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Abstract—We propose a time-scale decomposition approach
to measurement-based admission control (MBAC). We identify a
critical time scale such that: 1) aggregate traffic fluctuation
slower than can be tracked by the admission controller and
compensated for by flow admissions and departures; and 2) fluc-
tuations faster than have to be absorbed by reserving spare
bandwidth on the link. The critical time scale is shown to scale as

, where is the average flow duration and is the size of
the link in terms of number of flows it can carry. An MBAC design
is presented which filters aggregate measurements into low- and
high-frequency components separated at the cutoff frequency
1 , using the low-frequency component to track slow time-scale
traffic fluctuations and the high-frequency component to estimate
the spare bandwidth needed. Our analysis shows that the scheme
achieves high utilization and is robust to traffic heterogeneity,
multiple time-scale fluctuations and measurement errors. The
scheme uses only measurements of aggregate bandwidth and does
not need to keep track of per-flow information.

Index Terms—Admission control, measurement, resource allo-
cation, time scales.

I. INTRODUCTION

I N ORDER TO make quality-of-service (QoS) guarantees, a
network must exercise flow admission control. Admission

decisions are based on some traffic characterization, such as ef-
fective bandwidths [7], [15] or leaky bucket descriptors [18].
The traditional approach to admission control assumes that a
traffic descriptor is provided by the user or application for each
flow prior its establishment [19]. However, this approach suffers
from several problems. Chief among them is the inability of the
user or application to come up with tight traffic descriptorsbe-
fore establishing the flow. This is especially so when the band-
width fluctuates over multiple time scales. Another problem is
that this traffic descriptor and the associated QoS guarantee de-
fines acontractbetween the application and the network and,
therefore, a need to police this traffic specification. This is diffi-
cult for statistical traffic descriptors. Also, the need for a policer
makes the network architecturally more complex.

Measurement-Based Admission Control(MBAC) avoids
these problems by shifting the task of traffic specification
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from the application to the network [9], [11], [14]. Instead of
the application explicitly specifying the traffic, the network
attempts to “learn” the statistics of existing flows by making
on-line measurements. This approach has several important
advantages. First, the application-specified traffic descriptor
can be trivially simple (e.g., a peak rate). Second, an overly
conservative specification does not result in an overallocation
of resources for the entire duration of the session. Third, when
traffic from different flows are multiplexed, the QoS experi-
enced depends often on theiraggregatebehavior, the statistics
of which are easier to estimate than those of an individual flow.
This is a consequence of the law of large numbers. It is thus
easier to predict aggregate behavior rather than the behavior of
an individual flow.

In order for an MBAC approach to be successful in practice,
it has to fulfill several requirements.

• Robustness:An MBAC must be able to ensure a QoS on
behalf of applications in the same way as itsa priori descriptor-
based counterpart does. This is not trivial, as measurement in-
evitably has some uncertainty to it, leading to admission errors.
The QoS should also be robust to flow heterogeneity, to the fluc-
tuations on many time scales that are a general property of net-
work traffic [1], [6], [16], [17], as well as to very heavy offered
loads, e.g., due to “flash crowds.”

• Resource utilization: The QoS of admitted flows could
be improved by being overly conservative in admission control,
thereby allocating more resources per flow than necessary. This
is undesirable, because the secondary goal for the MBAC is to
maximize link utilization, subject to the QoS constraint for the
admitted flows.1

• Implementation: The cost of deploying an MBAC system
must be smaller than its benefits cited above. For this, the MBAC
should be modular, in the sense that adding the measurement
machinery to the existing infrastructure should be as nonintru-
sive as possible. Also, the computational complexity of the al-
gorithm used to make admission decisions needs to be scalable
in the flow arrival rate and in the link capacity.

In this paper, we propose an MBAC design that fulfills the
above requirements. Our design is robust to fluctuations on mul-
tiple time scales in the traffic and to flow heterogeneity, and
achieves high link utilization despite the inherent measurement
uncertainty. The scheme is also easy to implement as it only re-
lies onaggregatebandwidth information.

Our proposed design is based on atime-scale decomposi-
tion approach. Flow arrival and departure dynamics are explic-
itly taken into account. The fact that flows only remain in the

1It is important to note that we define QoS as the performance experienced
by admitted flows; we do not view link utilization as a QoS metricper se. The
goal of the MBAC is to admit as many flows as possible, subject to satisfying
the QoS constraints.
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system for a finite time gives admission decisions a certain time
horizon, which we call thecritical time scale. This critical time
scale determines the fluctuations in the aggregate bandwidth
that can be compensated through flow admissions and depar-
tures. For example, a slow increase in the aggregate bandwidth
may be compensated simply by departing flows to avoid re-
source overload. A slow decrease in the aggregate bandwidth
may be compensated for by admitting more flows to benefit
from the released bandwidth. The MBAC design exploits this
by decomposing the aggregate bandwidth fluctuation into a fast
time-scale and a slow time-scale component with respect to the
critical time scale. The fast time-scale component is used to es-
timate the spare bandwidth to be set aside to absorb short-term
fluctuations that cannot be “followed” by flow arrivals and de-
partures. The slow time-scale component is used to track fluc-
tuations that do not need spare bandwidth, but are compensated
by flow arrivals and departures. This results in higher utilization
than a scheme which sets aside spare bandwidth for fluctuations
atall time scales. We will show that an appropriate critical time
scale is , where is the average flow duration in the
system and is the size of the system in terms of the number of
flows it can carry.

