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Output MAI Distributions of Linear MMSE Multiuser
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Abstract—Multiple-access interference (MAI) in a code-division
multiple-access (CDMA) system plays an important role in perfor-
mance analysis and characterization of fundamental system limits.
In this paper, we study the behavior of the output MAI of the min-
imum mean-square error (MMSE) receiver employed in the up-
link of a direct-sequence (DS)-CDMA system. We focus on imper-
fect power-controlled systems with random spreading, and estab-
lish that in a synchronous system 1) the output MAI of the MMSE
receiver is asymptotically Gaussian, and 2) for almost every real-
ization of the signatures and received powers, the conditional dis-
tribution of the output MAI converges weakly to the same Gaussian
distribution as in the unconditional case. We also extend our study
to asynchronous systems and establish the Gaussian nature of the
output interference. These results indicate that in a large system
the output interference is approximately Gaussian, and the per-
formance of the MMSE receiver is robust to the randomness of the
signatures and received powers. The Gaussianity justifies the use of
single-user Gaussian codes for CDMA systems with linear MMSE
receivers, and implies that from the viewpoints of detection and
channel capacity, signal-to-interference ratio (SIR) is the key pa-
rameter that governs the performance of the MMSE receiver in a
CDMA system.

Index Terms—Central limit theorem, martingale difference
array, minimum mean-square error (MMSE) receiver, mul-
tiple-access interference (MAI), power control, random signature.

I. INTRODUCTION

T HE last 10 years have witnessed an explosion in the de-
velopment of code-division multiple-access (CDMA) sys-

tems. It is well known that CDMA systems have the desirable
features of dynamic channel sharing, wide range of operating
environments, graceful degradation, and ease of cellular plan-
ning (see, e.g., [11], [31]). CDMA systems also offer the poten-
tial to support a heterogeneous mix of transmitting sources with
a broad range of bursty traffic characteristics and quality-of-ser-
vice (QoS) requirements. In this paper, we consider a model for
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the uplink of a single-cell direct-sequence CDMA (DS-CDMA)
system, with the view that it will provide insight into analyzing
multiple-cell systems. The system therein consists of numerous
mobile subscribers communicating with one base station, which
is typically interconnected to a backbone network via a wired in-
frastructure.

In a CDMA system, each user, say user, is assigned a signa-
ture of length , , and its information
symbols are spread onto a much larger bandwidth via its own
signature. Since all the users “simultaneously” occupy the same
spectrum, they create multiple-access interference (MAI) to one
another because of the nonzero cross correlation of their signa-
tures. This gives rise to significant challenges to system design
and analysis.

It is well known that bit-error probability (BEP) is an impor-
tant performance measure in wireless communications, and is
determined by the overall interference consisting of the MAI
and background noise. In a conventional CDMA system, the
overall interference at the output of the matched filter is usu-
ally approximated as Gaussian, and the BEP can easily be ob-
tained by using the first- and second-order statistics of the filter
output (see, e.g., [32]). The above approximation is done via av-
eraging over the signatures, which is valid in the scenario where
users employ long pseudorandom spreading sequences with pe-
riods considerably larger than the number of chips per symbol
interval (which is the length of the signatures). Sometimes, it is
also of interest to study the case where the signatures of the users
are repeated from symbol to symbol, but they are randomly and
independently selected initially when the users are admitted to
the system. In this case, the more interesting quantity is the con-
ditional distribution of the filter output given the signatures. In
an information-theoretical setting, Verdú and Shamai [31] as-
sumed that all the users hadequalreceived powers and obtained
that for almost every choice of signatures, the output MAI of the
matched-filter receiver converges (in the sense of divergence) to
a Gaussian random variable.

In this paper, we study the distributions of the MAI at the
output of the minimum mean-square error (MMSE) receiver.
Recently, there has been a substantial literature devoted to the
study of linear multiuser receivers because they are practically
appealing (see, e.g., [14]–[16], [18], [22], [26], [27], [29], [31]).
We focus on the case where the MMSE receiver is employed be-
cause the MMSE receiver is optimal in the class of linear mul-
tiuser receivers in the sense of minimizing the mean-square error
[15]. Assuming the signatures are deterministic, Poor and Verdú
[18] have established the Gaussian nature of the MAI-plus-noise
at the output of the MMSE receiver in several asymptotic sce-
narios (the output MAI vanishes in these scenarios). In this
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paper, we study systems where the signatures are randomly and
independently chosen, and our results are for the cases where
the received powers areunequaland not perfectly known to the
receiver. More specifically, first we study the unconditional dis-
tribution of the output MAI. As in [32], we average over the
signatures to calculate the statistics of the output MAI, which is
valid in the scenarios where long pseudorandom spreading se-
quences are employed. Then we study the conditional distribu-
tions of the output MAI given the signatures and powers, which
is particularly useful in the scenario where repetition of the same
random signatures is adopted.

