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Abstract

To establish a secure communications link between any two transceivers, the communicating parties
require some shared secret, or key, with which to encrypt the message so that it cannot be understood
by an enemy observer. Using the theory of reciprocity for antennas and electromagnetic propagation,
a key distribution method is proposed that uses the ultrawideband channel pulse response between two
transceivers as a source of common randomness that is not available to enemy observers in other locations.
The maximum size of a key that can be shared in this way is characterized by the mutual information
between the observations of two radios, and an approximation and upper bound on mutual information
is found for a general multipath channel and examples given for UWB channel models. The exchange
of some information between the parties is necessary to achieve these bounds, and various information
sharing strategies are considered and their performance simulated. The vulnerability of such a secret

sharing system to attack from a radio in a nearby location is briefly considered in an example.
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I. INTRODUCTION

When two antennas A and B with no non-linear components radiate identical signals, the outputs of the
antennas due to their excitation by the signal originating at the other antenna will also be identical. This
behavior, known as the reciprocity theorem, arises from the reciprocity of the radiating and receiving
patterns of antennas and applies when the medium between the antennas is linear and isotropic [1][2].
When wide bandwidth waveforms are transmitted in cluttered environments, such as homes and offices,
the signal observed by a receiving antenna at a remote location is the composite of multiple signals
that have traveled over different paths from the transmitting antenna, each signal experiencing different
shaping and attenuation, resulting in an output signal that differs significantly from the radiated signal
and that changes as the locations of the transceivers is changed. In other words, the output signal contains
information about the channel through which the transmitted waveform has propagated, and because of

reciprocity this information is a source of common randomness that is available at both ends of the link.

The availability of common randomness to a transmitter-receiver pair can be used for cryptography: two
transceivers that want to communicate secretly require some common knowledge from which to generate
a key, and to achieve perfect secrecy the knowledge of an eavesdropping receiver about the key must
be negligible. The large bandwidth and corresponding fine time resolution of transmitted UWB signals
results in a large amount of information being available in the observed channel pulse response function.
Moreover, because it is a function of the topography of the transceiver-pair and their environment,
an eavesdropping receiver in a third location will not observe the same pulse response. These two
facts suggest that UWB radios have a large potential for generating secret-keys from their reciprocal
observations. The process of key extraction from the channel pulse response is here referred to as channel

identification.

The task of generating a secret key from common information has been studied by several authors;
in particular Maurer [3][4] and Ahlswede er al [5] discovered some fundamental bounds on the so-
called secret-key rate of system models where the terminals have access to correlated random variables
due to some external source (in this case the ‘external source’ is the channel impulse response.) When
terminals A and B who wish to agree on some secret key K observe a sequence of N random variables
XN =[Xy,...,Xn] and YV = [Y1,...,Yy] respectively, terminal E from whom the key is to be kept
secret observes the sequence Z”, and A and B exchange a collection of messages denoted by C' over a

public channel observable by E, the secret-key rate K (X;Y||Z) is the maximum rate R, such that for
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where Ka and Kp are the specific samples of K calculated by terminals A and B respectively. If the
random variables observed by terminals A, B and E are i.i.d. with marginal distributions X,Y and Z

respectively, then the secret-key rate is upper bounded by! K(X;Y||Z) < min[I(X;Y),I(X;Y]Z)].

The general scheme for secret sharing described above assumes the availability of a public channel over
which terminals A and B can communicate. It has been proven that if A and B do not communicate then
the secret-key rate is zero [6][7], and that the bound I(X;Y") (in the absence of any enemy terminal
with a correlated observation) can be achieved by transmitting from A to B only, at a rate greater than
or equal to the conditional entropy H (Y| X) of the observation of B given A, through application of the
Slepian-Wolf theorem for decoding with side-information [5]. Using the reciprocity of the propagation
channel as a source of common randomness has been studied by other authors for narrowband radios.
In [8] and [9] the authors propose a system where each radio transmits 2 or more unmodulated carriers
at orthogonal frequencies and the phase differences between the observed carriers are used as the source
of common information. In [10], a secret-key is shared between mobile, narrowband radios in fading
channels, using the polarity of some samples of the envelope of the reciprocal received signals, however

that analysis does not consider the presence of thermal noise.

This paper presents a more infomation theoretic and extensive study into secret-key agreement using the
reciprocity of radio propagation channels than any prior work, and also presents a number of numerical
results bounding and simulating the secret-key lengths possible for indoor ultrawideband channels. The
paper is organized as follows. In Section II some expressions that approximate the mutual information

between the observations, and therefore upper bound the secret-key rate, of radios A and B under some

'A tighter bound on secret-key rate is given in [4], however it does not influence the remainder of this work and is not

described here for the sake of brevity.



common UWB channel models are found, and compared to empirical results. In Section III the impact of
quantization of the observations is examined in terms of mutual information. In Section IV some of the
possible techniques for communicating messages over the public channel to aid in secret-key agreement
are described, and Section V describes the results of some simulated channel identification experiments

using the various public communication methods. Section VI concludes.

