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Abstract

We develop and analyze cooperative diversity protocols that combat fading induced by multipath

propagation in wireless networks. The underlying techniques exploit space diversity available through

cooperating terminals’ relaying signals for one another. We outline several low-complexity strategies

employed by the cooperating radios, including fixed relaying schemes such as amplify-and-forward and

decode-and-forward, selection relaying schemes that adapt based upon channel measurements between

the cooperating terminals, and incremental relaying schemes that adapt based upon limited feedback

from the destination terminal. We develop performance characterizations in terms of outage events and

associated outage probabilities, which measure robustness of the transmissions to fading, focusing on

the high signal-to-noise (SNR) ratio regime. Except for fixed decode-and-forward, all of our cooperative

diversity protocols achieve full diversity (i.e., second-order diversity in the case of two terminals), and

are close to optimum (within 1.5 decibels (dB)) in certain regimes. Thus, using distributed antennas, we

can provide the powerful benefits of space diversity without need for physical arrays, though at a loss of

spectral efficiency due to half-duplex operation and possibly additional receive hardware. Applicable to
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Fig. 1. Illustration of radio signal paths in an example wireless network with terminals T1 and T2 transmitting information to

terminals T3 and T4, respectively.

any wireless setting, including cellular or ad-hoc networks—wherever space constraints preclude the use

of physical arrays—the performance characterizations reveal that large power or energy savings result

from the use of these protocols.

Index Terms

diversity techniques, fading channels, outage probability, relay channel, user cooperation, wireless

networks

I. INTRODUCTION

In wireless networks, signal fading arising from multipath propagation is a particularly severe channel

impairment that can be mitigated through the use of diversity [1]. Space, or multi-antenna, diversity

techniques are particularly attractive as they can be readily combined with other forms of diversity, e.g.,

time and frequency diversity, and still offer dramatic performance gains when other forms of diversity are

unavailable. In contrast to the more conventional forms of space diversity with physical arrays [2]–[4],

this work builds upon the classical relay channel model [5] and examines the problem of creating and

exploiting space diversity using a collection of distributed antennas belonging to multiple terminals, each

with its own information to transmit. We refer to this form of space diversity as cooperative diversity

(cf., user cooperation diversity of [6]) because the terminals share their antennas and other resources to

create a “virtual array” through distributed transmission and signal processing.

A. Motivating Example

To illustrate the main concepts, consider the example wireless network in Fig. 1, in which terminals T1

and T2 transmit to terminals T3 and T4, respectively. This example might correspond to a snapshot of a

wireless network in which a higher-level network protocol has allocated bandwidth to two terminals for
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transmission to their intended destinations or next hops. For example, in the context of a cellular network,

T1 and T2 might correspond to handsets and T3 = T4 might correspond to the basestation [7]. As another

example, in the context of a wireless local-area network (LAN), the case T3 6= T4 might correspond to an

ad-hoc configuration among the terminals, while the case T3 = T4 might correspond to an infrastructure

configuration, with T3 serving as an access point [8]. The broadcast nature of the wireless medium is the

key property that allows for cooperative diversity among the transmitting terminals: transmitted signals

can, in principle, be received and processed by any of a number of terminals. Thus, instead of transmitting

independently to their intended destinations, T1 and T2 can listen to each other’s transmissions and jointly

communicate their information. Although these extra observations of the transmitted signals are available

for free (except, possibly, for the cost of additional receive hardware) wireless network protocols often

ignore or discard them.

In the most general case, T1 and T2 can pool their resources, such as power and bandwidth, to

cooperatively transmit their information to their respective destinations, corresponding to a wireless

multiple-access channel with relaying for T3 = T4, and to a wireless interference channel with relaying

for T3 6= T4. At one extreme, corresponding to a wireless relay channel, the transmitting terminals can

focus all their resources on transmitting the information of T1; in this case, T1 acts as the “source” of

the information, and T2 serves as a “relay”. Such an approach might provide diversity in a wireless

setting because, even if the fading is severe between T1 and T3, the information might be successfully

transmitted through T2. Similarly, T1 and T2 can focus their resources on transmitting the information

of T2, corresponding to another wireless relay channel.

B. Related Work

Relay channels and their extensions form the basis for our study of cooperative diversity. Because

relaying and cooperative diversity essentially create a virtual antenna array, work on multiple-antenna or

multiple-input, multiple-output (MIMO) systems is also very relevant; we do not summarize that literature

here due to space considerations, but refer the reader to [2]–[4], [9], [10] and references therein.

1) Relay Channels: The classical relay channel models a class of three terminal communication

channels originally examined by van der Meulen [11], [12]. Cover and El Gamal [5] treat certain discrete

memoryless and additive white Gaussian noise relay channels, and they determine channel capacity for
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the class of physically degraded1 relay channels. More generally, they develop lower bounds on capacity,

i.e., achievable rates, via three structurally different random coding schemes:

• facilitation [5, Theorem 2], in which the relay does not actively help the source, but rather, facilitates

the source transmission by inducing as little interference as possible;

• cooperation [5, Theorem 1], in which the relay fully decodes the source message and re-transmits,

jointly with the source, a bin index (in the sense of Slepian-Wolf coding [13], [14]) of the previous

source message;

• observation2 [5, Theorem 6], in which the relay encodes a quantized version of its received signal,

using ideas from source coding with side information [13], [15], [16].

Loosely speaking, cooperation yields highest achievable rates when the source-relay channel quality is

very high, and observation yields highest achievable rates when the relay-destination channel quality is

very high. Various extensions to the case of multiple relays have appeared in the work of Schein and

Gallager [17], [18], Gupta and Kumar [19], [20], Gastpar et. al [21]–[23], and Reznik et. al [24]. For

channels with multiple information sources, Kramer and Wijngaarden [25] consider a multiple-access

channel in which the sources communicate to a single destination and share a single relay.

2) Multiple Access Channels with Generalized Feedback: Work by Carleial [26] and Willems et. al

[27]–[30] examines multiple-access channels with generalized feedback. Here the generalized feedback

allows the sources to essentially act as relays for one another. This model relates most closely to

the wireless channels we have in mind. Willems’ construction [28] can be viewed as a two-terminal

generalization of the cooperation scheme in [5]; Carleial’s construction [26] may be viewed as a two-

terminal generalization of the observation scheme in [5]. Sendonaris et. al introduce multipath fading

into the model of [26], [28], calling their approaches for this system model user cooperation diversity

[6], [31], [32]. For ergodic fading, they illustrate that the adapted coding scheme of [28] enlarges the

achievable rate region, and they briefly illustrate how cooperation reduces outage probability.

1At a high level, degradedness means that the destination receives a corrupted version of what the relay receives, all conditioned

on the relay transmit signal. While this class is mathematically convenient, none of the wireless channels found in practice are

well-modeled by this class.

2The names facilitation and cooperation were introduced in [5], but the Cover and El Gamal did not give a name to their

third approach. We use the name observation throughout the paper for convenience.
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C. Summary of Results

We now highlight the results of the present paper, many of which were initially reported in [33], [34],

and recently extended in [35]. This paper develops low-complexity cooperative diversity protocols that

explicitly take into account certain implementation constraints in the cooperating radios. Specifically,

while previous work on relay and cooperative channels allows the terminals to transmit and receive

simultaneously, i.e., full-duplex, we constrain them to employ half-duplex transmission. Furthermore,

although previous work employs channel state information (CSI) at the transmitters in order to exploit

coherent transmission, we utilize CSI at the receivers only. Finally, although previous work focuses

primarily on ergodic settings and characterizes performance via Shannon capacity or capacity regions, we

focus on non-ergodic or delay-constrained scenarios and characterize performance by outage probability.

We outline several cooperative protocols and demonstrate their robustness to fairly general channel

conditions. In addition to direct transmission, we examine fixed relaying protocols in which the relay

either amplifies what it receives, or fully decodes, re-encodes, and re-transmits the source message. We

call these options amplify-and-forward and decode-and-forward, respectively. Obviously, these approaches

are inspired by the observation [5], [17], [26] and cooperation [5], [6], [28] schemes, respectively, but

we intentionally limit the complexity of our protocols for ease of potential implementation. Furthermore,

our analysis suggests that cooperating radios may also employ threshold tests on the measured channel

quality between them, to obtain adaptive protocols, called selection relaying, that choose the strategy

with best performance. In addition, adaptive protocols based upon limited feedback from the destination

terminal, called incremental relaying, are also developed. Selection and incremental relaying protocols

represent new directions for relay and cooperative transmission, building upon existing ideas.

For scenarios in which channel state information is unavailable to the transmitters, even full-duplex

cooperation cannot improve the sum capacity for ergodic fading [36]. Consequently, we focus on delay-

limited or non-ergodic scenarios, and evaluate performance of our protocols in terms of outage probability

[37]. We show analytically that, except for fixed decode-and-forward, each of our cooperative protocols

achieves full diversity, i.e., outage probability decays proportional to 1/SNR2, where SNR is signal-to-

noise ratio (SNR) of the channel, while it decays proportional to 1/SNR without cooperation. At fixed

low rates, amplify-and-forward and selection decode-and-forward are at most 1.5 dB from optimal and

offer large power or energy savings over direct transmission. For sufficiently high rates, direct transmission

becomes preferable to fixed and selection relaying, because these protocols repeat information all the time.

Incremental relaying exploits limited feedback to overcome this bandwidth inefficiency by repeating only
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rarely. The degree to which these protocols are optimal among all cooperative schemes remains an open

question, especially for high rates. More broadly, the relative attractiveness of the various schemes can

depend upon the network architecture and implementation considerations.

