
Distributed Storage for Intermittent Energy Sources:
Control Design and Performance Limits

Yashodhan Kanoria, Andrea Montanari, David Tse and Baosen Zhang
Stanford University UC Berkeley

Abstract— One of the most important challenges in the
integration of renewable energy sources into the power grid
lies in their ‘intermittent’ nature. The power output of sources
like wind and solar varies with time and location due to factors
that cannot be controlled by the provider. Two strategies have
been proposed to hedge against this variability: 1) use energy
storage systems to effectively average the produced power over
time; 2) exploit distributed generation to effectively average
production over location. We introduce a network model to
study the optimal use of storage and transmission resources in
the presence of random energy sources. We propose a Linear-
Quadratic based methodology to design control strategies, and
show that these strategies are asymptotically optimal for some
simple network topologies. For these topologies, the dependence
of optimal performance on storage and transmission capacity
is explicitly quantified.

I. INTRODUCTION

It is widely advocated that future power grids should
facilitate the integration of a significant amount of renewable
energy sources. Prominent examples of renewable sources
are wind and solar. These differ substantially from traditional
sources in terms of two important qualitative features:
Intrinsically distributed. The power generated by these
sources is typically proportional to the surface occupied by
the corresponding generators. For instance, the solar power
reaching ground is of the order of 2 kWh per day per square
meter. The wind power at ground level is of the order of
0.1 kWh per day per square meter [1]. These constraints
on renewable power generation have important engineering
implications. If a significant part of energy generation is to be
covered by renewables, generation is argued to be distributed
over large geographical areas.
Intermittent. The output of renewable sources varies with
time and locations because of exogenous factors. For in-
stance, in the case of wind and solar energy, the power
output is ultimately determined by meteorological condi-
tions. One can roughly distinguish two sources of variability:
predictable variability, e.g. related to the day-night cycle, or
to seasonal differences; unpredictable variability, which is
most conveniently modeled as a random process.

Several ideas have been put forth to meet the challenges
posed by intermittent production. The first one is to leverage
geographically distributed production. The output of distinct
generators is likely to be independent or weakly dependent
over large distances and therefore the total production of
a large number of well separated generators should stay
approximately constant, by a law-of-large-number effect.

The second approach is to use energy storage to take
advantage of over-production at favorable times, and cope

with shortages at unfavorable times. Finally, a third idea
is ‘demand response’, which aims at scheduling in opti-
mal ways some time-insensitive energy demands. In several
cases, this can be abstracted as some special form of energy
storage (for instance, when energy is demanded for interior
heating, deferring a demand is equivalent to exploiting the
energy stored as hot air inside the building).

These approaches hedge against the energy source vari-
ability by averaging over location, or by averaging over time.
Each of them requires specific infrastructures: a power grid
with sufficient transmission capacity in the first case, and
sufficient energy storage infrastructure in the second one.
Further, these two directions are in fact intimately related.
With current technologies, it is unlikely that centralized
energy storage can provide effective time averaging of –say–
wind power production, in a renewables-dominated scenario.
In a more realistic scheme, storage is distributed at the
consumer level, for instance leveraging electric car batteries
(a scenario known as vehicle-to-grid or V2G). Distributed
storage implies, in turn, substantial changes of the demand
on the transmission system.

The use of storage devices to average out intermittent
renewables production is well established. A substantial
research effort has been devoted to its design, analysis and
optimization, see for instance [2], [3], [4], [5], [6], [7].
In this line of work, a large renewable power generator is
typically coupled with a storage system in order to average
out its power production. Proper sizing, response time, and
efficiency of the storage system are the key concerns.

If, however, we assume that storage will be mainly dis-
tributed, the key design questions change. It is easy to under-
stand that both storage and transmission capacity will have
a significant effect on the ability of the network to average
out the energy source variability. For example, shortfalls at a
node can be compensated by either withdrawals from local
storage or extracting power from the rest of the network,
or a combination of both. The main goal of this paper is
to understand the optimal way of utilizing simultaneously
these two resources and to quantify the impact of these two
resources on performance. Our contributions are:
• a simple model capturing key features of the problem;
• a Linear-Quadratic(LQ) based methodology for the sys-

tematic design of control strategies;
• a proof of optimality of the LQ control strategies in

simple network topologies such as the 1-D and 2-D
grids and in certain asymptotic regimes.

• a quantification of how the performance depends on key
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parameters such as storage and transmission capacities.
The reader interested in getting an overview of the conclu-
sions without the technical details can read Sections II and
IV only. Some details are omitted due to space limitations
and a full version is posted on ArXiv.

II. MODEL AND PROBLEM FORMULATION

The power grid is modeled as a weighted graph G with
vertices (buses or nodes) V , edges (lines) E. Time is slotted
and will be indexed by t ∈ {0, 1, 2, . . . }. In slot t, each
node i ∈ V receives a supply of a quantity of energy
Ep,i(t) from a renewable source, and receives a demand
of a quantity Ed,i(t) for consumption. For our purposes,
these quantities only enter the analysis through the net supply
Zi(t) = Ep,i(t)−Ed,i(t). Let Z(t be the vector of Zi(t)’s.
We will assume that {Z(t)} is a stationary process.

