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Shannon Meets Nash on the Interference Channel

Randall A. Berry, Member, IEEE, and David N. C. Tse, Fellow, IEEE

Abstract—The interference channel is the simplest communica-
tion scenario where multiple autonomous users compete for shared
resources. We combine game theory and information theory to de-
fine the notion of a Nash equilibrium region of the interference
channel. The notion is game theoretic: it captures the selfish be-
havior of each user as they compete. The notion is also informa-
tion theoretic: it allows each user to use arbitrary communica-
tion strategies as it optimizes its own performance. We give an
exact characterization of the Nash equilibrium region of the two-
user linear deterministic interference channel and an approximate
characterization of the Nash equilibrium region of the two-user
Gaussian interference channel to within 1 bit/s/Hz.

Index Terms—Game theory, Han—Kobayashi scheme, interfer-
ence channel, Nash equilibrium.

1. INTRODUCTION

NFORMATION theory deals with the fundamental limits
I of communication. In network information theory, an ob-
ject of central interest is the capacity region of the network: it
is the set of all rate tuples of the users in the network that are
simultaneously achievable by optimizing their communication
strategies. Implicit in the definition is that users mutually agree
on the optimized choice of their communication strategies. This
may not be a realistic assumption if users are selfish and are
only interested in maximizing their own benefit. Game theory
provides a notion of a Nash equilibrium to characterize system
operating points that are stable under such selfish behavior. In
this paper, we define and explore an information theoretic Nash
equilibrium region as the game theoretic counterpart of the ca-
pacity region of a network. While the Nash equilibrium region
is naturally a subset of the (non-selfish) capacity region, in gen-
eral not all points in the capacity region are Nash equilibria. The
research question is then to characterize the Nash equilibrium
region given a network and a model of the channels.
The two-user interference channel (IC) is perhaps the sim-
plest communication scenario to study this problem. Here two
point-to-point communication links interfere with each other
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Fig. 1. Two-user Gaussian interference channel.

through cross-talk. Each transmitter has an independent mes-
sage intended only for the corresponding receiver. The capacity
region of this channel is the set of all simultaneously achievable
rate pairs (R1, R2) in the two interfering links, and character-
izes the fundamental tradeoff between the performance achiev-
able on the two links in face of interference.

In the standard (non-selfish) setting, the users jointly choose
encoding and decoding schemes to achieve a rate pair (R, R2).
In the game theoretic setting, on the other hand, we study the
case where each user individually chooses an encoding/de-
coding scheme in order to maximize his own transmission
rate. The two users can be viewed as playing a noncooperative
game, where a user’s strategy is its encoding/decoding scheme
and its payoff is its reliable rate. A Nash equilibrium (NE) is
a pair of strategies for which there is no incentive for either
user to unilaterally change its strategy to improve its own rate.
These are incentive-compatible operating points. The Nash
equilibrium region of the IC is the set of all reliable rate pairs
each of which can be achieved at some NE. Our focus is on
a “one-shot” game formulation in which each player has full
information, i.e., both players know the channel statistics, the
actions chosen by each player, as well as their pay-off function.

A particular IC we focus on in this paper is the two-user
Gaussian IC shown in Fig. 1. This is a basic model in wire-
less and wireline channels (such as DSL). Game theoretic ap-
proaches for the Gaussian IC have been studied before, e.g.,
[5]-[8]. However, there are two key assumptions in these works:
1) the class of encoding strategies are constrained to random
Gaussian codebooks; 2) the decoders are restricted to treat the
interference as Gaussian noise and are hence sub-optimal. Be-
cause of these restrictions, the formulation in these works are
not information-theoretic in nature. For example, a Nash equi-
librium found under these assumptions may no longer be an
equilibrium if users can adopt a different encoding or decoding
strategy.

In this paper, we make three contributions. First, we give a
precise formulation of an information theoretic NE region for
general ICs, where the users are allowed to use any encoding
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and decoding strategies. Second, we analyze the NE region of
the two-user linear deterministic 1C [3]. This type of determin-
istic channel model was first proposed by [4] in the analysis
of Gaussian relay networks, and the deterministic IC has been
shown to be a good approximation of the Gaussian IC in [3].
For this deterministic IC, we give a simple exact characteriza-
tion of the NE region. At each of the rate pairs in the NE region,
we provide explicit coding schemes that achieve the rate pair
and such that no user has any incentive to deviate to improve
his own rate. Somewhat surprisingly, we find that in all cases,
there are always Nash equilibria which are efficient, i.e., they
lie on the maximum sum-rate boundary of the capacity region.
In particular, for channels with symmetrical channel gains, the
symmetric rate point on the capacity region boundary is always a
Nash equilibrium. Our third contribution is to use these insights
to approximate the NE region of the Gaussian IC to within 1
bit/s/Hz. This result parallels the recent characterization of the
(cooperative) capacity region of the same channel to within 1
bit [1].

II. PROBLEM FORMULATION

Let us now formally define the communication situation for
general interference channels. In subsequent sections, we will
specialize to specific classes of interference channels.

Communication starts at time 0. User ¢« communicates by
coding over blocks of length N; symbols, : = 1, 2. Transmitter
1 sends on block & information bits bglf), ce bf? by transmit-
ting a codeword denoted by ng) = [xgk)(l), . 7xgk)(N,;)].
All the information bits are equally probable and independent
of each other. Receiver 7 observes on each block an output se-
quence through the interference channel, which specifies a sto-
chastic mapping from the input sequences of user 1 and 2 to the
output sequences of user 1 and 2. Given the observed sequence
{yik) = [y,gk)(l)7 e ,y,gk)(Ni)], k = 1,2,...,}, receiver i
generate guesses IA),L-? for each of the information bits. Without
loss of generality, we will assume that each receiver ¢ performs
maximum-likelihood decoding on each bit, i.e., it chooses the
I;Ek) that maximizes the a posterior probability of the observed
sequence yfl), y,§2), ... given the transmitted bit bfﬁ)

Note that the communication scenario we defined here is
more general than the one usually used in network information
theory, as we allow the two users to code over different block
lengths. However, such generality is necessary here, since even
though the two users may agree a priori on a common block
length, a selfish user may unilaterally decide to choose a dif-
ferent block length during the actual communication process.

A strategy s; of user ¢ is defined by its message encoding,
which we assume to be the same on every block and involves:

* the number of information bits B; and the block length N;

of the codewords;

¢ the codebook C;, i.e., the set of codewords employed by

transmitter 7;
* the encoder f; : {1,...,25
each block £ the message m

} x Q; — C;, that maps on
W= 0,0 0
transmitted codeword ng) = fi(mgk),wfk)) € Ci;

* the rate of the code, R;(s;) = B;/N;.
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A strategy s1 of user 1 and s, of user 2 jointly determines the
average bit error probabilities pgk) =5 Zf;l ’P(lA)Ef) # bgf)),
1 = 1, 2.1 Note that if the two users use different block lengths,
the error probability could vary from block to block even though
each user uses the same encoding for all the blocks. However,
if they use the same block length, then the error probability is
the same across the blocks for a user, which we will denote by
p; for user i.

The encoder of each transmitter ¢ may employ a stochastic
ma}gping from the message to the transmitted codeword;
w,fk € (; represents the randomness in that mapping. We
assume that this randomness is independent between the two
transmitters and across different blocks. Furthermore, we
assume that each transmitter and its corresponding receiver
have access to a source of common randomness, so that the
realization wfk) is known at both transmitter 7z and receiver %,
but not at the other receiver or transmitter.2

For a given error probability threshold € > 0, we define an
e-interference-channel-game as follows. Each user ¢ chooses a
strategy s;, + = 1,2, and receives a pay-off of

mi(s1,82) = {R(Si%

0, otherwise.

if pi (51, 52) < €, Vk

i

In other words, a user’s pay-off is equal to the rate of the code
provided that the probability of error is no greater than e. A
strategy pair (s1, s2) is defined to be (1 — €)-reliable provided
that they result in an error probability p; (s1, s2) of less than € for
1 =1,2. An (1 — €)-reliable pair of strategies is said to achieve
the rate-pair (R(s1), R(s2)).

For an e-game, a strategy pair (s7, s5) is a Nash equilibrium
(NE) if neither user can unilaterally deviate and improve their
pay-off, i.e., if for each user « = 1, 2, there is no other strategy s;
such that m;(s;, s7) > mi(s], 7). If user 4 attempts to transmit
at a higher rate than what he is receiving in a Nash equilibrium
and user j does not change her strategy, then user i’s error prob-
ability must be greater than e.

Similarly, a strategy pair (s}, s%) is an 7-Nash equilibrium*
(n-NE) of an e-game if neither user can unilaterally deviate and
improve their pay-off by more than 7, i.e., if for each user ¢, there
is no other strategy s; such that 7;(s;, s7) > m;(s}, s7)+n. Note
that when a user deviates, it does not care about the reliability
of the other user but only its own reliability. So in the above
definitions (s;, s7) is not necessarily (1 — ¢)-reliable.

Given any € > 0, the capacity region C of the interference
channel is the closure of the set of all rate pairs (R;, R2) such
that for every € € (0, €), there exists a (1 — €)-reliable strategy
pair (s1, s2) which achieves the rate pair (R1, R2). The Nash
equilibrium region Cxg of the interference channel is the closure
of the set of rate pairs (R;, Ro) such that for every n > 0, there

! Average bit error probabilities are more meaningful than codeword error
probabilities in a setting, such as ours, where users can vary the blocklength
they are using.