II. MUTUAL INFORMATION OVER UWB MULTIPATH CHANNELS

In the introduction it was mentioned that given some public communication capability between the two
transceivers the secret-key rate is upper bounded by the mutual information between the observations
of each receiver. Thus a measure of obvious interest is the maximum mutual information between the
observations of two ultrawideband radios in given environments, which will indicate what the maximum

long-term average identifier length is for a sequence of independent channels in that environment.

In this section the mutual information between the received waveforms due to identical transmissions at
each end of the link is investigated. Two approximations to mutual information are given, depending on
the mean power delay profile of the channel or the total energy only, and the specific mutual information
for a common ultrawideband channel model is found by Monte Carlo methods and compared to the

approximations.

Let the observed waveform of radio k be represented by

Yk(t) = h(t) = s(t) + nk(t) €))

where h(t) is the channel impulse response, s(t) is the pulse transmitted by the other radio, ny(t) is a

Gaussian noise process with power spectral density N,x/2 and “*” indicates convolution.

The nature of the ultrawideband channel is different to that encountered in narrowband systems and
deserves some discussion. In narrowband systems, the familiar multipath propagation model assumes the
existence of a large number of propagation paths with the same time of arrival but uniformly distributed
phase, which results in a Rayleigh distributed amplitude gain by appeal to the central limit theorem. Due
to the short duration, typically sub-nanosecond, of an ultrawideband pulse, at most a few paths contribute

to the channel impulse response at a given delay (it is often assumed that every path is distinct) and the



amplitude is more dependent on the loss that occurs during propagation than on interference between
arrivals [11]. The resulting probability distributions for the gains of multipath channel paths are often
modeled as log-normal or Nakagami. The other effect of the short pulse width is that the number of
resolvable paths in a multipath observation is much larger for ultrawideband signals than for narrower

bandwidths.

The analysis of the mutual information between the observations of two radios observing the channel
pulse response at opposite ends of a multipath channel will begin by considering the mutual information

between the observations due to a single propagation path, and then be extended to multiple paths.

A. Single path case

In the single path case the channel is a delta function h(t) = «d(t) and after matched filtering and
sampling each radio has generated an output Y, = ay/Es + Z;. Without loss of generality let E; =
7‘0 s(t)dt, E[a?] = 1 and E[Z}] = N /2.

—o0

To make the problem tractable o or |a| is assumed to have a Gaussian distribution. Although the
empirical distributions of measured ultrawideband channels are not closely approximated by the Gaussian
distribution by common measures, it will be seen later to be reasonable for estimating mutual information.

Applying the common assumption that any non-line-of-sight propagation path has equiprobable amplitude

polarity results in o always being zero-mean.

At low SNR (SNR = 2F,/N,;) approximate « as a zero-mean Gaussian random variable, then the

variables (Y4, Ys) have a joint Gaussian distribution given by

p(Ya,YB) =
Y2  2rYuY, Y2
| (4 -z 4 1)
exp | — 3 ()
2no a0V 1 — 12 2(1—12)

where O']% = Fs+ Ny /2 and r = Es/o40p. The mutual information is

I1(Ys;YB) =

E2
Zlog, (1 + E ) 3)
2 g2( Es(Noa + Nog)/2 + NyaNopg /4



If the SNR is sufficiently large that the probability of |«|Es + Zj being less than zero is negligible then
instead make the simplifying assumption that |a/| is a Gaussian random variable with mean | < 1 and
variance Var[|«|] = Var[a] — M\Qal =1- ,u|2a‘. Then (|Yal,|YpB]|) are approximately jointly Gaussian with
variances o = EZ(1 — 4if|) + Noi,/2 and correlation coefficient r = EZ(1 — pif ) /o 40p. The polarity
of the observations contributes 1 bit to the mutual information and is assumed to be detectable without

error because of the high SNR, thus the total mutual information between Y4 and Yp is

I(Yq;YB) =

2 2 32
1 E5(1 = pigy)
1+§log2 <1+ ° o

Es(l - N|2a|)(NoA + NOB)/2 + ]\70.»4]\703/4
Es(l - M‘2Q|)
(NOA+NOB)/2 .

1
:1+§log2 <1+

The approximations are shown with the numerically calculated mutual information between observations
when the path magnitude || Fs has a Nakagami-m distribution in Figure 1. The Nakagami-m distribution

is commonly used to model the path gains of multipath channels and has mean and variance E(|a|)? =

FQ(m+1/2) and VarHOéH — (1_F2(m+1/2)

T2 (m) T2 (m) ) further details can be found in [12]. If a log-normal distribution

with the same mean and variance in path magnitude is substituted for the Nakagami-m distribution the

mutual information shows negligible change.

