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Output MAI Distributions of Linear MMSE Multiuser
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Abstract—Multiple-access interference (MAI) in a code-division  the uplink of a single-cell direct-sequence CDMA (DS-CDMA)
multiple-access (CDMA) system plays an important role in perfor- - system, with the view that it will provide insight into analyzing
mance analysis and characterization of fundamental system limits. multiple-cell systems. The system therein consists of numerous

In this paper, we study the behavior of the output MAI of the min- bil bscrib icati ith b tati hich
imum mean-square error (MMSE) receiver employed in the up- mobile subscribers communicating with one base station, whic

link of a direct-sequence (DS)-CDMA system. We focus on imper- IS typically interconnected to a backbone network via a wired in-
fect power-controlled systems with random spreading, and estab- frastructure.

lish that in a synchronous system 1) the output MAI of the MMSE In a CDMA system, each user, say usds assigned a signa-
receiver is asymptotically Gaussian, and 2) for almost every real- ture of lengthiV, s; = \/%(3117 ..., sin)t, and its information

ization of the signatures and received powers, the conditional dis- bol dont hi bandwidth via it
tribution of the output MAI converges weakly to the same Gaussian Symbols aré spreéad onto a much larger bandwi via Iis own

distribution as in the unconditional case. We also extend our study Signature. Since all the users “simultaneously” occupy the same
to asynchronous systems and establish the Gaussian nature of thespectrum, they create multiple-access interference (MAI) to one
output interference. These results indicate that in a large system gnother because of the nonzero cross correlation of their signa-

the output interference is approximately Gaussian, and the per- P ; i ;
formance of the MMSE receiver is robust to the randomness of the tures. This givesrse to significant challenges to system design
fand analysis.

signatures and received powers. The Gaussianity justifies the use o ) . o ) )
single-user Gaussian codes for CDMA systems with linear MMSE It is well known that bit-error probability (BEP) is an impor-
receivers, and implies that from the viewpoints of detection and tant performance measure in wireless communications, and is

channel capacity, signal-to-interference ratio (SIR) is the key pa- determined by the overall interference consisting of the MAI
rameter that governs the performance of the MMSE receiver in a and background noise. In a conventional CDMA system, the
CDMA system. . ) . !
o _ _ overall interference at the output of the matched filter is usu-
Index Terms—Central limit theorem, martingale difference  g|ly approximated as Gaussian, and the BEP can easily be ob-
array, minimum mean-square error (MMSE) receiver, mul-  ainaq by ysing the first- and second-order statistics of the filter
tiple-access interference (MAI), power control, random signature. output (see, e.g., [32]). The above approximation is done via av-
eraging over the signatures, which is valid in the scenario where
|. INTRODUCTION users employ long pseudorandom spreading sequences with pe-

HE last 10 years have withessed an explosion in the o_réqu considergbly larger than the r_1umber of chips per sym_b_ol

velopment of code-division multiple-access (CDMA) SySLnterva! (which is the length of the S|gnature§). Sometimes, itis
tems. It is well known that CDMA systems have the desirabﬂJso of interest to study the case where the signatures of the users
features of dynamic channel sharing, wide range of operatift repeated from symbglltg symbol, but they are randomly and
environments, graceful degradation, and ease of cellular plé{?]_ependently gelected initially when the USErs are adm|tted to
ning (see, e.g., [11], [31]). CDMA systems also offer the poteme_ system. I_n thIS case, th_e more mtere_stlng quar_mty is the con-
tial to support a heterogeneous mix of transmitting sources Wﬁﬂmnal distribution of the filter output given the signatures. In

a broad range of bursty traffic characteristics and quality-of-sét? information-theoretical setting, Verdd and Shamai [31] as-
vice (QoS) requirements. In this paper, we consider a model med that all the users hadualreceived powers and obtained
that for almost every choice of signatures, the output MAI of the

matched-filter receiver converges (in the sense of divergence) to
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paper, we study systems where the signatures are randomly Sifl is affected only by the imperfect power control of the de-
independently chosen, and our results are for the cases whared user and the distribution of the mean powers of the inter-
the received powers atmequaland not perfectly known to the ferers, and the impact (on the SIR) by the power fluctuation of
receiver. More specifically, first we study the unconditional dighe interferers vanishes in a large system. We note that this result
tribution of the output MAI. As in [32], we average over thds a generalization of [26, Theorem 3.1], which proves conver-
signatures to calculate the statistics of the output MAI, which gence in probability of the SIR in the perfect power control case.
valid in the scenarios where long pseudorandom spreading seéWe then extend our study to asynchronous systems to
quences are employed. Then we study the conditional distrilmstablish the Gaussian nature of the output interference and
tions of the output MAI given the signatures and powers, whidharacterize the SIR. Our results are useful for performance
is particularly useful in the scenario where repetition of the samaealysis such as the calculation of the BEP, and also useful
random signatures is adopted. for the characterization of fundamental system limits such as
In a practical wireless system, fading is ubiquitous, makinchannel capacity. In particular, the Gaussianity justifies the
perfect power control impossible (see, e.g., [32, pp. 116-119)ke of single-user Gaussian codes for CDMA systems with
Therefore, it is of considerable interest to study a more redihear MMSE receivers, and implies that from the viewpoints
istic scenario where the received powers are random. Thisofsdetection and channel capacity, SIR is the key parameter that
the focus of our study. Suppose there Areisers in the system governs the performance of the MMSE receiver in a CDMA
when the processing gain i§. We assume that each user isystem.
capable of decentralized power control, and that the receivedlhe organization of the rest of this paper is as follows. In the
powers are independent across different users. We denotertbgt section, we introduce a discrete-time model for the uplink
received power of useras P; and its mear;. In the devel- of a single-cell CDMA system and the structure of the MMSE
opment throughout this paper, we assume that the receiver teceiver in this context. In Section Ill, we summarize the main
knowledge of thgu;’s, not theF;’s. results found in this paper on the distributions of the output MAI
Our results are asymptotic in nature, with bdthand N  of the MMSE receiver. Sections IV and V contain the proofs of
going to infinity. Throughout this paper, the ratio &f to N the main results. We present numerical examples and draw our
is denoted by 2 £ and taken to be fixed a& — oo, asis conclusions in Section VI.
standard (see, e.g., [13], [26], [31], [34]). We consider user 1
without loss of generality. Roughly speaking, our main results II. SYSTEM MODEL
for synchronous systems can be summarized as follows. Fig. 1 depicts a simplified block diagram of the uplink of a

Unconditional Distribution: Assuming that the empirical COMA system equipped with the MMSE receiver. We focus pri-
distribution function of {111, ..., ux } converges weakly to a marily on the following discrete-time baseband model for syn-
distribution function¥,, asN — co, we obtain that the output chronous systems.

MAI of the MMSE receiver is asymptotically Gaussian.

