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Asynchronous Capacity per Unit Cost
Venkat Chandar, Aslan Tchamkerten, and David Tse

Abstract—The capacity per unit cost, or, equivalently, the min-
imum cost to transmit one bit, is a well-studied quantity under the
assumption of full synchrony between the transmitter and the re-
ceiver. In many applications, such as sensor networks, transmis-
sions are very bursty, with amounts of bits arriving infrequently at
random times. In such scenarios, the cost of acquiring synchroniza-
tion is significant and one is interested in the fundamental limits on
communication without assuming a priori synchronization. In this
paper, the minimum cost to transmit bits of information asyn-
chronously is shown to be equal to , where is the
synchronous minimum cost per bit and is a measure of timing
uncertainty equal to the entropy for most reasonable arrival time
distributions. This result holds when the transmitter can stay idle
at no cost and is a particular case of a general result which holds
for arbitrary cost functions.

Index Terms—Asynchronous communication, bursty communi-
cation, capacity, capacity per unit cost, energy, error exponents,
large deviations, sequential decoding, sparse communication, syn-
chronization.

I. INTRODUCTION

S YNCHRONIZATION is an important component of any
communication system. To understand the cost of synchro-

nization, it is helpful to divide applications into two rough types.
In the first type, transmission of data happens on a continuous
basis. Examples include voice and video. The cost of initially
acquiring synchronization, say by sending a pilot sequence, is
relatively small in such applications because the cost is amor-
tized over the many symbols transmitted. In the second type,
transmissions are very bursty, with amounts of data transmitted
once in a long while. Examples include sensor networks with
sensor nodes transmitting measured data once in a while. The
cost of acquiring synchronization is relatively more significant
in such applications because the number of bits transmitted per
burst is relatively small.
What is the fundamental limitation due to the lack of a priori

synchrony between the transmitter and the receiver in bursty
communication? While there has been a lot of research on spe-
cific synchronization algorithms, this question has only recently
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been pursued [1], [6], [7]. In their model, transmission of a mes-
sage starts at a random time unknown to the receiver. The per-
formance measure is the data rate: the number of bits in the mes-
sage divided by the elapsed time between the instant informa-
tion starts being sent and the instant it is decoded.
The data rate is a sensible performance metric for bursty com-

munication if the information to be communicated is delay sen-
sitive. Then, maximizing the data rate is equivalent to mini-
mizing the time to transmit the burst of data. In certain applica-
tions, however, the allowable delay may not be so tightly con-
strained, so the data rate is less relevant a measure than the en-
ergy needed to transmit the information. In this case, the min-
imum energy needed to transmit one bit of information is an
appropriate fundamental measure. Thus, we are led to ask the
following question: what is the impact of asynchrony on the
minimum energy needed to transmit one bit of information?
This type of question falls into the general framework of ca-

pacity per unit cost [5], [8], where one is interested in charac-
terizing the maximum number of bits that can be reliably com-
municated per unit cost of using the channel. Consider the fol-
lowing modification of the formulation in [6] and [7] to study
asynchronous capacity per unit cost.
There are bits of information which needs to be commu-

nicated. The number can be viewed as the size of a burst
in the above scenario, with consecutive bursts occurring so in-
frequently that we can consider each burst in complete isola-
tion. The bits are coded and transmitted over a memoryless
channel using a sequence of symbols that have costs associated
with them. The rate per unit cost is the total number of bits
divided by the cost of the transmitted sequence.
The data burst arrives at a random symbol time , not known

a priori to the receiver. Without knowing , the goal of the re-
ceiver is to reliably decode the information bits by observing the
outputs of the channel. Although the receiver does not know ,
we assume that both the transmitter and the receiver know that
lies in the range from 1 to . The integer characterizes the

asynchronism level, that is, the timing uncertainty between the
transmitter and the receiver. At all times before and after the ac-
tual transmission, the receiver observes pure noise. The noise
distribution corresponds to a special “idle symbol” being sent
across the channel.
The main result in this paper is a single-letter characteriza-

tion of the asynchronous capacity per unit cost, or, equivalently,
the minimum cost to transmit one bit of information. Under the
further assumption that the idle symbol is allowed to be used
in the codewords and has zero cost, the result simplifies and ad-
mits a very simple interpretation: the minimum cost to transmit
bits of information asynchronously is

(1)
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where is the minimum cost to transmit one bit of informa-
tion in the synchronous setting.1 Thus, the timing uncertainty
imposes an additional cost of as compared to the
synchronous setting. Note that this result implies that the ad-
ditional cost is significant only when the parameter is at
least comparable to .
Even though we do not have a stringent requirement on the

delay from the time of data arrival to the time of decoding, a
meaningful result cannot be obtained if there is no constraint
at all. This can be seen by noting that the transmitter could al-
ways wait until the end of the arrival time interval (at time )
to transmit information. Then, there would no price to pay for
the timing uncertainty since communication would de facto be
synchronous. However, the delay incurred would be very large
if is very large. To avoid this undesirable situation, we im-
pose the constraint that the delay should be linear in . A delay
linear in is a natural constraint since it is of the same order as
the delay incurred in the synchronous setting [8]. Expression (1)
is the minimum cost achievable by any scheme subject to this
delay constraint. Given this constraint, the start time of infor-
mation transmission is highly random to the receiver, and the
additional cost is the cost needed to construct codewords that
allow a decoder to resolve this uncertainty.
What happens when longer delays are allowed? First, we

show that performance cannot be improved beyond (1) within
the broad class of coding schemes whose delays are subexpo-
nential in . Second, we show that when the allowable delay
scales exponentially with (but is no larger than , for other-
wise the situation reduces to the synchronous setting mentioned
above), the minimum cost to transmit bits can be further re-
duced to