In order to average the variability in the energy supply,
the system makes use of storage and transmission. Storage
is fully distributed: each node i ∈ V has a device that can
store energy, with capacity Si. We assume that stored energy
can be fully recovered when needed (i.e., no losses). At each
time slot t, one can transfer an amount of energy Yi(t) to
storage at node i. If we denote by Bi(t) the amount of stored
energy at node i just before the beginning of time slot t, then:

Bi(0) = 0, Bi(t + 1) = [Bi(t) + Yi(t)]Si
0 (1)

where [x]ba := max(min(x, b), a) for a ≤ b.
We will also assume the availability at each node of a

fast generation source (such as a spinning reserve or backup
generator) which allows covering up of shortfalls. Let Wi(t)
be the energy obtained from such a source at node i at time
slot t. We will use the convention that Wi(t) is negative
means that energy is consumed from the fast generation
source, and positive means energy is dumped. The cost
of using fast generation energy sources is reflected in the
steady-state performance measure:

εW ≡ lim
t→∞

1
|V |

∑
i∈V

E{
(
Wi(t)

)
−} (2)

The net amount of energy injection at node i at time slot t
is:

Zi(t)− Yi(t)−Wi(t).

These injections have to be distributed across the transmis-
sion network, and the ability of the network to distribute the
injections and hence to average the random energy sources
over space is limited by the transmission capacity of the
network. To understand this constraint, we need to relate the
injections to the power flows on the transmission lines. To
this end, we adopt a ‘DC power flow’ approximation model
[8]. 1

Each edge in the network corresponds to a transmission
line which is purely inductive, i.e. with conductance −jbe,
where be ∈ R+. Hence, the network is lossless. Node i ∈ V
is at voltage Vi(t), with all the voltages assumed to have the

1Despite the name, ‘DC flow’ is an approximation to the AC flow

same magnitude, taken to be 1 (by an appropriate choice of
units). Let Vi(t) = ejφi,t denote the (complex) voltage at
node i in time slot t. If Ii,k(t) = −jbik(Vi(t) − Uk(t)) is
the electric current from i to k, the corresponding power
flow is then Fi,k(t) = Re[Vi(t)Ii,k(t)∗] = Re[jbik(1 −
ej(φi(t)−φk(t)))] = bik sin(φi(t) − φk(t)), where Re[·] de-
notes the real part of a complex number.

The DC flow approximation replaces sin(φi(t)−φk(t)) by
φi(t)−φk(t) in the above expression. This is usually a good
approximation since the phase angles at neighboring nodes
are typically maintained close to each other to ensure that the
generators at the two ends remain in step. This leads to the
following relation between angles and power flow Fi,k(t) =
bik(φi(t)− φk(t)). In matrix notation, we have

F(t) = ∇φ(t), (3)

where F(t) is the vector of all power flows, φ(t) =
(φ1(t), . . . , φn(t)) and ∇ is a |E| × |V | matrix. ∇e,i = be

if e = (i, k) for some k, ∇e,i = −be if e = (k, i) for some
k, and ∇e,i = 0 otherwise.

Energy conservation at node i also yields

Zi(t)− Yi(t)−Wi(t) =
∑

k

F(i,k)(t) =
(
∇T b−1F (t)

)
i
,

where b = diag(be) is an |E| × |E| diagonal matrix.
Expressing F(t) in terms of φ(t), we get

Z(t)− Y(t)−W(t) = −∆φ(t), (4)

where ∆ = −∇T b−1∇ is a |V | × |V | symmetric matrix
where ∆i,k = −

∑
l:(i,l)∈E bil if i = k, Deltai,k = bik if

(i, k) ∈ E and 0 otherwise. In graph theory, ∆ is called the
graph Laplacian matrix. In power engineering, it is simply
the imaginary part of the bus admittance matrix of the
network. Note that if be ≥ 0 for all edges e, then −∆ < 0
is positive semidefinite. If the network is connected (which
we assume throughout), it has only one eigenvector with
eigenvalue 0, namely the vector ϕv = 1 everywhere. This
fits the physical fact that if all phases are rotated by the
same amount, the powers in the network are not changed.

With an abuse of notation, we denote by ∆−1 the matrix
that has the same kernel as ∆, and is equal to the inverse of
∆ on the orthogonal subspace. Explicitly ∆ = −Vα2VT be
the eigenvalue decomposition of ∆, where α is a diagonal
matrix with non-negative entries. Define α† to be the diago-
nal matrix with α†ii = 0 if αii = 0 and α†ii = α−1

ii otherwise.
Then ∆−1 = −V(α†)2VT .

Since the total power injection in the network adds up to
zero (which must be true by energy conservation), we can
invert (4) and obtain

φ(t) = −∆−1(Z(t)− Y(t)−W(t)) . (5)

Plugging this into (3), we have

F(t) = −∇∆−1
(
Z(t)− Y(t)−W(t)

)
. (6)

There is a capacity limit Ce on the power flow along
each edge e; this capacity limit depends on the voltage
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magnitudes and the maximum allowable phase differences
between adjacent nodes, as well as possible thermal line
limits. We will measure violations of this limit by defining

εF ≡ lim
t→∞

1
|E|

∑
e∈E

E{(Fe(t)− Ce)+ + (−Ce −Fe(t))+} .

(7)
We are now ready to state the design problem:
For the dynamic system defined by equations (1) and (6),

design a control strategy which, given the past and present
random renewable supplies and the storage states,{

(Z(t),B(t)); (Z(t− 1),B(t− 1)), . . . ,
}

choose the vector of energies Y(t) to put in storage and the
vector of fast generations W(t) such that the sum εtot ≡
εF + εW , cf. Eq. (2) and (7), is minimized.

III. LINEAR-QUADRATIC DESIGN

In this section, we propose a design methodology that is
based on Linear-Quadratic (LQ) control theory.