In our earlier work on MBAC [11], the main issue we ad-
dressed was measurement uncertainty. Using a simple, analyt-
ical model of an idealized MBAC, we studied the impact of
measurement errors on the quality of service. The main insight
gained from that model was an understanding of the compli-
cated dynamics that arise as a result of bandwidth fluctuations,
measurement uncertainty, flow arrivals and departures, and esti-
mation memory. These insights motivate the MBAC design pre-
sented in this paper and the mathematical machinery developed
in [11] serves as a basis for its performance analysis.

In the performance analysis of our proposed MBAC, we relax
two assumptions made in our earlier work. First, we assume that
the admission controller only has information about the evolu-
tion of theaggregate bandwidthavailable to make admission
decisions. This is in contrast with our earlier work, where we
assumed that the bandwidth of each individual flow is known.
Basing admission decisions only on aggregate information is
appealing from an implementation viewpoint, as we do not re-
quire the MBAC to gather and maintain per-flow information.
Therefore, we seek a clear understanding of the impact of errors
associated with aggregate measurements.

Second, we consider the situation when flows arehetero-
geneous. Flows may represent many different types of media
(e.g., audio or video), they may be encoded at different levels
of quality, and they may use different end-to-end control mech-
anisms. Therefore, we must expect that flows are very hetero-
geneous in their statistical behavior. On the other hand, anindi-
vidual flowcorresponds typically to a single instance of an ap-
plication (such as a videoconference), of an encoding method,
and of a control mechanism. Therefore, we expect anindividual
flow to be well modeled as a stationary and ergodic random
process. We will show that the proposed MBAC scheme per-
forms well in the presence of heterogeneous flows, even without
anya priori classfication of flows.

Most MBAC schemes that have been proposed in the lit-
erature—including ours—are capable of a broad range of op-
erating points in terms of link utilization and quality of ser-
vice. In fact, it has recently been noted that most MBACs are
essentially equivalent in terms of the set of operating points

that they admit, given identical traffic characteristics [5]. How-
ever, MBACs differ significantly in their ability to achieve a de-
sired QoS robustly, i.e., with little a-priori knowledge of traffic
characteristics and without excessive tuning. A perfectly robust
MBAC would have the QoS target itself as the only param-
eter and would require no tuning at all, because the actual QoS
would be equal to this targetregardless of the traffic charac-
teristics. In practice, it is not possible to completely decouple
performance from traffic characteristics, and all MBACs pos-
sess additional tuning parameters. Tuning essentially amounts
to searching in a possibly multidimensional parameter space.
Therefore, the main benefit of an analytic model such as the
one discussed in this paper is that it replaces this search with an
explicit relationship between traffic characteristics and tuning
parameters.

The paper is structured as follows. In Section II, the basic
model is introduced. In the next two sections, we focus on two
issues that are central to understanding the proposed MBAC de-
sign. In Section III, we first study the impact on performance
of admission decisions based only on aggregate bandwidth in-
formation, as opposed to per-flow bandwidth information. In
Section IV, we identify the critical time scale through a study
of the dynamics of the system that arise due to fluctuations
of the aggregate bandwidth of flows in the system and due to
flow arrivals and departures. Combining the insights obtained
in these two sections, we present our MBAC design in Sec-
tion V. In Section VI, we analyze the performance of the pro-
posed MBAC scheme under both homogeneous and heteroge-
neous traffic models, and provide some simulation results. Sec-
tion VII discusses how the MBAC scheme can be modified for
a distributed implementation within the framework of diffserv.
Section VIII contains the conclusions.

II. BASIC MODEL

We will first outline the basic model which we will use
throughout the paper to study various basic measurement-based
admission control issues, to motivate our MBAC design, and,
finally, to analyze its performance.

The network resource considered is a bufferless single link
with capacity . Flows arrive over time, requesting service. Once
flow has been admitted, its bandwidth requirement
fluctuates over time while in the system. We assume that the
flow holding time in the system is exponentially distributed with
mean ; the departures of the flows are independent of each
other and independent of the bandwidth processes .