Thus, in this more general case, the impact of asynchronism is
significant when is at least of the order of .
The above results are all proved under a uniform distribution

on the arrival time . They can be generalized to a broad class of
other distributions, with replaced by a quantity , which
equals the entropy for most reasonable distributions.
It is worth mentioning that the asynchronism studied in this

paper is due entirely to the random arrival time of the data and
the desire to deliver that data within a certain delay constraint.
One can think of this as source asynchronism. There is another
type of asynchronism due to the lack of a common clock be-
tween the transmitter and the receiver. One can think of this as
an example of channel asynchronism. We do not consider this
type of asynchronism here. Hence, throughout this paper, we
will assume both the transmitter and the receiver have access
to a common clock. An interesting future direction would be to
study the combined effect of source and channel asynchronism.

II. MODEL AND PERFORMANCE CRITERION

Our model captures the following features.
1) Information is available at the transmitter at a random time.
2) The transmitter chooses when to start sending information.

1In this paper, all logarithms are taken to base 2.

3) Outside the information transmission period, the trans-
mitter stays idle and the receiver observes noise.

4) The receiver decodes without knowing the information ar-
rival time at the transmitter.

Communication is discrete-time and carried over a discrete
memoryless channel characterized by its finite input and output
alphabets

respectively, and transition probability matrix

Here, denotes the special idle symbol, and denotes the al-
phabet containing the symbols that can be used in the actual
transmission of the data. may or may not contain . We as-
sume that no two different input symbols and belonging to
have identical conditional distributions and .2
Given information bits to be transmitted, a codebook

consists of codewords of length composed of symbols
from . The message arrives at the transmitter at a random
time , independent of , and uniformly distributed over

, where the integer characterizes the
asynchronism level between the transmitter and the receiver.
Only one message arrives over the period .
If , the channel is said to be synchronous.
The transmitter chooses a time so that

to begin transmitting the codeword assigned to mes-
sage . This means that the transmitter cannot start transmitting
before the message arrives or after the end of the uncertainty
window. It turns out that the possibility to choose as a func-
tion of both and directly influences the cost to deliver this
information by allowing to convey information through timing.
In the rest of the paper, we suppress the arguments and of
when these arguments are clear from context.
Before and after codeword transmission, i.e., before time
and after time , the receiver observes “pure

noise.” Specifically, conditioned on the event ,
, and on the message to be conveyed , the

receiver observes independent symbols

distributed as follows. For

or

the ’s are distributed according to . At any time
, the distribution is

where denotes the symbol of the codeword .

2This is without loss of generality, as two such symbols are identical for com-
munication purposes, so we can consider the equivalent channel with one of
these two symbols deleted from the symbol alphabet.
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Fig. 1. Time representation of what is sent (upper arrow) and what is received
(lower arrow). The “ ” represents the “idle” symbol. Message arrives at time
, starts being sent at time , and decoding occurs at time .

Knowing the asynchronism level , but not the value of ,
the receiver decodes by means of a sequential test , where
is a stopping time, bounded by , with respect to the

output sequence indicating when decoding happens,
and denotes a decision rule that declares the decoded message
(see Fig. 1). Recall that a (deterministic or randomized) stopping
time with respect to a sequence of random variables
is a positive, integer-valued, random variable such that the event

, conditioned on the realization of , is
independent of the realization of , for all .
Given , , the function outputs
a message based on the past observations from time 1 up to time
.3
A “code” refers to a codebook together with a decoder,

i.e., a sequential test . Throughout this paper, whenever
clear from context, we often refer to a code using the codebook
symbol only, leaving out an explicit reference to the decoder.
Themaximum (overmessages) decoding error probability for

a given code is defined as

(2)

where the subscripts “ ” indicate conditioning on the event
that message arrives at time , and indicates the event
that the decoded message does not correspond to the sent code-
word, i.e.,

where denotes the random message to be transmitted.

Definitions 1 (Cost Function): A cost function
assigns a nonnegative value to each channel input.4

Definition 2 (Cost of a Code): The (maximum) cost of a code
is defined as

Definition 3 (Delay of a Code): Given , the (maximum)
delay of a code , denoted by , is defined as the smallest
such that

3To be more precise, is any -measurable function that takes values in
the message set, where is the sigma field generated by .
4“Kost” is cost in German.

where denotes the output distribution conditioned on the
sending of message .5

Throughout this paper, we often consider delays in the regime
. In this case, we omit an explicit reference to . For

instance, if is such that for some
such that as , we simply say that achieves
a delay that is linear in —leaving implicit “with probability
asymptotically equal to one.”
A key parameter we shall be concerned with is

which we call the timing uncertainty per information bit.
Next, we define the asynchronous capacity per unit cost in the

asymptotic regime where , while is kept fixed.

Definition 4 (Asynchronous Capacity per Unit Cost): is
an achievable rate per unit cost at timing uncertainty per infor-
mation bit and delay exponent if there exists a sequence of
codes , and a sequence of numbers with ,
such that

and

The asynchronous capacity per unit cost, denoted by ,
is the largest achievable rate per unit cost. In the important case

when , we define .
Note that, in Definition 4, the codeword length is a free

parameter that can be optimized, just as for the synchronous
capacity per unit cost (see the comment after [8, Definition 2]).
The results in the next section characterize the capacity per unit
cost for arbitrary and . Similar to the synchronous case, the
results simplify when there is a zero cost symbol, specifically
when contains and has zero cost.
For simplicity, for the rest of this paper, we assume that the

only possible zero cost symbol is —in particular, if ,
then contains only nonzero cost symbols. The other, arguably
unnatural, cases can also be addressed by the arguments in this
paper, and are briefly discussed in the remark before the proof
of Theorem 3 in Section IV.