In a practical wireless system, fading is ubiquitous, making
perfect power control impossible (see, e.g., [32, pp. 116–119]).
Therefore, it is of considerable interest to study a more real-
istic scenario where the received powers are random. This is
the focus of our study. Suppose there areusers in the system
when the processing gain is . We assume that each user is
capable of decentralized power control, and that the received
powers are independent across different users. We denote the
received power of user as and its mean . In the devel-
opment throughout this paper, we assume that the receiver has
knowledge of the ’s, not the ’s.

Our results are asymptotic in nature, with both and
going to infinity. Throughout this paper, the ratio of to
is denoted by and taken to be fixed as , as is
standard (see, e.g., [13], [26], [31], [34]). We consider user 1
without loss of generality. Roughly speaking, our main results
for synchronous systems can be summarized as follows.

Unconditional Distribution: Assuming that the empirical
distribution function1 of converges weakly to a
distribution function as , we obtain that the output
MAI of the MMSE receiver is asymptotically Gaussian.

Conditional Distribution: Assuming that for almost every
realization of the received powers, the joint empirical distribu-
tion function of converges weakly
to a distribution function we obtain that for almost every
realization of the signatures and received powers, the condi-
tional distribution of the output MAI converges weakly to the
same Gaussian distribution as in the unconditional case.

Furthermore, it turns out that the variance of the limiting dis-
tribution of the output MAI, which we shall characterize exactly,
is affected only by the imperfect power control of the desired
user and the mean powers of the interferers, and that the power
variations of the interferers do not come into play at all. A par-
allel result is that the signal-to-interference ratio (SIR) given
converges with probability one to , where is deterministic
and is the unique positive solution to the following fixed-point
equation:

where , and is the power spectral den-
sity of the background Gaussian noise. Clearly, the asymptotic

1See [5, p. 279] and [2, p. 268] for the definitions of empirical distribution
functions.

SIR is affected only by the imperfect power control of the de-
sired user and the distribution of the mean powers of the inter-
ferers, and the impact (on the SIR) by the power fluctuation of
the interferers vanishes in a large system. We note that this result
is a generalization of [26, Theorem 3.1], which proves conver-
gence in probability of the SIR in the perfect power control case.

We then extend our study to asynchronous systems to
establish the Gaussian nature of the output interference and
characterize the SIR. Our results are useful for performance
analysis such as the calculation of the BEP, and also useful
for the characterization of fundamental system limits such as
channel capacity. In particular, the Gaussianity justifies the
use of single-user Gaussian codes for CDMA systems with
linear MMSE receivers, and implies that from the viewpoints
of detection and channel capacity, SIR is the key parameter that
governs the performance of the MMSE receiver in a CDMA
system.

The organization of the rest of this paper is as follows. In the
next section, we introduce a discrete-time model for the uplink
of a single-cell CDMA system and the structure of the MMSE
receiver in this context. In Section III, we summarize the main
results found in this paper on the distributions of the output MAI
of the MMSE receiver. Sections IV and V contain the proofs of
the main results. We present numerical examples and draw our
conclusions in Section VI.

II. SYSTEM MODEL

Fig. 1 depicts a simplified block diagram of the uplink of a
CDMA system equipped with the MMSE receiver. We focus pri-
marily on the following discrete-time baseband model for syn-
chronous systems.

A. Symbol-Synchronous Model

We have the following discrete-time model for the uplink of
a synchronous CDMA system. The baseband received signal
before filtering in a symbol interval is

(1)

where the ’s are the transmitted information symbols, the’s
are the received powers, the’s are the signatures, and is

background noise that comes from the sampling of
the ambient white Gaussian noise with power spectral density
. (We assume throughout that .) We assume that the ’s

and ’s are independent.
We assume that users choose their signatures randomly and

independently. In a DS-CDMA system, the signatures are bi-
nary-valued. The model for binary random signatures is as fol-
lows: , where the ’s are indepen-
dent and identically distributed (i.i.d.) with

and

This model is applicable to several scenarios (see, e.g., [8], [16],
[26]–[28], [31]). First, consider systems where users employ
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Fig. 1. A simplified block diagram of the uplink of a CDMA system with MMSE receivers as a front end.

Fig. 2. The block diagram of a composite waveform channel for user 1.

long pseudorandom spreading sequences with periods consider-
ably larger than the number of chips per symbol interval (such
as in IS-95 systems), which is the length of the signatures. In
this case, it is reasonable to adopt the model that the signa-
tures are randomly and independently chosen and each user’s
signatures in different symbol intervals are also independent. A
second scenario is the case where the signature of each user is
repeated from symbol to symbol, but it is randomly and inde-
pendently selected initially when the user is admitted into the
system. Following the line of reasoning in [26], we assume that
the signatures are known to the receivers once they are picked.

