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The two-user Gaussian interference channel: a deterministic view†
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SUMMARY

This paper explores the two-user Gaussian interference channel through the lens of a natural deterministic
channel model. The main result is that the deterministic channel uniformly approximates the Gaussian
channel, the capacity regions differing by a universal constant. The problem of finding the capacity of the
Gaussian channel to within a constant error is therefore reduced to that of finding the capacity of the far
simpler deterministic channel. Thus, the paper provides an alternative derivation of the recent constant gap
capacity characterisation of Etkin, Tse and Wang. Additionally, the deterministic model gives significant
insight towards the Gaussian channel. Copyright © 2008 John Wiley & Sons, Ltd.

1. INTRODUCTION

One of the longest outstanding problems in multi-user
information theory is the capacity region of the two-user
Gaussian interference channel. This multi-user channel
consists of two point-to-point links with additive white
Gaussian noise, interfering with each other through
crosstalk (Figure 1).

Each transmitter has an independent message intended
only for the corresponding receiver. The capacity region
of this channel is the set of all simultaneously achievable
rate pairs (R1, R2) in the two interfering links,
and characterises the fundamental tradeoff between the
performance achievable in the links in the face of
interference. Unfortunately, the problem of characterising
this region has been open for over 30 years. The capacity
region is known in the strong interference case, where each
receiver has a better reception of the other user’s signal than
the intended receiver [1, 2]. The best known strategy for the
other cases is due to Han and Kobayashi [1]. This strategy
is a natural one and involves splitting the transmitted
information of both users into two parts: private information
to be decoded only at own receiver and common information
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that can be decoded at both receivers. By decoding the
common information, part of the interference can be
cancelled off, while the remaining private information from
the other user is treated as noise. The Han–Kobayashi
strategy allows arbitrary splits of each user’s transmit power
into the private and common information portions as well
as time sharing between multiple such splits. Unfortunately,
the optimisation among such myriads of possibilities is
not well understood, and it is also not clear how close to
capacity can such a scheme get and whether there will be
other strategies that can do significantly better.

Significant progress on this problem has been made
recently. Etkin, Tse, and Wang [3], it was shown that a very
simple Han–Kobayashi type scheme can in fact achieve
rates within 1 bit/s/Hz of the capacity of the channel for
all values of the channel parameters. That is, this scheme
can achieve the rate pair (R1 − 1, R2 − 1) for any (R1,
R2) in the interference channel capacity region. This result
is particularly relevant in the high signal-to-noise ratio
(SNR) regime, where the achievable rates are high and grow
unbounded as the noise level goes to zero. The high SNR
regime is the interference-limited scenario: when the noise
is small, interference from one link will have a significant
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Figure 1. Two-user Gaussian interference channel.

impact on the performance of the other. Progress has also
been made towards finding the exact capacity region; by
extending one of the converse arguments of Etkin, Tse, and
Wang [3], Shang, Kramer, and Chen [4] and Annapureddy
and Veeravalli [5] show that treating interference as noise is
sum-rate optimal when the interference is sufficiently weak.

The purpose of the present paper is to show that the
high SNR behaviour of the Gaussian interference channel
characterised in [3] can in fact be fully captured by a
natural underlying deterministic interference channel. This
type of deterministic channel model was first proposed by
Avestimehr, Diggavi, and Tse [6] in the analysis of Gaussian
relay networks. Applying this model to the interference sce-
nario, we show that the capacity of the resulting determin-
istic interference channel is the same—to within a constant
number of bits—as the corresponding Gaussian interference
channel. Combined with the capacity result for the two-
user deterministic interference channel, the paper therefore
provides an alternative derivation of the constant gap result
of Etkin, Tse, and Wang [3] (albeit with a larger gap).

Because of the simplicity of the deterministic channel
model, it provides a lot of insight to the structure
of the various near-optimal schemes for the Gaussian
interference channel in the different parameter ranges.
Where certain approximate statements and intuitions can
be made regarding the Gaussian interference channel, these
statements are made precise in the deterministic setting. The
near-optimality for the Gaussian channel of the simple Han–
Kobayashi scheme as shown in [3] is made transparent in
the deterministic channel: the derivation of the achievable
strategy is completed in a series of steps, each shown to be
without loss of optimality. As an added benefit, the relatively
complicated genie-aided converse arguments are avoided.

The close connection between the deterministic and
Gaussian channels, as demonstrated in the example of
the two-user interference channel discussed in this paper,
suggests a new general approach to attack multi-user
information theory problems. Given a Gaussian network,
one can attempt to reduce the Gaussian problem to a
deterministic one by proving a constant gap between
the capacity regions of the two models. It then remains
only to find the capacity of the presumably simpler
deterministic channel. Bresler, Parekh, and Tse used the
less direct approach of transferring proof techniques from
the deterministic to Gaussian channel in approximating the
capacity of the Gaussian many-to-one interference channel,
where there is an arbitrary number of users but interference
only happens at a single receiver. The approach used in [7]
is therefore taken a step further in this work.

2. GENERALISED DEGREES OF FREEDOM
AND DETERMINISTIC MODEL FOR THE MAC

2.1. Generalised degrees of freedom

Before the 1-bit gap result [3], very little was known about
the structure of the capacity region of the two-user Gaussian
interference channel. The investigation of the generalised
degrees of freedom, a concept introduced in [3], provided
the first and crucial insight into the problem. In this section
we motivate this idea through the multiple access channel
(MAC), as well as provide a more abstract look into what
makes the generalised degrees of freedom so useful towards
understanding the Gaussian interference channel.

Let us start with the point-to-point AWGN channel. The
output is equal to

y =
√

SNRx + z

where z ∈ CN(0, 1) and the input satisfies an average power
constraint

1

N

N∑
k=1

E[x2
k] � 1

The capacity is equal to

C(SNR) = log(1 + SNR)

In an attempt to capture the rough behaviour of the capacity,
one may calculate the limit

lim
SNR→∞

C(SNR)

log SNR
= 1 (1)
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TWO-USER GAUSSIAN INTERFERENCE CHANNEL: DETERMINISTIC VIEW 335

This limit (1), the so-called degrees of freedom of the
channel, measures how the capacity scales with SNR. The
degrees of freedom is thus a rough measure of capacity,
with unit equal to a single AWGN channel with appropriate
SNR.

We now attempt a similar understanding for the MAC.
The channel output is

y = h1x1 + h2x2 + z1

where h1, h2 ∈ C, zi ∼ CN(0, 1), and each input satisfies
an average power constraint

1

N

N∑
k=1

E[|xi,k|2] � Pi, i = 1, 2

The channel is parameterised by the signal-to-noise ratios
SNR1 = P1|h1|2 and SNR2 = P2|h2|2, and we assume
without loss of generality that SNR1 � SNR2. The
capacity region of the MAC is (see Figure 3)

R1 � log(1 + SNR1)

R2 � log(1 + SNR2) (2)

R1 + R2 � log(1 + SNR1 + SNR2)

Seeking simplification, a reasonable strategy is to attempt
to compute a limit similar to that of the point-to-point
channel (1). However, there is not a clear choice of limit: the
point-to-point channel had only one parameter and thus no
ambiguity arose, but in the MAC there are two parameters,
SNR1 and SNR2, and therefore many ways of taking limits.
Let C(h1, h2, P) denote the capacity region of the MAC (2)
with channel gains h1, h2 and power constraint P for both
users. One standard way of taking the limit of the region
is to let the power constraint P tend to infinity, scaling by
log P :

lim
P→∞

C(h1, h2, P)

log P

Calculating the limit, one finds that the resulting region (see
Figure 2)

d1 � 1

d2 � 1 (3)

d1 + d2 � 1

is altogether independent of the channel gains. More
troubling, the limiting region (3) is misleading from an
operational viewpoint. The region seems to suggest that

Figure 2. The classical degrees of freedom region for the MAC.

for high-transmit powers, the optimal scheme is time-
sharing between the two rate points in which only one
user transmits at a time. But this is far from the truth, as a
corner point of the capacity region has an arbitrarily greater
sum-rate as channel parameters are varied, for each fixed
power constraint. This limit, therefore, does not reveal any
dynamic range between users, a quality that is relevant at
finite SNR.

A closer look at the capacity region itself leads to a
different limit. Notice that the capacity region can be
approximated to within 1 bit per user as (see Figure 3)

R1 � log(1 + SNR1) ≈ log SNR1

R2 � log(1 + SNR2) ≈ log SNR2 (4)

R1 + R2 � log(1 + SNR1 + SNR2) ≈ log SNR1

In order to roughly preserve the shape of the capacity region
in the limit, the approximate MAC region (4) suggests to fix

Figure 3. The solid line shows the MAC capacity region. The
dashed line shows the approximate region (4), and is within 1 bit
per user of the capacity region.
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336 G. BRESLER AND D. TSE

Figure 4. The MAC generalised degrees of freedom region. The
region is exactly the same as the approximate region in Figure 3,
normalised by log SNR1.

the relationship between the two individual rate constraints,
i.e.

log SNR2 = α log SNR1

In other words, the ratio of SNRs is fixed in the dB scale.
This is precisely the generalised degrees of freedom limit,

D(α) := lim
SNR→∞

C(SNR, SNRα)

log(SNR)

where C(SNR1, SNR2) denotes the capacity region of
the MAC with signal-to-noise ratios SNR1, SNR2. The
resulting region (Figure 4) is

d1 � 1

d2 � α (5)

d1 + d2 � 1

Qualitatively, the generalised degrees of freedom limit
preserves the dynamic range feature of the finite SNR
channel. However, a more precise statement is true as well:
because the approximation to the region (4) is to within 1 bit,
independent of the channel gains, it follows that the degrees
of freedom region itself, when scaled by log SNR1, is within
1 bit of the true region. Thus, varying α, the limiting regions
(5) uniformly cover the entire collection of finite signal-to-
noise ratio channels. To find the approximate capacity of
any MAC with (finite) signal-to-noise ratios SNR1, SNR2,
one simply needs to compute the generalised degrees of
freedom limit for the value α = log SNR2/log SNR1.