2Such common randomness is not needed for many of the results in the paper,
but allowing for it simplifies our presentation.

3In this paper, we use the convention that j always denotes the other user from
i

4In the game theoretic literature, this is often referred to as an e-Nash equi-
librium or simply an e-equilibrium for a game [9, page 143].
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exists an € > 0 (dependent on ) so thatif e € (0, €), there exists
a (1 —e)-reliable strategy pair (s1, s2) that achieves the rate-pair
(R1, R2) and is a n-NE. Clearly, Cxg C C.

We make a few comments about the definition of Cnxg. In this
definition, the parameter € is introduced so that (1 — ¢€)-reliable
strategy pairs need only exist for “small enough” values of €. In
the definition of the capacity region for the interference channel
this constraint is not needed. The capacity region is equally well
defined by requiring the given conditions to hold for any ¢ > 0
(since, clearly if a pair of strategies are (1 — €)-reliable, they
are also (1 — €)-reliable for all € > €). However, when defining
CnE, this condition is important. In particular a pair of strategies
can be an n-NE for an e-game, but not an 7-NE for an é-game
with € > ¢, since increasing the error probability threshold en-
larges the set of possible deviations an agent may make. As an
extreme example, consider the case where ¢ = 1, in which case
each agent can achieve an arbitrarily high pay-off regardless of
the action of the other user and so no 7-NE exists. Thus, if we
required our definition to hold for any ¢ > 0, Cxyg would be
empty.

Next, we turn to the use of 7-NE in the definition. A more
natural approach would have been to instead simply use NE.
In other words, define Cng to be the closure of the rate pairs
(R1, R2) such that for any e small enough, that there exists a
(1 — e)-reliable strategy pair (s1, s2) that achieves the rate-pair
(R, Ry) and is a NE of an e-game. The difficulty with this def-
inition is that to determine such a NE requires one to find a par-
ticular scheme that achieves the optimal rate for a given nonzero
error probability. Finding such a scheme is extremely difficult
and in general an open problem.5 By introducing the slack 7,
these difficulties are removed. Moreover, since we require that
this definition hold for all » > 0, this slack can be made arbi-
trarily small.

Finally, we would like to comment on the use of different
block lengths in our definitions. First, it can argued that if there
is a (1 — ¢)-reliable strategy pair (s1, s2) that achieves a rate
pair (R1, R2) using codes of block lengths Ny, No, then there
exists a (1 — ¢) strategy pair that achieves the same rate pair
but with each user using the same block length. This follows by
considering using “super-blocks” of length N, where N is the
least common multiple of N; and V5. Over these super-blocks
the users can be viewed as using two equal-length codes. The
error probabilities, being the average bit error probabilities now
across longer blocks, remain less than e. This means that in
computing the capacity region C, we can without loss of gener-
ality consider only strategies in which both users use the same
block lengths. Also, in the Nash equilibrium definitions, we can
without loss of generality assume that in the nominal strategy,
the two users use the same block length (although each user is
allowed to deviate using another strategy of a different block
length).

III. LINEAR-DETERMINISTIC IC

A. Deterministic Channel Model

Let us now focus on a specific interference channel model:
a linear deterministic IC analogous to the Gaussian IC. This

SMoreover, it is not even clear if there exists such a scheme, i.e., a scheme
that achieves the supremum of the rates over all 1 — € reliable schemes.
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Fig. 2. Linear deterministic model for the point-to-point Gaussian channel.
Each bit of the input occupies a signal level. Bits of lower significance are lost
due to noise.

Txo

Rx

TX1

Q00

Fig. 3. Linear deterministic model for the Gaussian multiple-access channel.
Incoming bits on the same level are added modulo two at the receiver. In this
example, user 2 has the stronger channel and so compared to user 1, user 2 has
more bits received above the noise level.

channel was first introduced in [4]. We begin by describing
the linear deterministic channel model for the point-to-point
AWGN channel, and then the two-user multiple-access channel.
After understanding these examples, we present the linear deter-
ministic IC.

Consider first the model for the point-to-point channel (see
Fig. 2). The real-valued channel input is written in base 2; the
signal—a vector of bits—is interpreted as occupying a succes-
sion of levels

r = 0.b1b2b3b4b5 P

The most significant bit coincides with the highest level, the
least significant bit with the lowest level. The levels attempt to
capture the notion of signal scale; a level corresponds to a unit
of power in the Gaussian channel, measured on the dB scale.
Noise is modeled in the deterministic channel by truncation. Bits
of smaller order than the noise are lost. Note that the number of
bits above the noise floor correspond to log, SNR, where SNR is
the signal-to-noise ratio of the corresponding Gaussian channel.

The linear deterministic multiple-access channel is con-
structed similarly to the point-to-point channel (see Fig. 3).
To model the super-position of signals at the receiver, the bits
received on each level are added modulo two. Addition modulo
two, rather than normal integer addition, is chosen to make the
model more tractable. As a result, the levels do not interact
with one another.

We proceed with the linear deterministic IC model (Fig. 4).
There are two transmitter-receiver pairs (links), and as in the
Gaussian case, each transmitter wants to communicate only with
its corresponding receiver. The signal from transmitter ¢, as ob-
served at receiver j, is scaled by a nonnegative integer gain
aj; = 2™ (equivalently, the input column vector is shifted up
by nj;). Ateach time ¢, the input and output, respectively, at link
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Tx1

o0

Tx2

Fig. 4. At left is a linear deterministic IC. The more compact figure at right
shows only the signals as observed at the receivers.

iarex;(t),y:(t) € {0,1}9, where ¢ = max;; n,;. Note that n;;
corresponds to log, SNR; and n;; corresponds to log, INRj;,
where SNR; is the signal-to-noise ratio of link 7 and INR;; is
the interference-to-noise ratio at receiver j from transmitter ¢ in
the corresponding Gaussian IC.

The channel output at receiver ¢ is given by

yvi(t) = STT™xy (t) + ST "2 x4 (1) (1)

where summation and multiplication are in the binary field and
S is a ¢ x ¢ shift matrix

0 0 0 --- 0
1 0 0 0

s=10 1 0 0 )
0O --- 0 1 0

If the inputs x; (¢) are written as a binary number z;, the channel
can equivalently be written as

y1 = |a1121 + a1222]

Y2 = la2121 + a2

where addition is performed on each bit (modulo two) and | - |
is the integer-part function.

In our analysis, it will be helpful to consult a different style of
figure, as shown on the right-hand side of Fig. 4. This shows only
the perspective of each receiver. Each incoming signal is shown
as a column vector, with the highest element corresponding to
the most significant bit and the portion below the noise floor
truncated. The observed signal at each receiver is the modulo 2
sum of the elements on each level.

The linear deterministic IC is relatively simple, yet retains
two essential features of the Gaussian IC: the loss of information
due to noise, and the superposition of transmitted signals at each
receiver. The modeling of noise can be understood through the
point-to-point channel above. The superposition of transmitted
signals at each receiver is captured by taking the modulo 2 sum
of the incoming signals at each level, as in the model for the
multiple-access channel.

B. Main Results

To begin, we give the capacity region, C, of the two-user
linear deterministic IC. This region is given by Theorem 1 in
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R»

(L1,U2) (U,U2)

B

(L1, L2) (Ui, L)
Ry

Fig.5. Example of the box 5. The values of the four corner points are indicated
in the figure.

[10], which applies to a larger class of deterministic interfer-
ence channels. For our model, the resulting region becomes the
set of non-negative rates satisfying:6

Ry <nn 3)
Ry < nao 4
Ri + Ry < (n11 — n12) T + max(nag, n12) 5)
Ry + Ry < (ng2 — ma1)™ + max(niy, noy) (6)
Ry + Ry < max(nop, (n11 — ni2)")

+ max(ni2, (n22 — na21)™) 7

2Ry + Ry < max(nii,n21) + (n11 — niz)*
+ max(ni2, (nag — n21)™) )

Ry + 2Ry < max(naz,n12) + (noz — nor) ™
+ max(na1, (n11 — n12)). ©)]

Our first main result, stated in Theorem 1 below is to com-
pletely characterize Cxg for the two-user linear deterministic
IC. This characterization is in terms of C and a “box” B in Ri
given by (see Fig. 5)

B={(R1,Ry): Li <R; <U;, Vi=1,2}
where for each user 7 = 1,2
Li = (ngi —nij) ¥, (10)
and
if ni; < nyj,

UZ’ _ {7’1,” — mln(Lj,nq;j), (11)

min((nij — Lj)+7nii) if N5 > M.

?

We now state our main result for the linear deterministic
model.

Theorem 1: For a two-user linear deterministic IC, Cxg =
CnB.