A. The Surrogate LQ Problem

The difficulty of the control problem defined above stems
from both the nonlinearity of the dynamics due to the
hard storage limits and the piecewise linearity of the cost
functions giving rise to the performance parameters. Instead
of attacking the problem directly, we consider a surrogate
LQ problem where the hard storage limits are removed and
the cost functions are quadratic:

Bi(0) =
−Si

2
, Bi(t + 1) = Bi(t) + Yi(t) (8)

F (t) = −∇∆−1
(
Z(t)− Y (t)−W (t)

)
(9)

with performance parameters:

εsurrogate
Wi

= lim
t→∞

E{
(
Wi(t)

)2}, i ∈ V (10)

εsurrogate
Fe

= lim
t→∞

E{(Fe(t))2}, e ∈ E (11)

εsurrogate
Bi

= lim
t→∞

E{(Bi(t))2} (12)

The process Bi(t) can be interpreted as the deviation of a
virtual storage level process from the midpoint Si/2, where
the virtual storage level process is no longer hard-limited but
evolves linearly. Instead, we penalize the deviation through
a quadratic cost function in the additional performance
parameters εsurrogate

Bi
.

The virtual processes B(t), F (t), W (t), Y (t) and Z(t) are
connected to the actual processes B(t), F(t), W(t), Y(t) and
Z(t) via the mapping:

Zi(t) = Zi(t) , Fe(t) = Fe(t) , (13)

Bi(t) = [ Bi(t) + Si/2 ]Si

0 , (14)
Yi(t) = Bi(t + 1)− Bi(t) , (15)
Wi(t) = Wi(t) + Yi(t)− Yi(t) . (16)

In particular, once we solve for the optimal control in the
surrogate LQ problem, (15) and (16) tell us what control to
use in the actual system. Notice that the actual fast generation

control provides the fast generation in the virtual system plus
an additional term that keeps the actual storage level process
within the hard limit. Note also

Wi(t) ≥ Wi(t)− (Bi(t)− Si/2)+ − (−Bi(t)− Si/2)+ .
(17)

Hence the performance parameters εF , εW can be estimated
from the corresponding ones for the virtual processes.

Now we turn to solving the surrogate LQ problem. First
we formulate it in standard state-space form. For simplicity,
we will assume {Z(t)} is an i.i.d. process (over time)2 Hence
X(t) := [F (t − 1)T , B(t)T ]T is the state of the system.
Also, U(t) := [Y (t)T ,W (t)T ]T is the control and R(t) :=
[X(t)T , Z(t)T ]T is the observation vector available to the
controller. Then

X(t + 1) = AX(t) + DU(t) + EZ(t), (18)
R(t) = CX(t) + ζ(t) , (19)

where

A ≡
[
0 0
0 I

]
, D ≡

[
−∇∆−1 −∇∆−1

I 0

]
, E ≡

[
∇∆−1

0

]
.

and C =
[
0 0
0 I

]
and ζ(t) =

[
I
0

]
Z(t). We are interested

in trading off between the performance parameters εFe , εWi

and εBi’s. Therefore we introduce weights γe’s , ξi’s, ηi’s
and define the Lagrangian

L(t) ≡
|E|∑
e=1

γeE{Fe(t)2}+
|V |∑
i=1

ξiE{Bi(t)2}+
|V |∑
i=1

ηiE{Wi(t)2}

= E
{
X(t)T Q1X(t) + U(t)T Q2U(t)

}
, (20)

where Q1, Q2 are suitable diagonal matrices.
For the sake of deriving optimal filters, we will assume

E{Z(t)} = 0, and hence all of the virtual processes have 0
mean. If Z(t) has a non-zero mean, this can be subtracted
from the system (18): the two systems are equivalent with
respect to the minimization of variances, which will be our
focus3 below. From here on we will also assume that ΣZ ≡
E[Z(t)T Z(t)] = I, since if not, then we can define E =
[∇∆−1

√
ΣZ

−10]T , where
√

ΣZ is the symmetrical square
root of ΣZ .

An admissible control policy is a mapping {R(t), R(t −
1), . . . , R(0)} 7→ U(t). The surrogate LQ problem is defined
as the problem of finding the mapping that minimizes the
stationary cost L ≡ limt→∞ L(t).

Notice that the energy production-minus-consumption
Z(t) plays the role both in the evolution equation (18) and
the observation (19). The case of correlated noise has been
considered and solved for general correlation structure in [9].
Let G = E[ζ(t)Z(t)T ] = [I 0]T , R1(t) = [Z(t)T , 0]T and
R2(t) = [0, B(t)T ]T . Adapting the general result in [9] to
our special case, we have

2If {Z(t)} has memory, then one can augment the state space.
3We notice in passing that, in the case of general (non-transitive) net-

works, the appropriate surrogate LQ problem also involves the optimization
of means. We defer this aspect to a future publication.
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Lemma 3.1: The optimal controller for the system in (18)
and (19) and the cost function in (20) is given by

U(t) = −(LR1(t) + K−1DT SEGT M−1R2(t)), (21)

where S is given by the algebraic Riccati equation

S = AT SA + QT
1 Q1 − LT KL, (22)

where K = DT SD + QT
2 Q2, L = K−1(DT SA + QT

2 Q1),
and

M = CJCT +
[
I 0
0 0

]
, (23)

where J satisfies the algebraic Riccati equation J =
AJAT +EET −OMOT , and O = (AJCT +EGT )M−1.
B. Transitive Networks

Lemma 3.1 states that the optimal controller is linear in the
storage process and the input noise. However, it is difficult
in general to solve analytically the Riccati equations. To gain
further insight, we consider the case of transitive networks.