- L . A. Symbol-Synchronous Model
Conditional Distribution: Assuming that for almost every

realization of the received powers, the joint empirical distribu- We have the following discrete-time model for the _uplink_of
a synchronous CDMA system. The baseband received signal

tion function of {( Py, u1), ..., (Px, pr )} converges weakly T . )

to a distribution functior¥’p, ,,, we obtain that for almost every before filtering in a symbol interval is

realization of the signatures and received powers, the condi- K

tional distribution of the output MAI converges weakly to the yvN) — Z \/Ebzsz 4V (1)
same Gaussian distribution as in the unconditional case. —1

Furthermore, it turns out that the variance of the limiting disyhere the);’s are the transmitted information symbols, tHés
tribution of the output MAI, which we shall characterize exactlyare the received powers, thg's are the signatures, arid is
is affected only by the imperfect power control of the desired’(0, 1) background noise that comes from the sampling of
user and the mean powers of the interferers, and that the powgr ambient white Gaussian noise with power spectral density
variations of the interferers do not come into play at all. A pa;, (We assume throughout that> 0.) We assume that the.’s
allel result is that the signal-to-interference ratio (SIR) gi¥&n and#,’s are independent.
converges with probability one {6, where/, is deterministic  We assume that users choose their signatures randomly and
and is the unique positive solution to the following fixed-poinindependently. In a DS-CDMA system, the signatures are bi-
equation: nary-valued. The model for binary random signatures is as fol-

P lows: s; = \/—% (si1, - -+, sin)T, where thes;,’s are indepen-
! dent and identically distributed (i.i.d.) with

T+l I, Py, A1) dE,(p)

G

1
P{Sinzl}zp{sin:_l}:§7
n=1...,N,andi=1, ..., K.

wherel(p, P, £1) 2 Pl’::ﬁal , andr is the power spectral den-

sity of the background Gaussian noise. Clearly, the asymptotic

1See [5, p. 279] and [2, p. 268] for the definitions of empirical distributior;rhis model is appli_cable to S_everal scenarios (see, e.g., [8], [16],
functions. [26]-[28], [31]). First, consider systems where users employ
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Fig. 1. A simplified block diagram of the uplink of a CDMA system with MMSE receivers as a front end.
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Fig. 2. The block diagram of a composite waveform channel for user 1.

long pseudorandom spreading sequences with periods considef-he MMSE receiver exploits the structure of the MAI pro-

ably larger than the number of chips per symbol interval (suefided by the signatures and received powers of the interferers.

as in 1S-95 systems), which is the length of the signatures. e assume that the MMSE receiver has knowledg®ofthe

this case, it is reasonable to adopt the model that the sigiestantaneous received power of user 1), but has no knowledge

tures are randomly and independently chosen and each usefthe instantaneous received powers of the interferers. We also

signatures in different symbol intervals are also independenta&sume that the MMSE receiver has knowledge ofif® De-

second scenario is the case where the signature of each usénés

repeated from symbol to symbol, but it is randomly and inde- N N

pendently selected initially when the user is admitted into the S1 = [s2, ..., sk] S =[s1, 52, ..., SK]

system. Following the line of reasoning in [26], we assume that

the signatures are known to the receivers once they are picked. e N e
We consider user 1 without loss of generality. A discrete-time M1 = S1E157" +nl My =5.D151" +nl.

composite waveform chann@lee, e.g., [19]) seen by user 1 is ) )

shown in Fig. 2, where all the interferers’ signals contribute tb'€ MMSE receiver generates an output of the fornf .,

the MAI. By definition, every linear receiver generates an outptf€rec is chosen to minimize the mean-square error

of the formy™ = Y ™) (see, e.g., [15], [18], [26]). Note that )

the outputs of the receiver depend on the processing/gairo J=E [(cty(]\) - bl)Q‘ P, S} y

empha3|ze thls dependence, we mgé to denote the output . .

MAI, and 12 the effect of background noise at the receive he output at the MMSE receiver can easily be shown to be as

A . A .
D, = diag(FPs, ..., Px) E, =diag(pa, - .-, px)

output, that is, ollows (cf. [15], [26]):
(A‘r) v Pl tM—ly(/\f)
v = Z VPbicts; T + RS M, Ty 1V
Pisi My s, (V) ()
' ==+t 2
V2 gy, L4 Pt s TR 2 @)
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where interferers Based on [12], we have the following discrete-time
K 7 symbol-asynchronous baseband model:
M=y M Pbs , K

= L+ PsiMy s YN = \/Pibisy + > \/Biibi1sia
7N _ VPy =2

=Y StMV
2 1+P18t1MI_181 e

K

+Z P ob; 25 2 +V
The above construction of the MMSE receiver requires =2
knowledge of the signature and instantaneous received powsered; ; andb; » are two consecutive symbols of ugein-
of user 1, and the signatures and mean received powerstasfering with the symbol of user 1, anf ; and 7 » are the
the interferers. We note that the construction is applicabterresponding powers in the two symbol intervals. We assume
to systems of any size. If the processing ga&his large, thatd; ; andb; . are independent, an ; = P, ». Theeffec-
the MMSE receiver would be difficult to implement if thetive signaturess; .; ands; ., are

signatures change from symbol to symbol. Therefore, from a (8:)(N—ritn) 0<n<m
(Si, el)n = { ! ’ - -

ractical viewpoint, repetition of the signatures may be more
P P P 9 y 0, m<n<N

suitable for the implementation of MMSE receivers (see [8]).
Since the received powers may vary from symbol to symbol, it [0 0<n<m

is sensible to assume that the MMSE receiver has knowledge of (84, e2)n = () (n—m)s 7. <n<N.

the interferers’ mean received powers instead of instantaneous. . asynchronous systems, we consider only the single-

received powers. Moreover, it turns out that in a large SySteg]ymbol asynchronous MMSE receiver, that is, we assume that

the knowledge ofP; is in fact not crucial for the construction,[he observation window of the MMSE receiver spans only the
of the MMSE receiver. We will elaborate further on this "Huration of the symbol of interest. Define

Section lll. Worth noting is that the MMSE receiver does

require knowledge of the timing of user 1 [9]. s 2 [82,e15 -+ vy SK,els $2,e2, -+ -, SK, e2]
i i i - A L.

Since the MMSE receiver has no knowledge of the mst_anta D, 2 diag(Ps, ..., P, Ps, ..., Px)
neous powers of the interferers, the power of the overall inter- DAL
ferenceis a function aP; and hence random, and can be shown B} = diag(pa, ..., prc, p2, -5 JiK)

. A
to be as follows: My 2 S{E/(S)T +q1
B[+ 57| Py 5. D] My 2 S{DY(S)" 4l
P, ‘ Then the output MAI of the MMSE receiver in this setting is

—1 ! —1
= " — SIMI MIMI S1- -
(1 + PISEMI 81)2 I(]\f) _ EB: 14 Pl Sthl
As is standard (see, e.g., [15]), the SIR is defined to be the ratio 1+ PrstMy'ts L

of the desired signal power to the sum of the power due to noise B b s B b s
and MAI at the receiver output in a symbol interval. It then fol- ' ( 0,10, 150, e1 + /15,2 %25%62)
lows that the SIR of user 1 is and the SIR at the output of the MMSE receiver is
r Pi(stM;1s)? r P (st M7ts;)?
SIRYY = SO ® IR = i
SIM; MM, s, syMpr My My s
Note that the SIR is random as well.
lll. MAIN RESULTS
B. Symbol-Asynchronous Model In this section, we summarize the main conclusions found in

In the above symbol-synchronous model (1), symbol epoctiis paper on the output MAI distributions. Because the proofs
are aligned at the receiver. This requires closed-loop timing ca¥-our results are rather technical, we defer the details of the
trol or providing the transmitters with access to a common clodrtoofs to Sections IV and V.

In CDMA systems, the design of the uplink is considerabl

simplified if the users need not be synchronized [30, Ch. 7} The Symbol-Synchronous Case

In this section, we describe a symbol-asynchronous model. Td-irst, we impose the following assumptions on the received
facilitate the analysis, we assume that the system is chip-syowers.

chronous. More specifically, the offset (also called delay) of the

interferer: relative to user 1, denoted ag is a nonnegative (3.A1) The empirical distribution f_“”‘?“of‘ offp T pc }

integer in terms of the number of chips= 2, ..., K. Fol- converges weakly to a distribution functiah), as

lowing the line of reasoning in [12], we assume that the offsets N = oo .

are known to the receiver although they sxadom (3.A2) 'brhe Zegond moments of the received powers are
ounded.