In the MAC, we observed that the generalised degrees of
freedom limit correctly expresses the finite-SNR behaviour.
We now reflect on what properties, more abstractly,
constitute a useful limit. Visually, a limit corresponds to
a choice of path, (SNR, f (SNR)) in the (SNR1, SNR2)
plane (Figure 5). Thus, a first requirement is to choose a

Figure 5. An example limit path in the (SNR1, SNR2) plane.

function f such that the limit exists:

lim
SNR→∞

C(SNR, f (SNR))

log SNR
= D(f ) (6)

Although many trajectories are possible, if the goal is a
better understanding of the capacity region for finite power-
to-noise ratios, some limit paths are better than others.
Suppose, for example, that it was possible to choose f such
that

C(SNR, f (SNR))

log SNR
= constant(f ) (7)

for the entire range SNR > 0. In words, the scaled capacity
in (7) is constant along the path f . In this case, the problem
of finding the limit (6) is precisely the same as that of finding
the capacity region for each point along the entire trajectory!
Moreover, if after computing the limit one could vary f so
as to cover all points (SNR, INR), the problem of finding
the capacity of the channel is completely solved.

Figure 6 further explains this idea. We consider the scaled
(by log SNR) capacity region. After taking a limit, one has
the scaled capacity region at each point on an arc of infinite
radius. Now, upon choosing an arbitrary point (s1, s2) in
the (SNR1, SNR2) plane, a good limit should allow to
deduce, from the scaled capacities on the infinite-radius
arc, the (approximate) scaled capacity at (s1, s2). Hence
the significance of Equation (7), which allows to equate the
scaled capacity at finite SNRs with the limiting regions: if
condition (7) is satisfied, one may simply choose the path
f containing the point (s1, s2), which gives

C(s1, s2) = C(s1, f (s1)) = log s1 · D(f )

For the MAC, the set of trajectories defining the
generalised degrees of freedom limit satisfies Equation (7)
to within a universal constant, independent of SNR. The
generalised degrees of freedom of the MAC (5) is the limit
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Figure 6. The figure illustrates the notion of a limit region
uniformly approximating the capacity region. Suppose the
capacity, scaled by log SNR1, is constant along the limit paths.
The dashed lines show several example limit paths. Then, to find
the capacity region at any point (s1, s2) in the (SNR1, SNR2) plane,
one may simply follow the path (denoted by f ) to the infinite arc,
resulting in D(f ).

(6) along the path

f (s) = sα

The generalised degrees of freedom of the MAC is
intimately connected to, and captured by, a certain
deterministic channel model. In fact, the capacity region
of the deterministic channel is, when properly scaled, equal
to the generalised degrees of freedom region. Equivalently,
the deterministic channel satisfies Equation (7) exactly.

2.2. Deterministic channel

In this section, we introduce a deterministic channel model
analogous to the Gaussian channel. This channel was first
introduced by Avestimehr, Diggavi, and Tse [6]. We begin
by describing the deterministic channel model for the point-
to-point AWGN channel, and then the two-user multiple
access channel. After understanding these examples, we
present the deterministic interference channel.

Consider first the model for the point-to-point channel
(see Figure 7). The real-valued channel input is written
in base 2; the signal—a vector of bits—is interpreted as
occupying a succession of levels:

x = 0.b1b2b3b4b5 . . .

Figure 7. The deterministic model for the point-to-point Gaussian
channel. Each bit of the input occupies a signal level. Bits of lower
significance are lost due to noise.

The most significant bit coincides with the highest level, the
least significant bit with the lowest level. The levels attempt
to capture the notion of signal scale; a level corresponds to
a unit of power in the Gaussian channel, measured on the
dB scale. Noise is modelled in the deterministic channel by
truncation. Bits of smaller order than the noise are lost. The
channel may be written as

y = �2nx	

with the correspondence n = �log SNR	.
The deterministic multiple access channel is constructed

similarly to the point-to-point channel (Figure 8), with n1
and n2 bits received above the noise level from users 1 and
2, respectively. To model the superposition of signals at the
receiver, the bits received on each level are added modulo 2.
Addition modulo 2, rather than normal integer addition, is
chosen to make the model more tractable. As a result, the
levels do not interact with one another.

Figure 8. The deterministic model for the Gaussian multiple
access channel. Incoming bits on the same level are added modulo
two at the receiver.
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If the inputs xi(t) are written in binary, the channel output
can be written as

y = �2n1x1	 ⊕ �2n2x2	 (8)

where addition is performed on each bit (modulo 2) and �·	
is the integer-part function. The channel can be written in an
alternative form, which we will not use in the present paper,
but leads to a slightly different interpretation. The input
and output are x1, x2, y ∈ Fq

2, where q = max(n1, n2). The
signal from transmitter i is scaled by a non-negative integer
gain 2ni (equivalently, the input column vector is shifted up
by ni). The channel output is given by

y = Sq−n1x1 ⊕ Sq−n2x2 (9)

where summation and multiplication are in F2 and S is a
q × q shift matrix

S =




0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
...

0 · · · 0 1 0


 (10)

The capacity region of the deterministic MAC is

r1 � n1

r2 � n2 (11)

r1 + r2 � max(n1, n2)

Comparing with the approximate MAC region (4), we make
the correspondence

n1 = �log SNR1	, n2 = �log SNR2	

Evidently, the capacity region of the deterministic MAC
is constant when normalised by n1 and the ratio α =
n1/n2 is held fixed. Thus, the deterministic MAC satisfies
condition (7) exactly when the gains are integer-valued; the
normalised capacity along any point in the limit path is equal
to the degrees of freedom of the deterministic MAC, which
is in turn equal to the degrees of freedom of the Gaussian
MAC.

3. DETERMINISTIC INTERFERENCE
CHANNEL

In Section 2, we motivated the generalised degrees of
freedom limit and saw how it led to a simple deterministic
model. The generalised degrees of freedom, and the
equivalent deterministic model, was seen to uniformly
approximate the MAC. With this success in explaining the
MAC, a logical next step is to apply the deterministic model
to the Gaussian interference channel.

The Gaussian interference channel is given by

y1 = h11x1 + h12x2 + z1

y2 = h21x1 + h22x2 + z2

where zi ∼ CN(0, 1) and the channel inputs satisfy an
average power constraint

1

N

N∑
k=1

E[|xi,k|2] � Pi, i = 1, 2

The channel is parameterised by the power-to-noise ratios
SNR1 = |h11|2P1, SNR2 = |h22|2P2, INR1 = |h21|2P1,
INR2 = |h12|2P2.

We proceed with the deterministic interference channel
model (Figure 9). Note that the model is completely
determined by the model for the MAC. There are two
transmitter–receiver pairs (links), and as in the Gaussian
case, each transmitter wants to communicate only with its
corresponding receiver. The signal from transmitter j, as
observed at receiver i, is scaled by a non-negative integer
gain 2nij (equivalently, the input column vector is shifted
up by nij). The input and output, respectively, at link i are
xi, yi ∈ Fq

2, where q = maxij nij .
The channel output at receiver i is given by

yi(t) = Sq−ni1x1 ⊕ Sq−ni2x2 (12)

Figure 9. At left is a deterministic interference channel. The more
compact figure at right shows only the signals as observed at the
receivers.
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where summation and multiplication are in F2 and S is
defined above (10).

If the inputs xi are written in binary, the channel can
equivalently be written as

y1 = �2n11x1	 ⊕ �2n12x2	
y2 = �2n21x1	 ⊕ �2n22x2	

where addition is performed on each bit (modulo 2) and
�·	 is the integer-part function. We will use the latter
representation in this paper.

In the analysis of the deterministic interference channel,
it will be helpful to consult a different style of figure.
The left-hand side of Figure 9 depicts a deterministic
interference channel, and the right-hand side shows only
the perspective of each receiver. Each incoming signal
is shown as a column vector, with the highest element
corresponding to the most significant bit and the portion
below the noise level truncated. The observed signal at
each receiver is the modulo 2 sum of the elements on each
level. In the sequel, the dashed lines indicating the position
of each entry of the vector will be omitted.

Just as in the discussion of the MAC, the deterministic
interference channel uniformly approximates the Gaussian
channel. In finding the capacity of the Gaussian interference
channel to within a constant number of bits, it therefore
suffices to find the capacity of the far simpler deterministic
channel.