First let us interpret the bounds L1, Lo, Uy, Us. The number
L; is the number of levels that user 7 can transmit above the in-
terference floor created by user j, i.e., the number of levels at
receiver ¢ that cannot see any interference from user j. These are
always the most significant bits of user ¢’s transmitted signal. In
the example channel in Fig. 4, these correspond to the top level
for transmitter 1 (L1 = 1) and the top 2 levels for transmitter
2 (Lo = 2). The number U; is the number of levels at receiver

6The boundaries of the region in [10] are given in terms of conditional en-
tropies that must be maximized over any product distribution on the channel
inputs. For our model the optimizing input distribution for each bound is al-
ways uniform over the input alphabet. The given bounds follow.
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Ray, R
CNB

cNnB

cnnB cnNnB

2 R
$<a<l I1<a<?2

Fig. 6. Examples of Cxg = C N B for a symmetric interference channel with
normalized cross gain o.

1 that receive signals from transmitter ¢ but are free of interfer-
ence from the top L; levels from transmitter j. In the example
channel in Fig. 4, at receiver 1 this is again given by the top level
(i.e., Uy = Ly = 1), while at receiver 2, these correspond to the
top two levels plus the bottom level so that Uy = 3.

Intuitively, it is clear that at any 7-NE, user ¢ should have
rate at least L;: these levels are interference-free and user 7 can
always send information at the maximum rate on these levels.
This will create interference of maximum entropy at a certain
subset of levels at receiver 7 and render them un-usable for user
7. The rate for user j is bounded by the number of remaining
levels that it can use. This is precisely the upper bound U;. What
Theorem 1 says is that any rate pair in the capacity region C
subject to these natural constraints is in CNg.

To illustrate this result, consider a symmetric interference
channel in which 111 = na2 and n12 = na1. Let @ = nj; /ng;
be the normalized cross gain. Four examples of C and B cor-
responding to different ranges of « are shown in Fig. 6. For
0<a< %, Cxe = B is a single point, which lies at the sym-
metric sum-rate point of C. For % < a< %, again Cyg = B.
CnEg contains a single efficient point (the symmetric sum-rate
point in C), but now there are additional interior points of C,
which may be achieved as a Nash equilibrium.” For % <a<l,
Cng is the intersection of the simplex formed by the sum-rate
constraint of C and B. In this case, there are multiple efficient
points; in fact, the entire sum-rate face of C is included in Cng.
Forl < a < 2,C C BandsoCyxg = C. For 2 < « (not shown)
C = B and so again Cxyg = C. Note that in all cases, the sym-
metric rate point is in Cng.

C. Proofs

To prove Theorem 1, we first show that points outside of B
cannot be achievable as a Nash equilibrium, formalizing the in-
tuition discussed earlier. We will then show that all points inside
C N B can in fact be achieved.

7In a slight abuse of terminology, we say that points in Cx can be “achieved
as a NE.”
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1) Nonequilibrium Points:

Lemma 1: If (Rl, Rz) € Cng,then R; > L; = (n“ — nij)Jr
fori = 1,2.

Proof: User ¢’s L; highest transmitted levels see no inter-
ference from user j’s signal at receiver . Hence, in any e-game,
user ¢ can always achieve a pay-off of R; = L, (with zero prob-
ability of error) by sending L; uncoded bits, one on each of these
levels, independent of user j’s strategy. Thus, for (R;, Ry) to be
obtained as an n-NE of an e-game for any € > 0, it must be that
R; > L; — n for all 7; otherwise, user 7 could deviate using the
above strategy and improve his pay-off by n. If (Ry, R2) € CnE,
then this inequality should hold for all > 0. Taking the limit
as 77 — 0, the result follows. [ |

Lemma 2: If (Rh RQ) € Cng, then for all 7 = 1,2, R; < U,
where U; is given in (11).
Proof: Suppose (R1, R2) € Cnxg. Without loss of gener-
ality, let us focus on user 1 to show that R; < Uj.
If N1 — L2 Z ni1, then Ul = TN11 and clearly Rl S mnii,
so there is nothing to prove. So in the following we can assume
that

ni2 — L2 < nii. (12)

Fix an arbitrary > 0. Given a sufficiently small e > 0, there
exist a (1 — €)-reliable strategy pair (s, s3) achieving the rate
pair (R1, R») that is also a -NE. As remarked in Section II, we
can assume that in this nominal strategy pair, both users use a
common block length N. Applying Fano’s inequality to user 1
for the average bit error probability (see for example Theorem
4.3.2 in [11]), we get the bound, for any block &

I(my;yq|wr)

R < N

+0 (13)
where 6 depends on € and goes to zero as € goes to zero. Here,
mq 1s the message of user 1 and w; denotes any randomness
in x1, which recall is known at receiver 1. Note that we drop
the block indices of the message and the signals to simplify

notation. Now

1
Nl(mﬁ}’l |w1)

1
NI(X1;Y1 |w1)
1

NI(XM Y1)

— LiH(y) - H(sy)]

N
H(ss)
N

IN

IN

< max(n11,n12) —

where s is the signal from user 2 that is visible at receiver 1.
Here, the second inequality follows since w; — x; — y; forms
a Markov chain. Combining this with the above inequality, we
get:

1
R1 S max(nn, 7’1,12) — —H(SQ) + 0.

v (14)
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We now seek a bound on H (s2). Applying Fano’s inequality
to user 2, we get

1

NI(mQ;YQ |<AJ2) + 6
1

NI(X2;Y2) +0

1
= NI(U27V2;Y2) +6

Ry

IN

IN

where us is the part of user 2’s transmitted signal xs which is on
the top min( Lo, n12) levels and v is the rest. The significance
of uy is that it is received without interference at receiver 2 and
is visible at receiver 1 (i.e., part of s2). Correspondingly, split
user 2’s received signal yo = (usz,¥2). Now

I(uy,va;y2)
= I(ug;y2) + I(va;y2 | uz)
= H(uz) + I(v2;y2 |uz)
< H(uz) + I(v2;y2)

since up — vy — y2 forms a Markov chain.
Combining this with the previous equation, we get
1 1 -
Ry < NH(Uz) + NI(V2;Y2) + 6. (15)
Let us now consider an alternative strategy s, for user 2.
This encoding strategy has two independent sub-codes. The first
sub-code transmits uncoded bits on the top min(Ls, n12) levels,
achieving a rate of min(Ly,n12) bits per symbol time with
zero error. The second sub-code transmits on the remaining
ngs — min(Le, n12) levels. It codes over K blocks of length N
each. Each codeword in this code has K components, each span-
ning N symbol times, for a total length of K N symbol times.
Each codeword is chosen randomly, with i.i.d. N-length compo-
nents and each component chosen from the distribution of user
2’s transmit signal vy under the original encoding strategy s5.
Note that since user 1’s strategy s] codes only within blocks
of length N and sends independent message across different
blocks, the interference from user 1 is i.i.d. across such blocks.
User 2 thus faces a memoryless channel from block to block.
Standard random coding arguments apply and one can show that
for any 61 > 0, there exists a large enough K such that strategy
sh can achieve a rate of I(va;¥2) — 07 bits per block and with
a probability of error of less than e. Thus, strategy s5 achieves
a total rate R}, bits per symbol time reliably, where

. 1 -
RIQ = m1n(L27n12) + —[I(Vg;yg) - 61]

N (16)

By definition of 7)-NE, strategy s, cannot perform much
better than s3, i.e., Ry +n > Rj. Combining (16) and (15), we
now have

1

NH(UQ) Z n1in(L27n12) — 61/N — 06— n. (17)

Essentially, we have shown that user 2 under strategy s3
must be transmitting information at maximum entropy on these
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min{ Ly, n12) levels by virtue of the fact that it forms a 7-NE.
Substituting this into (14) and observing that H(s2) > H(u2),
we get:

R1 S max(nll, 7’L12) — IIliIl(LQ7 TL12) + (51/N + 26 + n. (18)

Under the condition (12), one can readily verify that U; =
max(ni1,n12)—min(Ly, n12). Since 7, 6 and §; can be chosen
arbitrarily small, we have shown that Ry < U;. The proof is
complete. [ ]

2) Achievable Nash Equilibria: From Lemmas 1 and 2, it
follows that Cxyg C C N B. In this section, we show that these
two sets are in fact equal, proving Theorem 1. To do this we
consider a modification of the class of Han—Kobayashi strate-
gies presented in [2]. In these strategies, each user splits the
transmitted information into two parts: private information to
be decoded at only their own receiver and common information
that can be decoded at both receivers. In [3] it is shown that a
particular class of these strategies can achieve any point in the
capacity region of the deterministic channel. The modification
we make to these schemes is to allow each transmitter to include
extra random bits in their common message. Next, we give some
preliminary definitions related to Han—Kobayashi schemes and
then formally define this class of strategies.

For a given linear deterministic interference channel, let
A denote the input alphabet of user i, i.e., this is the set of
max(n;i,n;;) levels. We decompose this set as the direct
product &;. X Xy, so that for any x; € &; can be written as
X; = (Xip, Xic), Where x;,, denotes the (n;; — nj;)" least sig-
nificant levels of x;, and x;. consists of the n;; most significant
levels. The significance of this decomposition is that the x;,
consists of private levels for user ¢ which are visible only at his
receiver, while x;. consists of common levels that are visible at
receiver j.