B. Multipath case

To evaluate the multipath case, assume that the frequency spectrums of s(¢), y4(¢) and yp(t) are non-zero

only over a band of width W centered at frequency f.. Then we can write
s(t) = R {g(t)eﬂ”fct} @)

yr(t) = s(t) * h(t) + ng(t)

=R / h(T)3(t — T)e 2T dr + fg(t) | e/

—o
= R{[3(t) + ()] >/ | 5)
where 5(t) and Z(¢) are in general complex valued random processes with bandwidth extent —WW/2 to

W/2, ny(t) = R {7y (t)e’>"/<t} and R indicates taking the real part. Because 3(t), Z(t) and 7, (t) are

baseband processes of limited spectral range they can be precisely reconstructed from a sequence of



samples taken at the Nyquist rate W, and

L—-1
E(t) =) h(I/W)5(t — 1/W)e T2
=0

L—1

B /W) =Y h(l/W)5([i — 1]/ W)e 72", (6)
o

Ge(i /W) = h(1/W)5([i — 1]/ W)e 72V iy (i V) (7)
=0

where yi(t) = R {7()e*™ /' }. Let Y = [§a(0), ..., ga((L = 1)/W)] and Y§ = [s(0), ..., gs((L ~
1)/W)] represent the samples of radio A and B respectively. Because yi(t) is fully defined by the
sequence Y1 and vice versa the mutual information between ya (¢) and yg(t) is the same as that between

Y% and Y.

Assume that the equivalent baseband transmitted pulse satisfies the Nyquist pulse-shaping criterion, i.e.,

o 5(0), ifi=1
S(e—=0)/W) = 8)
0, ifi#l,
then
Ji(i/W) = h(i/W)3(0)e "W 43y (i /W), ©)

Note that 71 (i/W) is a circular Gaussian random variable with power spectral density IV, /2, so the angle
of 5(0) is arbitrary and we can assume 5(0)e727/<//W s real. Also assume that h(i/W) is a mean zero
Gaussian random variable, following the low SNR approximation of the single path case, and using (3)

the power delay profile (PDP) approximation to mutual information is

I(YZ YR) =
L—1 .
E2E?[h 2
3 log, <1 + : (/W] ) (10)
2 E E[h(i/W)?|(Noa + Nop)/2 4+ NoaN,p /4
If the power delay profile of the channel is unknown then let
1, ifi=1
E[R(I/W)h(i/W)] = (11)
0, ifi#l

and neglect the N,y N,p term in the argument of the log, then the concavity of the log results in the

total energy upper bound (assuming Gaussian gains) on mutual information

L E
(YL YE) <2 1 s 12
(Y3,Yp) < 5 0g2< +L(N0A+NOB)/2) 12)



where any non-unit channel energy is implicitly incorporated into F;. Note that neglecting the term
NoaN,p is only reasonable if L. << FE4/N, and the bound is not tight for low SNR cases. Note also
that the expressions for mutual information given in (10) and (12) are only valid only under the assumption

of (8); the optimal transmit pulse to maximize mutual information is an open problem.

As discussed at the beginning of the section, for two radios in an environment where the channel impulse
response has some fixed statistical distribution and each observation of the channel pulse response is an
i.i.d. random vector, the mutual information between the observations of the radios upper bounds the
long-term average identifier length for that environment. By the same argument, under the assumption of
a channel impulse response consisting of a sequence of i.i.d. random variables occurring at the Nyquist
rate and with a known distribution, i.e. the assumption of (11), the average identifier length due to
the observation of any sample point of the channel pulse response at can be upper-bounded, and thus
substituting (11) into (10) upper bounds the secret-key length possible for any such channel as L becomes

large. Making the substitution and taking the limit of (10)

L E?
I(Y5 YE) = lim =1lo <1+ 5 )
( A B> L—oo 2 82 LES(NOA + NoB)/2 +L2N0AN0B/4

E2
= lim —— 5
1% LN, N5 /4

=0. (13)

Thus for a fixed amount of energy in the observed waveform the mutual information does not increase
monotonically with the number of samples, instead, because the energy of each sample also decreases
as the number of samples rises, there is some optimal number of samples, corresponding to an optimal
signal bandwidth, for a given channel excess delay and observed signal energy. This optimal bandwidth
will be explored in more detail, along with a parallel characteristic of the channel coherence time, later

in the paper.

A Monte Carlo computer experiment was performed to calculate the mutual information between the
observations of two virtual radios and compare it to the approximation of (10) and bound of (12). Recall
that these two expressions characterize the largest achievable long-term average secret-key rate. The
channel models in this case are the CM 1 and CM 3 models of [13], simulating a LOS 0-4m channel and
NLOS 4-10m channel respectively, and each channel instance is normalized to unit energy. The empirical
joint and marginal probability distributions were determined for each sample and samples were taken at

0.2ns intervals, simulating the observation due to a 5GHz bandwidth transmitted pulse satistying (8). The



duration, and equivalently number of samples, of each channel was set such that the mutual information

as calculated by (12) no longer significantly increased, resulting in excess delays of 15ns and 42ns.

Note that for the calculations in (10) and (12) and for the purposes of calculating the empirical mutual
information in the Monte Carlo simulation the samples of a given channel impulse response are assumed
to be independent, that is, the mutual information between the respective time-samples of the observations
of each radio is empirically calculated and the total mutual information calculated as the sum of these.
This assumption which is not true for the present channel models and is unlikely to hold in practice, and
thus the real mutual information will be lower. This assumption also contributes to the close fit between

the simulation results and values predicted by (10).

Results are shown in Figure 2 for the case when the radios do not have a common time reference. If it is
assumed that the radios know the theoretical propagation time of a direct path between them then for the
NLOS channel model CM 3 some additional bits of mutual information exist due to the actual time of
arrival being a random variable, and the gains at signal-to-noise ratios of 25 and 30 dB are approximately

6 and 19 bits respectively.