Theorem 1. The capacity of the two-user Gaussian
interference channel with signal and interference to noise
ratios SNR1, SNR2, INR1, INR2 is within 42 bits per user
of the capacity of a deterministic interference channel
with gains 2n11 = 2�log SNR1	, 2n12 = 2�log INR2	, 2n21 =
2�log INR1	 and 2n22 = 2�log SNR2	.

Proof. The capacity of the two-user Gaussian interference
channel has been characterised to within 1 bit by Etkin et al.
[3]; thus, we could prove the theorem by following the
approach used for the MAC in Section 2, comparing the
capacity regions of the deterministic and Gaussian channels.
We instead choose to prove the theorem with no a priori
knowledge of the result for the Gaussian channel. This
approach provides insight into the deep connection between
the deterministic and Gaussian channels, and also gives an
alternative derivation of the constant-bit characterisation [3]
(but with a significantly larger gap). The proof is deferred
to the appendix.

Theorem 1 gives as a corollary that the generalised
degrees of freedom of the two-user Gaussian interference

channel is exactly equal to the scaled capacity of the
corresponding deterministic channel. This explains why the
degrees of freedom limit characterizes, up to a constant,
the capacity of the Gaussian channel.

4. STRUCTURE OF OPTIMAL STRATEGY FOR
DETERMINISTIC CHANNEL

El Gamal and Costa’s characterisation of the capacity region
for a class of deterministic interference channels [8] applies
to this particular deterministic channel. Moreover, it is not
difficult to determine the optimal input distribution from
their expression. But it is not immediately apparent why
this region is in fact optimal.

The goal of this section is to derive from the beginning,
using only the most basic tools of information theory, the
(arguably) natural optimal achievable strategy. Although the
resulting strategy coincides with a specific Han–Kobayashi
strategy, by proceeding in this way we hope to demystify
the structure of the achievable strategy. In particular, we
will see how common and private messages arise inevitably,
quickly giving the capacity region of the channel. The
appeal of this approach is bolstered by it not requiring the
side-information converse proofs used in preview work on
the interference channel [3] and [8].

The natural decomposition of messages into common
and private parts was motivated at an intuitive level for the
Gaussian interference channel in Sections 6 and 7 of [3]. In
the setting of the deterministic channel, the arguments of
this section make those ideas precise.

The following standard definitions and notation will
be used. Denote by M1 = {1, . . . , M1} and M2 =
{1, . . . , M2} the message sets of users 1 and 2. Let the
encoding functions fi : Mi → Xi with fi(j) = xi(j) map
the message j generated at user i into the length N codeword
xi(j). Let the decoding functions gi(yi) map the received
signal yi to the message j if yi ∈ Dij , where Dij is the de-
coding set of message j for user i. An (N, M1, M2, µ) code
consists of Mi codewords xi(j) and Mi decoding sets Dij

such that the average probability of decoding error satisfies

1

M1M2

∑
jk

P(D1j|x1(j), x2(k)) � 1 − µ

1

M1M2

∑
jk

P(D2k|x1(j), x2(k)) � 1 − µ

A pair of non-negative real numbers (r1, r2) is called an
achievable rate for the deterministic interference channel

Copyright © 2008 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2008; 19:333–354
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if for any ε > 0, 0 < µ < 1 and for any sufficiently large
N, there exists an (N, M1, M2, µ) code such that

1

N
log Mi � ri − ε

The first lemma is a simple analogue of Shannon’s
point-to-point channel coding theorem, stating that the
mutual information between input and output determines
the capacity region.

Lemma 1. The rate point (r1, r2) is achievable if and
only if for every ε > 0 there exists a block length N and a
factorised joint distribution p(xN

1 )p(xN
2 ) with

r1 − ε � 1

N
I
(
xN

1 ; yN
1

)
r2 − ε � 1

N
I
(
xN

2 ; yN
2

)
(13)

Proof. Fix a block length N and joint distribution
p(xN

1 )p(xN
2 ). Each user i = 1, 2 will use the distribution

over p(xN
i ) as an inner code, using k blocks of length N.

The codebooks are constructed using random coding, and
the achievability of (r1, r2) follows by the random coding
argument (with joint typicality decoding) for the point-to-
point discrete memoryless channel.

As in the point-to-point case, the converse is a
straightforward application of Fano’s inequality:

Nri = H(Wi) = H(Wi|yN
i ) + I

(
Wi; y

N
i

)
� 1 + P (N)

e Nri + I
(
xN
i ; yN

i

)
, i = 1, 2

It is assumed that P
(N)
e → 0 as N → ∞. Dividing by N

and taking N sufficiently large gives the desired result.

The next two lemmas are the most important of this
section; they show the optimality of separating each
message into a private and common message (the terms
common and private are to be justified later, and for now to
be regarded simply as labels).

Lemma 2. Given any achievable rate point (r1, r2), this
rate-point is achievable using a code with the following
decomposition.

1. The channel inputs, xN
1 and xN

2 , are separated into com-
ponents consisting of common and private information:

xN
1 = (xN

1p, xN
1c), xN

2 = (xN
2p, xN

2c)

2. The message sets are separated into private and common
messages, i.e. Mi = Mic × Mip for users i = 1, 2,

Figure 10. The figure depicts the received signal at each receiver.
Notice that the private signals (as defined in Lemma 2), x1p, x2p,
are not observed at the other receiver.

with the common signal xN
ic = f c

i (mic) a function only
of the common message mic ∈ Mic and the private
signal xN

ip = f
p
i (mip, mic) a function of both the private

and common message (mip, mic) ∈ Mip × Mic.
3. The common rate is less than the entropy of the common

signal, that is rc
i < 1

N
H(xN

ic ).

Proof. Consider an achievable rate point (r1, r2). The
proof follows by converting an arbitrary achievable strategy
to one that satisfies the desired properties. Fix ε > 0, a
block length N ′, and an arbitrary distribution p(xN ′

1 )p(xN ′
2 )

such that Equation (13) is satisfied with ε/2. Write the input
as xN ′

i = (xN ′
ip , xN ′

ic ), where xN ′
1p is the input xN ′

1 restricted

to the lowest (n11 − n21)+ levels, xN ′
1c is the restriction

to the highest n21 levels, and similarly for xN ′
2c , xN ′

2p (see
Figure 10). Note that if n21 � n11 (n12 � n22) then the
private signal xN ′

1p (xN ′
2p) is empty.

It must now be verified that transmitter i can separate
the message set Mi into the direct product of two message
sets Mip × Mic. The scheme uses a superposition code, as
used for the degraded broadcast channel (see e.g. [9]), with
xic serving as the cloud centres and xip as the clouds. To see
that this is possible, put for i = 1, 2,

rc
i = 1

N ′ I
(
xN ′
ic ; yN ′

i

) − ε

4

r
p
i = 1

N ′ I
(
xN ′
ip ; yN ′

i |xN ′
1c

) − ε

4
(14)

Then from the chain rule we have

ric + rip = 1

N ′ I
(
xN ′
ic ; yN ′

i

) − ε

4
+ 1

N ′ I
(
xN ′
ip ; yN ′

i |xN ′
1c

) − ε

4

= 1

N ′ I
(
xN ′
i ; yN ′

i

) − ε

2
� ri − ε
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Figure 11. Lemma 2 shows that we may view the common signal
and private signal of each user as coming from two separate users,
with the private user having access to the signal from the common
user.

Now, for some sufficiently large super-block length k,
generate 2kN ′ric independent codewords of length N ′k,
xkN ′
ic (mic) according to

∏k
t=1 p(xN ′

ic,t). The block length
N in the statement of the lemma is given by N =
N ′k. Next, for each codeword xkN ′

ic (mic), generate 2kN ′rip

codewords of length N ′k, xkN ′
ip (mic, mip), according to the

conditional distribution
∏k

t=1 p
(
xN ′
ip,t|xN ′

ic,t(mic)
)
. Decoding

is accomplished using joint typicality, and the probability of
error may be taken as small as desired by choosing k large.
Since ε was arbitrary, this proves the lemma.

The previous lemma shows that we may consider the
deterministic interference channel as a channel with four
senders and two decoders, as in Figure 11. This interpreta-
tion motivates the next lemma, which shows that each user
is able to decode the common information of the interfering
user. The lemma makes use of facts concerning the multiple
access channel. For background on the multiple access
channel see e.g. [9, 10]. The lemma can essentially be de-
duced from the result by Costa and El Gamal on discrete
memoryless interference channels with strong interference
[11]. The result itself is analogous to Sato’s result for
the Gaussian interference channel in the strong interference
regime [12]; however, because Lemma 2 shows that the
signal ought to be separated into common and private com-
ponents, the argument applies to the entire parameter range.

By the MAC at receiver 1 we mean the MAC with the
first user transmitting x1 = (x1p, x1c) at rate r

p

1 + rc
1 and

the second user transmitting x2c at rate rc
2, with receiver 1

required to reliably decode both signals, and similarly for
the MAC at receiver 2.