As pointed out in [12], [15], [30], a typical interferer has two
different but consecutive symbols interfering with the symb&e note that the assumption (3.Al) is applicable to many prac-
of user 1, and the interferer can be modeled as éffective tical scenarios. For example, in a practical system, typically
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users can be classified into a few classes according to thiie signatures and received powers is the same as the un-
QoS requirements. One common approach for power controldonditional one with probability one. The intuition behind
practice is to drive the received powers for all the users havitlge above result is as follows: In a large system, after the
the same QoS requirements to be a fixed predetermined vallwghitening” of the linear MMSE receiver, averaging across
namely,power balancingsee, e.g., [32]). Correspondingly, thehe users acts as “good” as ensemble averaging over the sig-
mean received powers are about the same for all the users haviatyires and received powers.

the same QoS requirements. Then it can be shown that the conA/e have the following heuristic interpretation of Theorems

dition (3.Al) is satisfied. 3.1 and 3.2. Theorem 3.1 reveals that in a fading environment,
We have the following result on the MAI unconditional disas long as the mean powers of the users satisfy Conditions
tribution. (3.Al1) and (3.A2), the output MAI of the MMSE receiver

is approximately Gaussian in a large system. Theorem 3.2

Theorem 3.1 (Symbol-Synchronous: Unconditional I\/lAI):e tablishes that for almost every realization of the signatures
Suppose Conditions (3.A1) and (3.A2) hold. Then the outpgﬁd received powers, the conditi%nal distribution of thg output
MAI of the MMSE receiver\"’, has a limiting Gaussian dis- P ! p

tribution (asN — o) MAI of the I\_/IMSE rgceiyer is .approximatel)_/ 'Gaussian (the
- same Gaussian distribution as in the unconditional case) when

Theorem 3.1 establishes that the unconditional distributionthfe received powers satisfy Conditions (3.C1) and (3.C2).
IfN) converges weakly to Gaussian. To show the almost surberefore, from the viewpoints of detection and channel
convergence of the MAI conditional distribution, we need @apacity, systems with the MMSE receiver achieve the same
stronger form of regularity on the received powers. The assunferformance with probability one and are robust to the random-
tions we impose on the received powers are as follows. ness of the signatures and received powers.

Theorem 3.2 is particularly useful in the scenario where rep-
etition of the same random signatures is adopted. In this case,
the output MAIs are correlated across symbol intervals because
they depend on the same random signatures. This lack of in-
dependence is usually difficult to deal with. For example, it
complicates decoding and hinders us from simply analyzing the
performance and characterizing system limits such as channel
The assumption (3.C1) is general enough to cover many praepacity. However, conditioned on the signatures and received
tical systems of interest. For example, Condition (3.C1) holg®wers, the output MAls are independent across symbol inter-
when there is a finite number of classes in the system, whets (under certain assumptions on the information symbols),
users within each class have i.i.d. received powers. (This isiad the asymptotic Gaussianity greatly simplifies the perfor-
reasonable model because fading channel gains are typicallyragnce analysis and the characterization of system limits.
sumed to be stationary and ergodic, and all the users in one clads the perfect power control case, Theorems 3.1 and 3.2
can be assumed to have i.i.d. channel gains [6], [7].) amount to the following result. (Note tha@;, = u; in the

For convenience, leX ™) denote the collection of the signa-perfect power control case.)

:E;eieanudeffg;(e A(;I)?otv;r;vxvhde:ntgtz '?{L(:)Cszigggﬁ?ﬁﬁu_ Corollary 3.1: Suppose Conditions (3.A1) and (3.C2) hold.
. q(N) N I N pe Then asV — oo, the output MAI of the MMSE receiver has a
tionofl; givenX. FoIIow!r)g [25], we say thaP’y; converges limiting Gaussian distribution; moreover, the conditional distri-
almost surely to a probability measurg if for any bounded 1,5 of the output MAI, given the signatures, converges almost

! ; X . .
continuous functiory, f fdPy — [ fdF, with probability surely to the same Gaussian distribution as in the unconditional
one. We note that convergence almost surely of conditional djs;

tribution is an instance of convergence of a sequence of random

measures. We have the following theorem on the MAI condi- Theorems 3.1 and 3.2 allow us to incorporate easily the effect
tional distribution. of the background noise and conclude that the overall interfer-
ence is asymptotically Gaussian. ¢’ denote the BEP of
user 1 when the processing gain/is Then we have the fol-
I%T/ving result on the asymptotic SIR and BEP.

(8.C1) The joint empirical distribution function of
{(P, 1), ---, (Pr, ng)} converges weakly to a
deterministic distribution functiod's ,, with prob-
ability one.

(3.C2) The F;’s are uniformly bounded above, and thgs
are bounded below by a positive number.

Theorem 3.2 (Symbol-Synchronous: Conditional MASJp-
pose Conditions (3.C1) and (3.C2) hold. Then the condition
distribution of the output MAI of the MMSE receiveI,fN),
given the signatures and the receiver powers, converges almostheorem 3.3 (Symbol-Synchronous: SIR and BER)ppose
surely (asV — oo) to the same Gaussian distribution as in the€onditions (3.C1) and (3.C2) hold. Then w (given P1)
unconditional case. converges almost surely to the unique positive solutiprof

Theorem 3.2 is somewhat surprising because we WOLm]e following fixed-point equation:

expect that the asymptotic properties of the output MAI de- B, = Py 4)
pend on the choice of signatures and hence are random. 1= 774_@[000](”7 Py, 1) dE,(11)

Indeed, there are some cases for which the output MAI of
the MMSE receiver does not have an asymptotic Gaussi‘gnere
distribution (see [18]). But in fact under our assumptions,

the limiting distribution of the output MAI conditioned on

/ P
Iy, Pl’ﬁl):ﬁ' (5)
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Moreover, if the modulation is antipodal, thei™ con-  b) the conditional distribution of the output MAI of the
verges toE[Q(+/31)], where the expectation is taken over MMSE receiver, given the signatures, received powers,
3. Therefore, in a large system, we can approximate the and offsets, converges in probability to the same Gaussian
BEP by E[Q(v/SIR)]. This implies that the SIR is the key distribution as in the unconditional case.

parameter that governs the performance of systems with th ) . -
MMSE receiver in a fading environment. Moreover, we notﬁ Theorem 3.5 (Symbol-Asynchronous: SISJuppose Coqd|

()
that from the viewpoints of detection and channel capacit ?ns (3.A1), (3.C2), and (3.A3) hold. ThenAs— oo, SIR 1y

. ™ 1
the SIR is of fundamental interest. Since any (positive) scal€dVen£1) converges in probability tg, w(x) dz, wherew(r)
version of the MMSE receiver results in the same SIR, i# the unique solution (in the class of functiangr) > 0) to the
suffices to use any filter of the forat = dst M; !, d € R[cf. following functional equation:
(2)]. Therefore, there is no need for knowledge of the desired _ P
user’s instaqtaneou; received power for thg construction of thzé((x) T+ afooofoooferr(u, Pr, 7, 2, w(t) dF, () dH, (1)
MMSE receiver (strictly speaking, a (positive) scaled version (6)
of the MMSE receiver). where

Heuristically, the SIR3; (given P;) approximately satisfies La(u, Pr, 7, 2, w(-) A, <u » /.T wld) dt) .
the following fixed-point equation: cAmEe o r=a

1
/31 =~ _ Pl . +1 </J, Pl, /’_ w(t) dt) 1{.,-§m}

K
n+x 21w Py Br) [The quantityl(z., P, -) is defined in (5).]