We define a randomized Han—Kobayashi scheme for a given
block-length IV to be a scheme in which each each user 7 sep-
arates the message set {1,...,25} into the direct product of
a private message set M, containing 2™ fi» messages and a
common message set M. containing 2V ic messages, where
NR;,+NR;. = B;. Additionally, each user 4 is allowed to have
a random common message set §); consisting of 2V % equally
likely codewords; these can be thought of as IV R;,. random bits
that the transmitter generates using the common randomness,
which is shared with the corresponding receiver. The message
sets are then encoded using a superposition code as follows.
First the transmitter encodes the common and common random
message via a map f;. : M. x Q; — XX, where the code-
book is generated using an i.i.d. uniform distribution over the
common levels. Next, the transmitter encodes the private mes-
sage viaamap fip : My X My X ; — Xi‘;[, where for each
common codeword X;., a different private codebook is gener-
ated using an i.i.d. uniform distribution over the private levels.
Here, the common codeword x;. can be viewed as defining a
cloud center and the the private codeword can be viewed as
defining the associated cloud points. Transmitter ¢ then sends
the superposition of these two codewords. In the special case
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where R, = Ro, = 0, we refer to the resulting scheme as a
nonrandomized Han—Kobayashi scheme.

We call a randomized Han—Kobayashi scheme (1 — ¢)-reli-
able if each user 7 can decode their own private and common
messages with an average probability of bit error no greater than
€8

Next we specify an achievable rate region for this class
of schemes. This characterization is in terms of modified
MAC regions for each of the two receivers. Specifically, the
modified MAC region at receiver ¢, R}", is the set of rates

7 0

(Ric, R, Rip, R]’C, Rjr, R]'C) that satisfy

Ric + Rip + Rjc + Rjr < max(ng;,n;;)
Rip + Rj. + Rj,. < max(n;j, (ni —nji)")
Rip < (nis —nji)*
Ric + R < ny;. (19)

The modified MAC region is derived by considering the MAC
channel at receiver ¢ consisting of three transmitters: one corre-
sponding to user 7’s own common message, one corresponding
to user 2’s own private message, and one corresponding to the
combination user j’s common and common random messages.
Here, user ¢’s own common random message can be ignored
since it is known at receiver 7 and so can be removed. Likewise,
user j’s private message can be ignored since it is not received at
receiver ¢. The capacity region of this three user MAC will have
seven constrains including the first four given in (19). The modi-
fication to this is that we drop the remaining three constraints by
following similar arguments as in [12]. First, recall that a con-
straint for a MAC region that involves the rates {R; : i € M}
for some subset of the users M corresponds to a bound on an
error event where the message for each user in M is in error and
all other messages are correct [13]. The missing bounds corre-
spond to error events that we ignore for one of the following
two reasons. First, due to the use of superposition coding we
can ignore constraints which correspond to making an error in
the common message but not the private message. Second, from
the point-of-view of user 7, we can ignore the constraint that cor-
responds to an error in only user j’s signal.

From the above discussion and following similar arguments
as in [3], we then have the following characterization of the
rate-tuples that be achieved with this class of randomized
Han-Kobayashi schemes.

Lemma 3: Rruk = RT* NRY is an achievable region for
randomized Han—Kobayashi schemes.

For some rate-tuples in Rrpk, receiver ¢ may not be able
to reliably decode user j’s common and common random mes-
sages. In particular, this must be true if R;. + R;, > n;;. How-
ever, if R;. + R, > L; fori = 1,2, then the next lemma shows
that this will be possible.

Lemma 4: Any rate-tuple (Ric, R1,, R1p, Roc, Rar, Rap) in
the interior of Rruk with R;. + R;, > L; for¢ = 1,2 can
be achieved by a randomized Han—Kobayashi scheme in which

8This is slight strengthening of the previous definition of a reliable strategy,
which only required the overall average bit error probability to be no greater than
€. Hence, an agent’s pay-off in a e-game under a (1 —e¢)-reliable Han—Kobayashi
scheme is again their rate.
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each user ¢ decodes user j°s common and common random mes-
sage (with arbitrarily small probability of error).

Proof: First note that if a rate tuple is in the interior of
Rrux with R;. + Rip >L;, = (n” - ’I’L,L']')+, then from the first
constraint in (19) for receiver ¢, it follows that

ch + Rjr < Ngj. (20)
Now consider a randomized Han-Kobayashi scheme which
achieves this rate tuple. After user ¢ decodes his own private
and common messages, he will have a clean view of user j’s
common message. Moreover, from the above constraint, the
rate of this message is less than the capacity of the channel
from user j to receiver ¢ and so there must exist a randomized
Han-Kobayashi scheme in which user ¢ can also decode user
7’s common messages with arbitrary reliability.? [ |

A given rate tuple R = (Ryc, Riy, Rip, Roc, Rar, Rop) is
defined to be self-saturated at receiver i if R € R at receiver
1, but any other choice of R;., I%;, and R;, with a larger value
of R;. + R;, (keeping all other rates fixed) will result in a rate-
tuple that is not in R}"*. Clearly, a self-saturated rate-tuple must
lie on the boundary of the modified MAC region at receiver %.
Additionally, the constraints in (19) that are tight at this point
must involve both R;, and R;.. If a rate-pair is self-saturated
and R;, + R;. > L;, then it will be useful to think about this in
the context of a second MAC region at receiver ¢ in which there
are only two users, one corresponding to user ’s entire message
(atrate R; = IR;c+ R;;,) and a second that again corresponds to
the common and common random messages sent by user j (at
rate I%j. + R;,). This MAC region is given by

R+ Rjc+ Rj < max(nii? ’I”L,L']')
R; < ny;
Rjc + Rjr < nyj. 21
It can seen that if a rate tuple is self-saturated for user ¢ and
satisfies I%;. + R;, > L;, then the rates I; and I2;. + R, must
be in (21). Furthermore, if R; is increased by any amount this
will no longer be true. We use this to show that if a user is self-
saturated and his rate is greater than L;, then he can not deviate
and improve his pay-off. The key idea here is that if a user could
improve, then he will violate one of the MAC constraints in (21).
This cannot be possible since after deviating and decoding his
own message, he should still be able to decode the other user’s
message. The next lemma formalizes this argument.

Lemma 5: If a rate tuple (Ry¢, R1y, R1p, Roc, Rar, Rap) is
self-saturated with R;. + R;, > L; for both both receivers i,
then (Rlp + Ry, Rgp + RQC) € CnE.

Proof: Given a rate tuple R =
(Ric, Ry, Rap, Rac, Ror, Rop) that is  self-saturated
at both receivers and with R;. + R;, > L;, it follows from
Lemmas 3 and 4 that for any > 0, and any € > 0, there exists
a randomized Han—Kobayashi scheme achieving rates (Rj. —
n/6, R1. —n/6, R1, —n/6, Ra. —n/6, Ra,. —1/6, Ray, —1/6)

9The Han—Kobayashi scheme under consideration may suffice, however, if
this scheme does not provide a low enough probability of error, then a new
scheme that achieves the same rate-tuple with the desired probability of error
can be found (perhaps by using a longer blocklength).
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for which each receiver can decode both his own common
and private messages as well as the other user’s common and
common random messages with probability of error less than e.

Next we argue that for ¢ small enough such a pair of strate-
gies must be an 7)-NE of an e-game. First note that under these
nominal strategies each user ¢ will receive a pay-off of R;. +
R;, — n/3. Assume that these strategies are not an equilib-
rium, and without loss of generality suppose that user 1 can
deviate and improve his performance by at least 7. After devi-
ating, the rates for the MAC region at user 1 in (21) are given by
R = (fiﬁ, Ry.+ Ra.—n/3), where Ry >Ry +2n/3. Since the
rate tuple R is self-saturated, it follows that after this deviation,
the rates R must violate either the first or second constraint in
(21) for i = 1 by at least /3.

Suppose that user 1 deviates to a blocklength N; strategy.
Then using Fano’s inequality (as in (13)) for the average bit
error probability and following the usual converse for a MAC
channel, it must be that

2 I(X1§Z)\’[1 | x2¢)
1

IN

+06 (22)
where § goes to zero as the average bit error probability € does.
In particular, choosing € small enough so that § is less than /3,
then (22) implies that

Rl <mni1 +n/3.

Hence, the second constraint in (21) can not be violated.

Likewise, since in the nominal strategy for user 1, he was
able to decode user j’s common and common random signals,
it follows that

I(ch;Y1)

R2c + R2p S N/

+ ¢’ (23)

where N/ denotes the block length used in the nominal strategy.

Combining (22) and (23) and choosing € small enough so that
6+ 6" < n/3, we havel0

Ri + Roe + Ry, < max(nii,nij) +n/3 (24)

which shows that the first constraint in (21) can not be violated.