D. Outline

An outline of the paper is as follows. Section II describes our system model for the wireless networks

under consideration. Section III outlines fixed, selection, and incremental relaying protocols at a high

level. Section IV characterizes the outage behavior of the various protocols in terms of outage events

and outage probabilities, using several results for exponential random variables developed in Appendix I.

Section V compares the results from a number of perspectives, and Section VI offers some concluding

remarks.

II. SYSTEM MODEL

In our model for the wireless channel in Fig. 1, narrowband transmissions suffer the effects of frequency

nonselective fading and additive noise. Our analysis in Section IV focuses on the case of slow fading, to

capture scenarios in which delay constraints are on the order of the channel coherence time, and measures

performance by outage probability, to isolate the benefits of space diversity. While our cooperative

protocols can be naturally extended to the kinds of wideband and highly mobile scenarios in which

frequency- and time-selective fading, respectively, are encountered, the potential impact of our protocols

becomes less substantial as other forms of diversity can be exploited in the system.

A. Medium Access

As in many current wireless networks, such as cellular and wireless LANs, we divide the available

bandwidth into orthogonal channels and allocate these channels to the transmitting terminals, allowing our

protocols to be readily integrated into existing networks. As a convenient by-product of this choice, we are

able to treat the multiple-access (single receiver) and interference (multiple receivers) cases described in

Section I-A simultaneously, as a pair of point-to-point channels with signaling between the transmitters.

Furthermore, removing the interference between the terminals at the destination radio(s) substantially

simplifies the receiver algorithms and the outage analysis for purposes of exposition.

For all of our cooperative protocols, transmitting terminals must also process their received signals;

however, current limitations in radio implementation preclude the terminals from full-duplex operation,

i.e., transmitting and receiving at the same time in the same frequency band. Because of severe attenuation
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T1 Tx+T2 Rx T2 Relay T2 Tx+T1 Rx T1 Relay

Fig. 2. Example time-division channel allocations for (a) direct transmission with interference, (b) orthogonal direct transmission,

and (c) orthogonal cooperative diversity. We focus on orthogonal transmissions of the form (b) and (c) throughout the paper.

over the wireless channel, and insufficient electrical isolation between the transmit and receive circuitry,

a terminal’s transmitted signal drowns out the signals of other terminals at its receiver input.3 Thus, to

ensure half-duplex operation, we further divide each channel into orthogonal subchannels. Fig. 2 illustrates

our channel allocation for an example time-division approach with two terminals.

B. Equivalent Channel Models

Under the above orthogonality constraints, we can now conveniently, and without loss of generality,

characterize our channel models using a time-division notation; frequency-division counterparts to this

model are straightforward. Due to the symmetry of the channel allocations, we focus on the message

of the “source” terminal Ts, which potentially employs terminal Tr as a “relay”, in transmitting to the

“destination” terminal Td, where s, r ∈ {1, 2} and d ∈ {3, 4}. We utilize a baseband-equivalent, discrete-

time channel model for the continuous-time channel, and we consider N consecutive uses of the channel,

where N is large.

3Typically a terminal’s transmit signal is 100 − 150 dB above its received signal.
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For direct transmission, our baseline for comparison, we model the channel as

yd[n] = as,d xs[n] + zd[n] (1)

for, say, n = 1, . . . , N/2, where xs[n] is the source transmitted signal, and yd[n] is the destination received

signal. The other terminal transmits for n = N/2 + 1, . . . , N as Fig. 2(b) depicts. Thus, in the baseline

system each terminal utilizes only half of the available degrees of freedom of the channel.

For cooperative diversity, we model the channel during the first half of the block as

yr[n] = as,r xs[n] + zr[n] (2)

yd[n] = as,d xs[n] + zd[n] (3)

for, say, n = 1, . . . , N/4, where xs[n] is the source transmitted signal and yr[n] and yd[n] are the relay

and destination received signals, respectively. For the second half of the block, we model the received

signal as

yd[n] = ar,d xr[n] + zd[n] (4)

for n = N/4+1, . . . , N/2, where xr[n] is the relay transmitted signal and yd[n] is the destination received

signal. A similar setup is employed in the second half of the block, with the roles of the source and relay

reversed, as Fig. 2(c) depicts. Note that, while again half the degrees of freedom are allocated to each

source terminal for transmission to its destination, only a quarter of the degrees of freedom are available

for communication to its relay.

In (1)-(4), ai,j captures the effects of path-loss, shadowing, and frequency nonselective fading, and zj[n]

captures the effects of receiver noise and other forms of interference in the system, where i ∈ {s, r}
and j ∈ {r, d}. We consider the scenario in which the fading coefficients are known to, i.e., accurately

measured by, the appropriate receivers, but not fully known to, or not exploited by, the transmitters.

Statistically, we model ai,j as zero-mean, independent, circularly-symmetric complex Gaussian random

variables with variances σ2
i,j . Furthermore, we model zj[n] as zero-mean mutually independent, circularly-

symmetric, complex Gaussian random sequences with variance N0.

C. Parameterizations

Two important parameters of the system are the SNR without fading and the spectral efficiency. We now

define these parameters in terms of standard parameters in the continuous-time channel. For a continuous-

time channel with bandwidth W Hz available for transmission, the discrete-time model contains W

two-dimensional symbols per second (2D/s).
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If the transmitting terminals have an average power constraint in the continuous-time channel model

of Pc Joules/s, we see that this translates into a discrete-time power constraint of P = 2Pc/W Joules/2D

since each terminal transmits in half of the available degrees of freedom, under both direct transmission

and cooperative diversity. Thus, the channel model is parameterized by the SNR random variables

SNR |ai,j|2, where

SNR
4
=

2Pc

N0W
=

P

N0
(5)

is the common SNR without fading. Throughout our analysis, we vary SNR, and allow for different

(relative) received SNRs through appropriate choice of the fading variances. As we will see, increasing

the source-relay SNR proportionally to increases in the source-destination SNR leads to the full diversity

benefits of the cooperative protocols.

In addition to SNR, transmission schemes are further parameterized by the rate r b/s, or spectral

efficiency

R
4
= 2r/W b/s/Hz (6)

attempted by the transmitting terminals. Note that (6) is the rate normalized by the number of degrees

of freedom utilized by each terminal, not by the total number of degrees of freedom in the channel.

Nominally, one could parameterize the system by the pair (SNR, R); however, our results lend more

insight, and are substantially more compact, when we parameterize the system by either of the pairs

(SNRnorm, R) or (SNR, Rnorm), where4

SNRnorm
4
=

SNR

2R − 1
, Rnorm

4
=

R

log
(

1 + SNRσ2
s,d

) . (7)

For an additive white Gaussian noise (AWGN) channel with bandwidth (W/2) and SNR given by SNRσ2
s,d,

SNRnorm > 1 is the SNR normalized by the minimum SNR required to achieve spectral efficiency R

[38]. Similarly, Rnorm < 1 is the spectral efficiency normalized by the maximum achievable spectral

efficiency, i.e., channel capacity [9], [10]. In this sense, parameterizations given by (SNRnorm, R) and

(SNR, Rnorm) are duals of one another. For our setting with fading, the two parameterizations yield tradeoffs

between different aspects of system performance: results under (SNRnorm, R) exhibit a tradeoff between

the normalized SNR gain and spectral efficiency of a protocol, while results under (SNR, Rnorm) exhibit

a tradeoff between the diversity order and normalized spectral efficiency of a protocol.

4Unless otherwise indicated, logarithms in this paper are taken to base 2.
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Note that, although we have parameterized the transmit powers and noise levels to be symmetric

throughout the network for purposes of exposition, asymmetries in average SNR and path-loss can be

lumped into the fading variances σ2
i,j . Furthermore, while the tools are powerful enough to consider

general rate pairs (R1, R2), we consider the equal rate point, i.e., R1 = R2 = R, for purposes of exposition.

III. COOPERATIVE DIVERSITY PROTOCOLS

In this section, we describe a variety of low-complexity cooperative diversity protocols that can be

utilized in the network of Fig. 1, including fixed, selection, and incremental relaying. These protocols

employ different types of processing by the relay terminals, as well as different types of combining

at the destination terminals. For fixed relaying, we allow the relays to either amplify their received

signals subject to their power constraint, or to decode, re-encode, and re-transmit the messages. Among

many possible adaptive strategies, selection relaying builds upon fixed relaying by allowing transmitting

terminals to select a suitable cooperative (or non-cooperative) action based upon the measured SNR

between them. Incremental relaying improves upon the spectral efficiency of both fixed and selection

relaying by exploiting limited feedback from the destination and relaying only when necessary.

In any of these cases, the radios may employ repetition or more powerful codes. We focus on repetition

coding throughout the sequel, for its low implementation complexity and ease of exposition. Destination

radios can appropriately combine their received signals by exploiting control information in the protocol

headers.

A. Fixed Relaying

1) Amplify-and-Forward: For amplify-and-forward transmission, the appropriate channel model is (2)–

(4). The source terminal transmits its information as xs[n], say, for n = 1, . . . , N/4. During this interval,

the relay processes yr[n], and relays the information by transmitting

xr[n] = β yr[n−N/4] , (8)

for n = N/4 + 1, . . . , N/2. To remain within its power constraint (with high probability), an amplifying

relay must use gain

β ≤
√

P

|as,r|2 P + N0
, (9)

where we allow the amplifier gain to depend upon the fading coefficient as,r between the source and relay,

which the relay estimates to high accuracy. This scheme can be viewed as repetition coding from two

separate transmitters, except that the relay transmitter amplifies its own receiver noise. The destination

August 6, 2003 DRAFT



IEEE TRANS. INFORM. THEORY 11

can decode its received signal yd[n] for n = 1, . . . , N/2 by first appropriately combining the signals from

the two subblocks using a suitably designed matched-filter (maximum-ratio combiner).