III. RESULTS

Our first result gives the asynchronous capacity per unit cost
when . It can be viewed as the asynchronous analogue of
[8, Th. 2], which states that the synchronous capacity per unit
cost is

(3)

As mentioned above, in stating our results, we assume that all
non- symbols in have positive cost, and that if is in ,
then has zero cost.

5Hence, by definition, we have
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Theorem 1 (Asynchronous Capacity per Unit Cost: Subexpo-
nential Delay Constraint): The asynchronous capacity per unit
cost at delay exponent is given by

(4)

where denotes the random input to the channel, the corre-
sponding output, the random output of the channel when the
idle symbol is transmitted (i.e., ), the
mutual information between and , and the Kull-
back–Leibler distance between the distributions of and .6

Furthermore, capacity can be achieved by codes whose delay
grows linearly with .7

The two terms in (4) reflect the two constraints on reliable
communication. The first term corresponds to the standard con-
straint that the number of bits that can reliably be transmitted per
channel use cannot exceed the input–output mutual information.
This constraint applies when the channel is synchronous, hence
also in the absence of synchrony.
The second term in (4) corresponds to the receiver’s ability

to determine the arrival time of the data. Indeed, even though
the decoder is only required to produce a message estimate, be-
cause of the delay constraint, there is no loss in terms of capacity
per unit cost to also require the decoder to produce an approxi-
mate estimate of the time when transmission begins—the delay
constraint implies that the decoder can locate the sent message
within a time window that is negligible compared to . The
quantity

where refers to the Kullback–Leibler distance
between the joint distribution of and the (product) dis-
tribution of , measures how difficult it is for the receiver
to discern a data-carrying transmitted symbol from pure noise,
and thus determines how difficult it is for the receiver to get the
timing correct.
When the alphabet contains a zero-cost symbol 0, the syn-

chronous result (3) simplifies, and Theorem 3 in [8] states that
the synchronous capacity per unit cost becomes

(5)

an optimization over the input alphabet instead of over the set of
all input distributions, where refers to the output distribution
given that is transmitted.
We find an analogous simplification in the asynchronous set-

ting when is in and has zero cost.

Theorem 2 (Asynchronous Capacity per Unit Cost With Zero
Cost Symbol: Subexponential Delay Constraint): If is in
and has zero cost, the asynchronous capacity per unit cost at
delay exponent is given by

(6)

6 is interpreted as “pure noise.”
7See comment after Definition 3.

and capacity can be achieved by codes whose delay grows lin-
early with .
Hence, a lack of synchronization multiplies the cost of

sending one bit of information by . An intuitive justifi-
cation for this is as follows. Suppose there exists an optimal
coding scheme that can both isolate and locate the sent mes-
sage with high probability—as alluded to above, the ability to
“locate” the message is a consequence of the decoder’s delay
constraint. Assuming that the delay is negligible, i.e., the delay
grows subexponentially with , this allows us to consider
message/location pairs as inducing a code of size

used for communication across the synchronous channel.
Hence, since , we are effectively communicating

bits reliably over the synchronous channel. Therefore, sending
bits of information at asynchronism level is at least as costly

as sending bits over the synchronous channel. Flipping
this reasoning around, the asynchronous channel effectively in-
duces a codebook for message/location pairs where the location
is encoded via pulse position modulation (PPM). From [8], op-
timal coding schemes are similar to PPM in that the codewords
consist almost entirely of the zero cost symbol. This provides
an intuitive justification for why is an achievable
rate per unit cost.
Theorem 2 can be extended to the (continuous-valued)

Gaussian channel, where the idle symbol is the 0-symbol:

Theorem 3 (Asynchronous Capacity per Unit Cost for the
Gaussian Channel: Subexponential Delay Constraint): The
asynchronous capacity per unit cost for the Gaussian channel
with variance , quadratic cost function (i.e., ),
and delay exponent is given by

(7)

Theorem 1 can be extended to the case of a large delay con-
straint, i.e., when . In this case, the formula for
capacity is slightly different depending on whether is in or
not, as stated in the following result.

Theorem 4 (Asynchronous Capacity per Unit Cost: Exponen-
tial Delay Constraint): The asynchronous capacity per unit cost
at delay constraint , with , is given by:
a) if and has zero costmthen

i.e., it is the same as the capacity per unit cost with delay
exponent , but with asynchronism exponent re-
duced to ;

b) if is not in and all non- symbols have positive cost,
then

(8)
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The uniform distribution on in the model is not critical. The
next result extends Theorem 1 to the case where is nonuni-
form. For a nonuniform distribution on , what is important
turns out to be its “smallest” set of mass points that contains
“most” of the probability.
Consider a general arrival time (defined over the positive

integers), not necessarily bounded. For a given , let
denote the smallest subset of the support of (i.e., the set of
such that ) whose probability is at least .
Hence, by definition.