C. UWB link budget, mobility and bandwidth

To put the upper bounds on key length for given signal-to-noise ratios in context, and describe some of
the trade-offs in channel identification with respect to bandwidth and mobility, a nominal ultrawideband
link budget will be examined. The transmitted power of a UWB radio is regulated in the United States by
part 15 of the Federal Communications Commission’s (FCC) rules [14]. Given these limits, the highest
average power that can be radiated over the 3.1 - 10.6 GHz band is -2.55 dBm. The power observed by
the receiving radio is equal to the EIRP, minus propagation loss, plus the receiving antenna gain. The

propagation loss between two radios in a cluttered (e.g. indoor) environment is usually modeled by

d
PL(d)(dB) = PL(dyes) + 10nlog;q <d
ref

where PL(d,.yr) is the propagation loss at some reference distance, n is the loss exponent, and X is

> +X (14)

the shadowing factor. For ultrawideband propagation various experiments reported in the literature have
found that suitable exponents are near 1.8 and 3.75 for line of sight and non line of sight propagation
respectively [15][16], where the loss at the reference distance can be well approximated by the free-space
loss at the center frequency[16]. The result after subtracting propagation loss from transmitted power is

the total available power over the entire channel response.

9



For the sake of the nominal link budget calculated here shadowing is neglected; published estimates of
the standard deviation of shadowing are in the range of 1 to 4 dB [17][16]. A receiver antenna gain of
3dB is assumed. The receiver noise power spectral density N,/2 is assumed to be -177 dBm and the

receiver noise figure to be 10 dB.

The observed energy is the integration of the signal power over the observation interval, thus performance
is not just a function of power but also time. The following table shows the integration time required to
achieve SNR of 30 dB for transmitter to receiver distances of 3, 10, 30 and 50 meters, for both LOS
and NLOS propagation, assuming a transmitted pulse of average power -7 dBm, and the loss exponents
and noise parameters described above. A 10 dB change in SNR corresponds to a factor of 10 change in

integration time.

The receiver can only improve its SNR by integrating over a number of observed pulses for as long as
the channel remains constant, a period of time approximately given by the coherence time of the channel
and dependent on the physical environment and the relative rate of movement of the radios. If the rate of
change of the channel impulse response is high and the radios can only achieve relatively low levels of
averaging and signal-to-noise ratio, this does not necessarily lead to the failure of channel identification
as a method for generating secret information. Although the radios may only be able to generate a few
bits of common information for a given channel, they can do so for each channel they encounter and

thus accumulate independent bits as they communicate via successive independent channels.

To investigate the trade-off between increased SNR and the rate of change of the channel impulse response
consider the expression for the mutual information between observations over a multipath channel in
(10). There will be some value of F (equivalent to an SNR 2F,/N,) at which the increase in mutual
information due to increasing the SNR will be less than the increase from observing more independent
channels at the same SNR. Each SNR in turn corresponds to some optimal channel coherence time that
is a function of the observed power and the propagation time. The numerically solved mutual information
for channel models CM 1 (LOS) and CM 3 (NLOS) over propagation distances 10, 30 and 50 meters are
is plotted against coherence time in Figure 3, where the total amount of time allocated to key agreement is
1 second and the signal bandwidth is SGHz. The impact of bandwidth on mutual information is discussed

in the sequel.

The optimal coherence time increases with both distance and channel blockages due to lower observed

power, and also increases with distance due to the longer propagation time.

10



The propagation channel in a residential environment, over the band 2-8 GHz, was found to have spatial
correlation lengths ranging from 2 to 6 inches for both LOS and NLOS measurements in one published
experiment [18]. Consider a block fading model, where the channel is assumed to be constant over each
consecutive 6 inch distance and independent between successive 6 inch intervals. Terminals traveling at a
fast pedestrian speed of 7 m/s would experience a coherence time of 21.8 ms; comparing this value to the
curves of Figure 3 shows that this coherence time is longer than the optimal time for all demonstrated
cases, thus, for these cases and for terminals moving in the pedestrian range, faster movement will

generally lead to higher mutual information and corresponding potential secret-key rate.

In the previous section it was noted that (11) and (10) suggest an optimal bandwidth exists for a given
signal energy and channel excess delay. Assume that the channel impulse response has a finite duration
equal to 7 and that the number of resolvable paths is equal to . = 7-W where W is the signal bandwidth.
Then substituting (11) into (10) and assuming typical excess delays of 5, 15 and 30 ns [13], the value
of W that maximizes mutual information is plotted against SNR in Figure 4. The FCC has defined the
minimum bandwidth for ultrawideband signals as S00MHZ [14], so the optimal bandwidth for secret-key
agreement meets this definition of UWB signals for SNR’s greater than approximately 4, 7, and 12 dB

for channels with delay spreads of 5, 15 and 30 ns respectively.

