood function. However, we know
no easy way to solve this analytically because the derivatives
with respect to the ’s appear to be quite complex. The diffi-
culty is in part due to the sum in the expression of the likelihood
function, which becomes log of the sum in the log-likelihood
function.

There are two solutions to our dilemma. The first one is an
iterative technique, called the EM algorithm, which is widely
used in maximum-likelihood-based parameter estimation with
incomplete data. The second approach is to deviate from max-
imum-likelihood-based estimation and use the method of mo-
ments. We will discussion each of these two techniques in the
following.

1) EM Algorithm: Let us consider a single route with
links, numbered as . Let the link delay be

for link , , and the ’s
are independent. We assume the parameters ’s are dif-
ferent. Let the route delay be . Then, .
Suppose independent samples of are observed, denoted by

. At each time , the delay of link
is denoted by . Let , and
let . Let .

The EM algorithm is an iterative algorithm for finding the pa-
rameters that maximize the log-likelihood, denoted

[4]. Notice that the random variables are ob-
served. The random variables are not observed, and are called
hidden random variables. In our case, if were observed, then

would be completely determined. At each step of the itera-
tion, we have a current estimate of the parameters, denoted by

, where stands for the th iteration. At the th iteration, let
the conditional density of the hidden variables conditional on
the observed random variables be .

The E-step of the EM algorithm is to write the complete log-
likelihood (of all random variables) with generic parameters

, under the assumption that the hidden variables are also ob-
served. Then, the conditional expectation of the complete log-
likelihood is evaluated with respect to the conditional density

. The M-step of the algorithm is to find a
new set of parameters, denoted by , that maximize the
expected complete log-likelihood computed in the E-step.

We now apply the EM algorithm to our case. The complete
likelihood is denoted by . is given
by

Then, the complete log-likelihood, denoted by is

(6)

In the th iteration step and in the E-step of the EM algorithm,
the expected value of the complete log-likelihood is

(7)

The M-step is to choose that maximizes the expected
log-likelihood . That is

(8)

where the parameter space is,
. The M-step in our case is fairly simple. By

taking derivative with respect to the ’s, the optimization yields

(9)

Hence, the key for applying the EM algorithm is to compute
, for at each iteration step.

By independence, ,
where . We will next compute this value.
For convenience, we drop the time index and iteration index
. Let denote the density for the random variable . It

can be shown that

(10)

Then, for any real vector such that
for all , and

(11)

Because , there are only independent ’s
in (11). In principle, we can find the expression for the con-
ditional density by integrating the right-hand
side of (11) with respect to the other variables. But, we
can do this more simply by noting that , where

has the density . By the gen-
eral expression in (10) for the density of the sum of independent
exponentials
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Therefore, for

(12)

The conditional expectation of can then be computed. We
get the closed-form expression

(13)

Substituting the result from (13) into (9) with the correct time
and iteration indices, we then have an iterative procedure to
compute the parameters .

2) Method of Moments: The following heuristic algorithm
based on the method of moments can be an alternative for es-
timating the parameters in the exponential model. Similar ap-
proach was taken in [2]. Again, consider the example shown in
Fig. 1. From and

, the covariance of and is

Here, and stand for covariance and variance.
From

we get

Both quantities on the right-hand side above can be estimated
based on the measurement samples collected for the routes.
Since the variance of an exponential random variable with
parameter is , the parameter can be estimated. In a
similar fashion, the parameters to can all be estimated
from the variances for the bottom-level links in the tree. We
can then move up one level from the bottom and estimate
the parameters for link 4, 5, 6, and 7. For example, taking

and ,
we get

By now, we have estimates for all quantities on the right-hand
side. It is obvious that this algorithm can be continued upward
until all link parameters are determined.

We stress that this method requires multicast on the binary
tree for collecting the samples for the ’s. In other words, each
time a packet is sent at the root node, samples are collected
at the bottom level, one for each route, where is the depth of
the tree. In the following, we will discuss some issues related to
this heuristic approach.

1) The estimator based on the method of moments may not
be asymptotically efficient, while a maximum-likelihood
estimator usually is. For an exponential random variable,
the sample mean estimator and the maximum-likelihood
estimator are the same. We might lose efficiency when the
sample variance is used in estimating the parameter. Nev-
ertheless, we expect the estimator proposed here to be rea-
sonably efficient, particularly when the depths of the bi-
nary tree is small. The major advantage of this estimation
scheme is its computational simplicity.

2) In the Gaussian model, the variances can be estimated
using the method of moments. However, since the means
and variances for the Gaussian model are unrelated, the
method gives no information about the means. Our de-
terministic analysis shows that applying the method of
moments only to the first moment will not yield unique
estimates of the model parameters. That is why, in the
exponential model, we need to rely on the second moment.