Theorem 5 (Asynchronous Capacity per Unit Cost With
Nonuniform Arrival Time: Subexponential Delay Constraint):
For a given sequence of arrival times , define

(9)

where the infimum is with respect to all sequences of non-
negative numbers such that .
Then, the asynchronous capacity per unit cost at delay expo-

nent 0 is given by

Although the formula for in (9) appears unwieldy, in many
cases, it can easily be evaluated. For example, in many cases,
such as the uniform or geometric distributions, the formula re-
duces to the normalized entropy

There are cases, however, where (9) does not reduce to the nor-
malized entropy. For instance, consider the case where
with probability , and with probability
for . Then, and ,
which yields

Asynchronous Capacity

The above results focus on characterizing the asynchronous
capacity per unit cost. However, just as the synchronous ca-
pacity per unit cost result (3) immediately implies the standard
(synchronous) capacity result8

by setting the cost function , Theorem 1 implies the
asynchronous capacity result

(10)

8Information per symbol and information per unit cost are differentiated by
lightface and boldface characters, respectively, as in [8].

the largest number of information bits per transmitted symbol
that can be supported reliably by an asynchronous channel, as a
function of .
Instead of , we may alternatively consider the asynchronism

parameter introduced in [1] and [7].
Using (10), we deduce that rate is achievable if and only if,
for some input ,

and

Hence, asynchronous capacity is alternatively given by

(11)

with the convention that the maximum evaluates to 0 if the set
being optimized over is empty. Consider the second inner max-
imization in (11). Since is convex in , and the
set is convex, the maximum is achieved
for some extreme point of the set, i.e., either for some such
that , or for a distribution concentrated on a
single point and such that . However, in the latter
case, we have

since . Thus, (11) reduces to

Although not explicit in the statement of Theorem 1, the proof
of this theorem shows that can be achieved with codes
whose delays are no larger than . Summarizing the above dis-
cussion, we get the following:

Corollary: The capacity at delay exponent , and with
respect to asynchronism parameter , is given by

Furthermore, capacity is achievable with codes whose delays
are no larger than .
A closely related problem is determining the capacity when

rate is defined in terms of bits per received symbol. For this
problem, we refer the reader to [6] and [7], where capacity as a
function of is studied, and where rate is defined with respect
to the expected elapsed time between the instant information is
available at the transmitter and the instant it is decoded.

IV. PROOFS OF RESULTS

We use to denote the set of distributions over the finite
alphabet . Recall that the type of a string , denoted
by , is the probability distribution over that assigns, to
each , the number of occurrences of within divided
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by [4, Ch. 1.2]. For instance, if , then
and . The joint type induced by a pair
of strings is defined similarly. The set
of strings of length that have type is denoted by , and
is called the “type class of .” The set of all types over of
strings of length is denoted by .
Given a string and a conditional probability distri-

bution , , the set of strings
that have conditional type given is denoted by ,
i.e.,

Finally, we use the standard “big-O” Landau notation to char-
acterize growth rates (see, e.g., [2, Ch. 3]), and use to
denote a function that does not grow or decay faster than poly-
nomially in its argument.
The following two standard results on types are often used in

the analysis:
Fact 1 ([4, Lemma2.2]:

Fact 2 [4, Lemma 2.6]: If is independent and identically
distributed (i.i.d.) according to , then

for any .
Achievability of Theorem 1: We first show the existence of

a random code that achieves the asynchronous capacity per unit
cost when the latter is computed with respect to average error
probability. A standard expurgation argument then shows the
existence of a deterministic code achieving the same (asymp-
totic) performance as the random code, but now with respect to
maximum error probability.
Fix some arbitrary distribution on . Let be the input

having that distribution, and let be the corresponding output,
i.e., .
Given bits of information to be transmitted, the codebook
is randomly generated as follows. For each message

, randomly generate a length sequence i.i.d.
according to . If belongs to the “constant composition” set9

(12)

we let . Otherwise, we repeat the procedure until we
generate a sequence sufficiently close to . From Chebyshev’s
inequality, for a fixed , it is very unlikely that any repetition
will be required to generate , i.e.,

(13)

9 refers to the -norm.

where denotes the order product distribution of .
The obtained codebook is thus essentially of constant com-

position, i.e., each symbol appears roughly the same number of
times across codewords. Moreover, by construction, all code-
words in the random ensemble have cost

as .
The sequential typicality decoder operates as follows. At

time , for each , it computes the empirical
distributions

induced by and the output symbols . If there is
a unique message for which

the decoder stops and declares that message was sent. If more
than one codeword is typical, the decoder stops and declares
one of the corresponding messages uniformly at random.10 If
no codeword is typical at time , the decoder moves one step
ahead and repeats the procedure based on . If the decoder
reaches time and no codeword is typical, then it
declares a randomly and uniformly chosen message.
We first compute the error probability averaged over code-

books and messages. Suppose message is transmitted. The
error event that the decoder declares some specific message

can be decomposed as11

(14)

where the error events and are defined as
1) : the decoder stops at a time between and
(including and ), and declares ;

2) : the decoder stops either at a time before or from
onwards, and declares .

For the error event , for some , the first or the
last symbols of are generated by noise, and the remaining

symbols are generated by the sent codeword .12

The probability that such a together with yields an
empirical distribution that is jointly typical with ,
that is,

(15)

10The notion of typicality we use is often referred to as “strong typicality” in
the literature.
11Notice that the decoder outputs a message with probability one by time

.
12We use a capital letter for since codewords are randomly generated.
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is upper bounded as

(16)

for any and all large enough, where denotes the
entropy of the left marginal of , where

and where denotes the mutual information induced by .
The first equality in (16) follows from the independence of

and , since corresponds to the output of .
For the first inequality, note that if the codewords were ran-
domly generated with each component of each codeword i.i.d.
according to , we could deduce from [3, Th. 11.1.2, p. 349]
that

The actual (non-i.i.d) codeword distribution is the i.i.d. distribu-
tion, conditioned on the constant composition event (12). There-
fore, we have

and from (13), we get

as , uniformly over the set . This justifies the first in-
equality in (16). The second inequality in (16) follows from the
nonnegativity of the Kullback–Leibler distance. The third in-
equality in (16) follows from [4, Lemma 2.5, p. 31]. The fourth
inequality holds since , and by up-
perbounding the sum of the probabilities by one. Finally, the
fifth inequality in (16) holds for any and all large enough
since, by assumption, is close to [see (15)].
From (16), by taking a union bound over all empirical distri-

butions that are jointly typical with ( by Fact 1)
and over all the (less than ) times involved in , we obtain
the upper bound

(17)

for all large enough.