An automorphism of a graph G = (V,E) is a one-to-one
mapping f : V → V such that for any edge e = (u, v) ∈ E,
we have e′ = (f(u), f(v)) ∈ E. A graph is called transitive
if for any two vertices v1 and v2, there is some automorphism
f : V → V such that f(v1) = v2. Intuitively, a graph
is transitive if it looks the same from the perspective of
any of the vertices. Given an electric network, we say the
network is transitive if it has a transitive graph structure,
every bus has the same associated storage, every line has
the same capacity and inductance, and Zi(t) is i.i.d. across
the network. Without loss of generality, we will assume
Si = S, Ce = C, Be = 1, E[Zi(t)] = µ,Var[Zi(t)] =
σ2). Since the graph is transitive, it is natural to take the
cost matrices as Q1 = diag(γ, . . . , γ, ξ, . . . , ξ) and Q2 =
diag(0, . . . , 0, 1, . . . , 1).

Recall that ∆ = −Vα2VT is the eigenvalue decomposi-
tion of ∆. Since ∆ = −∇T∇, the singular value decompo-
sition of ∇ is given by ∇ = UαVT for some orthogonal
matrix U. The basic observation is that, with these choices
of Q1 and Q2, the Riccati equations diagonalize in the bases
given by the columns of V (for vectors indexed by vertices)
and columns of U (for vectors indexed by edges).

A full justification of the diagonal ansatz amounts to
rewriting the Riccati equations in the new basis. For the sake
of space we limit ourselves to deriving the optimal diagonal
control. We rewrite the linear relation from X(t) to U(t) as

Y (t) = HZ(t)−KB(t) , (24)
W (t) = PZ(t) + QB(t) . (25)

Substituting in Eq. (18), we get

B(t + 1) = (I−K)B(t) + HZ(t) , (26)

F (t + 1) = ∇∆−1
{
(I−H−P)Z(t) + (K−Q)B(t)

}
,

(27)
W (t) = PZ(t) + QB(t) . (28)

Denoting by B, F , W the average quantities, it is easy
to see that, in a transitive network, we can take F = 0,

W = µ and hence B = 0. In words, since all nodes are
equivalent, there is no average power flow (F = 0), the
average overproduction is dumped locally (W = µ), and the
average storage level is kept constant (B = 0).

Hereafter we focus on deviations from the average, and
work in the basis in which ∇ = UαVT is diagonal. We will
index singular values by θ ∈ Θ hence α = diag({α(θ)}θ∈Θ)
(omitting hereafter the singular value α = 0 since the
relevant quantities have vanishing projection along this di-
rection.) In the examples treated in the next sections, θ will
be a Fourier variable. Since the optimal filter is diagonal in
this basis, we write K = diag(k(θ)), H = diag(h(θ)) and
P = diag(p(θ)), Q = diag(q(θ)).

We let bθ(t), zθ(t), fθ(t), wθ(t) denote the components of
B(t)−B, Z(t)−µ, F (t)−F , W (t)−W along in the same
basis. From Eqs. (26) to (28), we get the scalar equations

bθ(t) = (1− k(θ))bθ(t− 1) + h(θ)zθ(t) , (29)
fθ(t) = −α−1(θ)

{
(1− h(θ)− p(θ))zθ(t) +

(k(θ)− q(θ))bθ(t− 1)
}

, (30)

wθ(t) = p(θ)zθ(t) + q(θ)bθ(t− 1) , (31)

We will denote by σ2
B(θ), σ2

F (θ), σ2
W (θ) the stationary

variances of bθ(t), fθ(t), wθ(t). From the above, we obtain

σ2
B(θ) =

h2

1− (1− k)2
σ2 , (32)

σ2
F (θ) =

1
α2

[
(1− h− p)2 +

h2(k − q)2

1− (1− k)2

]
σ2 , (33)

σ2
W (θ) =

[
p2 +

h2q2

1− (1− k)2

]
σ2 . (34)

(We omit here the argument θ on the right hand side.)
In order to find h, k, p, q, we minimize the Lagrangian

(20). Using Parseval’s identity, this decomposes over θ, and
we can therefore separately minimize for each θ ∈ Θ

L(θ) = σW (θ)2 + ξ σB(θ)2 + γ σF (θ)2 . (35)

A lengthy but straightforward calculus exercise yields the
following expressions.

Theorem 1: Consider a transitive network. The optimal
linear control scheme is given, in Fourier domain θ ∈ Θ,
by

p(θ) = q(θ) = ξ

√
4β(θ) + 1− 1

2
, (36)

h(θ) =
2β(θ) + 1−

√
4β(θ) + 1

2β(θ)
, (37)

k(θ) =

√
4β(θ) + 1− 1

2β(θ)
, (38)

where β(θ) is given by

β(θ) =
γ

ξ(γ + α2(θ))
. (39)

It is useful to point out a few analytical properties of these
filters: (i) γ/[ξ(γ + dmax)] ≤ β ≤ 1/ξ with dmax the
maximum degree in G; (ii) 0 ≤ k ≤ 1 is monotone
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No transmission (C = 0) No storage (S = 0) Storage and Transmission

1-D
Θ( σ2

C ) for µC < σ2 σ exp
n
−

q
CS
σ2

o†
for µ = exp

n
−ω

“q
CS
σ2

”o
Θ( σ2

S ) for µS < σ2 σ exp
n
−µC

σ2

o
otherwise σ exp

n
−CS

σ2

o
for µ = exp

n
−o

“q
CS
σ2

”o
2-D

σ exp
n
−µS

σ2

o
otherwise σ exp

˘
−C

σ

¯† for µ = exp
n
−ω

“
C
σ

”o
σ exp

n
−C max(C,S)

σ2

o
σ exp

n
−C2

σ2

o
for µ = exp

n
−o

“
C
σ

”o
TABLE I

ASYMPTOTICALLY OPTIMAL εW + εF IN 1-D AND 2-D GRIDS.