III. SECRET SHARING WITH A COMMUNICATION RATE CONSTRAINT

It was noted in the introduction that the upper bound on shared secret information is equal to the mutual
information /(X;Y) bits in the case where terminal A can transmit information to terminal B over a
public channel at a rate greater than or equal to H(Y'|X) bits, the conditional entropy of the observation
of B given the observation of A. In practice, the observations of terminals A and B are continuous and the
conditional entropy is infinite, thus with a rate constraint on the public discussion channel, /(X;Y") bits of
common randomness may not be achievable. The optimal scheme for secret sharing with a rate constraint
on the public discussion channel has been studied in [19]. In this section a suboptimal scheme where the
rate of communication is constrained by quantizing the observations of both terminals is considered and

the effect of quantization technique examined.

By the data processing inequality quantization always reduces the available secret common information,
and moreover, coarser quantization typically results in lower mutual information. But while the overall

capacity of the system in terms of channel identifier length is dictated by the mutual information between

11



the observations, the minimum required public communication rate to achieve that capacity is determined
by the conditional entropy [5], and there is a trade-off of diminishing returns between maximizing mutual
information and minimizing conditional entropy. To see this consider the limits of mutual information

and conditional entropy as the quantization bin size tends to zero [20]

Jim TV, ¥5%) = 1y, 92) (15)
Jim H(YY5) = h(yi]y2) — logs(A) (16)

where Y2 = U, if iA <y < (i 4+ 1)A and h(y;|h2) is the differential conditional entropy[20]. Thus, as
the quantizer becomes more precise the mutual information approaches a constant while the conditional
entropy increases linearly with the number of bits. Beyond a certain quantizer resolution each new bit of
information only results in another bit of public communication transmitted between terminals, resulting

in an insignificant possible gain in secret information.

Optimizing the quantizer requires choosing the quantization regions in such a way that mutual information
is maximized subject to some conditional entropy constraint. The problem can be solved generally for
known probability distributions by numerical integration, however the distributions involved are often
not known, and an empirical quantizer design that can self-organize given some training data will often
be preferable. In the literature an algorithm for empirically designing a quantizer to maximize mutual
information has been proposed in [21]. Another algorithm based on a gradient descent technique was also
considered, which had slightly better performance. Both algorithms demonstrate only a small improvement
over the best uniform quantizer (the optimization in the uniform case being over bin size,) as demonstrated
in Table II for a Gaussian source distribution. The results for a log-normal source distribution were similar.
Neither algorithm constrains conditional entropy, but conditional entropy could be incorporated into
either algorithm through the use of a Lagrangian term. Note that both algorithms demonstrate increasing

improvement over uniform quantization with increasing SNR.

The discussion thus far has been limited to scalar quantization, but the more general problem is to find a
vector quantizer that preserves the mutual information of some input sequence, either the entire sequence
of observations or some subset thereof, and this problem is not addressed here. For the purposes of
the simulations described below the observed data was passed through an LMS prediction filter and the
quasi-Gaussian prediction error was decorrelated using a whitening filter based on training data, then the
approximately i.i.d sequence was quantized using a uniform scalar quantizer. Under this system the mutual

information between individual samples is inversely proportional to the sampling rate, thus sampling rate

12



and quantizer resolution can be traded off.

IV. PuBLIC FEEDBACK METHODS

In the introduction it was mentioned that if terminals A and B cannot exchange messages about their
observations then the achievable secret key rate is zero [6][7]. The problem can be considered as an
equivalent to the problem of decoding with side-information, where terminal B wants to determine the
value of terminal A’s observation when it has some correlated observation available to it. In [5] it is proven
through application of the Slepian-Wolf theorem [20] that I(X;Y") bits of shared secret information can
be formed when terminal A sends information to terminal B at rate greater than or equal to the conditional

entropy of the observation of A given the observation of B, H(X|Y").

Practical methods for encoding (at terminal A) decoding (at terminal B) in the presence of side-information
have been proposed in [22], and the details of the techniques can be found therein. The techniques draw
on the theory of forward error correction (FEC), where the possible observations of terminal A are
grouped into cosets so that the minimum distance between elements of a coset is maximized. Terminal A
finds the coset to which its observation belongs and communicates the index of the coset to terminal B.
Because the observation of terminal B should in some sense be close to that of terminal A, then as long
as the number of cosets, and thus the minimum distance between elements of the coset, is large enough,
terminal B can accurately determine what terminal A observed as that element of the coset closest to
its own observation. Any enemy terminal monitoring the public communication channel can learn the
coset of the observation, but nothing about which element of the coset was observed, thus the maximum

shared secret information is equal to the entropy within the cosets.

The specific methods of coset assignment considered here are: per sample, block-coded and trellis-coded.
In the per sample case each quantization bin is labeled in ascending order of magnitude with a N bit
identifier ¢y, i.e., call the bin with smallest expected value 0. .. 00, the next bin 0...01 and so on. The
set of all bin identifiers are partitioned into cosets according to their N — K least significant bits (LSBs),
and terminal A transmits to terminal B the N — K bits identifying the coset (LSBs) of its quantized
observation. Terminal B then uses its observation to choose among the quantization values in the given

coset, thus K bits of common information are created.