2) Decode-and-Forward: For decode-and-forward transmission, the appropriate channel model is again

(2)–(4). The source terminal transmits its information as xs[n], say, for n = 0, . . . , N/4. During this

interval, the relay processes yr[n] by decoding an estimate x̂s[n] of the source transmitted signal.

Under a repetition-coded scheme, the relay transmits the signal

xr[n] = x̂s[n−N/4]

for n = N/4 + 1, . . . , N/2.

Decoding at the relay can take on a variety of forms. For example, the relay might fully decode

the source message by estimating the source codeword, or it might employ symbol-by-symbol decoding

and allow the destination to perform full decoding. These options allow for trading off performance

and complexity at the relay terminal. Note that we focus on full decoding in the sequel; symbol-by-

symbol decoding of binary transmissions has been treated from an uncoded perspective in [39]. Again,

the destination employs a suitably modified matched filter to combine transmissions.

B. Selection Relaying

As we might expect, and the analysis in Section IV confirms, fixed decode-and-forward is limited by

direct transmission between the source and relay. However, since the fading coefficients are known to

the appropriate receivers, as,r can be measured to high accuracy by the cooperating terminals; thus, they

can adapt their transmission format according to the realized value of as,r.

This observation suggests the following class of selection relaying algorithms. If the measured |as,r|2

falls below a certain threshold, the source simply continues its transmission to the destination, in the

form of repetition or more powerful codes. If the measured |as,r|2 lies above the threshold, the relay

forwards what it received from the source, using either amplify-and-forward or decode-and-forward, in

an attempt to achieve diversity gain.

Selection relaying of this form should offer diversity because, in either case, two of the fading

coefficients must be small in order for the information to be lost. Specifically, if |as,r|2 is small, then

|as,d|2 must also be small for the information to be lost when the source continues its transmission.

Similarly, if |as,r|2 is large, then both |as,d|2 and |ar,d|2 must be small for the information to be lost

when the relay employs amplify-and-forward or decode-and-forward. We formalize this notion when we

consider outage performance of selection relaying in Section IV.
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C. Incremental Relaying

As we will see, fixed and selection relaying can make inefficient use of the degrees of freedom of

the channel, especially for high rates, because the relays repeat all the time. In this section, we describe

incremental relaying protocols that exploit limited feedback from the destination terminal, e.g., a single

bit indicating the success or failure of the direct transmission, that we will see can dramatically improve

spectral efficiency over fixed and selection relaying. These incremental relaying protocols can be viewed

as extensions of incremental redundancy, or hybrid automatic-repeat-request (ARQ), to the relay context.

As one example, consider the following protocol utilizing feedback and amplify-and-forward transmis-

sion. We nominally allocate the channels according to Fig. 2(b). First, the source transmits its information

to the destination at spectral efficiency R. The destination indicates success or failure by broadcasting a

single bit of feedback to the source and relay, which we assume is detected reliably by at least the relay.5 If

the source-destination SNR is sufficiently high, the feedback indicates success of the direct transmission,

and the relay does nothing. If the source-destination SNR is not sufficiently high for successful direct

transmission, the feedback requests that the relay amplify-and-forward what it received from the source.

In the latter case, the destination tries to combine the two transmissions. As we will see, protocols of this

form make more efficient use of the degrees of freedom of the channel, because they repeat only rarely.

Incremental decode-and-forward is also possible, but the analysis is more involved and its performance

is slightly worse than the above protocol.

IV. OUTAGE BEHAVIOR

In this section, we characterize performance of the protocols of Section III in terms of outage events

and outage probabilities [37]. To facilitate their comparison in the sequel, we also derive high SNR

approximations of the outage probabilities using results from Appendix I. For fixed fading realizations,

the effective channel models induced by the protocols are variants of well-known channels with additive

white Gaussian noise. As a function of the fading coefficients viewed as random variables, the mutual

information for a protocol is a random variable denoted by I ; in turn, for a target rate R, I < R denotes

the outage event, and Pr [I < R] denotes the outage probability.

5Such an assumption is reasonable if the destination encodes the feedback bit with a very low-rate code. Even if the relay

cannot reliably decode, useful protocols can be developed and analyzed. For example, a conservative protocol might have the

relay amplify-and-forward what it receives from the source in all cases except when the destination reliably receives the direct

transmission and the relay reliably decodes the feedback bit.
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A. Direct Transmission

To establish baseline performance, under direct transmission, the source terminal transmits over the

channel (1). The maximum average mutual information between input and output in this case, achieved by

independent and identically-distributed (i.i.d.) zero-mean, circularly-symmetric complex Gaussian inputs,

is given by

ID = log
(
1 + SNR |as,d|2

)
(10)

as a function of the fading coefficient as,d. The outage event for spectral efficiency R is given by ID < R

and is equivalent to the event

|as,d|2 <
2R − 1

SNR
. (11)

For Rayleigh fading, i.e., |as,d|2 exponentially distributed with parameter σ−2
s,d , the outage probability

satisfies6

pout
D (SNR, R)

4
= Pr [ID < R] = Pr

[

|as,d|2 <
2R − 1

SNR

]

= 1− exp

(

− 2R − 1

SNRσ2
s,d

)

∼ 1

σ2
s,d

· 2R − 1

SNR
, SNR large , (12)

where we have utilized the results of Fact 1 in Appendix I with λ = 1/σ2
s,d, t = SNR, and g(t) = (2R−1)/t.

B. Fixed Relaying

1) Amplify-and-Forward: The amplify-and-forward protocol produces an equivalent one-input, two-

output complex Gaussian noise channel with different noise levels in the outputs. As Appendix II details,

the maximum average mutual information between the input and the two outputs, achieved by i.i.d.

complex Gaussian inputs, is given by

IAF =
1

2
log
(
1 + SNR |as,d|2 + f

(
SNR |as,r|2, SNR |ar,d|2

) )
(13)

as a function of the fading coefficients, where

f(x, y)
4
=

xy

x + y + 1
. (14)

We note that the amplifier gain β does not appear in (13), because the constraint (9) is met with equality.

6As we develop more formally in Appendix I, the approximation f(SNR) ∼ g(SNR), SNR large, is in the sense of

f(SNR)/g(SNR)→ 1 as SNR→∞.
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The outage event for spectral efficiency R is given by IAF < R and is equivalent to the event

|as,d|2 +
1

SNR
f
(
SNR |as,r|2, SNR |ar,d|2

)
<

22R − 1

SNR
. (15)

For Rayleigh fading, i.e., |ai,j|2 independent and exponentially distributed with parameters σ−2
i,j , analytic

calculation of the outage probability becomes involved, but we can approximate its high SNR behavior

as

pout
AF (SNR, R)

4
= Pr [IAF < R] ∼

(

1

2σ2
s,d

σ2
s,r + σ2

r,d

σ2
s,rσ

2
r,d

)

·
(

22R − 1

SNR

)2

, SNR large , (16)

where we have utilized the results of Claim 1 in Appendix I, with

u = |as,d|2, v = |as,r|2, w = |ar,d|2

λu = σ−2
s,d , λv = σ−2

s,r , λw = σ−2
r,d

g(ε) = (22R − 1)ε, t = SNR, h(t) = 1/t .

2) Decode-and-Forward: To analyze decode-and-forward transmission, we examine a particular de-

coding structure at the relay. Specifically, we require the relay to fully decode the source message;

examination of symbol-by-symbol decoding at the relay becomes involved because it depends upon the

particular coding and modulation choices. The maximum average mutual information for repetition-coded

decode-and-forward can be readily shown to be

IDF =
1

2
min

{
log
(
1 + SNR |as,r|2

)
, log

(
1 + SNR |as,d|2 + SNR |ar,d|2

)}
(17)

as a function of the fading random variables. The first term in (17) represents the maximum rate at which

the relay can reliably decode the source message, while the second term in (17) represents the maximum

rate at which the destination can reliably decode the source message given repeated transmissions from

the source and destination. Requiring both the relay and destination to decode perfectly results in the

minimum of the two mutual informations in (17). We note that such forms are typical of relay channels

with full decoding at the relay [5].

The outage event for spectral efficiency R is given by IDF < R and is equivalent to the event

min
{
|as,r|2, |as,d|2 + |ar,d|2

}
<

22R − 1

SNR
. (18)

For Rayleigh fading, the outage probability for repetition-coded decode-and-forward can be computed

according to

pout
DF (SNR, R)

4
= Pr [IDF < R]

= Pr
[
|as,r|2 < g(SNR)

]
+ Pr

[
|as,r|2 ≥ g(SNR)

]
Pr
[
|as,d|2 + |ar,d|2 < g(SNR)

]
(19)
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where g(SNR) = [22R − 1]/SNR. Although we may readily compute a closed form expression for (19),

for compactness we examine the large SNR behavior of (19) by computing the limit

1

g(SNR)
pout

DF (SNR, R) =
1

g(SNR)
Pr
[
|as,r|2 < g(SNR)

]

︸ ︷︷ ︸

→1/σ2
s,r

+ Pr
[
|as,r|2 ≥ g(SNR)

]

︸ ︷︷ ︸

→1

1

g(SNR)
Pr
[
|as,d|2 + |ar,d|2 < g(SNR)

]

︸ ︷︷ ︸

→0

→ 1/σ2
s,r

as SNR→∞, using the results of Facts 1 and 2 in Appendix I. Thus, we conclude that

pout
DF (SNR, R) ∼ 1

σ2
s,r

· 22R − 1

SNR
, SNR large. (20)

The 1/SNR behavior in (20) indicates that fixed decode-and-forward does not offer diversity gains for

large SNR, because requiring the relay to fully decode the source information limits the performance of

decode-and-forward to that of direct transmission between the source and relay.