3) The method here can be used also for the one-parameter
Gamma model, in which each link attribute is considered
to be a Gamma random variable with known order
and unknown parameter . The density is of the form

, where , and the
variance is .

The method of moments is in fact a family of estimation
methods that rely on the moments of the random variables. Here
is another one of these methods. Again, consider the example
shown in Fig. 1. From and

, we get . Notice
that can be observed. Since the mean of an exponential
random variable with parameter is and the variance is

, we can write

Given a random variable , let us define the following notations.
Let be the sample mean and be the sample vari-
ance. Then, assuming certainty equivalence, i.e., the estimates
of the mean and the variance are in fact the mean and the vari-
ance of the random variable, it is reasonable to set up the fol-
lowing equations, and solve for and

The positive solutions to the above equations are unique

In the similar fashion, all parameters associated with the links
at the bottom level can be solved. Then, we can move one level
up in the tree and try to solve the parameters associated with
links in that level. For example,
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. Since the parameters for and have already been
estimated, we consider them known constants. By independence
of the ’s and by certainty equivalence, we set up the following
equations and want to solve for and :

As a final note on the exponential model, if each link delay is
a sum of independent exponentials with parameters (assume

is a known constant), the techniques used for the exponential
model can be applied.

C. Mixture of Exponential Model

Some may argue that the exponential model is too simple to
model link delays. In this section, we present a different model,
the mixture of exponentials. This model is motivated by the ob-
servation that the link delay distribution may have different de-
caying tails at different time, possibly due to the difference in
the traffic load. If we consider each decaying tail as a mode, the
link delay switches among these modes. Another motivation is
that the power-decaying tail can be approximated quite nicely
with this model, as shown in [13]. More generally, the mixture
of exponential model may have enough degree-of-freedom for
approximating a wide range of distributions.

Specifically, let us model the attribute of link , , as a
mixture of exponentials, each with a parameter , for

, where is a known constant. Let be the
probability that takes one of these exponentials, with

. Let . We can write
the density for

(14)

Again, assume , where is the route at-
tribute. We would like to estimate the parameters and
based on the observations of . We formulate a maximum-like-
lihood estimator and apply the EM algorithm, because the
estimation problem can be considered in a setting with un-
observed hidden variables. First, the link attributes, ’s,
are unobserved. Second, we can regard the particular mode
a link attribute chooses as a hidden variable. Let us define a
vector-valued random variable associated with each
taking values in the set , where is a
vector , with the 1 in the th position.
Denote and , where
and . Then, the complete likelihood is

(15)

Here, we make the notation more compact by letting the discrete
variables vary. Note that stands for the th entry of the

vector , which is either 1 or 0. For each index , only one of

the terms indexed by survives. The complete log-likelihood
is

(16)

To simplify the notation, let represent the conditional expec-
tation operator . The expected value of the
complete log-likelihood is

(17)

In the M-step of the EM algorithm, we would like to find
and so that is maximized. This is a

constraint optimization problem, subject to the constraint that
for . It is easy to show that, for
and

(18)

(19)

Therefore, the key challenge is to compute and

. Since samples at different time instances are
assumed to be independent, the conditioning in the above
expressions of conditional expectations is on alone. In
order to compute the above expectations, we need to evaluate
the posterior probabilities conditional on the observation of

. We will drop the time index and iteration index in the
following analysis.

1) Some General but Difficult Approaches: Let the random
vectors and , for , and

and be the corresponding nonrandom versions of them.
One strategy is to start with the joint conditional density,

. More explicitly, for any such that
for all , and , we need to compute

(20)

for all I-tuples , where

(21)

We can then compute and by marginalizing
the joint conditional density. The procedure developed here is a
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general one for mixture models, including the mixture of expo-
nentials and the mixture of exponentials and Gaussians. How-
ever, the computation complexity is exponential in the number
of links, , due to the discrete nature of the random variables,

’s. For example, if we choose and , then we
need to compute (20) times for each observation of , and
the outer sum in (21) has also terms.