Lemma 3. The region is exactly described by the
compound MAC formed by the MAC at each of the two

receivers, along with constraints on the private rates.
Furthermore, the region has a single-letter representation.

Proof. Suppose the rate-point (r1, r2) is achievable. By
Lemma 2, we may assume that each user’s common signal
is a function only of the common message, and that

rc
1 = 1

N
I(xN

1c; yN
1 ) − ε � 1

N
H(xN

1c) − ε

rc
2 = 1

N
I(xN

2c; yN
2 ) − ε � 1

N
H(xN

2c) − ε (15)

Then each user, upon successfully decoding their own signal
and subtracting it off, has a clear view of the other user’s
common signal xN

ic . But, since the common rate is smaller
than the entropy of the common signal (15), it is possible
to recover the common message mic with arbitrarily small
probability of error when N is taken to be large enough; in
other words, each user can reliably decode the other user’s
common message.

The joint distribution of the channel is

p
(
yN

1 |xN
1c, x

N
1p, xN

2c

)
p
(
yN

2 |xN
2c, x

N
2p, xN

1c

)
p
(
xN

1p|xN
1c

)
p(xN

1c)p
(
xN

2p|xN
2c

)
p(xN

2c) (16)

The fact that each receiver can decode the common message
of the other user implies, by Fano’s inequality, that

1

N
H(m1c, m1p, m2c|yN

1 ) → 0

and
1

N
H(m1c, m2p, m2c|yN

2 ) → 0

as N → ∞.
Proceeding as in the converse argument for the MAC (see

e.g. [9], p. 400), one can show that for any joint distribution
(16) the rate point (rc

1, r
p

1 , rc
2, r

p

2 ) satisfies a number of
constraints. First, the rate point (rc

1 + r
p

1 , rc
2) must lie within

the MAC at receiver 1 and the rate point (rc
1, r

c
2 + r

p

2 ) must
lie within the MAC at receiver 2. Additionally, there are
constraints on the private rates r

p

1 , r
p

2 and the rates r
p

1 + rc
2

and r
p

2 + rc
1. More precisely, there exists a distribution

p(x1p|x1c, q)p(x1c|q)p(x2p|x2c, q)p(x2c|q)p(q) such that

r1 + rc
2 = rc

1 + r
p

1 + rc
2 � I(x1c, x1p, x2c; y1|Q)

r1 = rc
1 + r

p

1 � I(x1c, x1p; y1|x2c, Q)

rc
2 � I(x2c; y1|x1c, x1p, Q)

r
p

1 + rc
2 � I(x1p, x2c; y1|x1c, Q)
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r
p

1 � I(x1p; y1|x2c, x1c, Q)

rc
1 + r2 = rc

1 + r
p

2 + rc
2 � I(x2c, x2p, x1c; y2|Q) (17)

r2 = rc
2 + r

p

2 � I(x2p, x2c; y2|x1c, Q)

rc
1 � I(x1c; y2|x2c, x2p, Q)

r
p

2 + rc
1 � I(x2p, x1c; y2|x2c, Q)

r
p

2 � I(x2p; y2|x1c, x2c, Q)

Conversely, if the rate tuple (rc
1 + r

p

1 , rc
2) is within the

MAC at receiver 1, and (rc
1, r

c
2 + r

p

2 ) is within the MAC
at receiver 2, and the additional constraints on r

p

1 , r
p

2 are
satisfied, then the rate point (rc

1, r
p

1 , rc
2, r

p

2 ) is achievable
using a superposition random code as in Lemma 2 and joint
typicality decoding.

The next lemma makes the region in Equation (17)
explicit.

Lemma 4. The optimising (simultaneously for each of the
constraints in Equation (17)) input distribution is uniform
for each signal. This allows us to write the region as

rc
1 + r

p

1 + rc
2 � n11 + min(n22, (n12 − n11)+)

rc
1 + r

p

1 � n11

rc
2 � min(n12, n22)

r
p

1 + rc
2 � min(n22 + (n11 − n21)+, n12)

r
p

1 � n11 − n21

rc
2 + r

p

2 + rc
1 � n22 + min(n11, (n21 − n22)+) (18)

rc
2 + r

p

2 � n22

rc
1 � min(n21, n11)

r
p

2 + rc
1 � min(n11 + (n22 − n12)+, n21)

r
p

2 � n22 − n12

Proof. Intuitively, the private signal should be uniform
because it helps the intended receiver decode and does
not cause interference, and the common signal should be
uniform because it helps both receivers decode.

Fix a joint distribution and consider a rate point satisfying
the constraints of the previous lemma. From the equations
of the previous lemma, it is easy to see that p(xip) should
be uniform in any optimal distribution, since this increases
the mutual information terms where xip appears. Similarly,
p(xic) should be uniform. This allows to evaluate the mutual

Figure 12. From the figure it is possible to understand the
constraints (18) as areas of rectangles.

information expressions in Equation (17), resulting in the
stated region.

Remark 1. The constraints of Lemma 4 admit a simple
interpretation in terms of the areas of the relevant rectangles
in Figure 12.

The constraints (18) determine the capacity region of the
deterministic channel; using Fourier–Motzkin elimination
one can solve for the region in terms of constraints on r1
and r2. Alternatively, note that the deterministic interference
channel of this paper falls within the class of more general
deterministic channels whose capacity is given in Theorem
1 of El Gamal and Costa [8]. Applying this theorem, the
deterministic channel capacity region is the set of non-
negative rates satisfying

ri � nii, i = 1, 2

r1 + r2 � (n11 − n12)+ + max(n22, n12)

r1 + r2 � (n22 − n21)+ + max(n11, n21)

r1 + r2 � max(n21, (n11 − n12)+)

+ max(n12, (n22 − n21)+)

2r1 + r2 � max(n11, n21) + (n11 − n12)+

+ max(n12, (n22 − n21)+)

r1 + 2r2 � max(n22, n12) + (n22 − n21)+

+ max(n21, (n11 − n12)+)

5. EXAMPLES

It is instructive to consider a few examples of capacity-
achieving schemes for the deterministic channel. For
simplicity, we restrict attention to the symmetric case, i.e.
n := n11 = n22 and n21 = n12 = nα, where α := n12/n11.
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Figure 13. The sum-rate capacity of the deterministic interference
channel, normalised by n. The dotted line continuing downwards
from the point (1/2, 1/2) is the rate achievable by treating
interference as noise.

Most of the achievable schemes presented admit simple
interpretations in the Gaussian channel. Figure 13 depicts
the sum-rate capacity of the symmetric channel, indexed
by α.

Consider first the case α = 1/3. One option is to use the
strategy described in Section 4, making the entire signal
private information (Figure 14). In the deterministic model
the signal does not appear at the unintended receiver. This
corresponds to transmitting below the noise level in the
Gaussian channel, in which case the additional noise from
the interference causes a loss of only 1 bit for each user.
A second option is for each transmitter to use the full
available power, transmitting on the highest 2/3 of the levels
(Figure 15). The lower 1/3 of the levels are unusable on the
direct link due to the presence of interference. This strategy
corresponds to treating interference as noise in the Gaussian
channel. The value α = 1/3 is representative of the entire
range α ∈ [0, 1

2 ], where both of these strategies are optimal.
For α = 2/3 there are again a few options. One possibility

is to use the capacity achieving scheme of Section 4, with
the lowest 1/3 of the levels consisting of private information,
and the remaining 2/3 of the levels as common information

Figure 14. α = 1/3. Two-thirds of the signal is private
information, with no common information. This scheme
corresponds to transmitting below the noise level.

Figure 15. α = 1/3. The top third of the levels are common
information, and the middle third are private information. This
scheme corresponds to treating interference as noise.

Figure 16. α = 2/3. One-third of the signal is private information,
and two-thirds is common information, but the common rate equals
the private rate: r

p

1 = r
p

2 = rc
1 = rc

2 = n/3.

(see Figure 16). The rate achieved is r1 = r2 = 2n/3 bits per
channel use per user. Alternatively, imagine continuously
varying α from the value α = 1/3 to α = 2/3, while using
the scheme of treating interference as noise (Figure 15). The
used power range will shrink to the range between 2n/3 and
n. However, a gap appears, and the range of levels between
1 and n/3 can be used as well (Figure 17). The gap in the
corresponding Gaussian setting is because of the structure
of the interference: the interference contains information,
and can be decoded. After decoding the interference it
can be subtracted off, and additional information can be

Figure 17. α = 2/3. As α is increased from 1/3 to 2/3, a gap
appears in the bottom 1/3 of the levels. This gap can be used to
transmit private information.
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Figure 18. α = 3/4. This scheme is essentially the same as in
Figure 16. One-quarter of the signal is private information and
three-quarters is common information. The common rate is rc

1 =
rc

2 = 3n/8 and the private rate is r
p

1 = r
p

2 = n/4.

transmitted. This phenomenon is the reason why treating
interference as noise is no longer optimal beyond α = 1/2.