For the second error event , pure noise produces some
output that is jointly typical with . The probability
that a noise generated together with yields an em-
pirical type is upper bounded by

by [4, Lemma 1.2.6]—recall that refers to the Kull-
back–Leibler distance between, on the one hand, the joint dis-
tribution , and on the other hand, the product of the distribu-
tions of and . Hence, by taking a union bound over all
typical ’s that satisfy (15) ( of them by Fact 1), and
by using the continuity of the Kullback–Leibler distance,13 the
probability that a noise generated is typical with is
upper bounded by

for any and all large enough. Finally, by taking a union
bound over all (less than ) times where noise could produce
such an output, we get

(18)

for any and all large enough.
Combining (14), (17), and (18), we get

for any and all large enough.
Hence, by taking a union bound over all possible wrong mes-

sages, we obtain that for any ,

for large enough and all . Since the above bound is valid for
a randomly generated code, we deduce that

(19)

where denotes the error probability of code averaged
over the messages.
We now turn to the delay of the code. Suppose message is

transmitted with a specific (nonrandom) codeword that
belongs to the set . If event

13Technically, the divergence is not continuous if, for example, both distribu-
tions are 0 at the same point. However, at points of discontinuity, the disconti-
nuity can only help since the divergence becomes infinite, and it is easily seen
that the corresponding error event has zero probability.
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happens, then necessarily is not typical with .
By Chebyshev’s inequality, the probability of the latter event
tends to zero as ; hence

where is a function that tends to zero as . Since the
above inequality holds for any specific codeword that belongs
to , we get

(20)

for any code whose codewords belong to .
The proof can now be concluded. From inequality (19), there

exists a specific code whose error probability, averaged
over messages, is less than . Removing the half of the
codewords with the highest error probability, we end up with
a set of codewords whose maximum error probability

satisfies

(21)

and whose delay satisfies

by the previous argument.
Now, fix the ratio , thereby imposing a delay linear in ,

and substitute in the definition of (see (19)).
Then, goes to zero as whenever

(22)

Recall that, by construction, all the codewords have cost
as . Hence, for any and all

large enough,

(23)

Condition (22) is thus implied by condition

(24)
Maximizing over all input distributions, and using the fact that

can be chosen arbitrarily, proves that the right-hand
side of (4) is asymptotically achieved by nonrandom codes with
delay at most , which grows linearly with .

Remark: From (24), it follows that whenever there exists
some input such that while ,
and thus contains more than one zero cost symbol, the asyn-
chronous capacity per unit cost is infinite, i.e., , for
any .

Achievability of Theorem 4: The achievability scheme for
Theorem 4 is similar to the achievability scheme used to prove
Theorem 1, except that we distinguish the cases and

.
(a) : The main change is that now the transmitter does

not start transmitting at time . Instead, the transmitter only

starts transmitting at the first multiple of larger than , so
that now takes values over multiples of . Such a trans-
mission scheme reduces the receiver’s uncertainty about from
uniformly over time slots to (essentially) uniformly over
only time slots.
One proves that is achievable with delay by

repeating the arguments for the achievability of Theorem 1. The
random codebook is constructed so that each codeword satisfies
the constant composition property. The blocklength is still
chosen to be so that, in contrast with the achievability
of Theorem 1, where delay and blocklength are the same, now
the blocklength is exponentially smaller than the delay.
The rest of the analysis is essentially unchanged. Since the

codewords are constructed in the same way, the cost is un-
changed, and the probability of error analysis is the same, ex-
cept that is replaced by because now the transmission
timing allows the decoder to only consider time slots
instead of all time slots. Therefore, is replaced by ,
completing the proof.
(b) : The main change is that the transmitter uses the

freedom in the choice of to communicate part of the informa-
tion through timing; information bits are contained
in each codeword and information bits are conveyed via
timing. To achieve this, we use a space-time code.
The transmitter generates random codewords in the

same way as in the achievability proof of Theorem 1 to obtain
a codebook

Label each of the messages with one of the
pairs of integer indices , i.e., the message set is given by

(For simplicity, we assume that and are integers.)
For any (space) index , the set of
messages

is associated to codeword .
Transmission always starts at a time that is a multiple of .

Suppose message arrives at time and that .
The transmitter first computes the “offset”

The transmitter then starts sending codeword at time

(25)

The receiver uses a sequential typicality decoder to find the
transmitted codeword as in the proof of the achievability part of
Theorem 1—since transmission times are restricted to be mul-
tiples of , the sequential typicality decoder can be restricted to
multiples of .
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Suppose codeword is found to be typical at time . The
receiver then computes the estimate for given by

and finds the index such that

The receiver then declares .
The rest of the analysis is essentially unchanged. Since the

codewords are constructed in the same way, the cost is un-
changed, and the probability of error analysis is the same, except
that is replaced by because the transmission timing
allows the decoder to only consider codewords instead
of codewords.