That is, the total interference can be decoupled into the sum’/e have the following heuristic interpretation of The-

of the background noise and an interference term from each0f™M 3.4. G|ven_ the S|gnz_;\tures, rece|ve_d povx_/ers,_and offsets,
the interferers. The quantity(y, Py, 3) is called theeffective th? oytput MAI is approxmately Gaussian with high probq-
interference functiorf26]. Note that the effective inten‘erenceb'l'ty in a large ;ystem. This further reveals that systems with
function depends on the mean powers of the interferers (not H‘?g MMSE receiver are robust tq the randomness of the offsets
instantaneous powers), and the instantaneous power of the well as the randomness c_)f 5|gnatures_ an_d received powers.
sired user, hence is random. This further indicates that the pér= note that Theorem 3.5 is a generalization of [12, Theo-

formance of the MMSE receiver is robust to the power variatio m 4.1]. - N
of the interferers It should be noted that Theorem 3.4 is “weaker” than The-

orem 3.2 in the sense that the convergence mode of the con-
ditional distribution is weaker. (The convergence almost surely
of the conditional distribution appears considerably more diffi-
As noted before, to facilitate the analysis, we assume that ifi@it to obtain in the asynchronous case.) The proof of Theorem
system is chip-synchronous, that is, the offsets, denotegl, as3 4 involves a combination of the techniques used in proving
are nonnegative integers in terms of the number of chips. Waeorem 3.1 and those used in proving [12, Theorem 4.1]. Al-

B. The Symbol-Asynchronous Case

impose the following assumption on the offs¢ts, ..., 7x}.  though more complicated, the proof of Theorem 3.4 essentially
(3.A3) The empirical distribution function ofr, ..., 7i} follows the same line as that of Theorem 3.1. We omit the de-
converges weakly to a deterministic _distributiori@ils here. (See [33, Ch. 3] for more details.) The intuition behind

function H, with probability one Theorem 3.4 is as follows: In an asynchronous system, an asyn-
H, . X o
chronous interferer can be regarded as two effective interferers

The above assumption is also very general to cover many pragth smaller powers [15]; and, as before, Gaussianity essentially
tical SyStemS of interest. For example, Condition (3A3) hOlqﬁ)mes from sums of many “small” terms.

when the offsets have (identical) uniform distributions, which'is |n what follows, we prove Theorem 3.1 in Section IV. Sec-

a typical model for the offsets in an asynchronous system (s@gn Vv contains the proofs of Theorems 3.2 and 3.3. For sim-

e.g., [12], [13], [15]). plicity, we assume in the proofs that the modulation is antipodal,
Our main results for the symbol-asynchronous case make gt is,b; € {—1, 1}. This assumption is not crucial, but sim-

of the notion of convergence in probability of conditional distriplifies the analysis. We will elaborate further on this assumption
bution. As in [25], we say thaP¥ converges in probability to in Section V.

P, if every subsequencfN’} contains a further subsequence

{N"} for which P%, converges almost surely tB,. We are IV. PROOF OFTHEOREM 3.1
now ready to present the results on the output MAI distributions )
and asymptotic SIR. The proofs of our results make use of a theorem in random

matrix theory. For convenience, we restate that theorem here.
Theorem 3.4 (Symbol-Asynchronous: Unconditional arpenote the eigenvalues of the random matfixF, St by
Conditional MAI): Suppose Conditions (3.Al), (3.C2), andy,, ..., A (they are random, depending on the realization of
(3.A3) hold. We have that a§ — oo S1), and the empirical distribution of the eigenvalues®y.
a) the output MAI of the MMSE receiver has a limitingThe result of [24, Theorem 1.1] states that if the Condition
Gaussian distribution; (3.Al) holds, then@ converges weakly (a8 — <o) to a
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(nonrandom) distribution functioiz* with probability one, 1) maxo<i<k |t§N)| is bounded inL, norm;
and the Stieltjes transform(z) of G* is the solution to the

. . . 2) maxe<i<k +™) converges to 0 in probability a¥
following functional equation: ) maxpgici |t g P y -

OO;
1
m(z) = : @) +V)y2 oA * i -
(#) —z—i—a]ﬁm(z)dﬂ(u) 3) Z( )? converges tof; oz 4G (A) in proba
for all blllty as N — oo.

Itis worth noting that these conditions are weaker than the stan-
dard Lindeberg conditions (see [17] for more detailed compar-

Itis further pointed out in [24] that the limiting distribution func-1SOn).

zeCt={zeC, Im{z} >0}

tion G* is unique. By using (39) in Appendix A, we get that

In this section, we prove Theorem 3.1 via the dependent (2 K (2 1
central limit theorem in [17], which is a central limit theorem E [lei%( (ti ) } <E Z (ti ) <- (14
for martingale difference arrays (cf. [13]). We begin with some - =2 K

technical lemmas. that is, Condition 1) is satisfied. Fix > 0. By exploiting
Lemma 4.2, we have that
A. Technical Lemmas

K
Define P{Qlﬁnig( tz(]\)‘ > 6} < ZP{‘Q@)‘ > 6}
0 é \/?1 1=2 . .
1+ P e m dG*(\) x E {(tﬁ ) }
tEN)é \/Ebzsl I Si, iIZ,...,K. S;
We have the foIIowin_g lemmas, the proofs of which have been < 9K _9K max E[P?]
relegated to Appendixes A and B. N2(em)t 2<i<k
Lemma 4.1: —0. (15)
VP s, Next, we verify that Condition 3) is satisfied. To this end, by
1+ PstM;ts, g ®)  Lemma 4.2, it suffices to show that

p
Lemma 4.2: var <§: (tEN))2> — 0.

K oo =2
. (N) 2 _ A *

i=2 K 2
(N #)
Lemma 4.3:We have fori =2, ..., K vat <; (ti ) ) vat <z=; ( ) )]
[N
E _(ti ) | = Nn? (10) —|—fo1< [ (A) ]) (16)
[/~ 9E[P?
E (tg )) < N2t (11)  where we used the following well- known conditional variance
- . P 225 E[P? formula [20, p. 51]:
E (ti ) ST g (12) var(X) = E[var(X|Y)] + var(E[X|Y]).
For the first term on the right side of (16), we have that
B. Proof of Theorem 3.1 K N2 " K ™
; N (3)
Let/) = 3K ™ Firstwe showthat"\’ has alimiting E [V“ <Z (ti ) S)] =E [ZV“ <(t ) )]
Gaussian distribution. Observing that ﬁlﬁé)'s are dependent =2 ZT(Q
because ever;‘/ij\‘) is a function of the random signaturés (E)E Z[E {(t(m)4 S}
we resort to the dependent central limit theorem in [17]. Define - P ’
Fn ; as thes-algebra generated k{ygj\‘), ey tEM}, that is K '
A N N . = E [ t; }
FNJ‘IO'(tg ),.., 5 )), 122,...,K. Zz:; ( )
It is clear that ©) K 9
<Y E[FP?
[t(]\)‘fz\w 1}—[Eb][E[31 T Pisi| Faie 1}—0 _; [ 7’]]\72774
13
(13) Dy (17)

Therefore, the arra{/t( )} is a martingale difference array with
respect to F ; }. Thus, based on [17], it suffices to verify thatwhere(a) follows from the fact that the( Vs are independent
the following three conditions are satisfied: conditioned onS, (b) from the fact thatvru(X) < E[X?] for
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any random variabl&, (c) from Lemma 4.3, andd) from the and

assumption that the second moments of the received powers are 22 Ui Usiaeo U Ui Ajy Ay
bounded. Zs < ke k2
We proceed to show that the second term on the right side of N2 %: %: Ay +m?(g +1)?
(16) goes to zero a4 — oo. Combining Lemma 4.2 with the 2
fact thatz? is continuous inz, we obtain that <ZUJIkU12k) Aji A,

S

K 2
Alz%o<ElE [i(tiﬁ’>)2 ) =5 23 G 0

[t hk () e

A+n)?
Furthermore, based on (38) in Appendix A, we have that - N77
K AN 2 K Similarly, it can be shown that
E Z (tg ‘)> S| = Ztrace(uisisﬁMl_lslsiMl_l) 1
i=2 L3 < ——
Nn?