For block-coded communication the cosets correspond exactly to the cosets of the block-code. Terminal

A ‘decodes’ its observation, finds the nearest codeword of the code, and sends a message to terminal B

13



indicating the coset of its observation. If terminal B then chooses the element of that coset closest to its
own observation, and the index of the coset element is the channel identifier. Both radios will calculate
the same identifier, as long as the number of differences between the observations is fewer than the
number of errors correctable by the code. An (n, k) block code provides k secret bits per n observation

bits and requires the communication of n — k bits from one transceiver to the other.

Typically, block-code decoding algorithms are based on Hamming distance, while the distance between
two observations in this case is better measured by Euclidian distance. Thus block-code based algorithms

are going to suffer some loss due to the approximation of Euclidian distance by Hamming distance.

Trellis-coded communication methods are analogous to convolutional-codes when Hamming distance is
used as the metric, or trellis-coded modulation when Euclidian distance is used. In either case soft-
decoding can be used at terminal B. Consider a rate K/N trellis, where at each trellis transition NV
bits of the observation will be used, N — K bits will be sent over the public channel, and K bits of
secret information will be created. In general N = B - M where B is the resolution of the quantizer and
M is some number of samples, and trellis-coded communication is analogous to detecting trellis-coded
modulated (TCM) signals on a BM -ary constellation in A/ dimensions. For example, M = 1 is analogous
to B-PAM and M = 2 is analogous to B2-QAM. If a Hamming distance metric is used then trellis-coded
communication is analogous to the decoding of a convolutional code with codewords of length V; in this
work Hamming distance is only used when B = 1. The best labeling schemes for TCM, or convolutional
coding as appropriate, are also the best for the present application. Given some scheme, there are 2V~
alternative ways to label the trellis which have the same distance properties, one of which will always
feature the current observation as the label of a transition out of the current state. Thus the alternative
labels form the cosets of the transitions, and terminal A transmits the index of the labeling scheme that
matches its own observation for each transition to terminal B, which then uses those labels to decode its

own observation.

V. SIMULATION RESULTS

Using some of the techniques for coset calculation described in the previous sections, a number of
computer simulations have been performed to determine the feasible lengths and success rates (of
agreement between radios) of a channel identifier, for different UWB indoor channels. In all simulations

it was assumed that no errors were made in communicating over the public channel. Before presenting
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the results the simulation environment is described, in particular those aspects of the processing that are
common to all simulations, such as pre-digitization processing, sampling, and quantization. A schematic

of the channel ID system is shown in Figure 5

The transmitted pulse is a raised cosine pulse with 4GHZ bandwidth and 7GHz center frequency. The
channel model is the proposed 802.15.3a UWB channel model [13] and simulations results are presented
for parameter sets 1 and 3, corresponding to 0-4m line-of-sight and 4-10m non-line-of-sight channels

respectively.

The performance of each method of communication over the public channel is presented in terms of
the identifier length and the probability of error, that is, the probability that the radios fail to agree on
a channel identifier, due to differences in one or more bits. Those statistics were calculated by Monte
Carlo simulation over 10000 sample channels, thus the accuracy of the probability of error is limited to
approximately three decimal places (10~2); absent data on the probability of error curves indicates no

error occurred.

A. Pre-digitization processing

Rather than correlating the observed channel pulse response directly with the source pulse, the envelope
of the observation first taken (by I-Q detection) and then correlated with the source envelope, sampled and
quantized for the calculation of the channel identifier. Using the envelope of the observation dramatically
reduces the sensitivity of the system to timing error, and, although perfect synchronization between the
radios was assumed here, use of the signal envelope was considered more realistic as a model of a real
channel identification system. The trade-off in using the signal envelope is the loss of sensitivity to timing
translates into a loss of variability in the channel identifier, i.e., a lowering of the entropy, compared to

what could be achieved with the original observation.

Although the virtual radios for this simulation are identical, in practice the gains and filters applied by any
two radios will be different due to random variability in real components. To some extent such variability
can be controlled by the design, calibration and testing of the units, but the channel identification process
should also be robust to some variation. To this end the envelope samples are normalized relative to the

magnitude of the largest sample before quantization.
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B. Digitization and Whitening

Nearby samples of the envelope tend to be correlated, thus some method of decorrelating the samples is
desirable to reduce the size of the quantizer required and to reduce the number of bits that must be sent
over the public channel. It is also critical to ensuring that the entropy in the resulting identifier can be
accurately measured. One method for decorrelating is to predict the value of the sample based on prior

samples and to quantize the difference between the observation and its prediction.

The predictive quantizer used a three tap LMS algorithm to predict the next observation value. Under the
assumption that the prediction errors are jointly Gaussian, data whitening is performed on the resulting
sequence of errors to produce a set of independent data, which are then quantized. The whitening matrix

was calculated using a set of training data.

The sampling and whitening process is performed at 3, 5 or 7 times the Nyquist rate.

C. Per sample coset assignment

The easiest pubic communication method to implement quantizes each sample using N bits and sends
N — K bits per sample to indicate the coset, as described in Section IV. In this example each data point
was quantized using 3 bits and 2 bits were communicated from one transceiver to the other, identifying

one of 4 cosets and resulting in 1 secret bit per sample.