We consider user 1 without loss of generality. A discrete-time
composite waveform channel(see, e.g., [19]) seen by user 1 is
shown in Fig. 2, where all the interferers’ signals contribute to
the MAI. By definition, every linear receiver generates an output
of the form (see, e.g., [15], [18], [26]). Note that
the outputs of the receiver depend on the processing gain. To
emphasize this dependence, we use to denote the output
MAI, and the effect of background noise at the receiver
output, that is,

The MMSE receiver exploits the structure of the MAI pro-
vided by the signatures and received powers of the interferers.
We assume that the MMSE receiver has knowledge of(the
instantaneous received power of user 1), but has no knowledge
of the instantaneous received powers of the interferers. We also
assume that the MMSE receiver has knowledge of the’s. De-
fine

The MMSE receiver generates an output of the form of ,
where is chosen to minimize the mean-square error

The output at the MMSE receiver can easily be shown to be as
follows (cf. [15], [26]):

(2)
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where

The above construction of the MMSE receiver requires
knowledge of the signature and instantaneous received power
of user 1, and the signatures and mean received powers of
the interferers. We note that the construction is applicable
to systems of any size. If the processing gain is large,
the MMSE receiver would be difficult to implement if the
signatures change from symbol to symbol. Therefore, from a
practical viewpoint, repetition of the signatures may be more
suitable for the implementation of MMSE receivers (see [8]).
Since the received powers may vary from symbol to symbol, it
is sensible to assume that the MMSE receiver has knowledge of
the interferers’ mean received powers instead of instantaneous
received powers. Moreover, it turns out that in a large system,
the knowledge of is in fact not crucial for the construction
of the MMSE receiver. We will elaborate further on this in
Section III. Worth noting is that the MMSE receiver does
require knowledge of the timing of user 1 [9].

Since the MMSE receiver has no knowledge of the instanta-
neous powers of the interferers, the power of the overall inter-
ference is a function of and hence random, and can be shown
to be as follows:

As is standard (see, e.g., [15]), the SIR is defined to be the ratio
of the desired signal power to the sum of the power due to noise
and MAI at the receiver output in a symbol interval. It then fol-
lows that the SIR of user 1 is

SIR (3)

Note that the SIR is random as well.

B. Symbol-Asynchronous Model

In the above symbol-synchronous model (1), symbol epochs
are aligned at the receiver. This requires closed-loop timing con-
trol or providing the transmitters with access to a common clock.
In CDMA systems, the design of the uplink is considerably
simplified if the users need not be synchronized [30, Ch. 2].
In this section, we describe a symbol-asynchronous model. To
facilitate the analysis, we assume that the system is chip-syn-
chronous. More specifically, the offset (also called delay) of the
interferer relative to user 1, denoted as, is a nonnegative
integer in terms of the number of chips, . Fol-
lowing the line of reasoning in [12], we assume that the offsets
are known to the receiver although they arerandom.

As pointed out in [12], [15], [30], a typical interferer has two
different but consecutive symbols interfering with the symbol
of user 1, and the interferer can be modeled as twoeffective

interferers. Based on [12], we have the following discrete-time
symbol-asynchronous baseband model:

where and are two consecutive symbols of userin-
terfering with the symbol of user 1, and and are the
corresponding powers in the two symbol intervals. We assume
that and are independent, and . Theeffec-
tive signatures and are

For asynchronous systems, we consider only the single-
symbol asynchronous MMSE receiver, that is, we assume that
the observation window of the MMSE receiver spans only the
duration of the symbol of interest. Define

Then the output MAI of the MMSE receiver in this setting is

and the SIR at the output of the MMSE receiver is

SIR

III. M AIN RESULTS

In this section, we summarize the main conclusions found in
this paper on the output MAI distributions. Because the proofs
of our results are rather technical, we defer the details of the
proofs to Sections IV and V.

A. The Symbol-Synchronous Case

First, we impose the following assumptions on the received
powers.

(3.A1) The empirical distribution function of
converges weakly to a distribution function as

.
(3.A2) The second moments of the received powers are

bounded.

We note that the assumption (3.A1) is applicable to many prac-
tical scenarios. For example, in a practical system, typically
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users can be classified into a few classes according to their
QoS requirements. One common approach for power control in
practice is to drive the received powers for all the users having
the same QoS requirements to be a fixed predetermined value,
namely,power balancing(see, e.g., [32]). Correspondingly, the
mean received powers are about the same for all the users having
the same QoS requirements. Then it can be shown that the con-
dition (3.A1) is satisfied.

We have the following result on the MAI unconditional dis-
tribution.

Theorem 3.1 (Symbol-Synchronous: Unconditional MAI):
Suppose Conditions (3.A1) and (3.A2) hold. Then the output
MAI of the MMSE receiver, , has a limiting Gaussian dis-
tribution (as ).