Achievability of Theorem 5: To prove the achievability part
of Theorem 5, one applies essentially the same arguments as for
the achievability of Theorem 1. The transmitter’s strategy is un-
changed, i.e., , and a random codebook satisfying the con-
stant composition property is used to encode the messages. At
the receiver, we need a suitable analog of the set of
time slots to consider. A natural choice is to pick a sequence of
nonnegative numbers such that , and, for each
, consider the “typical” set whose probability, under

the arrival time distribution, is at least by definition. The
receiver operates just as before, i.e., using a sequential typicality
decoder, but only over the set of times in .
Since the codewords are constructed in the same way, the

cost of the codebook is unchanged. The probability of error and
delay analysis now breaks into two cases: and

. The case is handled as previously, except
that is replaced by . When , we make
the worst-case assumption that the message is wrongly decoded
and that the delay is infinite. We can afford to do this because

by definition. Hence, the event
has a vanishing effect on the probability of error and the

delay. Optimizing over the choice of sequence completes
the proof.

Converses of Theorems 1 and 4: Assume that
achieves a rate per unit cost at timing uncertainty per
information bit and delay exponent , with . Recall
that the delay constraint means that

(26)

for some sequence of nonnegative numbers as
. To establish the converses, we use the following concept of

“extended codewords.” To shorten notation, for the rest of the
proof, we use instead of .
Extended codewords: An extended codeword for a givenmes-

sage consists of the sequence of symbols that are transmitted
from time until time . Hence, for ,
the codeword corresponding to message consists of ’s from
time until time , followed by , followed by ’s
until time . Instead, if , the codeword
corresponding to message consists of ’s from time until

time , followed by the first symbols of .
The cost of the extended codeword, which we simply denote by

, is defined to be the same as the cost of .
From now on, codewords always refer to extended code-

words, and codebooks always refer to sets of extended
codewords.
To establish the theorems, we show that for any and

all large enough, and satisfy

(27)

if and has zero cost, or

(28)

if and all non- symbols have positive cost. In either
case, we also show that

(29)

where , and denotes the distribution of the type
class of which contains the most elements. This type class
is denoted by in the sequel.
An important observation used to prove (27) and (29) is that

because can be assumed to be strictly positive (or there is
nothing to prove), the set of non- symbols of each codeword
in has at most elements.
(Note that may vary as a function of . However, for

ease of exposition, we assume that is the same for all .
This assumption is without loss of generality, because we can
group the ’s together based on their associated , and as will
become apparent from the analysis, our arguments can be ap-
plied to each group separately. Since , for subsets
containing at least ’s, our arguments will be valid
since . For ’s associ-
ated with fewer than this many ’s, since there are only a poly-
nomial number of ’s, the probability of having any such

is .)

A. Proof of (27) and (28)

The intuition for these inequalities is that an asynchronous
code must also be good for the synchronous channel, and
hence, a suitable notion of rate is bounded by the synchronous
channel capacity. Formally, is clearly a good code for the
synchronous channel, i.e., if we reveal to the receiver and
decoding happens at time , it is possible to achieve an
error probability bounded away from 1 whenever is large
enough. From the strong converse for synchronous communi-
cation (see, e.g., [4, Corollary 6.4, p. 87]) it follows that when

and has zero cost, for any ,

(30)

for all large enough. Similarly, when , for any

(31)

for all large enough, where denotes the number of non-
symbols in each codeword. This can be seen by observing that
the codewords can be classified according to the value of , and
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for a given , only a rate of can be supported.
Because of the delay constraint, only choices of are pos-
sible.
Now, since the number of non- symbols in any codeword is
, the number of possible types grows no faster than

polynomially with . To see this, note that there are input
symbols, and we have choices for the probability as-
signed to each non- symbol. Since there is at most one zero cost
symbol (namely, the symbol), is completely determined
by the number of occurrences of the non- symbols. Thus, there
are only a total of possible types satisfying the con-
straint of having non- symbols. This implies that

when , and similarly for the case when . Combining
this with (30) and (31), we obtain

when , and

when . Note that by definition. Thus, by
multiplying and dividing the left-hand sides of the above in-
equalities by , and by noting that by
the definition of the cost of a code (see Definition 2 and recall
that by definition, the extended codeword for message has
the same cost as ), the above inequalities become

and

Since when and
when , inequalities (27) and (28) follow.

Hence, if (27) or (28), as appropriate, does not hold, then the
maximal error probability tends to one.

B. Proof of (29)

We show that if inequality (29) is reversed, then a decoder that
satisfies the delay constraint has an average error over messages
that tends to one. To prove this, we introduce the concepts of
“effective output process” and “augmented decoder.”
Effective output process: The “effective” output process is the

random output process “viewed” by the sequential decoder, i.e.,
it is generated as if there were pure noise after the transmission
of the extended codeword. Specifically, the distribution of the
effective output process is as follows. ’s for

are i.i.d. according to , whereas the block

Fig. 2. Parsing of the entire received sequence of size into blocks
of length , one of which is generated by the sent message, while the others
are generated by pure noise.

is distributed according to

the output distribution given that a randomly selected (ex-
tended) codeword from has been transmitted. With a
slight abuse of notation, in the remainder of the proof, we use

to denote the effective output process.
Augmented decoder: An augmented decoder is a decoder

which is revealed the complete effective output sequence and,
in addition, is informed that the message was sent in one of

(32)

consecutive (disjoint) blocks of duration , as shown in Fig. 2.
Note that14

(33)