Therefore, such a deviation cannot exist and the nominal

strategy must be an 7-NE for small enough e. Taking the limit
as . — 0, it follows that the desired rates must lie in Cyg. H

To prove that Cxg = C N B, we will show for that any
rate-point (Ry, R2) € C N B, there exists a feasible rate tuple
in Rrux with R; = R;. + R;, for ¢ = 1,2 and that is
self-saturated at both receivers. The desired result then follows
directly from Lemma 5. As a first step toward doing this,
we define a class of nonrandomized Han—Kobayashi rates
(Ric, R1p, Rac, Rop) at which each transmitter is fully utilizing
its “interference-free” levels, i.e., the L; = (n;; — n;;)* most
significant levels at transmitter ;. Depending on the channel

10Here, as discussed in Section II, we need to replace (22) and (23) with the
corresponding expressions over super-blocks whose length is the least common
multiple of N; and N so that that both equations are over the same block-
length.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 5, MAY 2011

RX]_

Fig. 7. This figure shows the interference free levels for each transmitter in
the interference channel from Fig. 4. The levels for user ¢ are indicated at that
user’s receiver by either a “a” or a “b”. The levels labeled with “a” correspond
to “private levels,” which are accounted for in (25). The levels labeled with “b”
correspond to common levels, which are accounted for in (26).

some of these levels may be common and some may be private.
Specifically, there are

a; = (nii —nji —nij) "

private interference free levels at user ¢ and
- +
bi = (’n“‘ - max(nii — nji,mj))

common interference free levels at user <. An example of these is
shown in Fig. 7. We say that (R, R1p, Roc, Royp) fully utilizes
the interference free levels for user i if

(25)
(26)

Lemma 6: If (Ric,Rip, Roc, Rop) fully utilizes the
interference free levels for each user 4, then there ex-
ists random common rates Ri,.,[R. > 0 such that
(Ricy Riry Rip, Roc, Ror, Rop) s self-saturated at both
receivers.

Proof: The intuition is as follows. If R;, > a; and ;. >
b;, then all the interference-free levels are saturated at receiver
1 (i.e., at maximum entropy). The remaining 7;; levels are all
reachable by the common signal from user j. By putting suffi-
cient number of random bits on that common signal, these n;;
levels can be fully saturated as well.

More rigorously, we will show that one can always increase
Rs,- such that the overall sum rate constraint (the first constraint
in (19)) is tight, so that receiver 1 is saturated. Suppose no such
choice of R, exists. Then, it must be that R»,. cannot be further
increased because the second constraint in (19) for receiver 7 is
tight. However, if this constraint is tight, then since Ri. > b;,
it can be seen that the first constraint at receiver ¢ must also be
tight, which is the desired contradiction. |

As an example of the construction used in the proof of Lemma
6 consider a symmetric channel withni; = n2s = 3andnjs =
n91 = 2 (see Fig. 8). Each user has 1 interference free level with
a; = 0 and b; = 1. Thus, the nonrandomized Han—Kobayashi
rates given by R = Ry = 1 and Ry, = Ry, = 0 fully
utilize the interference free levels at each receiver. These rates
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RXQ

1 2

Fig. 8. Example of a nonrandomized Han—Kobayashi scheme for a symmetric
channel with n;; = 3 and n;; = 2. Here each user is using the rate split
R;. =1and R;, = 0, which fully utilizes the 1 interference free-level at each
transmitter. This rate split is not self-saturating at either transmitter.

RXQ

Fig. 9. Randomized Han—Kobayashi scheme which achieves the same rates as
the nonrandomized scheme in Fig. 9 but is self-saturated. Here we do not show
R, at receiver ¢ since this signal can be removed using the assumed common
randomness.

RX1

ni1 noo
u Hnlz n21H ﬂ
12 T2 T

Fig. 10. Example of an alternative nonrandomized Han—Kobayashi rate-split
that achieves the same rates as the scheme in Fig. 8 but does not fully utilize the
interference-free levels.

RXQ

are not self-saturating since each transmitter could increase I2;;,
by one. However, if each transmitter sets R;, = 1, the resulting
randomized rates will be self-saturated as shown in Fig. 9.

It follows from [3] that for any rate pair in CN B3, there exists a
nonrandomized Han—Kobayashi rate-split that lies in the achiev-
able region in Lemma 3. If these Han—Kobayashi rates fully
utilize the interference-free levels then we are done. Unfortu-
nately, not all nonrandomized Han—Kobayashi rates fully utilize
the interference-free levels. For example consider the symmetric
channel in the previous paragraph. An alternative nonrandom-
ized Han—Kobayashi rate-split is given by R, = Ry, = 0 and
Ry, = Ry, = 1 (seeFig. 10). These rates do not fully utilize the
interference-free levels and cannot be made into an equilibrium
by simply increasing the users’ common random rates. Though
this set of rates does not fully utilize the interference-free levels,
the previous example shows that there is another set of nonran-
domized rates that do. The next lemma shows that this is always
the case.

Lemma 7: Given any point (R1, Ry) € C N B, there exists a
nonrandomized Han—Kobayashi rate split that fully utilizes the
interference free levels at each transmitter.
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Proof: To prove this lemma we begin with an arbitrary non-
randomized Han—Kobayashi rate-split that satisfies Lemma 3
and show that this can always be transformed into one that fully
utilizes the interference free levels at each transmitter. A key
point here is that a; + b; = L;, so that for any point in B there
will always be sufficient amount of “rate” available to meet the
constraints in (25) and (26).

First we show that whenever R;, < a; for either user 7, we
can increase I?;, and decrease I?;. by the same amount until
R;, = a;. The only way such a transformation could not be
done is if the second constraint in (19) at receiver ¢ prevented it.
But by combining (20) at receiver 7 and the second constraint at
receiver 7, it can be seen that this will never happen for i;;, < a;.

Thus, we can assume that I;, > a;. Given this, if a rate-pair
does not fully utilize the interference free levels at transmitter ¢,
it must be that R;. < b;. Suppose that this is true for receiver
1 and consider increasing I?; . and decreasing %1, by the same
amount until R;. = b;. Note that since a; + b; = L; and
R;c+R;, > Ly, when we decrease Ry, in this way it will never
cause it to become less than a;. Changing 121, and R;. in this
manner will not violate any of the constraints in (19) at receiver
1, since every constraint involving ;. also involves I2;,,. If this
can be done without violating the first or second constraints at
receiver 2 then we are done. Otherwise, it must be that at least
one of these constraints becomes tight when R;. reaches the
value R}, = by — A, for some A > 0. Note that

Rop + Roe + Ri. = Ro + R,
<Us+b—A

= max(ngg, noy) — A 27
and so the first constraint at receiver 2 can not be tight. This
implies that the second constraint at receiver 2 must be tight,
i.e.,

Rgp =+ RTC = I’HaX(TLgl7 Moo — n12). (28)

Combining this with (27), we have

Rye < max(nag,no1) — max(nay,noy — ny2) — A
= by — A.

It then follows that Ry, > a2 + A. In other words, user 2’s
interference free levels must be “underutilized” by at least as
much as user 1’s.

Now consider increasing R;. from Rj. by A while simulta-
neously reducing Ry, and Ry, each by A and also increasing
Ry by A. The above calculations show that no constraint will
be violated if we only changed 2., I?1, and Iy, in this way.
Likewise, by applying the same argument to Ry, I22;, and Ry,
changing these values will not violate any constraints. The only
possible violation could occur in the first constraints at either
MAC, which involve both R;. and R».. However, this constraint
also involves one of the users’ private rates, and so cannot be
violated by the same argument as in (27). After this transfor-
mation, the resulting rate-split will fully utilize the interference
free levels at both receivers. ]

Combining Lemmas 5, 6, and 7, we have proven Theorem 1.
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We also note that by direct calculation it can be shown that
Cne always contains at least one efficient point, i.e., one point
that is sum-rate optimal. Indeed it can be shown that for a sym-
metric channel, for « < 2/3, the only efficient point in CNg
is the symmetric sum-rate optimal point. For a > 2/3, all
sum-rate optimal points are in CNg.

IV. GAUSSIAN IC

In the previous section, we completely characterized the Nash
equilibrium region for the two-user linear-deterministic IC. In
this section, we show that an analogous result holds for the
Gaussian IC within a one bit approximation.

A. Gaussian Channel Model
Here, our goal is to characterize rates in Cxg for a two-user
Gaussian IC represented by (see Fig. 1)

y1 = hi1z1 + hioza + 21

Y2 = ho101 + hooxa + 22 (29)

where for i = 1,2, z; ~ CN(0,1) and the input z; € C is
subject to the power constraint E[|z;|?] < P. Following [1],

for = = 1,2, we parameterize this channel by the signal-to-
noise ratios SNR; = P|h;; |2 and the interference-to-noise ratios
INR;; = P|hij|2.

The characterization of Cyg in the linear deterministic case
relied on knowing the exact capacity region C for the determin-
istic IC and that any point in this region can be exactly achieved
by a nonrandomized Han—Kobayashi scheme. For the Gaussian
IC, C is only known in the case of very weak [15]-[17] or very
strong interference [2], [18]. Otherwise, C is not known exactly
but in [1] it is characterized to “within one bit” for all parameter
ranges. This is done in part by showing that a class of (nonran-
domized) Han—Kobayashi schemes can achieve any point with
one bit of C. This one-bit gap will effect how accurately we can
characterize Cyg in the Gaussian case. Namely, in general we
will also be able to characterize this region only to within a one
bit gap (though for particular channels this gap may be smaller).

B. Main Results

For the Gaussian IC our main result is to show an analogue
to Theorem 1 that characterizes Cng to within one bit. In this
case we will give both an inner bound and outer bound on Cxg.
Both of these bounds will be given in terms of a capacity re-
gion and a “box” as in the deterministic case. The true capacity
region will be used for the outer bound, while an achievable
“Han—Kobayashi” region, Cyyi, will be used for the inner bound.
Here, Cyxk corresponds to the set of rates that are achievable
using the specific class of Han—Kobayashi schemes in [1] (this
will be defined more precisely in Section IV-C2). This region is
within 1-bit of the capacity region C, i.e., if (Ry, R2) € C, then
((Rl — 1)+, (RQ - 1)+ € Cuk.