Theorem 3.1 establishes that the unconditional distribution of
converges weakly to Gaussian. To show the almost sure

convergence of the MAI conditional distribution, we need a
stronger form of regularity on the received powers. The assump-
tions we impose on the received powers are as follows.

(3.C1) The joint empirical distribution function of
converges weakly to a

deterministic distribution function with prob-
ability one.

(3.C2) The ’s are uniformly bounded above, and the’s
are bounded below by a positive number.

The assumption (3.C1) is general enough to cover many prac-
tical systems of interest. For example, Condition (3.C1) holds
when there is a finite number of classes in the system, where
users within each class have i.i.d. received powers. (This is a
reasonable model because fading channel gains are typically as-
sumed to be stationary and ergodic, and all the users in one class
can be assumed to have i.i.d. channel gains [6], [7].)

For convenience, let denote the collection of the signa-
tures and received powers when the processing gain is, and
the sequence . Let denote the conditional distribu-
tion of given . Following [25], we say that converges
almost surely to a probability measure if for any bounded
continuous function , with probability
one. We note that convergence almost surely of conditional dis-
tribution is an instance of convergence of a sequence of random
measures. We have the following theorem on the MAI condi-
tional distribution.

Theorem 3.2 (Symbol-Synchronous: Conditional MAI):Sup-
pose Conditions (3.C1) and (3.C2) hold. Then the conditional
distribution of the output MAI of the MMSE receiver, ,
given the signatures and the receiver powers, converges almost
surely (as ) to the same Gaussian distribution as in the
unconditional case.

Theorem 3.2 is somewhat surprising because we would
expect that the asymptotic properties of the output MAI de-
pend on the choice of signatures and hence are random.
Indeed, there are some cases for which the output MAI of
the MMSE receiver does not have an asymptotic Gaussian
distribution (see [18]). But in fact under our assumptions,
the limiting distribution of the output MAI conditioned on

the signatures and received powers is the same as the un-
conditional one with probability one. The intuition behind
the above result is as follows: In a large system, after the
“whitening” of the linear MMSE receiver, averaging across
the users acts as “good” as ensemble averaging over the sig-
natures and received powers.

We have the following heuristic interpretation of Theorems
3.1 and 3.2. Theorem 3.1 reveals that in a fading environment,
as long as the mean powers of the users satisfy Conditions
(3.A1) and (3.A2), the output MAI of the MMSE receiver
is approximately Gaussian in a large system. Theorem 3.2
establishes that for almost every realization of the signatures
and received powers, the conditional distribution of the output
MAI of the MMSE receiver is approximately Gaussian (the
same Gaussian distribution as in the unconditional case) when
the received powers satisfy Conditions (3.C1) and (3.C2).
Therefore, from the viewpoints of detection and channel
capacity, systems with the MMSE receiver achieve the same
performance with probability one and are robust to the random-
ness of the signatures and received powers.

Theorem 3.2 is particularly useful in the scenario where rep-
etition of the same random signatures is adopted. In this case,
the output MAIs are correlated across symbol intervals because
they depend on the same random signatures. This lack of in-
dependence is usually difficult to deal with. For example, it
complicates decoding and hinders us from simply analyzing the
performance and characterizing system limits such as channel
capacity. However, conditioned on the signatures and received
powers, the output MAIs are independent across symbol inter-
vals (under certain assumptions on the information symbols),
and the asymptotic Gaussianity greatly simplifies the perfor-
mance analysis and the characterization of system limits.

In the perfect power control case, Theorems 3.1 and 3.2
amount to the following result. (Note that in the
perfect power control case.)

Corollary 3.1: Suppose Conditions (3.A1) and (3.C2) hold.
Then as , the output MAI of the MMSE receiver has a
limiting Gaussian distribution; moreover, the conditional distri-
bution of the output MAI, given the signatures, converges almost
surely to the same Gaussian distribution as in the unconditional
case.

Theorems 3.1 and 3.2 allow us to incorporate easily the effect
of the background noise and conclude that the overall interfer-
ence is asymptotically Gaussian. Let denote the BEP of
user 1 when the processing gain is. Then we have the fol-
lowing result on the asymptotic SIR and BEP.

Theorem 3.3 (Symbol-Synchronous: SIR and BEP):Suppose
Conditions (3.C1) and (3.C2) hold. Then SIR (given )
converges almost surely to the unique positive solutionof
the following fixed-point equation:

(4)

where

(5)
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Moreover, if the modulation is antipodal, then con-
verges to , where the expectation is taken over

. Therefore, in a large system, we can approximate the
BEP by . This implies that the SIR is the key
parameter that governs the performance of systems with the
MMSE receiver in a fading environment. Moreover, we note
that from the viewpoints of detection and channel capacity,
the SIR is of fundamental interest. Since any (positive) scaled
version of the MMSE receiver results in the same SIR, it
suffices to use any filter of the form , [cf.
(2)]. Therefore, there is no need for knowledge of the desired
user’s instantaneous received power for the construction of the
MMSE receiver (strictly speaking, a (positive) scaled version
of the MMSE receiver).