An augmented decoder, in addition to outputting amessage, also
outputs an estimate of the block of size corresponding to the
time interval during which the message was sent.
Suppose the decoder of achieves (maximum) communi-

cation delay less than with probability equal to . Fur-
ther, suppose it can output the correct message with maximum
error probability . Hence, the corresponding augmented de-
coder can both output the block of size which corresponds
to the actual transmission period, and output the correct mes-
sage, with maximum error probability at most . We
now show that if (29) does not hold, then with probability ap-
proaching one, pure noise will produce many output blocks that
look as if they were generated by some codeword. This implies
that . Therefore, if the delay constraint is satis-
fied with , then . Hence, if the decoder of
achieves (maximum) communication delay less than with
probability tending to one, its error probability will tend to one
whenever (29) does not hold.
To develop some intuition for proving (29), we first consider

the simpler setting where there is only a single message.We then
generalize to the multiple message case to obtain (29).
1) Single Message: Suppose there is only one codeword to

be transmitted. The augmented decoder’s only task is thus to
output the block of size that corresponds to the period when

was sent.
For this specific setting, we show that if is sufficiently large,

the decoder will not be able to perform the task reliably, because

14We use the notation whenever the functions and are
exponentially equal, i.e., if
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the noise is likely to produce several blocks that look as though
they were generated by . More precisely, we show that the
augmented decoder has a large probability of error (asymptoti-
cally equal to one) whenever, for some and all large
enough

(34)

Let denote the extended codeword without
zero-cost symbols, and let be its corresponding output.
For instance, if the extended codeword is
and its corresponding random output vector takes value

, then and . Further,
let be the empirical distribution of conditioned on

, i.e., satisfies

where denotes the empirical distribution of .
The above restriction to the non- symbols allows us to treat

the various possible delays—linear in , subexponential in ,
and exponential in —in a unified way. Had we been interested
only in the linear case, the argument would also hold without the
restriction to non- symbols.
For a given fixed conditional probability distribution ,

denote by the binomial random variable which repre-
sents the number of pure noise blocks, out of of them,
whose conditional empirical distribution with respect to the
non- symbols of is . Then, the error probability of the
augmented decoder can be lower bounded as

(35)

where the ’s in the summation are conditional distributions
that are close to the actual channel . Specifically, is
such that

(36)

for any symbol that appears in at least times.
For any that appears in less than times, is
arbitrary.
Now, conditioned on , there are pure

noise blocks which look statistically identical to the block cor-
responding to the sent codeword, because the empirical con-
ditional distribution of (the non- codeword symbol positions
of) each block is a sufficient statistic for estimating the position
of the sent codeword. Hence, the augmented decoder fails with
probability at least

Therefore, from (35)

(37)

From Fact 2, the probability that one single pure noise block
induces the joint type with is

(38)

where , and where denotes the number of non-
symbols in . Note that the second equality in (38) holds
uniformly over the set by the continuity of
divergence.15

Therefore,

(39)

Since , from (26), (34), and (39), we get

Since is a binomial random variable, it can easily be
seen from Chebyshev’s inequality (or the Chernoff bound) that

must be concentrated near its mean, from which it
follows that

(40)

From (37) and (40), we get

(41)

as , where the second equality follows from Cheby-
shev’s inequality. We conclude that for the single message case,
the error probability tends to one whenever (34) holds.
2) Multiple Messages: The main additional ingredient used

to establish (29) is the fact that the decoder does not know a
priori the transmitted message. Because of this, the augmented
decoder’s task is more difficult to perform; pure noise can in-
duce an error whenever it generates a block that is typical with
any of the (extended) codewords from . The key element in
the analysis consists in showing that the “typicality” regions as-
sociated with different codewords are essentially disjoint, i.e.,
that the probability of the noise generating a block typical with
any message is essentially times the probability for the
single message case. This, together with the above argument for
the single message case, yields the desired result.
Observe that since achieves a maximum error probability

on the asynchronous channel that is less than , the (extended)
codewords can also achieve a maximum error probability on
the synchronous channel that is less than —if we reveal to

15See footnote 13.
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the decoder, the channel becomes synchronous, and the error
probability does not increase. Therefore, assuming that the de-
coder is deterministic, we can assign disjoint decoding regions

to each codeword of such that, with probability at
least , after transmission over the synchronous channel
, the channel output lies in the decoding region assigned

to the transmitted codeword . If the decoder of is ran-
domized, one can easily construct an expurgated code with a
deterministic decoder and asymptotically the same rate as fol-
lows. Since the maximum error probability of is at most ,
the average error probability is at most , hence the average
error probability under MAP decoding is also at most (note
that MAP decoding minimizes the average error probability, not
necessarily the maximum error probability). Now, without loss
of optimality, theMAP decoder can be restricted to be determin-
istic. If we remove the half of the codewords with the largest
error probability, we remain with a code whose maximum error
probability is at most under a deterministic (MAP) de-
coding. This expurgated code and its decoding regions
can now be used for the argument.
Adapting the argument used for the single message case, fix a

conditional distribution [see (36)], and let de-
note the binomial random variable representing the number of
pure noise blocks that induce the conditional empirical distribu-
tion with . For each message , define as the
intersection of the decoding region with —that
is the set of sequences in whose ’s cor-
responding to the non- symbols of have an empirical dis-
tribution given . Note that since the decoding regions are
disjoint, the sets are also disjoint.
Define

and

Then,

(42)

where denotes the output distribution corresponding to
symbols , and denotes the output distribution when the
channel input is .
The first equality in (42) follows from the definition of .