Logarithmic factors have been neglected (also in the exponent). † indicates the lower bound requires a conjecture in probability theory.

decreasing as a function of β, with k = 1 − β + O(β2) as
β → 0 and k = 1/

√
β+O(1/β) as β →∞; (iii) 0 ≤ h ≤ 1

is such that h+k = 1. In particular, it is monotone increasing
as a function of β, with h = β + O(β2) as β → 0 and
h = 1− 1/

√
β + O(1/β) as β →∞; (iv) p = q = ξβk.

Theorem 2: Consider a transitive network, and assume
that the optimal LQ control is applied. The variances are
given as follows in terms of k(θ), given in Eq. (37):

σ2
B(θ)
σ2

=
(1− k(θ))2

1− (1− k(θ))2
, (40)

σ2
F (θ)
σ2

=
α2(θ)

(γ + α2(θ))2
k2(θ)

1− (1− k(θ))2
, (41)

σ2
W (θ)
σ2

=
γ2

(γ + α2(θ))2
k2(θ)

1− (1− k(θ))2
. (42)

IV. 1-D AND 2-D GRIDS: OVERVIEW OF RESULTS

For the rest of the paper, we focus on two specific network
topologies: the infinite one-dimensional grid (line network)
and the infinite two-dimensional grid. We will assume Gaus-
sian net supply Zi(t) ∼ N(µ, σ2). We will focus on the
regime when the achieved cost is small. In Section V we
will evaluate the performance of the LQ scheme on these
topologies. In Section VI. we will derive lower bounds on
the performance of any schemes on these topologies to show
that the LQ scheme is optimal in the small cost regime. As a
result, we characterize explicitly the asymptotic performance
in this regime. The results are summarized in Table I.

The parameter µ, the mean of the net supply at each node,
can be thought of as a measure of the amount of over-
provisioning. For the 1-D grid, when the amount of over-
provisioning is less than σ2/C, one can see the dramatic
improvement by using storage and transmission resources
jointly. When there is only an isolated node with storage, the
optimal cost decreases only slowly with the amount of stor-
age S, like 1/S. Similarly, when there is only transmission
but no storage, the optimal cost decreases only slowly with
transmission capacity C, like 1/C. On the other hand, with
both storage and transmission, the optimal costs decreases
exponentially with

√
CS. When there is no storage, the only

way to drive the cost significantly down is at the expense of
increasing the amount of over-provisioning beyond σ2/C;
the same performance can be achieved with a storage S
equalling to this amount of over-provisioning and with the
actual amount of over-provisioning exponentially smaller.

The 2-D grid provides significantly better performance
than the 1-D grid. For example, the cost exponentially de-
creases with the transmission capacity C even without over-
provisioning and without storage. The increased connectivity
in a 2-D grid allows much more spatial averaging of the
random net supplies than in the 1-D grid. The reason for
this is roughly as follows. Let us focus on the zero over-
provisioning case. Consider first a 1-D grid. The aggregate
net supply inside a segment of l nodes has variance lσ2 and
hence the quantity is of the order of

√
lσ. This random

fluctuation has to be compensated by power delivered from
the rest of the grid, but this power can only be delivered
through the two links, one at each end of the segment and
each of capacity C. Hence, successful compensation requires
l . C2/σ2. One can think of l∗ := C2/σ2 as the spatial
scale over which averaging of the random supplies is taking
place. Beyond this spatial scale, the fluctuations will have to
be compensated by fast generation. This fluctuation is of the
order of

√
l∗σ/l∗ = σ/C per node. Note that a limit on the

spatial scale of averaging translates to a large fast generation
cost. In contrast, in the 2-D grid, both the net supply, and
the total link capacity connecting a l nodes by l nodes box
to the rest of the grid scale up linearly in l. This facilitates
averaging over a very large spatial scale l, resulting in a
much lower fast generation cost.

There is an interesting parallelism between the results for
the 1-D grid with storage and the 2-D grid without storage.
If we set S = C, the results are in fact identical. One can
think of storage as providing an additional dimension for
averaging: time (Section VI-B formalizes this). Thus, a 1-D
grid with storage is like a 2-D grid without storage.

V. PERFORMANCE OF LQ SCHEME IN GRIDS

In this section we evaluate the performances of the LQ
scheme on the 1-D and 2-D grids. Both are examples of
transitive graphs and hence we will follow the formula-
tion in Section III-B. The total variance of Bi(t), Fe(t),
Wi(t) can be computed from the optimal LQ results, cf.
Eqs. (40) to (42) by applying Parseval identity σ2

B,F,W =∫
[−π,π]d

σ2
B,F,W (θ)dθ/(2π)d, with d the grid dimension.

Using the fact that B,F,W are Gaussian random variables,
and using Eq. (17), we get the following estimates

εF ≤ 2σF F
( C

σF

)
, εW ≤ σBF

( S

2σB

)
+ σW F

( µ

σW

)
. (43)
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Here F is the integral of the tail of a Gaussian random
variable F(z) ≡

∫∞
z

(x − z)φ(x) dx = φ(z) − zΦ(−z),
where φ(x) = exp{−x2/2}/

√
2π the Gaussian density

and Φ(x) =
∫ x

−∞ φ(u)du is the Gaussian distribution. As
z →∞, we have F(z) = 1

z2
√

2π
e−z2/2

{
1 + O(1/z)

}
.