C. Selection Relaying

To overcome the shortcomings of decode-and-forward transmission, we described selection relaying

corresponding to adaptive versions of amplify-and-forward and decode-and-forward, both of which fall

back to direct transmission if the relay cannot decode. We cannot conclude whether or not these protocols

are optimal, because the capacities of general relay and related channels are long-standing open problems;

however, as we will see, selection decode-and-forward enables the cooperating terminals to exploit full

spatial diversity and overcome the limitations of fixed decode-and-forward.

As an example analysis, we determine the performance of selection decode-and-forward. Its mutual

information is somewhat involved to write down in general; however, in the case of repetition coding at

the relay, using (10) and (17), it can be readily shown to be

ISDF =







1
2 log

(
1 + 2 SNR|as,d|2

)
|as,r|2 < g(SNR)

1
2 log

(
1 + SNR|as,d|2 + SNR|ar,d|2

)
|as,r|2 ≥ g(SNR)

(21)

where g(SNR) = [22R−1]/SNR. The first case in (21) corresponds to the relay not being able to decode and

the source repeating its transmission; here, the maximum average mutual information is that of repetition

coding from the source to the destination, hence the extra factor of 2 in the SNR. The second case in (21)
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corresponds to the relay being able to decode and repeating the source transmission; here, the maximum

average mutual information is that of repetition coding from the source and relay to the destination.

The outage event for spectral efficiency R is given by ISDF < R and is equivalent to the event

(

{|as,r|2 < g(SNR)}
⋂

{2|as,d|2 < g(SNR)}
)

⋃ (

{|as,r|2 ≥ g(SNR)}
⋂

{|as,d|2 + |ar,d|2 < g(SNR)}
)

. (22)

The first (resp. second) event of the union in (22) corresponds to the first (resp. second) case in (21). We

observe that adapting to the realized fading coefficient ensures that the protocol performs no worse than

direct transmission, except for the fact that it potentially suffers the bandwidth inefficiency of repetition

coding.

Because the events in the union of (22) are mutually exclusive, the outage probability becomes a sum,

pout
SDF (SNR, R)

4
= Pr [ISDF < R]

= Pr
[
|as,r|2 < g(SNR)

]
Pr
[
2|as,d|2 < g(SNR)

]

+ Pr
[
|as,r|2 ≥ g(SNR)

]
Pr
[
|as,d|2 + |ar,d|2 < g(SNR)

]
, (23)

and we may readily compute a closed form expression for (23). For comparison to our other protocols,

we compute the large SNR behavior of (23) by computing the limit

1

g2(SNR)
pout

SDF (SNR, R) =
1

g(SNR)
Pr
[
|as,r|2 < g(SNR)

]

︸ ︷︷ ︸

→1/σ2
s,r

1

g(SNR)
Pr
[
2|as,d|2 < g(SNR)

]

︸ ︷︷ ︸

→1/(2σ2

s,d)

+ Pr
[
|as,r|2 ≥ g(SNR)

]

︸ ︷︷ ︸

→1

1

g2(SNR)
Pr
[
|as,d|2 + |ar,d|2 < g(SNR)

]

︸ ︷︷ ︸

→1/(2σ2

s,dσ2

r,d)

→
(

1

2σ2
s,d

σ2
s,r + σ2

r,d

σ2
s,rσ

2
r,d

)

(24)

as SNR → ∞, using the results of Facts 1 and 2 of Appendix I. Thus, we conclude that the large SNR

performance of selection decode-and-forward is identical to that of fixed amplify-and-forward.

Analysis of more general selection relaying becomes involved because there are additional degrees of

freedom in choosing the thresholds for switching between the various options such as direct, amplify-

and-forward, and decode-and-forward. While a potentially useful direction for future research, a detailed

analysis of such protocols is beyond the scope of this paper.
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D. Bounds for Cooperative Diversity

We now develop performance limits for fixed and selection relaying. If we suppose that the source and

relay know each other’s messages a priori, then instead of direct transmission, each would benefit from

using a space-time code for two transmit antennas. In this sense, the outage probability of conventional

transmit diversity [2]–[4] represents an optimistic lower bound on the outage probability of cooperative

diversity. The following sections develop two such bounds: an unconstrained transmit diversity bound,

and an orthogonal transmit diversity bound that takes into account the half-duplex constraint.

1) Transmit Diversity Bound: To utilize a space-time code for each terminal, we allocate the channel

as in Fig. 2(b). Both terminals transmit in all the degrees of freedom of the channel, so their transmitted

power is P/2 Joules/2D, half that of direct transmission. The spectral efficiency for each terminal remains

R.

For transmit diversity, we model the channel as

yd[n] =
[

as,d ar,d

]




xs[n]

xr[n]



+ zd[n] , (25)

for, say, n = 0, . . . , N/2. As developed in Appendix III, an optimal signaling strategy, in terms of

minimizing outage probability in the large SNR regime, is to encode information using
[

xs xr

]T
i.i.d.

complex Gaussian, each with power P/2. Using this result, the maximum average mutual information

as a function of the fading coefficients is given by

IT = log

(

1 +
SNR

2

[
|as,d|2 + |ar,d|2

]
)

. (26)

The outage event IT < R is equivalent to the event

|as,d|2 + |ar,d|2 <
2R − 1

(SNR/2)
. (27)

For |ai,j|2 exponentially distributed with parameters σ−2
i,j , the outage probability satisfies

pout
T (SNR, R)

4
= Pr [IT < R]

∼ 2

σ2
s,dσ

2
r,d

·
(

2R − 1

SNR

)2

, SNR large , (28)

where we have applied the results of Fact 2 in Appendix I.

2) Orthogonal Transmit Diversity Bound: The transmit diversity bound (28) does not take into account

the half-duplex constraint. To capture this effect, we constrain the transmit diversity scheme to be

orthogonal.
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When the source and relay can cooperate perfectly, an equivalent model to (25), incorporating the relay

orthogonality constraint, consists of parallel channels

yd[n] = as,d xs[n] + zd[n], n = 0, . . . , N/4 (29)

yd[n] = ar,d xr[n] + zd[n], n = N/4 + 1, . . . , N/2 (30)

This pair of parallel channels is utilized half as many times as the corresponding direct transmission

channel, so the source must transmit at twice spectral efficiency in order to achieve the same spectral

efficiency as direct transmission.

For each fading realization, the maximum average mutual information can be obtained using indepen-

dent complex Gaussian inputs. Allocating a fraction α of the power to xs, and the remaining fraction

(1− α) of the power to xr, the average mutual information is given by

IP =
1

2
log
[(

1 + 2αSNR|as,d|2
) (

1 + 2(1 − α)SNR|ar,d|2
)]

, (31)

The outage event IP < R is equivalent to the outage region

α|as,d|2 + (1− α)|ar,d|2 + 2α(1 − α)SNR|as,d|2|ar,d|2 <
22R − 1

2 SNR
. (32)

As in the case of amplify-and-forward, analytical calculation of the outage probability (32) becomes

involved; however, we can approximate its high SNR behavior for Rayleigh fading as

pout
P (SNR, R)

4
= Pr [IP < R]

∼ 1

4α(1 − α)σ2
s,dσ

2
r,d

· 22R [2R ln(2)− 1] + 1

SNR
2 , SNR large , (33)

using the results of Claim 2 in Appendix I, with

u = α|as,d|2, v = (1− α)|ar,d|2

λu = 1/(ασ2
s,d), λv = 1/((1 − α)σ2

r,d)

ε = [22R − 1]/(2 SNR), t = 22R − 1 .

Clearly (33) is minimized for α = 1/2, yielding

pout
P (SNR, R) ∼ 1

σ2
s,dσ

2
r,d

· 22R [2R ln(2)− 1] + 1

SNR
2

, SNR large , (34)

so that i.i.d. complex Gaussian inputs again minimize outage probability for large SNR. Note that for

R→ 0, (34) converges to (28), the transmit diversity bound without orthogonality constraints. Thus, the

orthogonality constraint has little effect for small R, but induces a loss in SNR proportional to

√

R ln(2)
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with respect to the unconstrained transmit diversity bound for large R.

E. Incremental Relaying

Outage analysis of incremental relaying is complicated by its variable-rate nature. In addition to outage

probability, another relevant quantity in the analysis is the expected spectral efficiency.

For amplify-and-forward with feedback, the outage probability is given by

pout
IAF (SNR, R) =Pr

[
|as,d|2 ≤ g(SNR)

]

· Pr

[

|as,d|2 +
1

SNR
f(SNR|as,r|2, SNR|ar,d|2) ≤ g(SNR)

∣
∣
∣
∣
|as,d|2 ≤ g(SNR)

]

=Pr

[

|as,d|2 +
1

SNR
f(SNR|as,r|2, SNR|ar,d|2) ≤ g(SNR)

]

, (35)

where g(SNR) = [2R − 1]/SNR and where f(·, ·) is given in (14). The second equality follows from the

fact that the intersection of the direct and amplify-and-forward outage events is exactly the amplify-and-

forward outage event. Furthermore, the expected spectral efficiency can be computed as

R = RPr

[

|as,d|2 >
2R − 1

SNR

]

+
R

2
Pr

[

|as,d|2 ≤
2R − 1

SNR

]

= R exp

(

−2R − 1

SNR

)

+
R

2

[

1− exp

(

−2R − 1

SNR

)]

=
R

2

[

1 + exp

(

−2R − 1

SNR

)]
4
= hSNR(R) , (36)

where the second equality follows from substituting standard exponential results for |as,d|2.