The case α = 3L/4 is different than the previous
examples: here coding is necessary. The random code
of Section 4 has the lowest 1/4 of the levels containing
private information and the highest 3/4 of the levels contain
common information (Figure 18). The symmetric rate
achieved is 5n/8 bits per channel use per user. As in the
previous examples, using only one time-slot is possible, but
for α > 2/3, using one time-slot requires coding over levels.
The scheme of Berry and Tse [13], shown in Figure 19,
achieves the rate point (3n/4, n/2) by repeating a symbol
on two different levels; the symmetric point (5n/8, 5n/8)
is achieved by time-sharing.

APPENDIX A: PROOF OF DETERMINISTIC
APPROXIMATION THEOREM

In this appendix we prove Theorem 1, which states that the
capacity region of the 2-user Gaussian interference channel

Figure 19. α = 3/4. Coding over levels is performed by repeating
the vector of bits b1.

is within 42 bits per user of the deterministic interference
channel. More specifically, for each choice of channel
parameters in the Gaussian channel, the corresponding
deterministic channel has approximately the same capacity
region. The focus is not on optimising the size of the gap;
several of the estimates are weakened in favour of a simpler
argument. Rather, the significance is that the gap is constant,
independent of the channel gains. Moreover, the proof uses
no knowledge of the Gaussian channel. Thus, the approach
used here, along with the deterministic capacity region from
Section 4, gives an alternative derivation of the constant gap
capacity result of Etkin et al. [3].

We first prove Theorem 2, which is the same as Theorem 1
but for the real Gaussian interference channel, where
the inputs, channel gains and noise are real-valued. The
complex-valued case is discussed afterwards. The main
ingredients used in the proof of Theorem 1 for the complex-
valued channel are the same as those introduced in the proof
of the real-valued channel.

Theorem 2. The capacity of the real-valued 2-user
Gaussian interference channel with signal and interference
to noise ratios SNR1, SNR2, INR1, INR2 is within
18.6 bits per user of the capacity of a deterministic

interference channel with gains 2n11 := 2� 1
2 log SNR1	,

2n12 := 2� 1
2 log INR2	, 2n21 := 2� 1

2 log INR1	, and 2n22 :=
2� 1

2 log SNR2	.

The factor of 1/2 in front of the logarithm is due to the
channel being real-valued.

Recall that the real-valued Gaussian interference channel
is given by

y1 = h11x1 + h12x2 + z1

y2 = h21x1 + h22x2 + z2 (19)

where zi ∼ N(0, 1), hij ∈ R and the input signals x1, x2
satisfy an average power constraint

1

N

n∑
k=1

E[x2
i,k] � Pi

By scaling the channel gains, we may assume without
loss of generality that the average power constraints of the
Gaussian channel are equal to 1, i.e. P1 = P2 = 1.

The corresponding deterministic channel, introduced in
Section 3, is

y1 = �2n11x1	 ⊕ �2n12x2	
y2 = �2n21x1	 ⊕ �2n22x2	 (20)
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where nij = �log |hij|	 and xi, i = 1, 2 are real numbers,
0 � xi � 1. Addition is modulo 2 in each position in the
binary expansion.

The proof of Theorem 2 requires two directions, namely

CGaussian ⊆ Cdet + constant

and

Cdet ⊆ CGaussian + constant

Each direction will be completed in a sequence of steps,
each step comparing the capacity region of a new channel
to that of the previous step. The first and last channels
will be the Gaussian and deterministic channels under our
consideration.

A.1. Cdet ⊆ CGaussian + (5, 5)

We now show that the capacity achieving input of the
deterministic channel (20) can be transferred over to the
Gaussian channel (19) with a loss of at most 5 bits per
user. This specifies an achievable region for the Gaussian
channel. As mentioned above, the argument is based on
comparing mutual information in a sequence of steps.

The first step shows that the capacity region does not
decrease if the modulo 2 addition of the deterministic
channel is replaced by real addition; Step 2 shows that
the capacity region of the deterministic channel is the
same if the gain 2nij is replaced by a real-valued hij

with �log |hij|	 = nij; Step 3 adds Gaussian noise; Step 4
removes the truncation of received signals at the noise level.

The following easy lemma bounds the effect of a change
to the channel output when the original output can be
restored using a small amount of side information, and will
be used several times.

Lemma 5. Fix a block-length N. If the signal yN is
determined by the pair ỹN , sN , then

I
(
xN ; ỹN

)
� I

(
xN ; yN

) − H
(
sN

)
Proof. The assumption that yN is determined by ỹN, sN

implies that

H
(
xN |ỹN, sN

)
� H

(
xN |yN

)
This inequality together with the chain rule and removing
conditioning gives

I
(
xN ; ỹN

) = H
(
xN

) − H
(
xN |ỹN

)
� H

(
xN

) − H
(
xN, sN |ỹN

)

� H
(
xN

) − H
(
sN

) − H
(
xN |ỹN, sN

)
� H

(
xN

) − H
(
sN

) − H
(
xN |yN

)
= I

(
xN ; yN

) − H
(
sN

)
This proves the lemma.

Step 1: Real addition (lose zero bits). For simplicity, only
the output y1 is discussed. The corresponding statements
for y2 follow similarly.

We may write the inputs as

xi =
∞∑

k=1

xi(k)2−k, xi(k) ∈ {0, 1} (21)

In the deterministic channel (20), we have⌊
2n11

∞∑
k=1

x1(k)2−k

⌋
=

n11∑
k=1

2n11−kx1(k)

and ⌊
2n12

∞∑
k=1

x2(k)2−k

⌋
=

n12∑
k=1

2n12−kx2(k)

Thus, the common signal from user 2 is

x2c = {x2(1), . . . , x2(n12)}
Step 1 replaces the modulo 2 addition of the deterministic

channel with real addition. Using the two previous
equations, we define (the output at receiver 1 of) Channel 1
as

y1 =
n11∑
k=1

2n11−kx1(k) +
n12∑
k=1

2n12−kx2(k)

We claim that the capacity region of this new channel
contains that of the original deterministic channel. Any rate
point within the region (17) given by Lemma 3 is achievable
for Channel 1:

rc
1 + r

p

1 + rc
2 � I(x1c, x1p, x2c; y1) = H(y1)

rc
1 + r

p

1 � I(x1c, x1p; y1|x2c) = H(x1)

rc
2 � I(x2c; y1|x1c, x1p) = H(x2c)

r
p

1 + rc
2 � I(x1p, x2c; y1|x1c) = H(y1|x1c)

r
p

1 � I(x1p; y1|x2c, x1c) = H(x1p)

rc
1 + r

p

2 + rc
2 � I(x2c, x2p, x1c; y2) = H(y2) (22)

rc
2 + r

p

2 � I(x2p, x2c; y2|x1c) = H(x2)
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rc
1 � I(x1c; y2|x2c, x2p) = H(x1c)

r
p

2 + rc
1 � I(x2p, x1c; y2|x2c) = H(y2|x2c)

r
p

2 � I(x2p; y2|x1c, x2c) = H(x2p)

Thus, it suffices to show that each of the mutual information
constraints is made looser when using the (optimal) uniform
input distribution of the deterministic channel. Note that
only the first, fourth, sixth and ninth constraints are affected
by the change to real addition.

Now, in the deterministic channel (20), the output y1 is
uniformly distributed; alternatively, each bit in the binary
expansion of y1 that is random is independent of the other
bits and has equal probability of being zero or one. The
distribution of these bits in the binary expansion of y1 does
not change in passing to real addition, because each bit is
the sum modulo 2 of a carry bit and a fresh random bit.
It follows that the entropy H(y1) does not decrease. The
entropies H(y1|x1c) and H(y2|x2c) behave similarly.

Step 2: Real-valued gains (lose log 3 bits). In this step
we compare the achievable rate under a uniform input
distribution of a channel with real-valued gains to the
achievable rate in Step 1, losing at most log 3 bits per user.
The result is an achievable region that is within log 3 bits
per user of the capacity region of the original deterministic
channel.

To allow real-valued gains, we first allow negative cross
gains. It is sufficient to consider only the case of cross gains,
rather than any of the gains, being negative, since each
transmitter can negate its input to ensure a positive signal
on the direct link. Viewing each input as coming from a
contiguous subset of integers in the real line, it is clear that
the entropy constraints in (22) are invariant to negating a
cross gain when the distribution is uniform.

Next, replace 2nij with the gain hij having binary
expansion

hij = sign(hij)
∞∑

k=−nij

2−khij(k)

Accordingly, Channel 2 is given by

y1 =



 ∞∑

k=−n11

2−kh11(k)


 (

n11∑
k=1

2−kx1(k)

)

+ sign(h12)



 ∞∑

k=−n12

2−kh12(k)


 (

n22∑
k=1

2−kx2(k)

)
(23)

Figure 20. Making the gains real-valued creates gaps in the
support without changing its cardinality. In this example n = 3
and h = 1.4(23) = 11.2.

and analogously for y2. We continue by comparing the
mutual information constraints in Equation (22), noting that
any rate in this region is achievable in the channel of Step 2.

To begin, we may view the first term in Equation (23)
as starting with the random variable 2n11

∑n11
k=1 2−kx1(k),

which is uniformly distributed on {0, . . . , 2n11 − 1}, scaled
by h11/2n11 � 1, and retaining the integer part �·	. Upon
scaling, any two points in the support are at least distance 1
apart, so the integer part is at least distance 1 as well. Thus,
the first term in Equation (23) is uniformly distributed with
support a subset of the integers having cardinality 2n11 ; the
support now has gaps, and is no longer the set of integers
between 0 and 2n11 − 1 (see Figure 20).