In order to evaluate performances analytically and to ob-
tain interpretable expressions, we will focus on two specific
regimes. In the first one, no storage is available but large
transmission capacity exists. In the second, large storage and
transmission capacities are available.

A. No storage

In order to recover the performance when there is no
storage, we let ξ → ∞, implying σ2

B → 0 by the definition
of cost function (35). In this limit we have β → 0, cf.
Eq. (39). Using the explicit formulae for the various kernels,
cf. Eqs. (36) to (38), we get:

p, q =
γ

γ + α2(θ)
+ O(1/ξ) , h = O(1/ξ) , k = 1−O(1/ξ) .

Substituting in Eqs. (26) to (27) we obtain the following
prescription for the controlled variables (in matrix notation)

Y (t) = 0 W (t) = γ(−∆ + γ)−1X(t) , (44)

while the flow and storage satisfy

B(t) = 0 , F (t) = ∇(−∆ + γ)−1X(t) , (45)

The interpretation of these equations is quite clear. No stor-
age is retained (B = 0) and hence no energy is transferred
to storage. The matrix γ(−∆ + γ)−1 can be interpreted a
low-pass filter and hence γ(−∆ + γ)−1X(t) is a smoothing
of X(t) whereby the smoothing takes place on a length
scale γ−1/2. The wasted energy is obtained by averaging
underproduction over regions of this size.

Finally, using Eqs. (41) and (42), we obtain the following
results for the variances in Fourier space

σF (θ)2

σ2
=

α2(θ)
(γ + α2(θ))2

,
σW (θ)2

σ2
=

γ2

(γ + α2(θ))2
.

1) One-dimensional grid: In this case θ ∈ [−π, π], and
α(θ)2 = 2 − 2 cos θ (the Laplacian ∆ is digitalized via
Fourier transform).

The Parseval integrals can be computed exactly but we
shall limit ourself to stating without proof their asymptotic
behavior for small γ.

Lemma 5.1: For the one-dimensional grid, in absence of
storage, as γ → 0, the optimal LQ control yields variances

σ2
F = σ2/4

√
γ

{
1 + O(γ)

}
, σ2

W = σ2√γ/4
{

1 + O(γ)
}

.

Using these formulae and the equations (43) for the perfor-
mance parameters, we get the following achievability result.

Theorem 3: For the one-dimensional grid, in absence of
storage, the optimal LQ control with Lagrange parameter
γ = µ2/C2 yields, in the limit µ/C → 0, µC/σ2 →∞:

εtot = K exp
{
− 2µC

σ2

}[
1 + O

( µ

C
,

σ2

µC

)]
, (46)

where K = σ3/
√

32πµ3C.
The choice of γ given here is dictated by approximately
minimizing the cost In words, the cost is exponentially small
in the product of the capacity, and overprovisioning µC. This
is achieved by averaging over a length scale γ−1/2 = C/µ
that grows only linearly in C and 1/µ.

2) Two-dimensional grid: In this case θ = (θ1, θ2) ∈
[−π, π]2, and α(θ)2 = 4 − 2 cos θ1 − 2 cos θ2. Again, we
evaluate Parseval’s integral as γ → 0, and present the result.

Lemma 5.2: For the two-dimensional grid, in absence of
storage, as γ → 0, the optimal LQ control yields variances

σ2
F =

σ2

4π

{
log

( 1
eγ

)
+ O(γ)

}
, σ2

W =
σ2γ

4π

{
1 + O(γ)

}
.

Using these formulae and the equations (43) for the perfor-
mance parameters, and approximately optimizing over γ, we
obtain the following achievability result.

Theorem 4: For the two-dimensional grid, in absence of
storage, the optimal LQ control with lagrange parameter
γ = (µ2/C2) log(C2/µ2e) yields, in the limit µ/C → 0,
C2/(σ2 log(C/µ)) ≡ M →∞:

εtot = K exp
{
− 2πC2

σ2 log(C2/µ2e)

} [
1 + O

( µ

C
,

1
M

)]
.

(47)

where K = σ3µ
(

log(C2/µ2e)
)3/2

/(23/2(2π)2C3) is a
polynomial prefactor.
Notice the striking difference with respect to the one-
dimensional case, cf. Theorem 3. The cost goes exponen-
tially to 0, but now overprovisioning plays a significantly
smaller role. For instance, if we fix the link capacity C
to be the same, the exponents in Eq. (46) are matched
if µ2d ≈ exp(−πC/2µ1d)}, i.e. an exponentially smaller
overprovisioning is sufficient.
B. With Storage

In this section we consider the case in which storage is
available but overprovisioning µ is small (precise asymptotic
conditions will be stated formally below). Within our LQ
formulation we want therefore to penalize σW much more
than σB and σF . This corresponds to the asymptotics γ → 0,
ξ ≡ γ/s → 0 (the ratio s need not to be fixed). It turns out
that the relevant behavior is obtained by considering α2 =
Θ(γ) and hence β →∞. The linear filters are given in this
regime by

p(θ) = q(θ) = (γ/
√

s)
(
γ + α(θ)2

)−1/2
,

k(θ) ≈ (1/
√

s)
(
γ + α(θ)2

)1/2
, h(θ) ≈ 1 .