The second equality follows from the definition of and
the fact that there are pure noise blocks [see (32)]. The
third equality in (42) holds since the probability under of any
sequence in is equal to times

the probability of that sequence under . To see this, note that
for any , we have [4, Lemma 2.6]

and

Hence,

since , by continuity of divergence.16 The fourth equality
in (42) follows from (33). For the fifth inequality in (42), we
defined

the average probability of successful decoding of the code
and having an input/output joint type equal to —in

the above definition, denotes the random message to be
transmitted.
Now, recall that the probability of successful decoding of

is at least [see paragraph after (32)]; hence

Therefore, by Markov’s inequality

i.e., with probability , the empirical channel
yields a probability of successful decoding
. Denoting by , the set of conditional distributions
such that [see (36)] and such that

it follows that

(43)

since . Hence, from (42) and (33), we get

(44)

uniformly over . Hence, if for some , we have

(45)

then , and using that is a binomial random
variable, we get

16See footnote 13.
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Proceeding as in (37), the error probability (averaged over
messages) of the augmented decoder is lower bounded as

(46)

Hence, if (45) holds for some , or, equivalently, if

since , the error probability tends to one
as . This implies that if a code achieves rate at
timing uncertainty per information bit and delay exponent ,
then (29) holds. This completes the proof of the converses for
Theorems 1 and 4.

Converse of Theorem 5: The converse proof for Theorem
5 is almost the same as the converse proof for Theorem 1. As
for the achievability proofs, the main idea is to find a suitable
replacement for the set of time slots that the re-
ceiver needs to consider. For the proof, we choose the set of time
slots as a function of the coding scheme under consideration. In
more detail, given any reliable coding scheme, i.e., any coding
scheme for which the probability of error as ,
for each value , consider the probability that the decoder makes
an error or has delay greater than conditioned on the event

. We will replace the set with the set
of times for which this conditional probability is at most .
Observe that the conditional probability of error, averaged over
, is by definition at most , so Markov’s inequality says that
the probability (over the distribution of ) that this conditional
probability is larger than is at most . Thus, is in

with probability at least . The key property of
this construction is that the decoder for the given coding scheme
can with high probability correctly decode the message within
a delay of for each member of .
We now apply the converse proof of Theorem 1 to the set

. First, we need to parse the output sequence appro-
priately, i.e., split the output sequence into disjoint blocks of
length . Recall that , the number of such disjoint blocks,
was roughly in the converse proof of Theorem 1. Now, how-
ever, since can be arbitrary, it is possible that
does not even contain any time slots congruent to, say, 0 mod
. To get around this minor technicality, observe that by the

pigeonhole principle, for at least one value mod ,
contains at least time slots congruent to mod .
For such an , we choose uniformly from those elements in

that are congruent to mod . Because the decoder
for the given coding scheme can with high probability correctly
decode the message within a delay of for each member of

, it follows that this decoder can decode the message
and determine the value of with high probability even when
is chosen as above.

From this point, we follow the converse proof of Theorem 1,
with replaced by (equivalently, is replaced by
the size of ). At the end, we see that a reliable decoder
can exist only if for any and large enough,

Thus, has replaced the role played by in the con-
verse proof of Theorem 1. Finally, since , , so
by definition of ,

completing the proof.

Proof of Theorem 2: Starting from Theorem 1,

(47)

A simple upper bound is

(48)

(49)

where is the divergence between the distribution of con-
ditioned on and the distribution of conditioned on

.
Using the fact that for nonnegative and (with a suit-

able convention for the case where and/or is 0)

we see that the above maximum is achieved for an input distri-
bution with a point mass at , where

However, the maximizing solution is not unique. Since
:

for any . Hence, any input distribution with two point
masses, one at and one at , will do. Going back to (49), we
get

This upper bound is obtained by choosing the input distribu-
tion to maximize the second term in the minimum of (47). To
prove that this upper bound can be achieved, choose to have
a distribution with probability of being , and probability
of being , where . The first term in the min approaches
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by [8, Th. 3]. The second term is

as derived above (true actually for any , not only ). So,
the second term is smaller, and we are always limited by the
timing uncertainty. This proves the desired result.

Remark: Our results hold under the assumption that the only
possible zero cost symbol is the symbol. The other cases,
which we now briefly discuss, can be handled with arguments
similar to the ones used in this paper.
1) Two symbols in have zero cost: the capacity per unit
cost is readily seen to be infinite.

2) and all have positive cost: the analysis in
this paper can be applied, but would require some slightly
cumbersome notation.

3) There is a single zero cost symbol different than :
in this case the asynchronous capacity per unit cost is

i.e., it is the synchronous capacity per unit cost multiplied
by a factor .
The first thing to note in the above capacity expression is
that it does not depend on . The reason for this is that
no matter how large is, it is always possible to append
to each codeword a long enough zero cost preamble that
guarantees the decoder is able to identify with high prob-
ability.
For an intuitive justification of the factor, observe
that in the achievability proof of Theorem 4 case ,
bits are encoded via , the start information time. When a
symbol different than has zero cost, not only it is possible
to encode information through the start information time,
but also in the codeword “length.” By codeword length we
mean the time between and the time of the last nonzero
cost symbol of the sent codeword. This allows to commu-
nicate bits of information only through timing.

Proof of Theorem 3: A simple quantization argument can
be used to derive Theorem 3 from Theorem 1. For achievability,
one quantizes the input and the output real values to a finite al-
phabet. Then, the achievability part of Theorem 1 can be applied
to this quantized channel. Finally, take the limit of infinitely fine
quantization to proves that the stated rate is achievable.
For the converse, one adapts the method of types by quan-

tizing the set of probability distributions, i.e., one defines a type
as a set of probability distributions that are “close” to each other.
With such a notion of type, the converse part of Theorem 1 can
be applied, and in the limit of infinitely fine quantization, one
obtains the desired converse result.
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