—trace((MI — )M sist M)
231(M1 1 My ) Observe that

00 2
where we denotgA/;')? by M;? (we use this notation ;. E[7] = lim E [(/ A dGx ()\)> ] (20)
o (A+n)?

throughout). For any realization ¢f;, the corresponding/;  N—oo A+n
is symmetric and positive definite, and hence can be written in 00 \ 2
the form of U* AU, whereA 2 diag(M + 7, ..., An + 7). It @ l lim </ 3 dGN()\)> ]
follows that N=ee \Joo (At)

K
E 3 (tEN))

=2

) 2 oo )\ 2
= dG* (A 21
<[E SD] ([ o) .
P o o where(a) follows from the Lebesgue Dominated Convergence
=E[(si(M; ™ —nM;")s1)7] Theorem [21, p. 91] becaug§” 5= dGn (M) is positive and
=E[E[(Us))"(A™" —nA™3)Us1)?|S1]l. (19)  upper-bounded by
Observe the equation at the bottom of this page. Clearly,In Summary, we have that

E[S1k; S1ks S1ks S1k,] 1S NONZero (equal td) only in the fol- K N2
lowing three cases: B, = ks andks = kq; 2) k1 = k3 and lim var <[E Z (tz@‘)) SD
ks = ky; and 3)k; = ky andky = k3. We letZ; denote the N=eo i=2
sum of all the terms for whiclh; = ks andks = k4, Z> the = A}im E[Z1 + Zs + Zs]
sum of all the terms for whick; = k3 andk, = k4 excluding i X 9
k1 = ko = ks = k4, andZ3 the sum of all the terms for which . (N ?
ki = ky andkg = ko excludingkl = ko = k3 = ky. Then it B ]\ll—l>rcl>o <[E E [z; (ti ) S
follows that . =
2 = Jim ElZ + 7]
N E jkl < _2 =
7, = 1 Z ki=1 < 1\11_1>rc1>o NP 0. (22)
N = ()\j +77)2
i=1 It then follows that
K 0o
* A 2 (MY? P / A !
- N . t; — ——dG*(N). (23)
</0 Oz N (A)) ; () ) O
N N 2

N 2 22 Ui Uk S1ay S1r Aj

o B B i ey =lks=1
E[(Us1)' (A7 —nA™")Us)*|51] = E ; O+ )2

N N N N

N N )\jl)\jZ Z Z Z Z UjlklUjlszjsz %2k4|E[81k181k281k381k4]
_ i Z Z ki =lko=1kz=1lks=1
N2 - ()\jl + 77)()‘j2 + 77)
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Combining (14), (15), and (23), we conclude, by using thier any given signatures and received powers. Appealing to
dependent central limit theorem in [17], thféﬁ‘) has a limiting [10, p. 470], we have
Gaussian distribution with meanand variance

K K
o Mt <Z Pisis§> M7t <M;t <Z dlsis§> Mt
- =2 =2
I

dG*(\).
A+ 77)2 ( ) d K
oLt gl -1
Furthermore, combining the above result with Lemma 4.1, = s My <§_; “23131> My
we apply Slutsky’s theorem [3, Theorem 5.3.5] and conclude = (24)
thatIfM has a limiting Gaussian distribution with me@mand ) ) )
variance It follows that for given signatures and received powers
2
w00 (N)‘
ag/ A S dGH(\) E [(%‘%ﬁ ti ) 5 Dl]
o (A+m)
K
thereby completing the proof. <E [siMI_l <Z Pisis§> M;ts,| s, Dl]
1=2
dy _ . _
V. PROOFS OFTHEOREMS3.2 AND 3.3 < o si M sy, sincensi M ?s; > 0
In this section, we prove the almost sure convergence of the < dy (25)
conditional distribution, and derive an expression for the SIR. = dan

Throughout this section, we assume that Conditions (3.C1) apflere the last step follows from the fact tiia A/, * < L1
(3.C2) hold. More specifically, for Condition (3.C2), we assumBecause\f; = nI = 0 (see [10, p. 471)). K

that theF;’s are uniformly bounded above b} and the;;'s  Lemma 5.1 indicates that for almost every realization of the
are bounded below by, > 0. signatures and received powenisyx;<;<x £, converges al-
most surely td). Therefore, based on the central limit theorem
A. Technical Lemmas in [17], it suffices to show that for almost every realization of
First we define for = 2. ... K the signatures and received pow@ffﬂ(tgm)? converges al-
Y most surely to
A
Si = [52, .0y Sic1, Sitls o vy SK] /°° A 4G (N)
A L. N .
E; = diag(pa, -5 i1 fhit1s -5 J1K) o (A+n)?
A
M; = S;E;S; +nl. To that end, note that
K 2 K
N — _
Lemma 5.1: Z (tf )) = s [MI ' <Z Pz‘3i3§> M; 1] 51
1=2 =2

First we verify that the spectral radius of

K
M,_1 <ZP73733> M,_1
i=2

is bounded above. Because

K
> } Mrt (Z u) Mpt=Mpt —nM;?
1=2

Lemma5.2:Fix € > 0. GivenN and any: € {2, ..., K},

P {
< Cl(;) it follow that the spectral radius df/; 2 (3°1, pisist)M; L is
N bounded above b%. Using (24), we conclude that the spectral

where the constant (<) does not depend upaH. radius of M; (31, Pis;st)M; ! is bounded above by

Fix arealizationof (P, p11), ..., (P, pirc)} forwhichthe
empirical distribution function converges weakly £3> ,,. By
appealing to Lemma B.1 and using the same techniques as in
the proof of Lemma 4.1, it can be shown that

N) as.
max tg ) as,
2GS

taf—2 1 —2
SEM"s; ~ trace(M; <)

L+ pastMT 502 (14 Srace(M; 1))

2

The proofs of the above two lemmas are in Appendix B.

B. Proof of Theorem 3.2

We now complete the proof of Theorem 3.2. K

Observe that conQitioned on the signatures and receivegl'i [M{l <Z PiSiSE) Ml_l
powers, the arra){tgj\)} still forms a martingale difference i=2
array with respect t§Fx ; }. In what follows, we show that for 1 K
almost every realization of the signatures and received powers, — Ntrace <M,_1 <Z 1%:&;85) M,_1> =250. (26)
If,]:‘r) has a limiting Gaussian distribution. To this end, first we i=2
show thatmaxo<;< |t§N)| is uniformly bounded in/.> norm 2By matrix inequality4 > B, we mean thatl — B is positive semidefinite.