Heuristically, the SIR (given ) approximately satisfies
the following fixed-point equation:

That is, the total interference can be decoupled into the sum
of the background noise and an interference term from each of
the interferers. The quantity is called theeffective
interference function[26]. Note that the effective interference
function depends on the mean powers of the interferers (not the
instantaneous powers), and the instantaneous power of the de-
sired user, hence is random. This further indicates that the per-
formance of the MMSE receiver is robust to the power variations
of the interferers.

B. The Symbol-Asynchronous Case

As noted before, to facilitate the analysis, we assume that the
system is chip-synchronous, that is, the offsets, denoted as,
are nonnegative integers in terms of the number of chips. We
impose the following assumption on the offsets .

(3.A3) The empirical distribution function of
converges weakly to a deterministic distribution
function with probability one.

The above assumption is also very general to cover many prac-
tical systems of interest. For example, Condition (3.A3) holds
when the offsets have (identical) uniform distributions, which is
a typical model for the offsets in an asynchronous system (see,
e.g., [12], [13], [15]).

Our main results for the symbol-asynchronous case make use
of the notion of convergence in probability of conditional distri-
bution. As in [25], we say that converges in probability to

if every subsequence contains a further subsequence
for which converges almost surely to . We are

now ready to present the results on the output MAI distributions
and asymptotic SIR.

Theorem 3.4 (Symbol-Asynchronous: Unconditional and
Conditional MAI): Suppose Conditions (3.A1), (3.C2), and
(3.A3) hold. We have that as

a) the output MAI of the MMSE receiver has a limiting
Gaussian distribution;

b) the conditional distribution of the output MAI of the
MMSE receiver, given the signatures, received powers,
and offsets, converges in probability to the same Gaussian
distribution as in the unconditional case.

Theorem 3.5 (Symbol-Asynchronous: SIR):Suppose Condi-
tions (3.A1), (3.C2), and (3.A3) hold. Then as , SIR

(given ) converges in probability to , where
is the unique solution (in the class of functions ) to the
following functional equation:

(6)
where

[The quantity is defined in (5).]

We have the following heuristic interpretation of The-
orem 3.4. Given the signatures, received powers, and offsets,
the output MAI is approximately Gaussian with high proba-
bility in a large system. This further reveals that systems with
the MMSE receiver are robust to the randomness of the offsets
as well as the randomness of signatures and received powers.
We note that Theorem 3.5 is a generalization of [12, Theo-
rem 4.1].

It should be noted that Theorem 3.4 is “weaker” than The-
orem 3.2 in the sense that the convergence mode of the con-
ditional distribution is weaker. (The convergence almost surely
of the conditional distribution appears considerably more diffi-
cult to obtain in the asynchronous case.) The proof of Theorem
3.4 involves a combination of the techniques used in proving
Theorem 3.1 and those used in proving [12, Theorem 4.1]. Al-
though more complicated, the proof of Theorem 3.4 essentially
follows the same line as that of Theorem 3.1. We omit the de-
tails here. (See [33, Ch. 3] for more details.) The intuition behind
Theorem 3.4 is as follows: In an asynchronous system, an asyn-
chronous interferer can be regarded as two effective interferers
with smaller powers [15]; and, as before, Gaussianity essentially
comes from sums of many “small” terms.

In what follows, we prove Theorem 3.1 in Section IV. Sec-
tion V contains the proofs of Theorems 3.2 and 3.3. For sim-
plicity, we assume in the proofs that the modulation is antipodal,
that is, . This assumption is not crucial, but sim-
plifies the analysis. We will elaborate further on this assumption
in Section V.

IV. PROOF OFTHEOREM 3.1

The proofs of our results make use of a theorem in random
matrix theory. For convenience, we restate that theorem here.
Denote the eigenvalues of the random matrix by

(they are random, depending on the realization of
), and the empirical distribution of the eigenvalues by .

The result of [24, Theorem 1.1] states that if the Condition
(3.A1) holds, then converges weakly (as ) to a
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(nonrandom) distribution function with probability one,
and the Stieltjes transform of is the solution to the
following functional equation:

(7)

for all

It is further pointed out in [24] that the limiting distribution func-
tion is unique.

In this section, we prove Theorem 3.1 via the dependent
central limit theorem in [17], which is a central limit theorem
for martingale difference arrays (cf. [13]). We begin with some
technical lemmas.

A. Technical Lemmas

Define

We have the following lemmas, the proofs of which have been
relegated to Appendixes A and B.