Figure 6 plots the probability of disagreement (probability of error) between the identifiers formed at
each radio for a range of SNRs using the CM1 LOS 0-4m channel model [13], sampled at 3 times
the Nyquist rate. To determine the effective identifier length the empirical entropy of the secret bit due
to each sample is calculated and the entropies are summed over the sequence of observation samples,
assuming that the secret bit determined by different samples are independent. The effective number of
bits per sample agrees well with the theoretical number of bits (K), which is important for later examples
where the identifier is not calculated on a sample-by-sample basis and the empirical entropy will not be
accurately calculable. Moreover, the sums of the entropies of pairs of adjacent secret bits agrees well

with the sum of the individual entropies, which supports the assumption of independence.
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D. Public communication using Reed-Muller codes

The block code mechanism uses a a 1-bit differential quantizer in combination with a (2™, m +1,2m~1)
Reed-Muller code, denoted by R(1,m). In this example m equals 3, thus 4 bits are sent from radio A

to radio B per 8 bit word, leaving 4 bits of secret information.

Performance using 1-bit quantization and a Reed-Muller code for public communication is compared
to 3-bit quantization and per sample in Figure 7 for rate 3 sampling. The graph is on a linear scale to
clarify the differences at low SNR. The curves for per sample coset assignment where information about
the observation is sent over the public channel at rate 1/3, while for the Reed-Muller case information is
sent at rate 1/2. Note that even at a lower rate of communication, better performance is achieved at high
SNR using 3-bit quantization due to the additional available information per sample. However, at low
SNR 1-bit quantization with block-coded rate 1/2 communication performs better because not enough

additional information is available in 3-bit quantized data to compensate for the lower rate.

E. Trellis coded pubic communication

The final public communication technique implemented used trellis coding techniques and Viterbi decod-
ing on a trellis to calculate the channel identifier. As mentioned in Section IV trellis coded communication

can be used with either a Hamming or Euclidian distance metric.

Figure 8 demonstrates how a longer code can be used to trade of the number of secret bits for probability
of error in SNR limited scenarios. Probability of error versus theoretical identifier length is shown at
25dB SNR for rate 1/2, 1/3, 1/4, 1/7 and 1/16 codes, using channel model CM 1. The rate 1/2, 1/3 and
1/4 codes are the constraint length 3 maximal free distance codes [23], and the rate 1/7 and rate 1/16
codes used are respectively constraint length 7 and 11 maximal free distance codes given in [24]. Note
that increasing the rate of communication loses its effectiveness as the identifier length increases, as more

low SNR bits from the tail of the observation are used.

Figure 9 shows the results when public communication is sent using a trellis for which each transition
corresponds to one of the 64 possible values of successive pairs of 3-bit quantized samples, and the code
rate is 1/6, i.e., 5 bits of are sent for every bit of shared secret information. The channel model is CM 1.
The process of calculating the bits sent over the public channel in this case is analogous to demodulating

64-QAM rate 1/6 trellis code modulated signal using the Viterbi algorithm. The trellis was chosen based
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on the Ungerboeck criteria [25].

In Figure 10 the channel identifier lengths achieved with 90% reliability over CM 1 are compared to
the upper bounds of Section II-B for some public communication techniques described above. For the
best performing methods there is about 10 - 12 dB shortfall from the mutual information bound. The
curves that are only plotted to 40dB never reached 10% error probability for the simulations that were

performed.

In Figure 11 the channel identifier lengths achieved with 90% reliability over CM 3 are compared to the

upper bound. The required SNR for a given identifier length is approximately 10 dB from the bound.

F. Experiments with measured data

In a final experiment 5 pairs of pulse responses were measured in each direction over some line-of-sight
and non-line-of-sight channels and some channel identifer bits extracted, the location of the antennas for

channels A through E are shown on the floorplan of Figure 12.

The transmitted pulse is a Gaussian monocycle with 10dB bandwidth of about 2GHz. The data were
received and stored using a digital sampling oscilloscope and the measurements at each end were taken
consecutively by switching the transmit and receive cables. The way in which the measurements were
taken means that the observations are not due to reciprocal pulse propagation in precisely the same
environment, as people and cables had been moved between observations. Nonetheless the observations

showed good agreement in different propagation directions.

Identifiers were calculated for all 5 channels using trellis-coded communication with 3-bit quantization
and 1 or 2 bits transmitted. Without access to training data the whitening step of the method used above
cannot be implemented, thus to minimize correlation between samples a low sample rate of S00MHz
was used. To approximately remove the mean value the envelope samples of all channels were used to
find minimum mean square error exponential curve that approximates the power delay profile, and for
each channel the difference between the envelope samples and approximate profile were taken. Finally,

the difference between adjacent arrivals was taken.

For each channel the number of identifier bits successfully agreed upon are listed in Table III for various
degrees of timing error; note that the maximum identifier lengths for this example are 56 and 28 bits for

1 and 2 bits of public communication respectively and any random sequence of bits would be expected
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to agree with the identifer 50% of the time. For a practical system to achieve the identifier lengths given
in Table III each radio would have to know which of its bits were the same as those calculated by the

other radio.

As would be expected, timing synchronization error reduces the possible identifier length. However, for
almost all channels a few bits of shared secret information can be created even with timing error on the

order of a pulse width.