A fixed value of R can arise from several possible R, depending upon the value of SNR; thus, we see

that the preimage h−1
SNR

(R) can contain several points. We define a function h̃−1
SNR

(R)
4
= minh−1

SNR
(R) to

capture a useful mapping from R to R; for a given value of R, it seems clear from the outage expression

(35) that we want the smallest R possible.

For fair comparison to protocols without feedback, we characterize a modified outage expression in

the large SNR regime. Specifically,

pout
IAF

(

SNR, h̃−1
SNR

(R)
)

∼
(

1

2σ2
s,d

σ2
s,r + σ2

r,d

σ2
s,rσ

2
r,d

)

·
(

2R − 1

SNR

)2

, SNR large , (37)

where we have combined the results of Claims 1 and 3 in Appendix I.

Bounds for incremental relaying can be obtained by suitably normalizing the results developed Sec-

tion IV-D; however, we stress that treating protocols that exploit more general feedback, along with their

associated performance limits, is beyond the scope of this paper.
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V. DISCUSSION

In this section, we compare the outage results of Section IV. We begin with some observations for

statistically asymmetric networks, and then specialize the results to the case of statistically symmetric

networks, e.g., σ2
i,j = 1, without loss of generality.

A. Asymmetric Networks

As the results in Section IV indicate, for fixed rates, simple protocols such as fixed amplify-and-forward,

selection decode-and-forward, and incremental amplify-and-forward each achieve full (i.e., second-order)

diversity: their outage probability performance decays proportional to 1/SNR2 (cf. (16), (24), and (37)).

We now compare these protocols to the transmit diversity bound, discuss the impacts of spectral efficiency

and network geometry on performance, and examine their outage events.

1) Comparison to Transmit Diversity Bound: In the low spectral efficiency regime, the protocols

without feedback are within a factor of

[
22R − 1

2(2R − 1)

]
√
√
√
√1 +

(

σ2
r,d

σ2
s,r

)

≈

√
√
√
√1 +

(

σ2
r,d

σ2
s,r

)

in SNR from the transmit diversity bound, suggesting that the powerful benefits of multi-antenna systems

can indeed be obtained without the need for physical arrays. For statistically symmetric networks, e.g.,

σ2
i,j = 1, the loss is only

√
2 or 1.5 dB; more generally the loss decreases as the source-relay path

improves relative to the relay-destination path.

For larger spectral efficiencies, fixed and selection relaying lose an additional 3 dB per transmitted

bit/s/Hz with respect to the transmit diversity bound. This additional loss is due to two factors: the

half-duplex constraint, and the repetition-coded nature of the protocols. As Fig. 3 suggests, of the two,

repetition coding appears to be the more significant source of inefficiency in our protocols. In Fig. 3, the

SNR loss of orthogonal transmit diversity with respect to unconstrained transmit diversity is intended to

indicate the cost of the half-duplex constraint, and the loss of our cooperative diversity protocols with

respect to the transmit diversity bound indicates the cost of both imposing the half-duplex constraint and

employing repetition-like codes. The figure suggests that, although the half-duplex constraint contributes,

“repetition” in the form of amplification or repetition coding is the major cause of SNR loss for high

rates. By contrast, incremental amplify-and-forward overcomes these additional losses by repeating only

when necessary.
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Fig. 3. SNR loss for cooperative diversity protocols (solid) and orthogonal transmit diversity bound (dashed) relative to the

(unconstrained) transmit diversity bound.

2) Outage Events: It is interesting that amplify-and-forward and selection decode-and-forward have

the same high SNR performance, especially considering the different shapes of their outage events (cf.

(15), (22)), which are shown in the low spectral-efficiency regime in Fig. 4. When the relay can fully

decode the source message, i.e., SNRnorm|as,r|2 ≥ 2, and repeat it, the outage event for selection decode-

and-forward is a strict subset of the outage event of amplify-and-forward, with amplify-and-forward

approaching that of selection decode-and-forward as |as,r|2 → ∞. On the other hand, when the relay

cannot fully decode the source message, i.e., SNRnorm|as,r|2 < 2, and the source repeats, the outage event

of amplify-and-forward is neither a subset nor a superset of the outage event for selection decode-and-
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Fig. 4. Outage event boundaries for amplify-and-forward (solid) and selection decode-and-forward (dashed and dash-dotted) as

functions of the realized fading coefficient |as,r|
2 between the cooperating terminals. Outage events are to the left and below the

respective outage event boundaries. Successively lower solid curves correspond to amplify-and-forward with increasing values

of |as,r|
2. The dashed curve corresponds to the outage event for selection decode-and-forward when the relay can fully decode,

i.e., SNRnorm|as,r|
2 ≥ 2, and the relay repeats, while the dash-dotted curve corresponds to the outage event of selection decode-

and-forward when the relay cannot fully decode, i.e., SNRnorm|as,r|
2 < 2, and the source repeats. Note that the dash-dotted

curve also corresponds to the outage event for direct transmission.
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forward. Apparently, averaging over the Rayleigh fading coefficients eliminates the differences between

amplify-and-forward and selection decode-and-forward, at least in the high SNR regime.

3) Effects of Geometry: To study the effect of network geometry on performance, we compare the

high SNR behavior of direct transmission with that of incremental amplify-and-forward. Comparison

with fixed and selection relaying is similar, except for the additional impact of SNR loss with increasing

spectral efficiency. Using a common model for the path-loss (fading variances), we set σ2
i,j ∝ d−α

i,j , where

di,j is the distance between terminals i and j, and α is the path-loss exponent [7]. Under this model,

comparing (12) with (37), assuming both approximations are good for the SNR of interest, we prefer

incremental amplify-and-forward whenever
(

ds,r

ds,d

)α

+

(
dr,d

ds,d

)α

< 2 SNRnorm . (38)

Thus, incremental amplify-and-forward is useful whenever the relay lies within a certain normalized

ellipse having the source and destination as its foci, with the size of the ellipse increasing in SNRnorm.

What is most interesting about the structure of this “utilization region” for incremental amplify-and-

forward is that it is symmetric with respect to the source and destination. By comparison, a certain circle

about only the source gives the utilization region for fixed decode-and-forward.

Utilization regions of the form (38) may be useful in developing higher layer network protocols

that select between direct transmission and cooperative diversity using one of a number of potential

relays. Such algorithms and their performance represent an interesting area of further research, and a key

ingredient for fully incorporating cooperative diversity into wireless networks.

B. Symmetric Networks

We now specialize all of our results to the case of statistically symmetric networks, e.g., σ2
i,j = 1

without loss of generality. We develop the results, summarized in Table I, under the two parameterizations

(SNRnorm, R) and (SNR, Rnorm), respectively.

1) Results under Different Parameterizations: Parameterizing the outage results from Section IV in

terms of (SNRnorm, R) is straightforward because R remains fixed; we simply substitute SNR = SNRnorm(2R−
1) to obtain the results listed in the second column of Table I. Parameterizing the outage results from

Section IV in terms of (SNR, Rnorm) is a bit more involved because R = Rnorm log(1 + SNR) increases

with SNR.

The results in Appendix I are all general enough to allow this particular parameterization. To demon-

strate their application, we consider amplify-and-forward. The outage event under this alternative param-
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Protocol pout (SNRnorm, R) , high SNRnorm pout (SNR, Rnorm) , high SNR

Direct 1/SNRnorm 1/SNR(1−Rnorm)

Amplify-and-Forward (2R + 1)2/SNR2
norm 1/SNR2(1−2Rnorm)

Decode-and-Forward (2R + 1)/SNRnorm 1/SNR(1−2Rnorm)

Selection Decode-and-Forward (2R + 1)2/SNR2
norm 1/SNR2(1−2Rnorm)

Incremental Amplify-and-Forward 1/SNR2
norm 1/SNR2(1−Rnorm)

Transmit Diversity Bound 2/SNR2
norm 2/SNR2(1−Rnorm)

Orthogonal Transmit Diversity Bound
�

22R[2R ln(2)−1]+1

(2R−1)2 � /SNR2
norm 2[Rnorm ln(SNR) + 1]/SNR2(1−Rnorm)

TABLE I

SUMMARY OF OUTAGE PROBABILITY APPROXIMATIONS FOR STATISTICALLY SYMMETRIC NETWORKS.

eterization is given by

|as,d|2 +
1

SNR
f
(
SNR |as,r|2, SNR |ar,d|2

)
<

22R − 1

SNR
=

(1 + SNR)2Rnorm − 1

SNR
.

For Rnorm < 1/2, the outage probability is approximately

pout
AF (SNR, Rnorm) ∼

[
SNR

(1 + SNR)2Rnorm − 1

]−2

∼ 1/SNR2(1−2Rnorm) , SNR large ,

where we have utilized the results of Claim 1 in Appendix I with

u = |as,d|2, v = |as,r|2, w = |ar,d|2, λu = λv = λw = 1

g(ε) = ε [(1 + 1/ε)2Rnorm − 1], t = SNR, h(t) = 1/t .

The other results listed in the third column of Table I can be obtained in similar fashion using the

appropriate results from Appendix I.