The second term in Equation (23) is similar, but the
argument must be modified to account for the part of the
signal below the noise level. We have


 ∞∑

k=−n12

2−kh12(k)


 ( ∞∑

k=1

2−kx2(k)

)

=
|h12|

n12∑
k=1

2−kx2(k) + |h12|
∞∑

k=n12+1

2−kx2(k)


:= �A1 + A2	 (24)

The argument for the first term of the output (23) applies to
the sum A1 in Equation (24), giving that A1 is distributed
uniformly with spacingh12/2n12 � 1 and support set having
cardinality 2n12 . Now, A2 is bounded as 0 � A2 � 2, since
|h12| � 2n12+1. Hence, defining

s = �A1 + A2	 − �A1	
we see that s can take on values 0, 1, 2, giving

H(s) � log 3 (25)
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Neglecting A2, let the modified output be

ỹ1 =



 ∞∑

k=−n11

2−kh11(k)




(
n11∑
k=1

2−kx1(k)

)

+ sign(h12)



 ∞∑

k=−n12

2kh12(k)




(
n12∑
k=1

2−kx2(k)

)
(26)

Since y1 can be recovered by the pair ỹ1, s, Lemma 5 shows
that

I(x1; ỹ1) � I(x1; y1) − log 3

The argument is completed by using the fact that

H

(⌊
|h11|

n11∑
k=1

2−kx1(k)

⌋
+

⌊
|h12|

n12∑
k=1

2−kx2(k)

⌋)

� H

(
n11∑
k=1

2n11−kx1(k) +
n12∑
k=1

2n12−kx2(k)

)

This is seen to be true by directly comparing the
distributions of the two random variables within the
entropies. Counting the number of pairs of integers that
sum to each integer, we see that the distribution on the left-
hand side can be achieved by shifting probability mass from
more likely to less likely values.

The argument applies to all the mutual information
constraints of (22). Step 2 incurs a loss of log 3 �
1.6 bits.

Step 3: Additive Gaussian noise (lose 1.5 bits). Let
Channel 3 be obtained from Channel 2 by adding Gaussian
noise zi ∼ N(0, 1) to output i. We have

ỹ1 = y1 + z1

=
⌊

|h11|
n11∑
k=1

2−kx2(k)

⌋

+ sign(h12)

⌊
|h12|

n12∑
k=1

2−kx2(k)

⌋
+ z1 (27)

and similarly for y2.
Define the random variable s = [z1], where [·] is the

nearest integer function. Observe that it is possible to

recover the output of Channel 2, denoted yN
1 , from the pair

(ỹN
1 , sN ). Lemma 5 gives that

1

N
I
(
xN

1 ; ỹN
1

)
� 1

N
I
(
xN

1 ; yN
1

) − H(s)

It remains only to derive a bound on the entropy of s,

H(s) = −
∞∑

k=−∞
P(s = k) log P(s = k)

= −2
∞∑

k=1

P(s = k) log P(s = k)

−P(s = 0) log P(s = 0)

� 1.5

Step 4: Remove truncation at noise level (lose log 3 bits).
Let Channel 4 be the Gaussian channel (19)

y1 = h11x1 + h12x2 + z1

y2 = h21x1 + h22x2 + z2

The difference between Channels 3 and 4 is the signals
received below the noise level are no longer truncated at the
receivers. The output at receiver 1 is

y1 = h11x1 + h12x2 + z1

= ỹ1 + x̂1 + sign(h12)x̂2

where ỹ1 is the output at receiver 1 in Channel 3 (27) and
x̂1, x̂2 are the magnitudes of the signals received below the
noise level at receiver 1.

The approach is similar to Step 3. Define the random
variable

s = [x̂1 + sign(h12)x̂2] (28)

where [·] is the nearest integer function. Each of x̂1, x̂2 is
bounded between 0 and 1 (since they are below the noise
level), and so the random variable s can take at most three
values. Hence the entropy of s is bounded as

H(s) � log 3

It is possible to recover ỹN
1 from the pair (yN

1 , sN ). Therefore
Lemma 5 gives

1

N
I
(
xN ; yN

1

)
� 1

N
I
(
xN

1 ; ỹN
1

) − log 3
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This completes the first direction of the proof.

Remark 2. The above proof used the form of the capacity
achieving input distribution. Thus, it does not follow that
any capacity achieving distribution for the deterministic
channel can simply be used with an outer code in the
Gaussian channel.

Remark 3. The final achievable strategy uses only
positive, peak-power constrained inputs to the channel,
which is obviously suboptimal.

A.2. CGaussian ⊆ Cdet + (13.6, 13.6)

Here we begin with the Gaussian channel and finish with
the deterministic channel. Most of the steps are precisely the
opposite of those the previous section. There is an important
difference, however: the inputs to the Gaussian channel
satisfy the less stringent average power constraint whereas
the inputs to the deterministic channel must satisfy a peak
power constraint. An extra step in the argument accounts
for this difference.

Step 1 removes the part of the input signals exceeding the
peak power constraint; Step 2 truncates the signals at the
noise level and removes the noise; Step 2′ derives a single-
letter expression for the capacity region of the channel
in Step 2 and shows the near-optimality of uniformly
distributed inputs; Step 3 restricts the inputs and channel
gains to positive numbers; Step 4 makes addition modulo
2; Step 5 quantizes the channel gains to the form 2nij .

Denote by Channel 0, the original Gaussian interference
channel,

y1 = h11x1 + h12x2 + z1

y2 = h21x2 + h22x2 + z2 (29)

Recall that we assumed a unit average power constraint

1

N

N∑
k=1

E[x2
i,k] � 1 (30)

Step 1: Peak power constraint instead of average power
constraint (lose 4 bits). The input–output relationship of
Channel 1 is the same as Channel 0 (29):

yi = hi1x1 + hi2x2 + zi (31)

The difference is that the inputs to Channel 1 satisfy a peak
power constraint instead of an average power constraint:

|xi| � 1

Writing the binary expansion of xi,

xi =
∞∑

k=−∞
xi(k)2−k

we see that in Channel 1, xi(k) ≡ 0 for k � 0.
Let xi be an input to Channel 0, satisfying the average

power constraint (30). Let the part of the input that exceeds
the peak power constraint be

x̂i = �xi	 = sign(xi)
0∑

k=−∞
xi(k)2−k

and let

x̄i = xi − x̂i = sign(xi)
∞∑

k=1

xi(k)2−k

be the remaining signal. The signal x̄i is defined so as to
satisfy the peak power constraint. Finally, denote by ȳi the
output at receiver i when the inputs are truncated to the peak
power constraint,

ȳi = hi1x̄1 + hi2x̄2 + zi

and let

ŷi = yi − ȳi

= hi1x̂1 + hi2x̂2 (32)

be the output due to the inputs x̂1, x̂2.
To complete Step 1, we show that most of the mutual

information I(xN
i ; yN

i ) is preserved when the inputs are
truncated to the peak power constraint. First, observe that
since x1 and x2 are independent, x̂N

i , x̄N
i , ȳN

i form a Markov
chain, x̂N

i − x̄N
i − ȳN

i . It follows that

I(x̂N
i ; ȳN

i |x̄N
i ) = 0

Hence, from the data processing inequality and the
mutual information chain rule we have

I
(
xN
i ; yN

i

)
� I

(
x̄N
i , x̂N

i ; ȳN
i , ŷN

i

)
= I

(
x̄N
i , x̂N

i ; ȳN
i

) + I
(
x̄N
i , x̂N

i ; ŷN
i |ȳN

i

)
� I

(
x̄N
i ; ȳN

i

) + I
(
x̂N
i ; ȳN

i |x̄N
i

) + H
(
ŷN
i

)
= I

(
x̄N
i ; ȳN

i

) + H
(
ŷN
i

)
� I

(
x̄N
i ; ȳN

i

) + H
(
x̂N

1

) + H
(
x̂N

2

)
(33)
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The last inequality is a consequence of the fact that x̂1, x̂2
determine ŷi. It remains only to bound each of the entropy
terms in (33).

Lemma 6. The following bound on the entropy holds for
N sufficiently large:

H
(
x̂N

1

)
� 2N (34)

Proof. The proof is based on the requirement that the part
of xN

i exceeding the peak power constraint, x̂N
i , itself must

satisfy the average power constraint. Note that the entropy
H(x̂N

i ) does not depend on the channel gains at all. The
part of the signal satisfying the peak power constraint, x̄i,
absorbs all the benefit from increasing the signal-to-noise
ratio, as less significant bits from x̄i appear above the noise
level at the receiver.