Using these filters we obtain

σB(θ)2

σ2
≈ 1

2

(
s

γ + α(θ)2

)1/2

,

σF (θ)2

σ2
≈ α2(θ)

2
√

s

(
1

γ + α(θ)2

)3/2

,

σW (θ)2

σ2
≈ γ2

2
√

s

(
1

γ + α(θ)2

)3/2

.
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1) One-dimensional grid: The variances are obtained by
Parseval’s identity, integrating σ2

B,W,F (θ) over θ ∈ [−π, π].
Lemma 5.3: Consider a one-dimensional grid, subject to

the LQ optimal control. For γ → 0 and ξ = γ/s → 0

σ2
B

σ2
=
√

s

4π
log

1
γ

+ O(1) ,
σ2

F

σ2
=

1
4π
√

s
log

1
γ

+ O(1, s−1) ,

σ2
W

σ2
=

Ω1

2
√

s
γ + O(γ2, γ3/2/s) ,

where Ωd is the integral (here ddu ≡ du1 × · · · × dud)

Ωd ≡ 1/(2π)d

∫
Rd

1/(1 + ‖u‖2)3/2 ddu . (48)

Using Eqs. (43) to estimate the total cost εtot and mini-
mizing it over γ we obtain the following.

Theorem 5: Consider a one-dimensional grid and assume
CS/σ2 →∞. The optimal LQ scheme achieves the follow-
ing performance:

µ = e
−ω

(q
CS
σ2

)
⇒ εtot = exp

{
−

√
πCS

2σ2

(
1 + o(1)

)}
,

µ = e
−o

(q
CS
σ2

)
⇒ εtot = exp

{
− πCS(1 + o(1))

2σ2 log C/µ

}
,

under the further assumption
√

πCS/2σ2− log(C/S) →∞
(in the first case) and µ2 log(C/µ)/ min(C,S)2 → 0 (in the
second). In the first case the claimed behavior is achieved by
s = S2/4C2, and γ = exp{−(2πCS/σ2)1/2}. In the second
by letting s = S2/4C2, and γ = µ2 log(C/µ)/(πΩ1C

2).
This theorem points at a striking threshold phenomenon. If
overprovisioning is extremely small, or vanishing, then the
cost is exponentially small in

√
CS. On the other hand, even

a modest overprovisioning changes this behavior leading to
a decrease that is exponential in CS (barring exponential
factors). Overprovisioning also reduces dramatically the ef-
fective averaging length scale γ−1/2. It also instructive to
compare the second case in Theorem 5 with its analogue in
the case of no storage, cf. Eq. (46): storage seem to replace
overprovisioning.

2) Two-dimensional grid: As done in the previous cases,
the variances of B, F , W are obtained by integrating
σ2

B,F,W (θ) over θ = (θ1, θ2) ∈ [−π, π]2.
Lemma 5.4: Consider a two-dimensional grid, subject to

the LQ optimal control. For γ → 0 and s = Θ(1), we have

σ2
B

σ2
= GB(s) + O(1,

√
γ) ,

σ2
F

σ2
= GF (s) + O(

√
γ) ,

σ2
W

σ2
=

Ω2

2
√

s
γ3/2 + O(γ2) ,

where Ω2 is the constant defined as per Eq. (48), and GB(s),
GF (s) are strictly positive and bounded for s bounded.
Further, as s → ∞ GB(s) = K2

√
s/2 + O(1), GF (s) =

K2/(2
√

s) + O(1/s), where K2 ≡
∫
[−π,π]2

1
|α(θ)| dθ.

Minimizing the total outage over s, γ, we obtain:
Theorem 6: Assume CS/σ2 →∞ and C/S = Θ(1). The

optimal cost for scheme a memory-one linear scheme on the

two-dimensional grid network then behaves as follows

εtot = exp
{
− CS

2σ2Γ(S/C)
(
1 + o(1)

)}
. (49)

Here u 7→ Γ(u) is a function which is strictly positive and
bounded for u bounded away from 0 and ∞. In particular,
Γ(u) → K2 as u → ∞, and Γ(u) = Γ0u + o(u) as u → 0
(Γ0 > 0).

The claimed behavior is achieved by selecting s =
f(S/C), and γ as follows. If µ = exp{−o(CS/σ2)} then
γ = f̃(S/C)(µ2/CS)2/3. If instead µ = exp{−ω(CS/σ2)},
then γ = exp{−2CS/(3Γ(S/C)σ2)}, for suitable functions
f, f̃ (In the first case, we also assume µ/C → 0.)
The functions Γ, f f̃ in the last statement can be characterized
analytically, but we omit such characterization for the sake of
brevity. As seen by comparing with Theorem 5, the greater
connectivity implied by a two dimensional grid leads to a
faster decay of the cost.

VI. PERFORMANCE LIMITS

In this section, we prove general lower bounds on the
outage εtot = εW + εF of any scheme, on the 1-D and 2-D
grids. Our proofs use cutset type arguments.

A. No storage

1) One-dimensional grid:
Lemma 6.1: Consider a one-dimensional grid without

storage. Assume µ < C and σ < C. There exists κ1 > 0
and κ2 < ∞ such that

εtot ≥
{

κ1σ
2/C if µ < σ2/C ,

µ exp
{
−κ2µC/σ2

}
otherwise. (50)

Proof: Consider a segment of length `. Let E be the
event that the segment has net demand at least 3C. We have

P[E] ≥ κ3 exp
{
− (3C + `µ)2

σ2`

}
, (51)

for some κ3 > 0. If E occurs at some time t, this leads to
a shortfall of at least C in the segment of length `. This
shortfall contributes either to εW or to 2εF , yielding

2εtot ≥ εW + 2εF ≥
κ3C

`
exp

{
− (3C + `µ)2

σ2`

}
. (52)

Choosing ` = min
(
C/µ,C2/σ2

)
, we obtain the result.