2) Fixed R Systems: Fig. 5 shows outage probabilities for the various protocols as functions of SNRnorm

in the small, fixed R regime. Both exact and high-SNR approximations are displayed, demonstrating the

wide range over which the high-SNR approximations are useful. The diversity gains of our protocols

appear as steeper slopes in Fig. 5, from a factor of 10 decrease in outage probability for each additional

10 dB of SNR in the case of direct transmission, to a factor of 100 decrease in outage probability for

each additional 10 dB of SNR in the case of cooperative diversity. The relative loss of 1.5 dB for fixed

amplify-and-forward and selection decode-and-forward with respective to the transmit diversity bound is

also apparent. These curves shift to the right by 3 dB for each additional bit/s/Hz of spectral efficiency
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Fig. 5. Outage probabilities vs. SNRnorm, small R regime, for statistically symmetric networks, i.e., σ2
i,j = 1. The outage

probability curve for amplify-and-forward was obtained via Monte-Carlo simulation, while the other curves are computed from

analytical expressions. Solid curves correspond to exact outage probabilities, while dash-dotted curves correspond to the high-

SNR approximations from Table I. The dashed curve corresponds to the transmit diversity bounds in this low spectral efficiency

regime.

in the high R regime. By contrast, the performance of incremental amplify-and-forward is unchanged at

high SNR for increasing R. Note that, at outage probabilities on the order of 10−3, cooperative diversity

achieves large energy savings over direct transmission—on the order of 12–15 dB.

3) Fixed Rnorm Families of Systems: Another way to examine the high spectral efficiency regime

as SNR becomes large is to allow R to grow with increasing SNR. In particular, the choice of R =

Rnorm log(1 + SNR) is a natural one: for slower growth, the outage results essentially behave like fixed R
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systems for sufficiently large SNR, while for faster growth, the outage probabilities all tend to 1. These

observations motivate our parameterization in terms of (SNR, Rnorm).

Parameterizing performance in terms of (SNR, Rnorm) leads to interesting tradeoffs between the diversity

order and normalized spectral efficiency of a protocol. Because these tradeoffs arise naturally in the context

of multi-antenna systems [9], [10], it is not surprising that they show up in the context of cooperative

diversity. Diversity order can be viewed as the power to which SNR
−1 is raised in our outage expressions

in the third column of Table I. To be precise, we can define diversity order as

∆(Rnorm)
4
= lim

SNR→∞

− log pout (SNR, Rnorm)

log SNR
. (39)

Larger ∆(Rnorm) implies more robustness to fading (faster decay in the outage probability with increasing

SNR), but ∆(Rnorm) generally decreases with increasing Rnorm. For example, the diversity order of

amplify-and-forward is ∆AF (Rnorm) = 2(1 − 2Rnorm); thus, it’s maximum diversity order 2 is achieved

as Rnorm → 0, and maximum normalized spectral efficiency 1/2 is achieved as ∆AF → 0. Fig. 6 compares

the tradeoffs for direct transmission and cooperative diversity. As we might expect from our previous

discussion, incremental amplify-and-forward yields the highest ∆(Rnorm) for each Rnorm; this curve also

corresponds to the transmit diversity bound in the high SNR regime. What is most interesting about the

results in Fig. 6 is the sharp transition at Rnorm = 1/3 between our preference for amplify-and-forward

(as well as selection decode-and-forward) for Rnorm < 1/3 and our preference for direct transmission for

Rnorm > 1/3.

VI. CONCLUSIONS

We develop in this paper a variety of low-complexity, cooperative protocols that enable a pair of

wireless terminals, each with a single antenna, to fully exploit spatial diversity in the channel. These

protocols blend different fixed relaying modes, specifically amplify-and-forward and decode-and-forward,

with strategies based upon adapting to channel state information between cooperating source terminals

(selection relaying) as well as exploiting limited feedback from the destination terminal (incremental re-

laying). For delay-limited and non-ergodic environments, we analyze the outage probability performance,

in many cases exactly, and in all cases using accurate, high-SNR approximations.

There are costs associated with our cooperative protocols. For one thing, cooperation with half-duplex

operation requires twice the bandwidth of direct transmission for a given rate, and leads to larger effective

SNR losses for increasing spectral efficiency. Furthermore, depending upon the application, additional

receive hardware may be required in order for the sources to relay for one another. Although this may
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Fig. 6. Diversity order − log pout (SNR, Rnorm) / log SNR vs. Rnorm for direct transmission and cooperative diversity.

not be the case in emerging ad hoc or multihop cellular networks, it would be the case in the uplink

of current cellular systems that employ frequency division duplexing. Finally, although our analysis has

not explicitly taken it into account, there may be additional power costs of relays operating instead of

powering down. Despite these costs, our analysis demonstrates significant performance enhancements,

particularly in the low spectral-efficiency regime (up to roughly 1 b/s/Hz) often found in practice. Like

other forms of diversity, these performance enhancements take the form of decreased transmit power for

the same reliability, increased reliability for the same transmit power, or some combination of the two.

The observations in Section V-B suggest that, among other issues, a key area of further research is
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exploring cooperative diversity protocols in the high spectral efficiency regime. It remains unclear at this

point whether our simple protocols are close to optimal in this regime, among all possible cooperative

diversity protocols, yet our results indicate that direct transmission eventually becomes preferable. Useful

work in this area would develop tighter lower bounds on performance, which is akin to developing

tighter converses for the relay channel [5], or demonstrating other protocols that are more efficient for

high spectral efficiencies. Some of our own work in this direction appears in [35].

More broadly, there are a number of channel circumstances in addition to those considered here that

warrant further investigation. In particular, for scenarios in which the transmitters obtain accurate knowl-

edge of the channel realizations, via feedback or other means, beamforming and power and bandwidth

allocation become possible. These options allow the cooperating terminals to adapt to their specific

channel conditions and geometry and select appropriate coding schemes for various regimes. Again,

better understanding of the relay channel will continue to yield insight on these problems.

We note that we have focused on the case of a pair of terminals cooperating; extension to more than

two terminals is straightforward except for the fact that comparatively more options arise. For example,

in the case of three cooperating terminals, one of the relays might amplify-and-forward the information,

while the other relay might decode-and-forward the information, or vise versa. Moreover, as the number

of terminals forming a network grows, higher layer protocols for organizing terminals into cooperating

groups become increasingly important. Some preliminary work in this direction is reported in [36]. Finally,

because cooperative diversity is inherently a network problem, it could be fruitful to take into account

additional higher layer network issues such as queuing of bursty data, link layer retransmissions, and

routing.

APPENDIX I

ASYMPTOTIC CDF APPROXIMATIONS

To keep the presentation in the main part of the paper concise, we collect in this appendix several

results for the limiting behavior of the cumulative distribution function (CDF) of certain combinations

of exponential random variables. All our results are of the form

lim
t→t0

P
u(t)(g1(t))

g2(t)
= c (40)

where: t is a parameter of interest; P
u(t)(g1(t)) is the CDF of a certain random variable u(t) that can,

in general, depend upon t; g1(t) and g2(t) are two (continuous) functions; and t0 and c are constants.

Among other things, for example, (40) implies the approximation P
u(t)(g1(t)) ∼ cg2(t) is accurate for t

close to t0.
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Fact 1: Let u be an exponential random variable with parameter λu . Then, for a function g(t) contin-

uous about t = t0 and satisfying g(t) → 0 as t → t0,

lim
t→t0

1

g(t)
Pu(g(t)) = λu . (41)

Fact 2: Let w = u + v , where u and v are independent exponential random variables with parameters

λu and λv , respectively. Then the CDF

Pw (w) =







1−
[(

λv

λv−λu

)

e−λuw +
(

λu

λu−λv

)

e−λv w
]

λu 6= λv

1− (1 + λw)e−λw λu = λv = λ

(42)

satisfies

lim
ε→0

1

ε2
Pw (ε) =

λuλv

2
. (43)

Moreover, if a function g(t) is continuous about t = t0 and satisfies g(t) → 0 as t → t0, then

lim
t→t0

1

g2(t)
Pw (g(t)) =

λuλv

2
. (44)

Claim 1: Let u, v , and w be independent exponential random variables with parameters λu , λv , and

λw , respectively. Let f(x, y) = (xy)/(x + y + 1) as in (14). Let ε be positive, and let g(ε) > 0 be

continuous with g(ε) → 0 and ε/g(ε) → c < ∞ as ε → 0. Then

lim
ε→0

1

g2(ε)
Pr [u + ε f (v/ε, w/ε) < g(ε)] =

λu (λv + λw )

2
. (45)

Moreover, if a function h(t) is continuous about t = t0 and satisfies h(t) → 0 as t → t0, then

lim
t→t0

1

g2(h(t))
Pr [u + h(t) f (v/h(t), w/h(t)) < g(h(t))] =

λu(λv + λw )

2
. (46)

The following lemma will be useful in the proof of Claim 1.

Lemma 1: Let δ be positive, and let rδ
4
= δ f (v/δ, w/δ), where v and w are independent exponential

random variables with parameters λv and λw , respectively. Let h(δ) > 0 be continuous with h(δ) → 0

and δ/h(δ) → d < ∞ as δ → 0. Then the probability Pr [rδ < δ] satisfies

lim
δ→0

1

h(δ)
Pr [rδ < h(δ)] = λv + λw . (47)

August 6, 2003 DRAFT



IEEE TRANS. INFORM. THEORY 30

Proof: (Of Lemma 1) We begin with a lower bound,

Pr [rδ < h(δ)]

= Pr [1/v + 1/w + δ/(vw) ≥ 1/h(δ)]

≥ Pr [1/v + 1/w ≥ 1/h(δ)]

≥ Pr [max(1/v , 1/w) ≥ 1/h(δ)]

= 1− Pr [v ≥ h(δ)] Pr [w ≥ h(δ)]

= 1− exp[−(λv + λw )h(δ)] , (48)

so, utilizing Fact 1,

lim inf
δ→0

1

h(δ)
Pr [rδ < h(δ)] ≥ λv + λw . (49)

To prove the other direction, let l > 1 be a fixed constant.