Lemma 4.1:

(8)

Lemma 4.2:

(9)

Lemma 4.3:We have for

(10)

(11)

(12)

B. Proof of Theorem 3.1

Let First we show that has a limiting
Gaussian distribution. Observing that the ’s are dependent
because every is a function of the random signatures,
we resort to the dependent central limit theorem in [17]. Define

as the -algebra generated by , that is

It is clear that

(13)
Therefore, the array is a martingale difference array with
respect to . Thus, based on [17], it suffices to verify that
the following three conditions are satisfied:

1) is bounded in norm;

2) converges to 0 in probability as
;

3) converges to in proba-

bility as .

It is worth noting that these conditions are weaker than the stan-
dard Lindeberg conditions (see [17] for more detailed compar-
ison).

By using (39) in Appendix A, we get that

(14)

that is, Condition 1) is satisfied. Fix . By exploiting
Lemma 4.2, we have that

(15)

Next, we verify that Condition 3) is satisfied. To this end, by
Lemma 4.2, it suffices to show that

Note that

(16)

where we used the following well-known conditional variance
formula [20, p. 51]:

For the first term on the right side of (16), we have that

(17)

where follows from the fact that the ’s are independent
conditioned on , from the fact that for
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any random variable , from Lemma 4.3, and from the
assumption that the second moments of the received powers are
bounded.

We proceed to show that the second term on the right side of
(16) goes to zero as . Combining Lemma 4.2 with the
fact that is continuous in , we obtain that

(18)

Furthermore, based on (38) in Appendix A, we have that

where we denote by (we use this notation
throughout). For any realization of , the corresponding
is symmetric and positive definite, and hence can be written in
the form of , where . It
follows that

(19)

Observe the equation at the bottom of this page. Clearly,
is nonzero (equal to ) only in the fol-

lowing three cases: 1) and ; 2) and
; and 3) and . We let denote the

sum of all the terms for which and , the
sum of all the terms for which and excluding

, and the sum of all the terms for which
and excluding . Then it

follows that

and

Similarly, it can be shown that

Observe that

(20)

(21)

where follows from the Lebesgue Dominated Convergence
Theorem [21, p. 91] because is positive and
upper-bounded by .

In summary, we have that

(22)

It then follows that

(23)
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Combining (14), (15), and (23), we conclude, by using the
dependent central limit theorem in [17], that has a limiting
Gaussian distribution with meanand variance

Furthermore, combining the above result with Lemma 4.1,
we apply Slutsky’s theorem [3, Theorem 5.3.5] and conclude
that has a limiting Gaussian distribution with meanand
variance

thereby completing the proof.

V. PROOFS OFTHEOREMS3.2 AND 3.3

In this section, we prove the almost sure convergence of the
conditional distribution, and derive an expression for the SIR.
Throughout this section, we assume that Conditions (3.C1) and
(3.C2) hold. More specifically, for Condition (3.C2), we assume
that the ’s are uniformly bounded above by and the ’s
are bounded below by .

A. Technical Lemmas

First we define for

Lemma 5.1:

Lemma 5.2:Fix . Given and any ,

where the constant does not depend upon.

The proofs of the above two lemmas are in Appendix B.

B. Proof of Theorem 3.2

We now complete the proof of Theorem 3.2.
Observe that conditioned on the signatures and received

powers, the array still forms a martingale difference
array with respect to . In what follows, we show that for
almost every realization of the signatures and received powers,

has a limiting Gaussian distribution. To this end, first we
show that is uniformly bounded in norm

for any given signatures and received powers. Appealing to
[10, p. 470], we have2

(24)

It follows that for given signatures and received powers

since

(25)

where the last step follows from the fact that
because (see [10, p. 471]).

Lemma 5.1 indicates that for almost every realization of the
signatures and received powers, converges al-
most surely to . Therefore, based on the central limit theorem
in [17], it suffices to show that for almost every realization of
the signatures and received powers, converges al-
most surely to

To that end, note that

First we verify that the spectral radius of

is bounded above. Because

it follow that the spectral radius of is
bounded above by. Using (24), we conclude that the spectral

radius of is bounded above by .
Fix a realization of for which the

empirical distribution function converges weakly to . By
appealing to Lemma B.1 and using the same techniques as in
the proof of Lemma 4.1, it can be shown that

(26)

2By matrix inequalityA � B, we mean thatA�B is positive semidefinite.
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Note that . Using the matrix inverse lemma
(see, e.g., [4, p. 175]), we have that

(27)

which implies that

Using (27) again, we obtain that for

(28)

and

(29)

We note that both and are constants independent of.
Their existence comes from the boundedness of the’s.