Two approaches are possible. The simpler approach is to
observe that any scheme in the point-to-point deterministic
channel with average power constraint can be used without
modification in the Gaussian channel with power constraint
P = 1, with a loss of at most 1.5 bits due to noise, by the
argument in Step 3 of the previous subsection. The result
then follows from the fact that the capacity of the point-
to-point Gaussian channel with average power constraint
P = 1 is 1

2 log(1 + 1) = 1
2 . Thus for sufficiently large N

H(x̂N
i ) � 2N

Alternatively, one may explicitly bound the number of
possible values for x̂N

i using a combinatorial argument. The
first step is to notice that for each transmission at power
2m, it must hold that 2m − 1 other time-slots are silent. By
writing a recursion in m and N on the number of possible
signals of length N with peak power between 2m and 2m−1,
it is possible to bound the cardinality of the support of x̂n

i

by poly(N)cN for a constant c and for all N, which shows
that lim sup 1

N
H(x̂N

i ) � c.

Plugging in the estimate (34) from the Lemma into (33)
shows that at most 4 bits per user are lost in passing to a
peak power constraint.

Step 2: Truncate signals at noise level, remove fractional
part of channel gains, and remove noise (lose 2.6 bits).
The truncation at the noise level is not performed by
solely taking the integer part of a real-valued signal;
instead, the binary expansion of each incoming signal
is truncated appropriately, and only then do we take the
integer part of each signal. In the final deterministic channel
the two procedures are equivalent, so we choose this

more convenient option with regards to the proof. The
key benefit of this choice of truncation is the resulting
clear distinction between common and private information,
with the unintended receiver able to decode the common
information. The derivation of the single-letter expression
for the deterministic channel in Section 4 can then be applied
without modification in Step 2′.

We write the peak-power constrained channel inputs as

xi = sign(xi)
∞∑

k=1

xi(k)2−k, xi(k) ∈ {0, 1} (35)

If �log h	 = n, then we deem as being above the noise
level the component of hx arising from the n most
significant bits in the binary expansion of x:

hsign(x)
n∑

k=1

2−kxi(k) (36)

The magnitude of the part below the noise level can be
bounded as

|h|
∞∑

k=n+1

2−kxi(k) � 2n+12−n = 2 (37)

Channel 2 is defined by retaining only the part of the inputs
above the noise level as described in (36), taking the integer
part of the channel gains, further taking the integer part
of each observed signal, and removing the noise. More
specifically, receiver i observes the signal

ȳi =
⌊

�hi1	
ni1∑
k=1

2−kx1(k)

⌋

+
⌊

�hi2	
ni2∑
k=1

2−kx2(k)

⌋
(38)

Now, denote by εi the difference in the outputs relative
to Channel 1:

εi : = yi − ȳi

=
{

hi1sign(x1)
∞∑

k=ni1+1

2−kx1(k)

+ (hi1 − �hi1	)sign(x1)
ni1∑
k=1

2−kx1(k)
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+ frac

(
sign(x1)�hi1	

ni1∑
k=1

2−kx1(k)

) }

+
{

hi2sign(x2)
∞∑

k=ni2+1

2−kx2(k)

+ (hi2 − �hi2	)sign(x2)
ni2∑
k=1

2−kx2(k)

+ frac

(
sign(x2)�hi1	

ni2∑
k=1

2−kx2(k)

) }
+ zi

:= x̂1 + x̂2 + zi

where frac(·) denotes the fractional part. Combining the
estimate (37) and the fact that |(hij − �hij	)xj| � 1, we have

|x̂i| � 4, i = 1, 2 (39)

We will later use the observation that x̂1, x̂2 �→ εi forms a
Gaussian MAC, and from Equation (39) the signal-to-noise
ratio is at most 16 for each user.

We show next that

1

N
I
(
xN
i ; ȳN

i

) + 2.6 � 1

N
I
(
xN
i ; yN

i

)
where yi is the output of Channel 1 defined in Equation (31).
Note that ȳi is independent of zi. The data processing
inequality and the chain rule allow to separate the
contribution to the mutual information I(xN

i ; yN
i ) from each

term εN
i , ȳN

i :

I
(
xN
i ; yN

i

) = I
(
xN
i ; ȳN

i + εN
i

)
� I

(
xN
i ; ȳn

i , εN
i

)
= I

(
xN
i ; ȳN

i

) + I
(
xN
i ; εN

i |ȳN
i

)
� I

(
xN
i ; ȳN

i

) + I
(
xN

1 , xN
2 ; εN

i |ȳN
i

)
= I

(
xN
i ; ȳN

i

) + h
(
εN
i |ȳN

i

) − h
(
εN
i |ȳN

i , xN
1 , xN

2

)
� I

(
xN
i ; ȳN

i

) + h
(
εN
i

) − h
(
εN
i |ȳN

i , xN
1 , xN

2

)
= I

(
xN
i ; ȳN

i

) + h
(
εN
i

) − h
(
zN
i

)
= I

(
xN
i ; ȳN

i

) + I
(
x̂N

1 , x̂N
2 ; εN

i

)
� I

(
xN
i ; ȳN

i

) + 2.6N

where the last inequality holds for sufficiently large N. In
the last step we used the fact that x̂1, x̂2 �→ εi forms a

Gaussian MAC with signal-to-noise ratio at most 16 for
each transmitter, so 1

N
I(x̂1, x̂2; εi) � 1

2 log(1 + 2(16)) +
εN (with εN → 0). This completes Step 2.
Step 2′: Single letter expression and near optimality of
uniform input distribution (lose 2 bits). We now show that
the derivation of Section 4, giving a single letter expression
for the capacity region of the deterministic channel (17),
applies to the channel of Step 2. Following this, we will
prove that using uniformly distributed inputs incurs a loss
of at most 2 bits per user relative to the optimal input
distribution.

Define

x2c := sign(x2)
n12∑
k=1

2−kx2(k) (40)

and similarly for x1c. This is the part of the input that causes
interference at the unintended receiver. Consider the signal
that remains at receiver 1 after successfully decoding and
subtracting off x1. From Equation (38), the remaining signal
is

f (x2c) := ��h12	x2c	

=
⌊

sign(x2)�h12	
n12∑
k=1

2−kx2(k)

⌋
(41)

The statement that f : supp(x2c) → Z is injective is
equivalent to the claim that receiver 1 can recover x2c from
f (x2c). Now, viewed as a real number, the support of x2c

has a spacing of 2−n12 , and since

�h12	 � 2n12 (42)

the spacing of the support of �h12	x2c is greater than 1.
Hence the integer part �·	 sends two different values of
�h12	x2c to two different integers, i.e. f is injective. An
analogous argument shows that receiver 2 can recover x1c.

Since each receiver can recover the common portion of
the interfering signal (40), the arguments of Lemmas 2 and
3 in Section 4 apply without modification to the channel
under scrutiny. Thus, the region is given by Equation (22).

We now show that at most 1 bit per user is lost
relative to the capacity region when each of the signals
x1c, x1p, x2c, x2p is uniformly distributed on its support. We
first prove a comparable result for random variables with
support sets that are arithmetic progressions of integers.
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Lemma 7. Let A, B ∈ Z be two arithmetic progressions,

A = {0, a, 2a, . . . , (MA − 1)a} = [0, MA − 1] · a

B = {0, b, 2b, . . . , (MB − 1)b} = [0, MB − 1] · b

If X and Y are independent and distributed uniformly on A

and B, respectively, then

H(X + Y ) + 1 � H(X∗ + Y∗) (43)

for any random variables X∗, Y∗ with support sets A, B.

Proof. Scaling the sets A and B by the same number
does not change the relevant entropies, so we may assume
without loss of generality that gcd(a, b) = 1. We first
estimate the cardinality of the sumset A + B = {a + b : a ∈
A, b ∈ B}. Note that

A + B ⊆ {0, . . . , a(MA − 1) + b(MB − 1)}
from which it follows that

|A + B| � aMA + bMB (44)

Since supp(X∗ + Y∗) ⊆ A + B, we therefore have the
estimate

H(X∗ + Y∗) � log(aMA + bMB) (45)

Next we calculate the maximum probability mass in the
distribution of X + Y ,

p̄ := max
x∈A+B

P(X + Y = x) (46)

For each k with 0 � k � MB − 1 let

Sk := A + kb = [0, MA − 1] · a + kb

A typical element of Sk ∩ Sk′ with k′ � k can be written as

qa + kb = q′a + k′b,

for some 0 � q � MA − 1 and 0 � q′ � MB − 1. Rear-
ranging, we have

(k − k′)b = (q′ − q)a

which by the assumption gcd(a, b) = 1 implies

a|(k − k′)

Thus

Sk ∩ Sk′ �= ∅ implies k ≡ k′ mod a (47)

Letting Ã and B̃ be shifts of A and B so that a median point
lies at the origin, the maximum probability (46) occurs at
x = 0, and it can be seen from the condition (47) that

|{x, y : x + y = 0, x ∈ A, y ∈ B}| � min

(
MA

b
,
MB

a

)

Since for each x ∈ A, y ∈ B, P(X = x) = 1/MA and
P(Y = y) = 1/MB, and X and Y are independent,

− log p̄ = − log
∑

x∈A,y∈B
x+y=0

P(X = x, Y = y)

= − log
|{x, y : x + y = 0, x ∈ A, y ∈ B}|

MAMB

� log
MAMB

min(MA

b
, MB

a
)

= max(log(aMA), log(bMB))

Hence, from Equation (45),

H(X + Y ) = −
∑

x∈A+B

p(x) log p(x)

� −
∑

x∈A+B

p(x) log p̄

� max(log(aMA), log(bMB)) (48)

� log(aMA + bMB) − 1

� H(X∗ + Y∗) − 1

This proves the lemma.