S1
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Note thatM; = M; + pis;st. Using the matrix inverse lemmawhich implies that
(see, e.g., [4, p. 175]), we have that {

S
M_l M_l / quzS:Mz—l 07 N Z 1 + His tM )
Lo { 1 pstM s } @ 1 S P x trace(M; %) A cs(c)
N = (1+%trace(MI_1))2 TN
wherec;(¢e) andcg(€) are positive constants. Sinees arbitrary,

which implies that

we use the Borel-Cantellilemma [23, p. 253] and conclude that
—t . Ps; 1 K
race < <Z %8 ) ) N trace <MI_1 <Z stzsf> MI_1>
K =2
st K 1 -2
z=: MI 87 _% P trace(MI _)1 5 a.s. 0' (31)
< = = (14 & trace(M; 1))
Z Si Observe that
— + s tM 5:)2 1 EA:P‘ + trace(M; ?)
N =7 (14 5 tpace(M7))’
Using (27) again, we obtain that for=2, ..., K ! ( v wace(M; ))
1 1
1 X L X N 2 G
‘— trace(M; ) — N trace(M; ) =N z; b - 5
= 4 1
e (1% £x)
N |1+ s @M‘ si oo 1
[ P ooz dGN (V) .
4 (M n)? N
o (1 +ifo x dGN()\))
< N (28) where the outer integral is with respectﬁﬁv), which is the
and joint empirical distribution of {(Py, 1), ..., (PK, px)}
1 —2 1 —2 when the processing gain /8. Moreover, it is straightforward
‘N trace(M; ) ¥ trace(M; 7) 10 see that
tAf 3. AT 24.)2 1 >~ 1
< i 2p;8E M ? 3 (pistM; szl) Ay (\) 2= / dG*(\)
TN |14 stMTrsg 14 pustM s o A+7 0o A+7
1 (20 id /m#dG A) s /OO Loy (33)
- e N
SN<773 +774> o (A+n)? < o (A+mn)? W
< &6 (29) whereG* depends oi),, the limiting empirical distribution of
- N {p1, ..., px} [namely, F,(-) = lim, o, Fp, .(p, -)]. Using
a telescoping argument, after some algebraic manipulation, we
We note that bothr; andcg are constants independent &f. get that ping arg g P

Their existence comes from the boundedness ofihe
Fix ¢ > 0. Based on (28) and (29), it follows that there exists; L trace(M;?)
No(e) such that for allV > Ny(e)

N i—2 ' (1+ & trauce(M,_l))2
p sEM s, + trace(M; ?) N .
= - € P L dG ()
(14 past M s;)? (1+ & trauce(]\/ffl))2 = Jo Otn)” ») 5 (34)
_p { sEM s, B + trace(M; ?) . F} (1 + ey ﬁ dG*()\))
Gt Mg )2 ; 12| 7 L
(LbpisiMi i) (144 trace(M; 1)) where the expectation is taken OV&s ..
< a9 (30) Recall that the joint empirical distribution function of
- N3 {(P1, m), ..., (Px, px)} converges weakly tdp , with
where the last step follows from Lemma 5.2. We use the unigfiobability one, and the signatures and received powers are
bound and get that faV > Ny(e) independent. Therefore, we combine (26), (31), and (34) to
o conclude that for almost every realization of the signatures and
Pl max aPiSiMi_lsi received powers
2<<K (1 + mst‘M‘ 37;)2
K " P dG (A
aP; % trace(M?) 2 b o cr(e) Z ( ¢ ) = Jo (At)” ») 5| . (35)
_ € < «
(1 + & ‘orauce(M_l))2 N?2 =2 (1 + fo >\+n dd ()‘))




1138 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 3, MARCH 2001

The right-hand side of (35) can be further simplified as followsC. Proof of Theorem 3.3

Recall
oo 1 *
aE PfO (A+m)? dG ()\) SIR(N) _ Pl(Sthl_lsl)Q
[e9) 2 1 - —1 1 -
(14 5™ 545 46 () SL MMM Ls,
i Since
1lo oy 4G ()
= aoF i ) K 2
_ (1 o fy sk dG*()\)) SMPMIM s = (th) st M7 25,
- =2
E d 1
_d77 1+ pf; A%n dG*(\) combining (35) and (33) with the above yields that
A dGH (A ; oo
@, 2 (g1 Jo Eu ) smg“iupl/ g, (36)
dn L+ pfy 5 4G (V) o A+n
-4 .;O‘[E[“] /Oo 1 dG*(\) Next we show thalimy .. I = E[Q(y/B1)]. Since the
dn \ 1+ puf, A%n dG*(\) Jo A+7 modtjhlaiion is antipodal, by symmetry, it is straightforward to
g see tha
© di <n / ﬁdG*(A))
" ; " HgA’>:p{y§1‘>zo‘b1:—1}
= ——— dG* (A .
|, e —e[P {0 200 =1, 1]

where(a) follows from the Lebesgue Dominated ConvergenGghere the expectation is taken ovr. We combine Lemma 4.1
Theorem, andb) is obtalped by using (7). Therefore, the congith Theorem 3.1 to conclude thyiiN) (givenb, andP,) has a
ditional distribution of/;,;’, given the signatures and receivegimiting Gaussian distribution. Appealing to the Lebesgue Dom-
powers, converges almost surely to the Gaussian distributipated Convergence Theorem and [1, Theorem 5.2], we have

with mean0 and variance that
A . : N _g [ (N) _
| e Jim 1% = [Jim {2 0] = -1, 71}
N , :[E[P{ lim ™ 20‘51:—1, Pl}}
Combining the above result with Lemma 4.1, we conclude N—oo
that for alrr)ost every realization of the signatures and received —F [Q (\//71)} (37)
powers,IfM has a limiting Gaussian distribution with me@n
and variance which completes the proof.
o0 A Theorem 3.3 suggests that the SIR is the key parameter that
ag/ g 4G (V) governs the performance of a large system with the MMSE re-
o (A+n) ceiver. Based on (36), we have that the SIR corresponding to a
completing the proof. particularP; is simply P, ', where
Theorem 3.2 shows that for almost every realization of the s
signatures and received powers, the conditional distribution 3 2 / p dG*(N).
0

of the output MAI of the MMSE receiver is asymptotically

Gaussian (the same Gaussian distribution as in the uncongli quantity?’ can be interpretated as the SIR achieved by unit
tional case). Thls strong result teI_Is us that the MMSE receivgl aived power [26]. The calculation of the SIR and hence the
performs well in a large system in the sense that the MMSEep then boils down to that g, which is a constant. Using

receiver is robust to the time-varying channel conditions ané # can be shown to be the unique positive solution to the
the randomness of signatures. In particular, this result is Uselsai,owing fixed-point equation:

in the scenarios where the received powers change relatively
slowly compared to the symbol rate, and correspondingly the g = 1
received powers are correlated across symbol intervals. Cn+a foooﬁ dF, (1)
Since the proofs are rather technical, for simplicity, we have H
confined ourselves to antipodal modulation. For general modeuristically, we can say that in a large systesh,approxi-
ulation, we can use similar techniques to establish the Gaugately satisfies
sianity under the following assumption on the information sym-
bols:E[b;] = 0, E[b?] = 1, and thg¥;|'s are uniformly bounded g~ 1
below and above. Note that this covers many practical modula- L& y
tion methods of interest. ntx EQI(““ )
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Fig. 3. The output MAI for a fixed set of randomly generated signaturesyfes 16, 32, 64, 128. HereP; = p; and%f =20dB;i=1, ..., K.