The box B used for the outer bound is given by

B:{(Rl,RQ)L,SquU, Vi:1,2}

where for each user z = 1,2

SNR;
Li = IOg (1 + m)
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and

U; = min {log(l + SNR; + INR;;)

o (14 [SNR; — max(INR;;, SNR;/INR;;)]*
o8 1+ INR;; + max(INR;;, SNR;/INR,,)

log(1 + SNRi)} . (30)

On the other hand, the inner bound is given in terms of the “box”

B~ = {(Rl,Rg) L, <R; < max(Ui - 17[4), Vi = 172}

which differs from B by at most one bit.
We next state the analogous result to Theorem 1.

Theorem 2: For atwo-user Gaussian IC, CyxNB~ C Cng C
C N B. Moreover, for a Gaussian IC with strong interference,
Cne = Cak N B.

In certain cases, when we know additional properties of the
capacity region we can strengthen these results. For example for
very weak interference, from the results in [15]-[17] it is known
that the maximum sum-rate in C is achieved by simply treating
interference as noise, which is also in Cyk. This corresponds
exactly to the lower-left corner of 3 and B~ . Hence, Theorem
2 implies that Cxg contains the single point (L1, Ls), and thus,
in this case, CNg is characterized exactly.

We also note that the bounds in Theorem 2 can be shown to
be within a constant gap of the bounds given in Theorem 1 for
a related deterministic IC, which is obtained by the mapping
N = LlOg(SNRZ)J and Nij = |_10g(|NR“)J

In the next section we will give a proof of Theorem 2 that is
based on an analogy of each of the steps we used in the deter-
ministic case.

C. Proofs

1) Nonequilibrium Points: We begin by showing that certain
rate-pairs can not be in Cng.

Lemma 8: If (R1, Ry) € CxE, then R; > L; := log(1l +

SNR; ;=
g ) fori = 1,2,

Proof: Regardless of user j’s strategy, user ¢ can always
act.li.eve at least rate log(l.—lr 13-NTRR) (wi.th arbitrarily small pr9b-
ability of error) by treating user j’s signal as Gaussian noise.
Hence, this is always a possible deviation for user ¢ in any
e-game. Thus, user 2’s rate in any 7-NE must be at least L; — 7).

The bound in Lemma 8 is a direct analog to the bound in
Lemma 1 for the linear deterministic channel, which character-
izes the lower bounds of the box B. The next lemma gives an
upper bound corresponding to the bound in Lemma 2.

Lemma 9: If (R1, R2) € Cxg, then R; < U, where U, is
given in (30).
Proof: Suppose (R1, R2) € Cxg. Without loss of gener-
ality, let us focus on user 1 to show the upper bound on R;.
We define a parameter

INR2; 1 > . 31)

2 .
v T max <SNR2 "INR1»
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Consider first the case that 02 > 1: this corresponds to the

case in the deterministic channel when the interference from
the signal user 2 transmits at its interference-free levels appears
below noise level at receiver 1. In this case, there will be no
minimum amount of interference that user 2 will cause to user 1
at a NE, and we simply bound R; by its point-to-point capacity

The case when o,, < 1 is more interesting and we need a
tighter bound on R;. Fix n > 0 and arbitrary. Given a suffi-
ciently small ¢ > 0, there exist a (1 — ¢)-reliable strategy pair
(s7, s3) achieving the rate pair (Rq, Ry) that is also an 7)-NE.
As remarked in Section II, we can assume that in this nominal
strategy pair, both users use a common block length N. Ap-
plying Fano’s inequality to user 1 for average bit error proba-
bility, we get the bound, for any block &

I(ml; Y1 |w1)

R, < N

+6 (33)
where m; is the message of user 1, y is user 1’s received signal
over the block, § depends on € and goes to zero as € goes to zero,
and w; denotes any common randomness in X;. Note that we
drop the block indices of the message and the signals to simplify
notation. Now

1
Nf(mn)ﬁ |w1)

1
< NI(X1§YI|‘U1)

< %I(xl;yﬂ
::i%[h(yl)—-h(Y1|X1ﬂ

= Li51) = hlon) — bt [0 + )]

A

I(x2;¥1)

SlOg(l—FSNRl—i—lNng)— N

where ~
y1 = hioX2 + 21.

Combining this with the above inequality, we get

I(Xz; 5’1)

Ry <log(L+ SNRy + INRyz) — ==

(34)

The term I(x2;y1) plays the role of H(s2) in the linear de-
terministic case. We now seek a lower bound on I(x2;y1). Ap-
plying Fano’s inequality to user 2, we get

1
Ry < Nf(m%}’z |w2) 4+ 6
1
< WI(X2;Y2) +6
1
= ﬁl(umvz;}ﬁ) +0

where
U = X9 —|— Vo

and vy ~ CN (0, O',%I ~) independent of everything else, with
o? defined as in (31).
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Now,

I(ug,va;y2) = I(ug;y2) + I(va; y2 | u2)
= I(ug;y2) + I(v2;¥2 | u2)
< I(ug;y2) + I(v2; ¥2)

where

Y2 =y2 — haouy = hoova + ho1X1 + 22

and the last inequality above follows from the Markov chain
uz — Vg — ya.
Combining this with the previous equation, we get
1 1
Ry < —1I(uy; —I(ve;y 0. 35
2 S (1127Y2)+N (vaiy2) + (35)
Let us now consider an alternative strategy s for user 2: a
superposition of two i.i.d. Gaussian codebooks, one with each
component of each codeword having variance 1 — o2, and one
with each component of each codeword having variance o2. The
codes have block length N K. If we let K — oo, then standard
random coding arguments and the chain rule of mutual informa-
tion implies that this scheme can achieve a rate of
1 , 1., 1 .
N 1(02,v2iys) = S I(U2ys) + wI(vaiy2)  (36)
where @1z ~ CN (0,1 — 021 y) and 012 and v are independent,
and

Vh = hoo(U2 + V2) + ho1X1 + 2.

We have
1 SNR; (1 - 02)
—I(t9:yh) > 1 1 n
(025 y2) > og( T SNReo? + INRy,

using a worst-case Gaussian noise argument [20] on v, and x3.
Substituting this into (36) gives a lower bound on the rate this
alternative strategy can obtain. Comparing this with (35) and
using the assumption that we are operating at an eta-NE implies
that

SNR, (1 - 02)
2 —n 37)
1 + SNRQO’,U + |NR21

1
NI(U2§Y2) > log (1 +

Next we relate I(x2;¥1) to I(us;y2) and complete the argu-
ment. First note that

I(x2:¥1)
= I(x2; h12X2 + 21)
1
=I(x9;%X0 +21), 21 ~CN (0, ——1I
(X2,X2 Zl) z; (\/m N)

(@)
> I(x2;X2 + V2)

= I(u27x2)
> I(uz;y2)

®

e SNR, (1 — 02)

log [ 1 -
°g< +1+SNR205+|NR21> ’7]

INR2; 1 1
SNRy ’ INR12) 2 INR 2

and

where (a) follows since o2 = max(
(b) follows from (37).
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Substituting this into (34), we get the final result

R; <log(1+ SNR; + INRy2)
—log <1+ >NR, (1_03) >+7]
1+ SNR202 + INRy;
= log(1 4+ SNRy + INR12)
—log<1+ SNR2 — max(INR21,SNRy/INR;2) )
1+ INR2; + max(INR21, SNRy/INR;2)
+ 7.

Combining this with inequality (32) and letting n — 0 yields
the desired result. [ |

2) Achievable Nash Equilibrium: The lemmas in the pre-
vious section provide an outer bound on Cyg. In this section we
give an inner bound on Cxg by showing that this set contains
Cuk N B~. Motivated by the deterministic analysis, we again
consider a modified Han—Kobayashi scheme in which each user
may send a private message, a common message, and also a
common random message that is generated using the common
randomness they share with their own receiver. Additionally, in
the Gaussian case, we allow a user to also send a private random
message using their common randomness. In the deterministic
case, sending such a message would not serve any purpose since
auser’s private signal does not appear at all at the other receiver.
In the Gaussian case, a user’s private signal is present at the other
user and the private random message is used to ensure that the
effect of this signal is essentially the same as “noise.” All of
these messages are again encoded using a superposition code,
which we define formally next.

For a given Gaussian IC, let P;, and P;. denote a user’s pri-
vate and common power respectively, where P, + P;. = P. As
in [1], we assume that P, is set as follows:

|h,|2]71 _ If(lll’l(l/”\lRﬂ>7 lleR]Z < SNRJ
e 0, otherwise.
Let INRY; = [h;i|*P;, denote the INR at receiver j due to

this choice of P, and let SNRY = |h;;|? P;, denote the corre-
sponding SNR atreceiver 7. Note that when SNR; > INR;; > 1,
the received interference power at receiver j due to user 4’s pri-
vate power is at the noise level.