A simpler approach is to first compute the conditional density

(22)

where

(23)
where the set

Then, the conditional density can be computed by

(24)

Given , is independent of . Hence

(25)

Given the conditional density , in principle,
can be computed. To compute , we also need

. In the following, notations are
simplified when there is no confusion:

Both approaches require complicated numerical integration.
2) Transform-Based Approach: The transform method can

further help us to reduce the computation complexity, because
of the simple form of the moment generating function for the
exponential distribution. In particular, we need not calculate the
integration in (23). For simplicity of discussion, suppose all the

’s are distinct. The moment generating function of can be
expressed as

(26)

We can perform partial fraction expansion on and get

(27)

where

(28)

Hence

(29)

We now discuss how to compute

(30)

Given

where denotes the th “mode” of the random variable .
That is, is an independent exponential variable with param-
eter . We see that, conditional on , is again a
sum of mixtures of exponential random variables, different from
the unconditional only in that for and 0 oth-
erwise. Its pdf is given by (29) with suitably modified ’s,
denoted by , where

Next, we shall discuss how to compute . Note
that, conditional on or not

if
otherwise

We have

(31)

We have just discussed how to compute in
(30). However, we will show that it is not necessary to compute
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it here. In order to compute , we need
to compute . For

Conditional on , is an exponential random variable
with parameter . Let us write , where

. We then get

(32)

Since is a sum of mixtures of exponential random variables,
by the general expression for the pdf in (27), we have

(33)

where

(34)

Putting (32) and (33) together, we have (35) shown at the bottom
of page. Combining this with (31), we have

(36)

In summary, the key advantage of the transform-based approach
is that there is no need for numerical integration and that the
number of computation steps is a polynomial with small degree,
rather than exponential, in and .

IV. COMPUTATIONAL EXPERIENCE WITH THE

PARAMETRIC MODELS

In this section, we report the numerical experiments with the
EM algorithms for the exponential model and the mixture of
exponential model. We first summarize our general experience.

The EM algorithm almost always reaches the maximum log-
likelihood value very quickly,1 after less than 100 steps for real-
istic scenarios, provided that the initial parameters are not very
large. We typically draw the initial values for uniformly
at random on [0,1], and then rescale them so that, for each ,

. The initial ’s are drawn uniformly on [0,
], where is about 1/6 to 1/2 of the maximum value of the

’s. For instance, if the true ’s are between 0.5 to 6, we
can choose . We avoid choosing large initial values for the

’s mainly for reasons of numerical precision and rounding
errors, since the algorithm repeatedly calculates quantities such
as .

However, reaching the maximum log-likelihood value does
not imply that the true parameters have been identified. In the
exponential case, we typically can identify most ’s in each
run of the algorithm, each starting from a different initial point
in the parameter space. We can always identify the smallest .
By combining experiments from different initial points, we can
increase the number of different ’s identified. Of course, a
technical difficulty exists here: Out of the set of ’s after the
EM algorithm converges, how do we decide which ones are true
model parameters and which ones are not? We have three ten-
tative solutions here. The first is to choose those ’s that con-
sistently show up in different runs with different initial condi-
tions. The second is to rely on multiple overlapping routes, for
instance, the paths in a tree, as shown in Fig. 1. A showing in
multiple routes not only suggests it is likely a true model param-
eter, but also indicates where it might reside in the network. A
third approach is what we call Successive EM Algorithm, which
is motivated by the observation that the smallest is always
present in the final result. Let us suppose . Once
we have identified , which we always do, we can keep it fixed
in the subsequent runs of the EM algorithm. The hope is that

can always be identified next. We can repeat the procedure
and identify the ’s in increasing order. Our preliminary results
with this approach are very encouraging.

In the case of the mixture of exponential model, it seems dif-
ficult to identify the true parameters. However, the parameters
discovered by the EM algorithm allows very accurate fit of the
model to the true distribution function for the link attribute, ex-
cept at the tail. In other words, what EM seems to do is to fit
the curve to where most of the mass of the function is, and it
does so very quickly. It appears that the EM algorithm mainly
tries to curve-fit the observed variable, . In the process, it also

1Rather, the algorithm almost always reaches the vicinity of the true max-
imum log-likelihood value.

(35)
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Fig. 2. Log-likelihood values as function of EM algorithm steps for the expo-
nential model. (a) Step 1 to 20. (b) Step 2 to 200.

TABLE I
EXPONENTIAL MODEL PARAMETERS AND ESTIMATION RESULTS

curve-fits very well to individual link attributes, which is a mys-
terious process at this point.

A. Exponential Model

In Fig. 2, we show the typical convergence speed of the EM
algorithm. In this example, we have 12 links, and their values
are shown in Table I. We choose 10 000 samples and the true
log-likelihood is 17699.11. Fig. 2(a) shows a giant increase
in the log-likelihood after only one step in the EM algorithm.
Fig. 2(b) shows that the log-likelihood continues to increase lin-
early. After 76 steps, its value reaches the vicinity of the true

Fig. 3. Original pdf and curve fit by the EM result after 76 EM steps, for the
exponential model. (a) Linear-linear scale. (b) Log-linear scale.

log-likelihood and stays in that region. In short, the EM algo-
rithm has good convergence speed and behavior. Similar obser-
vations have been made in the case of the mixture of exponential
model.