Fix . Based on (28) and (29), it follows that there exists
such that for all

(30)

where the last step follows from Lemma 5.2. We use the union
bound and get that for

which implies that

where and are positive constants. Sinceis arbitrary,
we use the Borel–Cantelli lemma [23, p. 253] and conclude that

(31)

Observe that

(32)

where the outer integral is with respect to , which is the
joint empirical distribution of
when the processing gain is. Moreover, it is straightforward
to see that

(33)

where depends on , the limiting empirical distribution of
[namely, ]. Using

a telescoping argument, after some algebraic manipulation, we
get that

(34)

where the expectation is taken over .
Recall that the joint empirical distribution function of

converges weakly to with
probability one, and the signatures and received powers are
independent. Therefore, we combine (26), (31), and (34) to
conclude that for almost every realization of the signatures and
received powers

(35)
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The right-hand side of (35) can be further simplified as follows:

where follows from the Lebesgue Dominated Convergence
Theorem, and is obtained by using (7). Therefore, the con-
ditional distribution of , given the signatures and received
powers, converges almost surely to the Gaussian distribution
with mean and variance

Combining the above result with Lemma 4.1, we conclude
that for almost every realization of the signatures and received
powers, has a limiting Gaussian distribution with mean
and variance

completing the proof.
Theorem 3.2 shows that for almost every realization of the

signatures and received powers, the conditional distribution
of the output MAI of the MMSE receiver is asymptotically
Gaussian (the same Gaussian distribution as in the uncondi-
tional case). This strong result tells us that the MMSE receiver
performs well in a large system in the sense that the MMSE
receiver is robust to the time-varying channel conditions and
the randomness of signatures. In particular, this result is useful
in the scenarios where the received powers change relatively
slowly compared to the symbol rate, and correspondingly the
received powers are correlated across symbol intervals.

Since the proofs are rather technical, for simplicity, we have
confined ourselves to antipodal modulation. For general mod-
ulation, we can use similar techniques to establish the Gaus-
sianity under the following assumption on the information sym-
bols: , , and the ’s are uniformly bounded
below and above. Note that this covers many practical modula-
tion methods of interest.

C. Proof of Theorem 3.3

Recall

SIR

Since

combining (35) and (33) with the above yields that

SIR (36)

Next we show that . Since the
modulation is antipodal, by symmetry, it is straightforward to
see that

where the expectation is taken over. We combine Lemma 4.1
with Theorem 3.1 to conclude that (given and ) has a
limiting Gaussian distribution. Appealing to the Lebesgue Dom-
inated Convergence Theorem and [1, Theorem 5.2], we have
that

(37)

which completes the proof.
Theorem 3.3 suggests that the SIR is the key parameter that

governs the performance of a large system with the MMSE re-
ceiver. Based on (36), we have that the SIR corresponding to a
particular is simply , where

The quantity can be interpretated as the SIR achieved by unit
received power [26]. The calculation of the SIR and hence the
BEP then boils down to that of , which is a constant. Using
(7), can be shown to be the unique positive solution to the
following fixed-point equation:

Heuristically, we can say that in a large system,approxi-
mately satisfies
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Fig. 3. The output MAI for a fixed set of randomly generated signatures, forN = 16; 32; 64; 128. HereP = � and = 20 dB,i = 1; . . . ; K .

where . In general, there is no closed-form
solution for . However, when the users in the system can be
classified into a small number of classes (according to their re-
ceived powers), corresponds to the unique positive root of a
polynomial.

VI. NUMERICAL EXAMPLES AND CONCLUSIONS

In this paper, we consider a model for the uplink of a
single-cell DS-CDMA system with the MMSE receiver,
assuming the received powers of users are random because of
time-varying channel conditions. We have studied primarily the
asymptotic distributions of the output MAI in CDMA systems
with random spreading. Roughly speaking, we have found
that if the empirical distribution function of
converges weakly, then the output MAI of the MMSE receiver
is asymptotically Gaussian; if the joint empirical distribution
function of converges weakly
with probability one, then for almost every realization of the
signatures and received powers, the conditional distribution
of the output MAI converges weakly to the same Gaussian
distribution as in the unconditional case. These results are quite
general and applicable to many practical systems of interest.
For example, we can obtain almost sure convergence of the
conditional distribution when there are finite number of classes
in the system (the received powers of the users within each class
are i.i.d.). We have also extended our study to asynchronous
systems and established the Gaussian nature of the output
interference.

To illustrate our asymptotic results, we provide two numer-
ical examples. In each example, we simulated for a fixed set
of randomly chosen signatures corresponding to the processing
gains and respectively. The entries of the

signatures are either or , and the information symbols
are random, either or . We fixed in both exam-
ples. In Example 1, we assume that all the users have equal re-
ceived powers with signal-to-noise ratio (SNR) 20 dB. In
Example 2, we assume that all the users’ received powers have
log-normal distributions, interferers having mean SNR 20 dB
and variance 13.3 dB, another interferers having mean SNR
16 dB and variance 11.4 dB, and the remaining interferers
having mean SNR 30 dB and variance 23.3 dB. In Example 2,
we randomly generate the powers once according to the distri-
butions and then fix them, and the corresponding plots are taken
as the distributions of the output MAI conditioned on both the
signatures and powers. We obtained the MAI values of 10 000
samples for each plot. Examples 1 and 2 are shown in Figs. 3
and 4. We observe that the distributions of the output MAI are
close to Gaussian when is large, corroborating our theoretical
results.