As in the deterministic case, we define a randomized
Han—Kobayashi scheme to be one in which each user ¢ sepa-
rates their message set into M, x M. with rates R;, and R;.,
respectively, and also generates a random common message
set €2;,. with rate R;.. Additionally, we allow each transmitter
to generate a random private message set, {1;s with rate R;s.
These messages are then encoded using a superposition code
as follows. First, the transmitter encodes the common message
m;. € M,;. and common random message w;,. € (2;. into a
codeword X;.(m;.,w;,) from a codebook that satisfies the av-
erage power constraint of P;.. Given this codeword, it encodes
the private message 1, and private random message w;s € 2,
into a codeword x;;,(m;p,w;s, X;c) from a codebook that is
indexed by the common codeword x;. and satisfies the average
power constraint of F;,. It then transmits the superposition
X; = X;c + X;p. As in the deterministic case, we call such a
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scheme (1 — ¢)-reliable if a user is able to decode both his
common and private messages with reliability of (1 — €).

We again introduce a modified MAC region R}" for each re-
ceiver ¢ that we will use to characterize the rates achievable by
such a scheme. This is the set of rate tuples that satisfy

Ric + Rip + ch + Rj’!’
SNR; + INR;; — INR?,
<log |1+ 1

INR?, + 1
Rip + R]c + RJ’I‘
SNR? + INRy; — INR?,

< log

=08 INR?, + 1

SNR?

R, <log |14+ -2

e R

SNR;

,- i < _

Ri. + Rip <log [ 1+ INRZ + 1 (38)

As in the deterministic case, these constraints arise from con-
sidering the three user MAC region at receiver ¢ corresponding
to the rates RR;., R;, and I%;. + R;,. Using these regions we
then have the following characterization of rate-splits that can
achieved with this class of schemes.

Lemma 10: Rrux = RT* N'RY® is an achievable region for
randomized Han—Kobayashi schemes.

We define the Han—Kobayashi region Cygk in Theorem
2 as the set of rates (R, Ry) for which there exists a rate
split (le Ry, Rlp7 Ris, Roc, Ro,, Rgp, Rls) € Rruk with
Ry = Ric. + Ryp and Ry = Ry, + Ry,. Using [1], it follows
that Cyg is within one-bit of C.!! Next, we give an analog to
Lemma 4.

Lemma 11: AI‘ly rate—tuple (le Ry, Rlp, Ris, Roc, Roy,
Ry, Roy) in the interior of Rrux with R;. + R;, > L; for
1 = 1,2 can be achieved by a randomized Han—Kobayashi
scheme in which each user ¢ decodes user j’s common and
common random message (with arbitrarily small probability of
error).

The proof here follows exactly the same steps as in the deter-
ministic case. In particular for ;. + R;;, > L;, note that

INR;; — INRY,

1
IR INRY

ch + RJ’T < log 39

which implies that if user 7 can decode his own common and
private messages, he will be receiving user j°s common mes-
sages at a rate less than the capacity of the channel over which
these messages are sent.

Note also that the private random rate R;; does not show up
in any of the constraints for Rk . This is because in these con-
straints each user ¢ is treating the other user’s private message
as worst-case noise with power INR}; and can remove their own
random private message. The next lemma shows that the random

The rate region studied in [1] corresponds to the rates 2; and R» that can
be achieved with rate-splits in Rrax where the common random and private
random rates of both users are zero. It can be seen that the resulting region is
equivalent to Cyx as defined here.
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private rate can always be chosen so that there is essentially no
loss in this assumption.

Lemma 12: Given any § > 0 and any rate tuple in Rruk
with
+
st = (log (1 + |NRZ) — ij — 5/2)
then for a large enough block-length N, this rate tuple can be
achieved by a randomized Han—Kobayashi scheme such that

b (i +21) > log (e (14 INRE)) — 5
Proof: Given a rate tuple that satisfies the conditions of
this lemma and a constant § > 0, we next describe a specific
encoding of user j’s private messages to ensure the conditions
for this lemma hold true. Let w; = (mp, w;s) denote the total
private message to be encoded by user j (chosen from a total
private codebook with rate I2;,+I2;;). To encode this message!?
we consider the following two cases: (i) I, < log(1+INRY;)—
¢/2 and (i) Rj, > log(1 + INR};) — §/2. In each case we will
separate w; into two messages so that w; = (w}-./ w?).

Case I: Rj, <log(1+INRY;)—5/2.In this case we set w ] =
mjp, 1.€., this is the private message which is to be decoded at
receiver j. Since the rate-tuple is in Rryk, this message must
be decodable over a Gaussian channel with a capacity of log(1+
SNR?). We then set wjz- = wjs, i.e., this is the private random
message sent by user j. By assumption this message will have
arate of ;s = log(1 + INRY;) — Rj, — 6/2.

By choosing N large enough, there will exist a Gaussian
broadcast codebook for these messages so that for a given re-
liability, w; and w? can be received reliably over the Gaussian
channel given by

y = hijal + 2

where % has average power Pj, and the noise variance is 1,
and wjl» can be received at user j’s receiver given wjz (equiva-
lently given the private random message w;). Note that the first
channel has a capacity of log(1 + IN Rfj).

By applying Fano’s inequality to the first receiver, we have
that for a large enough reliability we can find a block-length NV
so that

N (log (1+ INRfj) —6/2) < I(wj;y) + N6/2
where y = h; jx’; + z1 denotes the received signal over a block

of length N.
Now

I(wj;y) = h(y) — N log(me).
Hence, we have
h(y) > N (log (me (1 + INRY;)) — )

as desired.

I12To keep the overall superposition code structure for our class of
Han-Kobayashi schemes, we need to construct such a private codebook for
each codeword x ;. in user 7’s common codebook. Here we focus on one such
codebook.
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Case2: Rj, > log(1+INR};)—6/2. Inthis case we set 1?5 =
0 and choose w; and w? so that mj, = (w}, w) where w} is
chosen from a code book with rate log(1 + INR};) — 6/2 and w?
is chosen from a codebook with rate R, —log(1+INRY,)+6/2.

By choosing N large enough, there will exist a Gaussian
broadcast codebook for these messages so that for a given relia-
bility, wjl- and w]z can be received at user j’s receiver, and given

w?, w} can be received reliably over the Gaussian channel

Jjr g

Yy = hL]:Lf + z;.

Applying Fano’s inequality at the second receiver we have
NRjp < I (wj;y,w}) + N§/2.
Now

I (wyy,w?) =1 (w;w)) +1 (wyy|w?)
= N (Rj, —log (1+INRL) +6/2)
+h(y|wj2») — Nlog(we).

Hence, we have
h(y |wj*) > N (log (we (1 + INRE)) = 6) .
Dropping the conditioning and dividing by N, it follows that
1
Nh(Y) > log (me (14 INRY,) — 6

as desired. [ |

Note that under the given power constraints, N log(me(1 +
INRY.)) is the maximum possible value for A(y), which is
achieved when y is a sequence of i.i.d. Gaussian random vari-
ables. Hence, this lemma can be viewed as showing that when
the private rates are sufficiently high, h(y) is well approximated
by simply viewing y as i.i.d. Gaussian.

We say that a rate-split R is self saturated at receiver ¢ if R €
‘R7* and any other choice of R;. and IZ;;, in which R;;, + R;. is
increased (keeping all other rates fixed) will result in a rate-split
that is not in R}". Similar to the deterministic case, it can be
shown that if receiver ¢ is self-saturated and R;. + R;, > L;
then R; = R;,+R;. and R;.+ R, must be inside the following
two user MAC region:

SNR; + INR;; — INRY;
R;+ Rjc+ Rjr <log |1+ ]

INR, + 1

SNR;
< _—
R; < log (1 +INRY, + 1)

INR;; — |NR,{?].>

(40)
1+ INR,

Moreover, if R; is increased then this rate pair will no longer be
in this region. Using this we have the next lemma which gives
an analogous result to Lemma 5 for the deterministic channel.

Lemma 13: If there exists a rate tuple R that is self-saturated
with R;. + R;, > L, for both both receivers 4, then (R1, +
Rlc; R2p + R2C) € CNE-
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Proof: ~ The proof follows a similar argu-
ment as that for Lemma 5. Given a rate-tuple
R = (R1c7 R1r7 R1p7 R157 R207 R2r7 R2p7 RZS) that

satisfies the conditions in the lemma, then it follows from
Lemmas 10, 11, and 12 that for any > 0 and € > 0, there
exists a randomized Han—Kobayashi scheme achieving rates
(Ric — n/6, Ri, — 1/6, R1y — 1/6, Ris, Rae — /6, Ra, —
1/6, Rep, — 1/6, Ras) for which each receiver can decode his
own common and private messages as well as the other user’s
common and common random messages with probability of
error less than e. Moreover, by possibly changing the private
random rates Rls and st to satisfy Lemma 12 such a scheme
can be found for which

ih (hijx‘,? +21) > log (me (1 + |NR,’£’].)) — /6

N (41)

for each user i.

Next we argue that for e small enough such a pair of strategies
must be an 7)-NE of an e-game. Assume that these strategies are
not an 7-NE, and without loss of generality suppose that user
1 can deviate and improve his performance by at least . After
deviating, the rates for the MAC region at user 1 in (40) are given
by R= (Rh Rs.+ Ry, —1/3), where Ri >Ry +2n/3. After
this deviation, the rates R must violate either the first or second
constraint in (40) for ¢ = 1 by at least 7/3.