where (i1, ') £ ﬁ In general, there is no closed-formsignatures are eitheﬂw or —Ji and the information symbols

solution for3’. However, when the users in the system can g€ random, eithet or —1. We fixeda = 0.75 in both exam-
classified into a small number of classes (according to their fgles. In Example 1, we assume that all the users have equal re-
ceived powers)3’ corresponds to the unique positive root of &eived powers with signal-to-noise ratio (SNR)= 20 dB. In
polynomial. Example 2, we assume that all the users’ received powers have
log-normal distributions% interferers having mean SNR 20 dB
and variance 13.3 dB, anothé’r interferers having mean SNR
VI. NUMERICAL EXAMPLES AND CONCLUSIONS 16 dB and variance 11.4 dB, and the remaindpg 1 interferers
having mean SNR 30 dB and variance 23.3 dB. In Example 2,
In this paper, we consider a model for the uplink of &e randomly generate the powers once according to the distri-
single-cell DS-CDMA system with the MMSE receiverputions and then fix them, and the corresponding plots are taken
assuming the received powers of users are random becausgsohe distributions of the output MAI conditioned on both the
time-varying channel conditions. We have studied primarily thggnatures and powers. We obtained the MAI values of 10 000
asymptotic distributions of the output MAI in CDMA systemssamples for each plot. Examples 1 and 2 are shown in Figs. 3
with random spreading. Roughly speaking, we have fourghd 4. We observe that the distributions of the output MAI are
that if the empirical distribution function ofui, ..., ux}  close to Gaussian whe¥ is large, corroborating our theoretical
converges weakly, then the output MAI of the MMSE receivagesults.
is asymptotically Gaussian; if the joint empirical distribution OQur results are useful for design of channel codes and per-
function of {(Py, yu1), ..., (Px, i)} converges weakly formance analysis such as the calculation of the BEP, and also
with probability one, then for almost every realization of th@seful for the characterization of fundamental system limits
signatures and received powers, the conditional distributignch as channel capacity. For example, the BEP (assuming the
of the output MAI converges weakly to the same Gaussianodulation is antipodal) can be expresse& g3(1/3)], where
distribution as in the unconditional case. These results are quit& the SIR and is random (due to the imperfect power control).
general and applicable to many practical systems of interegthe MMSE receiver is followed by a single-user decoder (as
For example, we can obtain almost sure convergence of Hgs been advocated in [31] and the references therein), then
conditional distribution when there are finite number of classése achievable information-theoretic rate (channel capacity) for
inthe system (the received powers of the users within each clasgh user i E[log(1 + )] bits per symbol time [6].
are i.i.d.). We have also extended our study to asynchronous\ithough the results in this paper are for single-cell systems
systems and established the Gaussian nature of the outpith MMSE receivers, we believe that these results can be ex-
interference. tended to multiple-cell systems. Indeed, in a multiple-cell set-
To illustrate our asymptotic results, we provide two numeting, interferers from other cells have smaller powers. Thus,
ical examples. In each example, we simulated for a fixed sée Gaussian approximation may be even more appropriate in

of randomly chosen signatures corresponding to the processéingultiple-cell asynchronous setting because essentially Gaus-
gainsN = 16, 32, 64, and128, respectively. The entries of thesjanity comes from sums of many “small” terms.
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Fig. 4. The output MAI for a fixed set of randomly generated signaturesyfes 16, 32, 64, 128. Each user’s received power is randomly generated according
to a log-normal distribution and then fixed. Heﬁg = 20 dB, *—7 =20dB,i = 2,..., £ +1; *—7 =16dB,i = £ +2,..., £+ *T = 30 dB,
i=E 42, K.
APPENDIX A Therefore, we have
PROOFS OFLEMMAS 4.2 AND 4.2 )
7y 2 eo A
A. Proof of Lemma 4.2 lim E (th) = lim E [/ A dGN( }
N—oo [z_; N—oo 0 ()\ =+ 7’])2 N ( )
Observe thatfoi = 2, ..., K = w o
7\ 2 ZE | i — = dGn(A
(1) = (ka2 i [ G o)
=trace(si M s; st M7t s;) P © / % dG*(N) (40)
ztrace(ﬂsisle_lslsiMl_l) (38) o (Atm)
which implies that where(a) follows from the Lebesgue Dominated Convergence
X Theorem, andb) follows from [1, Theorem 5.2] because the
E [Z (t@r))Q] quantityﬁ is a continuous function of and bounded bj.
=2 X B. Proof of Lemma 4.3
=E ltrace <Z B,sis:M,_lslsiM,_l>] Recall that
=2 A
K Si = [s2, .-y 8i 1, Siqly -+ SK]
=E [trace <Z E[R]3181MI_1E(3181)MI_1>‘| E; é dlag(u27 ey el Higls - NI()
1=2 /
= i[E trace Z 88t M2
N © —~ Hisisi My We denote the eigenvalues §fE;S! by v, ..., vx and the
= 1 empirical distribution of the eigenvalugs’,,. Note that the
<since[E[slstl] = NI> p;’'s are bounded becau&§P?] is bounded foi = 1, ..., K.
Therefore, {p2, ..., pi—1, phit1, --., ¢} @also converges
= i[E[trace(SlElsfMI_Q)] weakly toF,, asN — oo. By appealing to [24, Theorem 1.1]
N again,(&’,, converges weakly t6:* almost surely a&v — oc.
. 1 zj\: by Using the matrix inverse lemma, we have that
N ZH w2 ) = /Pibist M7 s,
) tr a1 pisistM;! JE
_ . =sio;M; |- ——— 1 \/Ps;
_[EU0 EF=E dGA()\)} . (39) 1 1+ just M s,
AL P
3The expectation in different lines may be taken over different random ele- — M

ments. 1+ uiszMi_lsi '
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For any realization of5;, the corresponding realization é; fori = 2, ..., M. Observe that
is symmetric and positive definite, and hence can be written in
the form of @*TQ, whereT = diag(vy + 7, ..., vy + 7). .
By our assumptionp;, b;, and.S; are independent. Moreover, NoX ‘
pistM;ts; > 0 for every realization of5;, which implies that zj\: klzzjlk;lQ]le]kzslklsmz
otagle
14 psiM"s; > 1. Hence, we have ~ v; +1
M2
E [(tg e
. 9 N Z Z leanjlkzlslknsikzl
N N . Z k11=lkoi=1
Ll kEIkEIQg’leg’szlklsikz T &= v, +1
< E[PJE{— n=hes S; =
<EPE 3z |2 T
Jj=1 - N N -
\ N kz 1k2 1Qj2k12 szkzz 1k Sikao
4 v12 =1R22=
(N) :
E [(tl ) SZ} ]; Vj, + 1
r Q ey Qjny Sk Sike L X
< EIP2IE 1 N k1=1lko=1 SR P s N Z Z stklejzkzsslklssikzz
> [ z] m Z v; +77 if- . Z ki3=1koz=1
Jj=1 o] Vi +1
Since s1, s;, and S; are independent, we have the equation i NoX , ]
shown at the bottom of the page, which implies that . zj\: kuzilkz;lcz“kmcz“kz“3”“143”“24
: vj, +1 )
e[y e “
1 L1
<E[P]E[b]]E N 2 (o )t Note thatE[s1z,, 15,51k, 51k, ] iS NONZEro (equal ta) only
g=1 " in the following three cases: By; = ki andkis = ki4; 2)
i E © 1 da r()\) ki1 = ki3 andkio = kiy; and 3)]%‘11 = k4 and ko = kys.
N . (v+n)? N MOreOVerE[Siky, Sikas Sikos Sikes | IS NONZEro (equal to) only in
i (41) the following three cases: k}; = koo andkos = kaoy; 2) kot =