Pr [rδ < h(δ)]

= Pr [1/v + 1/w + δ/(vw) ≥ 1/h(δ)]

=

∫ ∞

0
Pr [1/v ≥ (1/h(δ) − 1/w)/(1 + δ/w)] pw (w)dw

≤ Pr [w < lh(δ)] +

∫ ∞

lh(δ)
Pr [1/v ≥ (1/h(δ) − 1/w)/(1 + δ/w)] pw (w)dw (50)

But

Pr [w < lh(δ)] /h(δ) ≤ λw l , (51)

which takes care of the first term of (50). To bound the second term of (50), let k > l be another fixed

constant, and note that
∫ ∞

lh(δ)
Pr [1/v ≥ (1/h(δ) − 1/w)/(1 + δ/w)] pw (w)dw

=

∫ ∞

kh(δ)
Pr [1/v ≥ (1/h(δ) − 1/w)/(1 + δ/w)] pw (w)dw

+

∫ kh(δ)

lh(δ)
Pr [1/v ≥ (1/h(δ) − 1/w)/(1 + δ/w)] pw (w)dw

≤ Pr [1/v ≥ (1− 1/k)/(h(δ) + δ/k)]

+λw

∫ kh(δ)

lh(δ)
Pr [1/v ≥ (1/h(δ) − 1/w)/(1 + δ/w)] dw , (52)

where the first term in the bound of (52) follows from the fact that

Pr [1/v ≥ (1/h(δ) − 1/w)/(1 + δ/w)]
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is non-increasing in w, and the second term in the bound of (52) follows from the fact that pw (w) =

λw exp(−λww) ≤ λw .

Now, the first term of (52) satisfies

Pr [1/v ≥ (1− 1/k)/(h(δ) + δ/k)] /h(δ) ≤ λv (1 + δ/(kh(δ)))/(1 − 1/k) (53)

and, by a change of variable w′ = w/h(δ), the second term of (52) satisfies

1

h(δ)

∫ kh(δ)

lh(δ)
Pr [1/v ≥ (1/h(δ) − 1/w)/(1 + δ/w)] dw

= h(δ)

∫ k

l

1

h(δ)

(

1− exp

[

−λv(h(δ) + δ/w′)

(1− 1/w′)

])

dw′

≤ h(δ)

∫ k

l
λv

(
1 + δ/(w′h(δ))

1− 1/w′

)

dw′

︸ ︷︷ ︸

B(δ,h(δ),k,l)

, (54)

where B(δ, h(δ), k, l) remains finite for any k > l > 1 as δ → 0.

Combining (51), (53), and (54), we have

1

h(δ)
Pr [rδ < h(δ)] ≤ λw l + λv

(
1 + δ/(kh(δ))

1− 1/k

)

+ h(δ)B(δ, h(δ), k, l) , (55)

and furthermore

lim sup
δ→0

1

h(δ)
Pr [rδ < h(δ)] ≤ λw l + λv

(
1 + d/k

1− 1/k

)

,

since limδ→0 B(δ, h(δ), k, l) < ∞ and, by assumption, h(δ) → 0 and δ/h(δ) → d as δ → 0.

The constants k > l > 1 are arbitrary. In particular, k can be chosen arbitrarily large, and l arbitrarily

close to 1. Hence,

lim sup
δ→0

1

h(δ)
Pr [rδ < h(δ)] ≤ λw + λv . (56)

Combining (49) with (56), the lemma is proved.

Proof: (Of Claim 1)

Pr [u + ε f (v/ε, w/ε) < g(ε)]

= Pr [u + rε < g(ε)]

=

∫ g(ε)

0
Pr [rε < g(ε) − u] pu(u)du

= g(ε)

∫ g(ε)

0
Pr
[
rε < g(ε)(1 − u′)

]
λue−λug(ε)u′du′

= g2(ε)

∫ 1

0
(1− u′)

[
Pr [rε < g(ε)(1 − u′)]

g(ε)(1 − u′)

]

λue
−λug(ε)u′du′, (57)
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where in the second equality we have used the change of variables u′ = u/g(ε). But by Lemma 1 with

δ = ε and h(δ) = g(δ)(1 − u′), the quantity in brackets approaches λv + λw as ε → 0, so we expect

lim
ε→0

1

g2(ε)
Pr [u + rε < g(ε)] = λu(λv + λw )

∫ 1

0
(1− u)du =

λu(λv + λw )

2
. (58)

To fully verify (58), we must utilize the lower and upper bounds developed in Lemma 1.

Using the lower bound (49), (57) satisfies

lim inf
ε→0

1

g2(ε)
Pr [u + rε < g(ε)]

≥ lim
ε→0

∫ 1

0

(
1− exp [−(λv + λw )g(ε)(1 − u′)]

g(ε)

)

λue
−λug(ε)u′du′

= λu(λv + λw )

∫ 1

0
(1− u′)du′ =

λu(λv + λw )

2
, (59)

where the first equality results from the Dominated Convergence Theorem [40] after noting that the

integrand is both bounded by and converges to the function λu(λv + λw )(1 − u′).

Using the upper bound (56), (57) satisfies

lim sup
ε→0

1

g2(ε)
Pr [u + rε < g(ε)]

≤ lim sup
ε→0

(λv/(1 − 1/k) + λw l)

∫ 1

0
(1− u′)λue

−λug(ε)u′du′

+ lim sup
ε→0

ε/g(ε)

∫ 1

0
λvλue−λug(ε)u′/(k − 1)du′

+ lim sup
ε→0

g(ε)

∫ 1

0
(1− u′)2B(ε, g(ε)(1 − u′), k, l)λue−λug(ε)u′du′

︸ ︷︷ ︸

D(ε,g(ε),k,l)

=
λu

[

λv

(
1+c/k
1−1/k

)

+ λw l
]

2
, (60)

where the last equality results from the fact ε/g(ε) → c and D(ε, g(ε), k, l) remains finite for all k > l > 1

even as ε → 0.

Again, the constants k > l > 1 are arbitrary. In particular, k can be chosen arbitrarily large, and l

arbitrarily close to 1. Hence,

lim sup
ε→0

1

g2(ε)
Pr [u + rε < g(ε)] ≤ λu(λv + λw )

2
. (61)

Combining (59) and (61) completes the proof.

Claim 2: Let u and v be independent exponential random variables with parameters λu and λv ,

respectively. Let ε be positive and let g(ε) > 0 be continuous with g(ε) → 0 as ε → 0. Define

h(ε)
4
= ε2 [(g(ε)/ε + 1) ln(g(ε)/ε + 1)− g(ε)/ε] . (62)
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Then

lim
ε→0

1

h(ε)
Pr [u + v + uv/ε < g(ε)] = λuλv . (63)

Moreover, if ε(t) is continuous about t = t0 with ε(t) → 0 as t → t0, then

lim
t→t0

1

h(ε(t))
Pr [u + v + uv/ε(t) < g(ε(t))] = λuλv . (64)

Proof: First, we write CDF in the form:

Pr [u + v + uv/ε < g(ε)]

=

∫ ∞

0
Pr [u + v + uv/ε < g(ε)| v = v] pv (v) dv

=

∫ g(ε)

0
Pr

[

u <
g(ε) − v

1 + v/ε

∣
∣
∣
∣
v = v

]

λve−λvv dv

=

∫ g(ε)

0

[

1− exp

(

−λu

[
g(ε) − v

1 + v/ε

])]

λve−λvv dv

= g(ε)

∫ 1

0

[

1− exp

(

−λu

[
g(ε)(1 − w)

1 + g(ε)w/ε

])]

λve−λv g(ε)w dw , (65)

where the last equality follows from the change of variables w = v/g(ε).

To upper bound (65), we use the identities 1− e−x ≤ x for all x ≥ 0 and e−y ≤ 1 for all y ≥ 0, so

that (65) becomes

Pr [u + v + uv/ε < g(ε)]

≤ g2(ε)λuλv

∫ 1

0

1− w

1 + g(ε)w/ε
dw

= λuλv g2(ε)
(g(ε)/ε + 1) ln(g(ε)/ε + 1)− g(ε)/ε

(g(ε)/ε)2

= λuλvh(ε) ,

whence

lim sup
ε→0

1

h(ε)
Pr [u + v + uv/ε < g(ε)] ≤ λuλv . (66)
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To lower bound (65), we use the concavity of 1− e−x, i.e., for any t > 0, 1 − e−x ≥ 1−e−t

t x for all

x ≤ t, and the identity e−y ≥ 1− y for all y ≥ 0, so that (65) becomes

Pr [u + v + uv/ε < g(ε)]

≥ g(ε)

∫ 1

0

[(

1− e−λug(ε)

λug(ε)

)

λug(ε)(1 −w)

1 + wg(ε)/ε

]

λv(1− λvg(ε)w) dw

= λuλv g2(ε)

(

1− e−λug(ε)

λug(ε)

)
∫ 1

0

[
1− w

1 + wg(ε)/ε

]

(1− λvg(ε)w) dw

≥ λuλvg2(ε)

(

1− e−λug(ε)

λug(ε)

)

(1− λvg(ε))

∫ 1

0

1− w

1 + wg(ε)/ε
dw

= λuλv

(

1− e−λug(ε)

λug(ε)

)

(1− λvg(ε)) g2(ε)
(g(ε)/ε + 1) ln(g(ε)/ε + 1)− g(ε)/ε

(g(ε)/ε)2

= λuλv

(

1− e−λug(ε)

λug(ε)

)

(1− λvg(ε)) h(ε) .