Because channels A and B have one node in common the outer node of each channel can be treated as an
eavesdropper on the radios of the other channel, and its ability to guess the identifier of the other channel
tested. Assuming that the eavesdropping radio can observe the publicly transmitted information perfectly,
the eavesdropper on channel A trying to determine the channel identifier of radios on channel B correctly
determined 29 and 19 bits (52% and 68%) of the identifier for 1 and 2 transmitted bits respectively, and
for the reverse situation the eavesdropper on channel B determined 25 and 14 bits (60% and 50%.) In
the ideal situation the eavesdropping radio should calculate 50% of the identifier on average, but without

knowing which bits are correct and which are not.

VI. CONCLUSIONS

A method called channel identification has been proposed for generating secret keys for the encryption
and decryption of data, using the reciprocity and rich multipath of the ultrawideband wireless propagation

channel.

Approximations for the mutual information between observations over typical indoor, ultrawideband,
propagation channels have been derived, which upper bound the average secret key length in bits. The
bounds show that at 30dB SNR keys of up to 95 and 150 bits are theoretically achievable over a O -
4 m LOS and 4 - 10 m NLOS channel respectively, and moreover that even for a NLOS channel with
transmitter-receiver separation of 50m SNR of 30dB can be achieved by integration for time on the order

of 10ms.

It has been shown that mobile terminals can sometimes form longer secret keys than stationary ones, and
the optimal coherence times for some UWB channels have been calculated based on the bounds, finding
that for a simplified model the achievable secret key length typically increases with speed up to at least

7 m/s when the transmitted signal bandwidths are 5GHz. The ability of mobile radios to synchronize
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their observations is an important factor that merits further investigation, although a limited study here
has shown some resistance to synchronization error. It has also been shown that the maximum secret-key
rate does not increase monotonically with bandwidth, and the optimal signalling bandwidths to maximize
potential secret key rate has been given as a function of SNR for some typical ultrawideband channel

excess delays.

The effect of quantization of the observations was examined, and it was found that optimizing the
quantizater resulted in only a small improvement over uniform quantization. Expansion of the general
theory of maximizing mutual information under some conditional entropy constraint is a topic of planned

future research.

A number of channel identification simulations have been performed using 1- and 3-bit quantization
and different public communication methods. The best performing systems achieved secret key lengths
at SNRs approximately 10dB from the bound. Finally, measurement of some ultrawideband pulses in a
multipath environment demonstrated the validity of the theory of reciprocity, and showed that two radios
using the proposed channel identification technique can form a secret key that a third radio in a different

location cannot estimate well.

In addition to the needed investigation on synchronization and rate-constrained communication already
mentioned, further study is required into the correlation between channel impulse responses as a function
of distance, for different environments, and for different signal bandwidths and frequencies, as this
information is critical in understanding how secure the system is against enemy terminals trying to
determine the identifier. The potential ability of enemy terminals to break the system is an important area

in need of investigation, as well as techniques to counter-act such attacks.
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TABLE 1

EXAMPLE OF REQUIRED INTEGRATION TIMES TO ACHIEVE 30DB SNR

Distance (m) | LOS time (s) | NLOS time (s)
3 32x107° 271 x 107°
10 278 x 1072 | 24.80 x 107°
30 2.01x107% | 1.53x1073
50 5.04 x 107 | 10.46 x 1073
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Fig. 5. Schematic diagram of a channel ID sub-system
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Fig. 6. Cumulative probability of error versus conditional entropy of identifiers when each radio quantizes the samples

independently using a 3-bit quantizer, radio A sends 2 bits to radio B over the public channel, and the channel model is CM 1.
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TABLE II

MUTUAL INFORMATION ACHIEVED BY QUANTIZER OPTIMIZATION ALGORITHMS WHEN THE SOURCE DISTRIBUTION IS

GAUSSIAN.
SNR | Bits | Uniform | Gradient Alg. | Vasudevan Alg.

10 1 0.423 0.423 0.424

10 4 1.200 1.200 1.200

20 3 2.004 2.001 2.004

20 4 2.444 2.453 2.449

20 5 2.675 2.685 2.676

50 4 3.823 3.838 3.838

50 5 4.678 4.689 4.701
TABLE III

LENGTH IN BITS OF AGREEING IDENTIFIER BITS FOR VARIOUS TIMING SYNCHRONIZATION ERRORS.

Timing error 0 50 ps 500 ps 1 ns
Feedback bits | 1 ‘ 2 1 ‘ 2 1 ‘ 2 1 ‘ 2

Channel A 56 | 28 | 56 | 28 | 37 | 28 | 25 | 18
Channel B 42 | 28 | 44 | 28 | 36 | 21 | 22 | 12
Channel C 41 (20 | 38|20 |37 |16 |21 | 12
Channel D 30121 [ 30 | 21 | 26 | 25| 24 | 20
Channel E 33 | 27 | 43 | 27 | 36 | 13 | 31 | 18
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Fig. 7. Probability of error per shared secret bit over CM1 when information is sent per sample at rate 1/3 after 3-bit quantization

or via Reed-Muller code at rate 1/2 after 1-bit quantization.
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