Our results are useful for design of channel codes and per-
formance analysis such as the calculation of the BEP, and also
useful for the characterization of fundamental system limits
such as channel capacity. For example, the BEP (assuming the
modulation is antipodal) can be expressed as , where

is the SIR and is random (due to the imperfect power control).
If the MMSE receiver is followed by a single-user decoder (as
has been advocated in [31] and the references therein), then
the achievable information-theoretic rate (channel capacity) for
each user is bits per symbol time [6].

Although the results in this paper are for single-cell systems
with MMSE receivers, we believe that these results can be ex-
tended to multiple-cell systems. Indeed, in a multiple-cell set-
ting, interferers from other cells have smaller powers. Thus,
the Gaussian approximation may be even more appropriate in
a multiple-cell asynchronous setting because essentially Gaus-
sianity comes from sums of many “small” terms.
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Fig. 4. The output MAI for a fixed set of randomly generated signatures, forN = 16; 32; 64; 128. Each user’s received power is randomly generated according
to a log-normal distribution and then fixed. Here = 20 dB, = 20 dB, i = 2; . . . ; + 1; = 16 dB, i = + 2; . . . ; + 1; = 30 dB,
i = + 2; . . . ; K .

APPENDIX A
PROOFS OFLEMMAS 4.2 AND 4.2

A. Proof of Lemma 4.2

Observe that for

(38)

which implies that3

since

(39)

3The expectation in different lines may be taken over different random ele-
ments.

Therefore, we have

(40)

where follows from the Lebesgue Dominated Convergence
Theorem, and follows from [1, Theorem 5.2] because the
quantity is a continuous function of and bounded by .

B. Proof of Lemma 4.3

Recall that

We denote the eigenvalues of by and the
empirical distribution of the eigenvalues . Note that the

’s are bounded because is bounded for .
Therefore, also converges
weakly to as . By appealing to [24, Theorem 1.1]
again, converges weakly to almost surely as .

Using the matrix inverse lemma, we have that
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For any realization of , the corresponding realization of
is symmetric and positive definite, and hence can be written in
the form of , where .
By our assumption, , , and are independent. Moreover,

for every realization of , which implies that
. Hence, we have

Since , , and are independent, we have the equation
shown at the bottom of the page, which implies that

(41)

Next we use techniques similar to those in the above argument
to show that

for . Observe that

Note that is nonzero (equal to) only
in the following three cases: 1) and ; 2)

and ; and 3) and .
Moreover, is nonzero (equal to) only in
the following three cases: 1) and ; 2)

and ; and 3) and . Let
denote the sum of all the terms corresponding to the case

, , and ; and the sum of
all the terms corresponding to the case
and . Using the properties of orthogonal
matrices, it follows that equals the expression shown
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at the bottom of this page. Similarly, we have that
. Then (42) follows, as shown at the bottom of the page.

This implies that

Similarly, we have for

The proof is completed.

APPENDIX B
PROOFS OFLEMMAS 4.1, 5.1,AND 5.2

We use the following lemma repeatedly, which follows di-
rectly from [24, Lemma 3.1].

Lemma B.1:Let , , be an matrix
with spectral radius bounded in, and

where the ’s are i.i.d. with .
Then

where the constantdoes not depend on and .

A. Proof of Lemma 4.1

For any given , we have that , which implies
that . That is, the spectral radius of is
upper-bounded by for all . Since and are independent,
by appealing to Lemma B.1, we obtain

where does not depend on , , nor on . Fixed .
Using Markov’s inequality [2, p. 283], it follows that

(42)
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Therefore, we have that

Using the Borel–Cantelli lemma, we conclude that

(43)

Furthermore, it is straightforward to show that

(44)

Combining (43) and (44) leads to

which implies that

B. Proof of Lemma 5.1

Fix . It follows that

where follows from Markov’s inequality [2, p. 283], and
from Lemma 4.3. Therefore, we have

Using the Borel–Cantelli lemma, we conclude that

(45)

C. Proof of Lemma 5.2

Observe that

(46)

Since , we have . Hence we have
the following inequalities:

Using the above inequalities, we obtain (47) shown at the
bottom of the page. Furthermore, since the spectral radii of

and are bounded by and respectively, we
appeal to Lemma B.1 and get

(47)
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where and are some positive constants. Using Markov’s
inequality [2, p. 283], we have

(48)

and

(49)

where is some positive constant. Combining (48) and (49),
we conclude that for

where is some positive constant that does not depend on
the index . The existence of follows from the assumption
that the ’s are bounded. This completes the proof.
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