Suppose that user 1 deviates to a blocklength N strategy,
which without loss of generality we can assume is the same as
the original strategy. Then from Fano’s inequality for the av-
erage bit error probability it must be that

iy < T3 )

IN

+06 (42)
where § goes to zero as the average bit error probability € does.
Note that

I(x1; X2 1
T %00 _ L) s )

<log(me (1 + SNR; + INRY,)
—log (me (14 INRY,) + /6
SNR;

—log (14 2™ 6
Og< +1+INR’1’2>+n/’

where the second line follows from (41). Choosing € small
enough and combining this with (42) implies that

~ SNR;
1 14+ —— .
Ry < 0g< +1+INRf2>+n/3

Hence, the second constraint in (21) can not be violated.

Likewise, since in the nominal strategy user 1 was able to de-
code user j’s common and common random signals, it follows
that

I(XZC; yl)

5.
N +

Rac + Rop < (43)
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Combining (42) and (43) and choosing e small enough so that
6+ 6 < n/6, we have

Ry + Ry + Ry,

1
< NI(X2C7X1;y1) +1/6

<log(we(l + SNRy + INRy5)
—log (me (14 INRY,) + /3
o <1 , SNRy + INRy, + INRY,

1+ INRY,
which shows that the first constraint in (21) can not be violated.
Therefore, such a deviation can not exist and the nominal
strategy must be a 7-NE for small enough €. Taking the limit
as 7 — 0, it follows that the desired rates must lie in Cyg. H

) s

Next, we turn to proving an analogue of Lemma 6 for the
Gaussian model. To do this we need to define a parallel notion
to the interference-free levels in the deterministic channel. In a
Gaussian channel, this again corresponds to the rate L;, which
can be achieved by treating interference as Gaussian noise. We
still want to constrain both the common and private rates of each
transmitter so that this rate is utilized with as much “common
rate” as possible. Specifically, let

; =log | 1+ —SNR?
i =08 1+ INR;,
be the required private rate at user ¢ and

SNR; — SNR?
1+ SNR? + INR;,

b; = log <1+

be the required common rate at user . The rate a; is the rate
achieved by user ¢’s private signal when treating the aggregate
interference plus noise as Gaussian noise, while the rate b; is the
rate achieved by user 7’s common signal when treating its own
private signal plus interference plus noise as Gaussian noise.

We say that (R, R;;) fully utilizes the interference free rate
for user ¢ if

Ry > a;
Ric > b;.

(44)
(45)

With this definition we have the following analogue of
Lemma 6.

Lemma 14: If (Ric,Rip, Rac,Rop) fully utilizes the
interference free rate for each wuser ¢, then there ex-
ists random common rates Rj,.,[Ro. > 0 such that
(R107 Ry, Rlp, Ris, Roc, Roy, R2p7 R25> is  self-saturated
at both receivers for any choice of R, Ras.

Proof: This proof parallels exactly the proof of Lemma 6.
We will show that one can always increase Ry, such that the
overall sum rate constraint (the first constraint in (38)) is tight,
so that receiver 1 is self-saturated. Suppose no such choice of
R, exists. Then it must be that R»,. cannot be further increased
because the second constraint in (38) is tight. However, if this
constraint is tight, then since R;. > by, it can be seen that the

first constraint must also be tight. ]
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To complete the analogue of the deterministic analysis, we
need a parallel result to Lemma 7, which we state next.

Lemma 15: For any point (R, Ro) € CyxNB~ there exists a
nonrandomized Han—Kobayashi rate-split that fully utilizes the
interference-free levels at each transmitter.

Proof: As in the deterministic case, we begin with an ar-
bitrary nonrandomized Han—Kobayashi rate-split and show that
this can always be transformed into one that fully utilizes the
interference free levels at each receiver. Note that again since
a; + b; = L;, for any point in B~ there will always be a suffi-
cient amount of “rate” available to meet the constraints in (44)
and (45).

First, we show that if I7;, < a; for either user 7, then we
can always increase I?;, and decrease I?;. by the same amount
until 17;;, = a;. The only way such a transformation could not
be done is if the second constraint in (38) prevented it. But by
combining (39) with this constraint, it can be seen that this will
never happen for R;, < a;. Moreover, since I?;;, does not appear
in any of the constraints in (38) at receiver j, such a change will
never result in any of those constraints being violated.

Thus, we can assume that I2;;, > a;. Given this, if a rate-pair
does not fully utilize the interference free levels at transmitter
i, it must be that R;. < b;. Suppose that this is true for re-
ceiver 1 and consider increasing I?;. and decreasing I?;, by the
same amount until R1. = b;. Note that since a; + b; = L1 and
R;c+ R, > L1, when we decrease 121, in this way it will never
cause it to become less than a;. Changing Iy, and R, in this
manner will not violate any of the generalized MAC constraints
atreceiver 1, since every constraint in (38) involving R; . also in-
volves Iy, If this can be done without violating any constraints
at receiver 2 then we are done. Otherwise, it must be that at least
one of the constraints at receiver 2 involving R;. becomes tight
when R;. reaches the value R}, = by — A, for some A > 0.
The possible constraints here are the first and second. By the
definition of B~ we have that Ry, + Ry, < Uz — 1 and so

Ry, + Roc + R,
= Ry + R},
<Us—1+4b-A
<log(l+SNRs +INRg;) —1 - A

SNRsy + INRy; — INRII’2>
<log (1—{— — A.
INRY, + 1

(46)

This shows that the first constraint can not be tight. Note that
the last inequality followed since INRY, < 1. This implies that
the second constraint must be tight, i.e.,
SNRS + INR2; — INRE,
INRE, +1 '

Ry, + R}, =log (1 +
47)
Proceeding as in (46) we have

Rop + Roc + R,
<log(l4+SNRy +INRg;) —1— A

SNRs + INRy; — INR’f2>
<log (1~|— - A.
INRY, +1
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Combining this with (47) we have

SNR» — SNRY — INRY,\ A
1+ SNRY + INRy;

R2cglog <1+
< by — A

And so it must also be that Ry, > a» + A. Now consider in-
creasing Ri. from R}, by A, while simultaneously reducing
R1, and Ry, each by A and also increasing Ry, by A. Asin the
deterministic analysis, the above calculations show that we will
not violate any of the constraints in the modified MAC regions
at either receiver when doing this. After this transformation, the
resulting rate-split will fully utilize the interference free levels
at both receivers. [ |

Combining the previous lemmas, we have shown that all
points in Cyx N B~ are in Cnxg, proving the first part of The-
orem 2. Applying the next lemma will complete this proof by
generalizing Lemma 15 for strong IC and showing that in that
case the conclusions apply for all points in C N B.

Lemma 16: For a strong IC, any point (R, R2) € C N B can
be achieved by a nonrandomized Han—Kobayashi rate split that
fully utilizes the interference-free levels at each transmitter.

Proof: Recall, the for a strong interference channel, we
set INRY; = 0 for each user 7 and so we have a; = 0 and
b; = L;. It follows that for any point (R1, R2) € Cux N B
there will be exactly one nonrandomized Han—Kobayashi rate
split that achieves this rate, namely the one with R;. = Ry,
Ry. = Ry and Ry, = Ry, = 0. This will trivially fully utilize
the interference-free levels at each transmitter. Furthermore, for
such a channel Cyk = C, completing the proof. [ ]

As in the deterministic analysis, it can also be shown by direct
calculation that Cyg will always contain at least one point that
is sum-rate optimal to within 1 bit.

V. CONCLUSION

We have formulated the new information theoretic notion of
a Nash equilibrium region for interference channels. Moreover,
we have used this notion to characterize the equilibria in both de-
terministic and Gaussian ICs. In the deterministic case we are
able to exactly specify the Nash equilibrium region, while in
the Gaussian case we characterize the Nash equilibrium region
to within one bit. The analysis for the Gaussian case directly
parallels our analysis for the deterministic case, and thus serves
as another illustration of the utility of deterministic models in
providing useful insights for the more complicated Gaussian
setting.

Our approach here is based on assuming that a given trans-
mitter and the intended receiver share a source of common ran-
domness. However, in the case of deterministic channels, it is
shown in [14] that this is not needed. Specifically, it is possible
to achieve all points in C N B by time-sharing among struc-
tured schemes that do no coding over time and use no common
randomness (though proving this appears to require more de-
tailed combinatorial arguments than we have used here). The
key property of these structured schemes is that the common
signals of the two users are segregated into separate levels at
each of the receivers (in contrast to the random coding schemes
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considered in this paper, where the common signals of the two
users are all mixed up.) Each transmitter may still use random-
ness to send a jamming signal on specified levels, but by aligning
the jamming signal with the interfering common signal at the
node’s own receiver, the receiver does not need to decode it.
Hence, the receiver needs not know the random bits generating
the jamming signal. Such schemes can likely also be translated
to the Gaussian settings by using structured codes instead of the
Gaussian Han—Kobayashi schemes considered here.

The games we were considering here were games with full in-
formation, i.e., each user has perfect knowledge of all channel
gains as well as the code-books of the other user. One possible
future direction for this work would be to relax this assumption
and consider games with incomplete information. Another nat-
ural direction would be to consider interference networks with
more than 2 users. Some preliminary work in this direction for
deterministic channels is given in [21] where it is shown that
with more than two user efficient equilibria may no longer exist.
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