Thus,

lim inf
ε→0

1

h(ε)
Pr [u + v + uv/ε < g(ε)]

≥ λuλv lim
ε→0

(

1− e−λug(ε)

λug(ε)

)

(1− λvg(ε))

= λuλv . (67)

Since the bounds in (66) and (67) are equal, the claim is proved.

Claim 3: Suppose ft(s) → g(s) pointwise as t → t0, and that ft(s) is monotone increasing in s for

each t. Let ht(s) be such that ht(s) ≤ s, ht(s) → s pointwise as t → t0, and ht(s)/s is monotone

decreasing in s for each t. Define h̃−1
t (r)

4
= minh−1

t (r). Then

lim
t→t0

ft(h̃
−1
t (r)) = g(r) . (68)

Proof: Since ht(s) ≤ s for all t, we have r ≤ h̃−1
t (r), and consequently ft(r) ≤ ft(h̃

−1
t (r)) because

ft(·) is monotone increasing. Thus,

lim inf
t→t0

ft(h̃
−1
t (r)) ≥ g(r) . (69)

The upper bound is a bit more involved. Fix δ > 0. Lemma 2 shows that for each r there exists t∗

such that h̃−1
t (r) ≤ r/(1− δ) for all t such that |t− t0| < |t∗ − t0|. Then we have

ft(h̃
−1
t (r)) ≤ ft(r/(1− δ)) .
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Thus,

lim sup
t→t0

ft(h̃
−1
t (r)) ≤ g(r/(1 − δ)) ,

and since δ can be made arbitrarily small,

lim sup
t→t0

ft(h̃
−1
t (r)) ≤ g(r) . (70)

Combining (69) with (70), we obtain the desired result.

The following Lemma is used in the proof of the upper bound of Claim 3.

Lemma 2: Let ht(s) be such that ht(s) ≤ s, ht(s) → s pointwise as t → t0, and ht(s)/s is monotone

decreasing in s for each t. Define h̃−1
t (r)

4
= minh−1

t (r). For each r0 > 0 and any δ > 0, there exists t∗

such that

h̃−1
t (r0) ≤ r0/(1− δ) ,

for all t such that |t− t0| < |t∗ − t0|.
Proof: Fix r0 > 0 and δ > 0, and select s0 such that s0 > r0/(1− δ).

Because ht(s)/s → 1 point-wise as t → t0, for each s > 0 and any δ > 0, there exists a t∗ such that

ht(s) ≥ s(1− δ), all t : |t− t0| < |t∗ − t0|.

Moreover, since ht(s)/s is monotone decreasing in s, if t∗ is sufficient for convergence at s0, then it is

sufficient for convergence at all s ≤ s0. Thus, for any s0 > 0 and δ > 0 there exists a t∗ such that

ht(s) ≥ s(1− δ), all s ≤ s0, t : |t− t0| < |t∗ − t0| .

Throughout the rest of the proof, we only consider s ≤ s0 and t such that |t− t0| < |t∗ − t0|.
Consider the interval I = [r0, r0/(1 − δ)], and note that s ∈ I implies s < s0. Since ht(s) < s, we

have ht(r0) < r0. Also, since ht(s) > s(1− δ) by the above construction, we have ht(r0/(1− δ)) > r0.

By continuity, ht(s) assumes all intermediate values between ht(r0) and ht(r0/(1 − δ)) on the interval

(r0, r0/(1−δ)) [41, Theorem 4.23]; in particular, there exists an s1 ∈ (r0, r0/(1−δ)) such that ht(x1) =

r0. The result follows from h̃−1
t (r0) ≤ x1 ≤ r0/(1 − δ), where the first inequality follows from the

definition of h̃−1
t (·) and the second inequality follows from the fact that x1 ∈ I .

APPENDIX II

AMPLIFY-AND-FORWARD MUTUAL INFORMATION

For completeness, in this appendix we compute the maximum average mutual information for amplify-

and-forward transmission (13). The result borrows substantially from the vector results in [2], [3], aside

from taking into account the amplifier power constraint in the relay as well as simplifying manipulations.
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We write the equivalent channel (2)–(4), with relay processing (8), in vector form as




yd[n]

yd[n + N/4]





︸ ︷︷ ︸

yd[n]

=




as,d

ar,dβas,r





︸ ︷︷ ︸

A

xs[n] +




0 1 0

ar,dβ 0 1





︸ ︷︷ ︸

B








zr[n]

zd[n]

zd[n + N/4]








︸ ︷︷ ︸

z[n]

where the source signal has power constraint E [xs] ≤ Ps, and relay amplifier has constraint

β ≤
√

Pr

|as,r|2 Ps + Nr
, (71)

and the noise has covariance E
[
zz
†
]

= diag(Nr, Nd, Nd). Note that we determine the mutual information

for arbitrary transmit powers, relay amplification, and noise levels, even though we utilize the result only

for the symmetric case. Since the channel is memoryless, the average mutual information satisfies

IAF ≤ I (xs; yd) ≤ log det
(

I + (PsAA†)(B E
[

zz†
]

B†)−1
)

,

with equality for xs zero-mean, circularly symmetric complex Gaussian [2], [3]. Noting that

AA† =




|as,d|2 as,d(ar,dβas,r)

∗

a∗s,dar,dβas,r |ar,dβas,r|2





B E
[

zz
†
]

B† =




Nd 0

0 |ar,dβ|2Nr + Nd ,





we have

det
(

I2 + (PsAA†)(B E
[

zz†
]

B†)−1
)

= 1 +
Ps|as,d|2

Nd
+

Ps|ar,dβas,r|2
(|ar,dβ|2Nr + Nd)

. (72)

It is apparent that (72) is increasing in β, so the amplifier power constraint (71) should be active, yielding,

after substitutions and algebraic manipulations,

IAF = log



1 + |as,d|2
(

Psσ
2
s,d

Nd

)

+

[

|as,r|2
(

Psσ2

s,r

Nr

)]

·
[

|ar,d|2
(

Prσ2

r,d

Nd

)]

[

|as,r|2
(

Psσ2

s,r

Nr

)]

+
[

|ar,d|2
(

Prσ2

r,d

Nd

)]

+ 1





= log
(
1 + |as,d|2SNRs,d + f

(
|as,r|2SNRs,r, |ar,d|2SNRr,d

))
,

with f(·, ·) given by (14).
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APPENDIX III

INPUT DISTRIBUTIONS FOR TRANSMIT DIVERSITY BOUND

In this appendix, we derive the input distributions that minimize outage probability for transmit diversity

schemes in the high SNR regime. Our derivation is a slight extension of the results in [2], [3] dealing

with asymmetric fading variances.

An equivalent channel model for the two-antenna case can be summarized as

y [n] =
[

a1 a2

]

︸ ︷︷ ︸

a




x1[n]

x2[n]





︸ ︷︷ ︸

x[n]

+z [n] , (73)

where a represents the fading coefficients and x[n] the transmit signals from the two transmit antennas,

and z [n] is a zero-mean, white complex Gaussian process with variance N0 that captures the effects

of noise and interference. Let Q = E
[
xx
†
]

be the covariance matrix for the transmit signals. Then the

power constraint on the inputs may be written in the form tr(Q) ≤ P .

We are interested in determining a distribution on the input vector x, subject to the power constraint,

that minimizes outage probability, i.e.,

min
px:tr(Q)≤P

Pr [I(x; y |a = a) ≤ R] . (74)

As [2], [3] develops, the optimization (74) can be restricted to optimization over zero-mean, circularly

symmetric complex Gaussian inputs, because Gaussian codebooks maximize the mutual information for

each value of the fading coefficients a. Thus, (74) is equivalent to maximizing over the covariance matrix

of the complex Gaussian inputs subject to the power constraint, i.e.,

min
Q:tr(Q)≤P

Pr

[

log

(

1 +
aQa

†

N0

)

≤ R

]

. (75)

We now argue that Q diagonal is sufficient, even if the components of a are independent but not

identically distributed. We note that this argument is a slight extension of [2], [3], in which i.i.d. fading

coefficients are treated. Although we treat the case of two transmit antennas, the argument extends

naturally to more than two antennas.

We write a = ãΣ, where ã is a zero mean, i.i.d. complex Gaussian vector with unit variances and

Σ = diag(σ1, σ2). Thus, the outage probability in (75) may be written as

Pr

[

log

(

1 +
ãΣQΣ†ã†

N0

)

≤ R

]

.

Now consider an eigen-decomposition of the matrix ΣQΣ† = UDU †, where U is unitary and D is

diagonal. Using the fact that the distribution of ã is rotationally invariant, i.e., ãU has the same distribution
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as ã for any unitary U [2], [3], we observe that the outage probability for covariance matrix ΣQΣ† is

the same as the outage probability for the diagonal matrix D.

For D = diag(d1, d2), the outage probability can be written in the form

Pr

[

d1|a1|2 + d2|a2|2 ≤
2R − 1

SNR

]

,

which, using Fact 2, decays proportional to 1/(SNR2 det D) for large SNR if d1, d2 6= 0. Thus, minimizing

the outage probability for large SNR is equivalent to maximizing

det D = detΣQΣ† = σ2
1σ

2
2(Q1,1Q2,2 − |Q1,2|2) (76)

such that Q1,1 + Q2,2 ≤ P . Clearly, (76) is maximized for Q1,1 = Q2,2 = P/2 and Q1,2 = Q2,1 = 0.

Thus, zero-mean, i.i.d. complex Gaussian inputs minimize the outage probability in the high SNR regime.
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