It is not difficult to extend the proof of the Lemma to show
the near optimality of uniformly distributed inputs for the
channel defined by (38). Let

U := �hi1	
ni1∑
k=1

2−kx1(k) (49)

and

V := �hi2	
ni2∑
k=1

2−kx2(k) (50)

so that

yi = �U	 + �V 	
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Also, let

A := supp(U)

= {0, �hi1	, . . . , �hi1	(2ni1 − 1)} · 2−ni1

B := supp(V )

= {0, �hi2	, . . . , �hi2	(2ni2 − 1)} · 2−ni2

Assume without loss of generality (by symmetry of the
definitions of U and V ) that ni1 � ni2. We will work with
scaled, integer-valued versions of U and V : let

� := 2ni1

and

Ũ := �U, Ṽ := �V

Let MA = � and MB = 2ni2 . The supports sets are

Ã = {0, 1, . . . , (MA − 1)} · �hi1	
and

B̃ = {0, 1, . . . , (MB − 1)} · �(�hi2	2−ni2 )

Correspondingly, the integer part of a number t is replaced
by quantization to the greatest multiple of � less than or
equal to t:

Q(t) := �
⌊ t

�

⌋
In the notation of Lemma 7, the spacings in the sets Ã

and B̃ are, respectively, a = �hi1	 and b = �(�hi2	2−ni2 ).
Proving the equivalent of Lemma 7 for Q(Ũ) + Q(Ṽ ) will
imply the same result for yi = �U	 + �V 	 by the scale-
invariance of discrete entropy.

With this notation, we have analogously to (44) that

|Q(Ã) + Q(B̃)| � aMA + bMB

�
(51)

The next step is to compute a bound on the maximum
probability mass in Q(Ũ) + Q(Ṽ ),

p∗ := max
x

P(Q(Ũ) + Q(Ṽ ) = x)

For any x, we have

{u ∈ Ũ, v ∈ Ṽ : Q(u) + Q(v) = x}
⊆ {u ∈ Ũ, v ∈ Ṽ : u + v ∈ [x, x + 2�)}
=

⋃
x∗∈[x,x+2�)

{u ∈ Ũ, v ∈ Ṽ : u + v = x∗}

Thus

p∗ � max
x

∑
x∗∈[x,x+2�)

P(Ũ + Ṽ = x∗)

� 2�p̄ (52)

where p̄ is the maximum probability mass (46). Combining
Equations (51) and (52), the desired result now follows
exactly as in the last step (48) of Lemma 7, giving that

H(Ũ + Ṽ ) � H(Ũ∗ + Ṽ ∗) − 2

The near optimality of the uniform distribution applies
to each entropy constraint of the achievable region (22),
and thus each user loses at most 2 bits as claimed.

Step 3: Positive inputs and channel gains (lose 2 bits).
From Step 2′, the uniform distribution is nearly optimal
for Channel 2. Viewing the inputs as coming from a
constellation in the real line, it is not hard to see that
negating a cross gain does not change any of the output
statistics, therefore preserving the mutual information.
Similarly, each of the output entropies in (22) is reduced
by at most 2 bits if the inputs are restricted to be positive.

Step 4: Addition over F2 (lose 2 bits). Consider the binary
expansion of the output. In switching to modulo 2 addition,
every output bit that has some entropy when using real
addition is uniformly random, except possibly the two
most significant bits that arise due to carry-overs. Thus, at
most 2 bits are lost in each of the entropy constraints of (22).

Step 5: Channel gains of the form 2n (lose zero bits).
Channel 5 is the deterministic channel (20). The optimal
input distribution is uniform and the mutual information
is unchanged when the gains are quantised to the nearest
power of 2. In fact, the capacities of the channel in Step 4
and the channel of Step 5 are identical.

A.3. Complex Gaussian IC

The proof of Theorem 1 in the generality of complex-valued
gains and signals is very similar to the proof of Theorem 2
for the real-valued channel presented in Sections A.1 and
A.2. We focus on the proof that

CGaussian ⊆ Cdet + constant.

The other direction follows by reversing the steps and using
the argument for the real-valued channel, and is omitted.
The eventual gap is 42 bits, roughly double that of the real-
valued case.
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The complex Gaussian interference channel is given by

y1 = h11x1 + h12x2 + z1

y2 = h21x1 + h22x2 + z2

where zi ∼ CN(0, 1) and the channel inputs satisfy an
average power constraint

1

N

N∑
k=1

E[|xi,k|2] � Pi, i = 1, 2

By scaling the outputs, we may set Pi = 2 and zi ∼
CN(0, 2). We assume without loss of generality that the
cross gains have zero phase, i.e. Im(h12) = Im(h21) = 0,
since each of the receivers may simply rotate the output
appropriately. These assumptions allow to write the output
of the channel as

(
y1R

y1I

)
=

(
hR

11 −hI
11

hI
11 hR

11

) (
x1R

x1I

)

+
(

hR
12 0

0 hR
12

) (
x2R

x2I

)
+

(
z1R

z1I

)
(53)

and similarly for y2. Here R and I denote real and
imaginary part, respectively, and ziR, ziI ∼ N(0, 1).

Step 1: Peak power constraint instead of average power
constraint (lose 8 bits). The argument is almost identical
to that of Step 1 in A.2. We truncate the inputs, letting the
part of the input xiR that exceeds the peak power constraint
be

x̂iR = �xiR	 = sign(xiR)
0∑

k=−∞
xiR(k)2−k

and let

x̄iR = xiR − x̂iR = sign(xiR)
∞∑

k=1

xiR(k)2−k

be the remaining signal, with similar definitions for xiI with
I replacing R. The signals x̄iR, and x̄iI are defined so that
x̄i = x̄iR + jx̄iI satisfies the peak power constraint of 2. Let
ȳi be the output at receiver i due to the truncated inputs. The
development in Step 1 of Appendix A.2 shows that

I
(
xN
i ; yN

i

)
� I

(
x̄N
i ; ȳN

i

) + H
(
x̂N

1

) + H
(
x̂N

2

)
(54)

The estimate

H
(
x̂N
i

)
� 4N

for sufficiently large N follows from the argument of
Lemma 6, by translating an arbitrary strategy for a
point-to-point deterministic channel to a corresponding
Gaussian channel with SNR = 1, with a loss of at most
3 bits (1.5 bits per complex dimension). The point-to-point
Gaussian channel has capacity 1, giving the estimate.

Step 2: Truncate signals at noise level, remove fractional
part of channel gains and remove noise (lose 5.1 bits).
The argument repeats that of Step 2 in Appendix A.2, and
is omitted.

Step 2′: Single letter expression, decoupling of real
and imaginary components and near optimality of
uniform input distribution (lose 6 bits). After decoding
the message of the intended user, each receiver has a clear
view of the common message of the interfering user. Thus,
the capacity region of the channel of Step 2 is given by the
compound MAC (22).

Next, using a similar argument to that in Step 2′ for
the real-valued case, it can be shown that i.i.d. uniformly
distributed inputs are nearly optimal on a modified channel,
with a loss of at most 4 bits per user. The modified channel
replaces the direct gain hR

ii with |hR
ii | + |hI

ii|, and puts
hI

ii = 0. The support of the output is at least as large in
the modified channel under uniformly distributed inputs,
and moreover, the output is independent over time. Thus,
this step decouples the real and imaginary components.
The argument for the real-valued channel bounding
the performance of uniform inputs can now be applied
separately to the real and imaginary components of the
complex channel.

Steps 3, 4 and 5: Positive inputs and channel gains
(lose 4 bits), addition over F2 (lose 2 bits), channel
gains of the form 2n. Steps 3 and 4 are identical to the
real-valued case. In Step 5 the direct gains |hR

ii | + |hI
ii| are

replaced with 2�log(|hR
ii |+|hI

ii|)	. Similarly, the cross gains
|hR

12| and |hR
21| are replaced with 2�log |hR

12|	 and 2�log |hR
21|	,

respectively.

Step 6: Combine real and imaginary parallel channels
(lose 4 bits). Now, the resulting deterministic channel from
Step 5 is precisely the same as the deterministic channel in
the real-valued case, but with twice as many channel uses
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(one each for the real and imaginary part of the signal).
Hence the capacity region of the complex deterministic
channel is the same as for the real-valued channel, but scaled
by two. Note that the capacity region for the deterministic
channel (18) exactly doubles when all the channel gains are
squared. We have

22�log(|hR
ii |+|hI

ii|)	 � 2�1+log(|hR
ii |2+|hI

ii|2)	

= 21+�log SNRi	

which shows that changing the gain to 2�log SNRi	 changes
at most 1 bit of the output in each complex dimension.
Similarly, at most 1 bit of the output at receiver 1 is changed
by changing the cross gain 22�log |hR

12|	 to 2�log INR2	. Thus, at
most 4 bits per user are lost in making this final modification
to the channel.
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