< N772. /{}23 andkgg = Koy, and 3)/{}21 = koa andkgg = /{}23. Let Z,
] o ) denote the sum of all the terms corresponding to the kase-
Nextwe use technigues similar to those in the above arguMent _ ;. . — k. ko = kg, andkys = ko andZs the sum of

to show that all the terms corresponding to the cdse = k12 = k13 = k14

[E[(t(N))4] < 9E[P? andk?l = ]m = ko3 = ko4. Using the properties of o.rthogonal

i = N2t matrices, it follows thaE[Z,|S;] equals the expression shown
N N 2
N E E ijl ijz S1ky Siks
k1=1ko=1
E S,
; v+

N N N N

N N E E E E Qhkn lekzl szklz szkzzslknsikzlslklz Sikao

ki1=lksi=lkio=lkap=1l
;::1 ;::1 (v, + ) (v, +1)
N N N 2
N N 2 2 Qi Qike Qhoky Qo N N <2leij2k> N
j1=1jo=1 (v, +m)(vj, +m) o P (vj, +m)(vj, +n) — (vj +n)?
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at the bottom of this page. Similarly, we have tE§;|S;] < where they,’s are i.i.d. withP{y, = 1} = P{y, = -1} = 3.
Ag#rﬂ Then (42) follows, as shown at the bottom of the pag&hen

This implies that 1 6
E ‘YtAY —  trace(4)] | < %
Y o 9ELR?
E (ti ) < Nt where the constartdoes not depend oN and A.
A. Proof of Lemma 4.1
Similarly, we have for = 2, ..., K For any givenS;, we have thafi{; = »I > 0, which implies
thato < M;' < +1. Thatis, the spectral radius df; " is
(VN\© 925E [ P8 upper-bounded by for all N. Sinces; andS; are independent,
E {(tz ) } < NTWGZ by appealing to Lemma B.1, we obtain
— 6
E [ S My trace(M; 1) ]
The proof is completed. N
6
_ trace(M; 1) c1
— t 1 I
APPENDIX B =E [[E < siMy sy - N Sl)] S NE

PROOFS OFLEMMAS 4.1, 5.1 AND 5.2
) ) wherec; does not depend oily, IV, nor ons;. Fixede > 0.
We use the following lemma repeatedly, which follows d'Using Markov's inequality [2, p. 283], it follows that
rectly from [24, Lemma 3.1].

_ trace(M; 1)
LemmaB.1:Let A = (a;;), a;; € C, be anN x N matrix P{ sTM; sy — TI > €
with spectral radius bounded i§, and 16
1 E |: siMf_lsl _ trace(M; ") :|
N
Y=—(y, ..., un)" < ,
\/N - 6
. kZ:kZ:kZ:leanjzanjSknQj4k11Qj1k21Qj2k21Qj3k23Qj4k23
|E[Z4|SZ] _ - “11R21R23
N* ; %: %: %: (Ujl + 77)(“1'2 + 77) (sz + 77)(“]4 + 77)
2
_ 1 Qj1kn stkn Qj1 koy ngkzs
e (ZZ o 0+
2
1 1
= Nipt Z Z Z Z lekn lekzl Z stkn szkzz = N3pt-
K ki1 kg1 kas J1 Js n
N
E |: (tEA )) Sz:| 9 ;;;;Qh k11 szkn Qj3k13Qj4k13Qj1 ka1 szkm ngkzg Qj4k23
< 2 c11hk1ako1 kag
[E[PzQ] Nt %:%:%:%: (Ujl +77)(Uj2 +77)(Uj3 +77)(Uj4 +77)
2 2
2
9 kZ:kZ:leknQj1k21Qj2k11Qj2k21 9 <Zk:Qj1ijzk>
R ;%: (Uj1+77)(vj2+77) e %:%:(Ujl +77)(Uj2 +77)

-9 < / ﬁ dGN(A))2 < N§n4' (42)
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Therefore, we have that

>

N=1

trace(M

tar—1
81]V[I S1 — N

Dlfs X s

Using the Borel-Cantelli lemma, we conclude that

trace(Mp ) aq.

tas—1
sTM7 s —
144y N

0. (43)

Furthermore, it is straightforward to show that

Y as /°° 1
0o AtT7

Combining (43) and (44) leads to

trace(M;
N

dG*(N). (44)

81 I 81 —>/ )\—4_77 dG* )
which implies that
V Py a.s.
t —1 ag-
1 + ljislj»fl S1

B. Proof of Lemma 5.1
Fix ¢ > 0. It follows that

.
tEN)‘ > e} < i:P{‘tEN) > e}
=2

o L]

) & 22543
<
- N3(en)S

1=2

P < max
2<i< K

where(a) follows from Markov’s inequality [2, p. 283], and)

1143
Using the Borel-Cantelli lemma, we conclude that
max [tV ] 220, (45)
2<i<K

C. Proof of Lemma 5.2
Observe that

P stM; s B + trace(M;?) .
(14 pist Mt s;)? (1+ & trauce(Mfl))2
stM;%s;— + trace(M;?) + trace(M; %)

(T4 pist M s)?
B + trace(M; %)
(1+ & trace(M; 1))
stM;%s; — + trace(M; %)
(14 pasi Mt s;)?

(1 pist M si)?

|
1 ;}

>
(14 pasi Mt s;)?

:P{
|

1
+P {N trace(M;?)

2

<

) 1 ‘> <
]
(46)

SinceM; = oI + 0, we haved < M
the following inequalities:

= = I. Hence we have

1
n

tar—1

IN

F =SS

1
N trace(M; 1)

IA

1
N trace(M;?)

IA

Using the above inequalities, we obtain (47) shown at the
bottom of the page. Furthermore, since the spectral radii of
M;t and M;"* are bounded by: and > respectively, we

appeal to Lemma B.1 and get

6
from Lemma 4.3. Therefore, we have E [(ngi—lsi — %traee(M[U) ] < _;23
o> fa%e) 6
(N) 22oad1 —— i ‘ _2 cs
Z 1’:){21%1;2}S t ‘ > } Z N2 < 0. E|(s;M; s Ntlace(Mi ) S_N?’
N=1 N=1
1 1

trace(M; %)

1
p{ﬁ

(14 pist Mt s;)2

- (1+ & trace(Mfl))
[20; + p? (% trace(M; ") + stM;

€
2>§

)] ,\i trauce(Mi_1

) — SEMZI

=P {% trace(M; %)

2
P{3
n

<

(1+ pisiM;

R
|:/M, + WZ} ‘N trace(M; ') — stM; s

\%
[N s
—

Yei)? (1+ & trauce(Mi_l))2

s £
5[

(47)
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wherec, andcz are some positive constants. Using Markov's [8]
inequality [2, p. 283], we have o]

SEM;%s; — + trace(M;%)| _ ¢ [10]
(1+ pistM;ts;)? 2 [11]
<r{

€
~5 [12]

E [(S§Mi_QSi -~ trace(Mi_Q))G}

P

1
sEM %5, — N trace(M;?)

< - [13]
(3)
64
e (g 1
€
and 1 1 [15]
P{ = trace(M; 2
v trace ) (14 pistM; " s5:) [16]
1 € C4
— >— < —— (49
(1+ & ‘orauce(Mi_l))2 2 N3eS (7]
[18]

wherec, is some positive constant. Combining (48) and (49)

119

we conclude that fof = 2, ..., K 1]

[20]

21

stM s, L trace(M;?) (24]

(1+ pistM's;)? - s el ks [22]
pistM; " s; (1+ & trace(M; 1))

<9 by

N [24]

wherec; (¢) is some positive constant that does not depend on

. ) . : 25
the indexi. The existence of; (¢) follows from the assumption [25]
that thew;’s are bounded. This completes the proof. [26]
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