Note that the lower bound is tight both for µ ≥ σ2/C (by
Theorem 3) and µ < σ2/C (by a simple generalization of
the same theorem that we omit).

2) Two-dimensional grid: We prove a lower bound almost
matching the upper bound proved in Theorem 4.

Lemma 6.2: There exists κ < ∞ such that, for C ≥
min(µ, σ),

εtot ≥ σ exp
{
− κC2/σ2

}
.

Proof: Follows from a single node cutset bound.
We next make a conjecture in probability theory, which, if
true, leads to a significantly stronger lower bound for small
µ. For any set of vertices A of the two-dimensional grid, we
denote by ∂A the boundary of A, i.e., the set of edges in
the grid that have one endpoint in A and the other in Ac.
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Conjecture 6.3: There exists δ > 0 such that the following
occurs for all ` ∈ N. Let (Xv)v∈S be a collection of i.i.d.
N(0, 1) random variables indexed by S = {1, . . . , `} ×
{1, . . . , `} ⊆ Z2. Then

E
[

max
A⊆S s.t.
|∂A|≤4l

∑
v∈A

Xv

]
≥ δl log l . (53)

Lemma 6.4: Consider the two-dimensional grid without
storage, and assume Conjecture 6.3. Then there exists κ < ∞
such that for any µ ≤ σ exp(−κC/σ) and C > σ we have

εtot ≥ σ exp
{
− κC/σ

}
. (54)

B. With storage

1) One-dimensional grid: Our approach involves mapping
the time evolution of a control scheme in a one-dimensional
grid, to a feasible (one-time) flow in a two-dimensional grid.
One of the dimensions represents ‘space’ in the original grid,
whereas the other dimension represents time.

Consider the one-dimensional grid, with vertex set Z.
We construct a two-dimensional ‘spacetime’ grid (V̂ , Ê)
consisting of copies of each v ∈ V , one for each time t ∈ Z:
define V̂ ≡ {(v, t) : v ∈ Z, t ∈ Z}. The edge set Ê consists
of ‘space-edges’ Esp and ‘time-edges’ Et.

Ê ≡ Esp ∪ Et

Esp ≡ {((v, t), (v + 1, t)) : v ∈ Z, t ∈ Z}
Et ≡ {((v, t), (v, t + 1)) : v ∈ Z, t ∈ Z}

Edges are undirected. Denote by Ĉe the capacity of e ∈ Ê.
We define Ĉe ≡ C for e ∈ Esp and Ĉe = S/2 for e ∈ Et.

Given a control scheme for the 1-D grid with storage, we
define the flows in the spacetime grid as

F̂e ≡ F(v,v+1)(t) for e = ((v, t), (v + 1, t)) ∈ Esp

F̂e ≡ Bv(t + 1)− S/2 for e = ((v, t), (v, t + 1)) ∈ Et

Notice that these flows are not subject to Kirchoff constraints,
but the following energy balance equation is satisfied at each
node (v, t) ∈ V̂ ,

Zi(t)−Wi(t)− Yi(t) =
∑

(v′,t′)∈∂(v,t)

F̂(v,t),(v′,t′) (55)

We use performance parameters as before (this definition
applies to finite networks and must be suitably modified for
infinite graphs):

ε bF ≡ 1

|Ê|

∑
e∈ bE

E{(F̂e(t)− Ĉe)+ + (Ĉe − F̂e(t))+} ,

εW ≡ 1

|V̂ |

∑
(i,t)∈bV

E{
(
Wi(t)

)
−} .

Notice that εW is unchanged, and ε bF = εF , in our mapping
from the 1-D grid with storage to the 2-D spacetime grid.

Our first lemma provides a rigorous lower bound which
is almost tight for the case µ = e−o(

√
CS/σ2) (cf. Theorem

5). It is proved by considering a rectangular region in the
spacetime grid of side l = max(C/S, 1) in space and T =
max(1, S/C) in time.

Lemma 6.5: Suppose µ ≤ min(C,S), CS/σ2 >
max(log(C/S), 1) and C > σ. There exists κ < ∞ such
that

ε ≥ σ exp(−κCS/σ2) . (56)

Next we provide a sharp lower bound for small µ using
Conjecture 6.3. Recall Lemma 6.4 and notice that its proof
does not make any use of Kirchoff flow constraints (encoded
in Eq. (3)). Thus, the same result holds for a 2-D spacetime
grid. We immediately obtain the following result, suggesting
that the upper bound in Theorem 5 for small µ is tight.

Theorem 7: There exists κ < ∞ such that the following
occurs if we assume that Conjecture 6.3 is valid. Consider
the one-dimensional grid with parameters C = S > σ, and
µ ≤ exp(−κC/σ). We have

ε ≥ σ exp
{
− κ

√
CS/σ2

}
. (57)

We remark that the requirement C = S can be relaxed if
we assume a generalization of Conjecture 6.3 to rectangular
regions in the two-dimensional grid.

2) Two-dimensional grid:
Lemma 6.6: There exists a constant κ < ∞ such that on

the two-dimensional grid,

ε ≥ σ exp
{
−κC max(C,S)

σ2
i

}
. (58)

The lemma is proved by considering a single node, using
a cutset type argument, similar to the proof of Lemma 6.5.
It implies that the upper bound in Theorem 6 is tight up to
constants in the exponent.
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