Fig. 3 shows the true pdf of the end-to-end observation,
, and the identified pdf after 76 steps, on linear–linear scale

and log-linear scale. EM algorithm works remarkably well
as a curve-fitting algorithm. As can be seen from Fig. 3(b),
the fit is accurate well into the tail of the curve. The lack of
degree-of-freedom in the single-parameter model for the link
attribute actually prevents the EM algorithm from creating
better fit. We will see that the mixture of exponential model has
advantage in curve fitting due to its larger degree-of-freedom,
in terms of the number of parameters.

Table I also shows two sets of inferred ’s after 76 EM steps,
coming from two EM runs with different starting points.

B. Mixture of Exponential Model

In the experiments with the mixture of exponential model,
we choose twelve links and each link attribute is a mixture of
three exponential random variables. Fig. 4 compares the identi-
fied pdf for the observable after 76 EM steps and the original
pdf. Again, the fit is remarkable. Fig. 5 goes a step further and
compares the pdf of the inferred link attribute and that of the true
link attribute for several links. Out of the 12 links, we choose a



XIA AND TSE: INFERENCE OF LINK DELAY IN COMMUNICATION NETWORKS 2247

Fig. 4. Original pdf and curve fit by the EM result after 76 EM steps, for the
mixture of exponential model. (a) Linear-linear scale. (b) Log-linear scale.

case of good fit (which is typical), shown in Fig. 5(a), and the
worst case, shown in Fig. 5(b). The worst case in fact also has
excellent fit. It appears that, in the process of fitting the pdf for

, the EM algorithm is constrained to fit the pdfs of the indi-
vidual link attributes as well. However, as indicated by Fig. 5(c),
which is in log-linear scale, the fit to the true link attribute is re-
stricted to where the probability concentrates but not the tail. In
other words, we have very good fit on a restricted domain of the
pdf where the total probability is nearly 1. Even though the in-
ferred parameters do not reflect the true ones, we have excellent
statistical information about the original pdf on this restricted
domain.

Since the fit between the true and the inferred pdfs is very
good and since the probability tail decays exponentially, we ex-
pect the fit between the lower order (first, second, third, etc.)
moments should be very good as well. Consider an example of
a route with three links, where each link attribute is a mixture of
three exponential random variables. Table II shows the compar-
ison results for the moments of orders 1, 2, 3, 4, and 10. The true
and the inferred values are very close up to the tenth moment.

In the numerical computation aspect, the step of partial frac-
tion expansion, shown in (28) and (29), is a source of serious
rounding errors due to the finite precision of the computer. The
reason is that the products can vary over a large range,

Fig. 5. Model and actual link attributes for the mixture of exponential model.
(a) Good and typical fit. (b) Not so-good fit. (c) Plot (a) on log-linear scale.

TABLE II
COMPARISON OF MOMENTS

say to , and at near 0, is a number on
[0,1]. This creates the most severe type of rounding error called
subtractive cancellation (see [14]).

V. CONCLUSION

This paper addresses the issue of determining or estimating
link attributes based on the observation of end-to-end route at-
tributes. We have investigated the theoretical, algorithmic and
computational problems that arise in such an application. We
have considered two situations: The link attributes are constants
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(the deterministic case), or they are random and have distribu-
tions from a model family (the parametric model). We have ar-
gued that, even if the true link attributes are not from the as-
sumed model family or any other model family, i.e., they must
be specified nonparametrically, we can still use a sufficiently ex-
pressive family to approximate the true distributions. The mix-
ture of exponential model and the sum of exponential model
are particularly suitable for random link delay. The focus of the
paper is to develop solutions for the maximum-likelihood esti-
mator based on the EM algorithm. It has been found that, even
though the solutions from the EM algorithm do not necessarily
reflect the true underlying parameters, they do seem to, in al-
most all cases, maximize the likelihood, and they generate good
fit to the true distribution on the region where the probability
mass concentrates.

Our study on the application of the EM algorithm to max-
imum-likelihood estimation of network internal delay leaves
open many interesting issues. For instance, we have yet fully
exploited the performance of the Successive EM Algorithm in
identifying the true model parameters. A related endeavor is to
identify the true model parameters and assign them to their re-
spective links by correlating the measurement results on diverse
and overlapping routes, for instance, the tree paths. A multi-
cast-tree based measurement strategy may be helpful. However,
difficulties exist in the computation of the pdf and the condi-
tional expectation, given the end-to-end observation. A related
idea is to run the EM-based algorithm on the difference of the
route attributes and identify a small number of links at a time.
Another item on the agenda is to study how well the generated
curves fit the link delay distributions that do not belong to the
family of models assumed and used in the EM algorithm. From
the computation point of view, there is the crucial issue of how
to better handle the rounding errors that seem to plague the nu-
merical EM algorithm.
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