An admission control scheme decides whether to accept or re-
ject a new flow requesting service; an MBAC scheme makes de-
cisions based solely on observation of the past traffic flows.2Re-
source overload occurs when the instantaneous aggregate band-
width demand exceeds the link capacity, and the QoS is mea-
sured by the steady-state overflow probability

. The goal of an admission control scheme is to meet a de-
sired QoS objective (i.e., ) while maintaining a high
average utilization of the link.

Several processes are of importance in this paper. We denote
as theestimatednumber of flows deemedadmissibleby

an MBAC scheme at time, and as theactual number

2In practice, rough information such as the peak rate of the new flow is used
as well. This can be incorporated in an obvious way in our proposed scheme.
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of flows in the system at time. The interpretation of is that
the MBAC will continue admitting flows until is greater than

. Because is determined by past measurements, is
a random process and so is . Furthermore, denotes the
set of flows in the system at time. Obviously, .

Our design and analysis is based on the assumption of a large
link in which many flows can be accommodated and no single
flow dominates. The performance analysis is asymptotic in the
link size .

III. A GGREGATEVERSUSINDIVIDUAL FLOW MEASUREMENTS

In [11], we analyzed the impact of measurement errors for
MBAC schemes which can measure the individual flow rates

. In this paper, we would like to design a scheme which
only makes use of the past aggregate flow information, i.e.,

. This section focuses on a simplified model to quantify
the performance loss associated with this coarser granularity of
information. The insights gained here prepare us for the MBAC
design in Section V, and are also interesting on their own right.

The analysis in this section does not deal directly with flow ar-
rivals and departures. We consider only the simple case of flows
with homogeneous statistics. We focus on the effect of past mea-
surement uncertainty on the number of admissible flowsat
time 0, and then study the resulting impact on the QoS objective
at a future time if flows were admitted onto the link and
remained in the system. A simple MBAC scheme is used as a
vehicle for this purpose. Analysis of the complete model with
flow dynamics and heterogeneous flows will be done in Sec-
tion VI after the full MBAC design is proposed in Section V.
This present section can be viewed as a parallel to [10, sec. II].

Suppose the bandwidth processes of the flows are statistically
independent and identical, and the stationary bandwidth distri-
bution of each flow has meanand variance . The capacity
of the link is . If we let , then can be thought of as
the system size. When the system sizeis large, the number of
flows in the system will be large, and by the Central Limit
Theorem

irrespective of the statistics of the individual flows.
Consider then the following hypothetical admission control

scheme with perfect knowledge of the parametersand a
priori : Accept flows with satisfying the equation

(1)

where is the complementary cumulative distribution func-
tion (CDF) of a Gaussian random variable andis the
QoS objective.3 For large capacities, it follows from solving (1)
and substituting that

(2)

where and denotes a term which grows
slower than . Note that is the number of flows that can

3Note that here, as in the sequel, we are ignoring the fact thatn is an integer
and therefore (1) cannot be satisfied exactly in general. In the regime of large
capacities, however, the approximation is good and the discrepancy can be ig-
nored.

be carried on the link if each has constant bandwidth. Thus,
is the (normalized) amount of spare bandwidth left

to cater for the (known) burstiness. We also observe that the
number of flows admitted is deterministic in this perfect knowl-
edge scenario.

The above scheme motivates the followingcertainty-equiv-
alent MBAC, when the statistics of the flows are not known
a priori but can only be estimated from aggregate flow infor-
mation. Based on estimatesand of the mean and variance,
the MBAC scheme allows flows in the system at time 0,
with satisfying

(3)

where the estimates are given by

(4)

and

is the aggregate load of flows in the system at time .4

The estimates and are obtained by averaging over
samples of the aggregate load ( ). Note that is now a
random quantity, being a function of the estimatesand . We
are interested in the distribution of for large but fixed .
For ease of analysis, let us assume that the sample timesare
spaced sufficiently far apart such that the loads at distinct times
are independent. For large, by the Central Limit Theorem

(5)

where .5

Substituting this into (4) yields the following expressions for
the mean and variance estimators:

(6)

(7)

where

For a fixed , the variance estimate approaches in distri-
bution for large system size. Note, however, that this estimate
remains random, unlike the mean estimate which approaches,
which is the true mean.

4Observe here that the estimation is based onn flows. In the actual model with
flow dynamics, this should be the actual number of flows in the system which
fluctuates aroundn. However, in a large system, this number will be close to
n and the discrepancy in replacing it byn in the estimators are of a negligible
effect.

5The Central Limit Theorem states that(S � n�)=
p
n converges in distri-

bution to aN(0; 1)Gaussian random variableY . By Skorohod’s theorem [4, p.
333, Th. 25.6], one can in fact put the random variables in the same probability
space such that(S (!)�n�)=

p
n! Y (!) for every sample point!. Thus,

in (5), theo(
p
n) term refers to a sequence of random variablesfA (!)g

such thatA (!)=
p
n! 0 for all !. This is consistent with and in fact a gen-

eralization of our usage of theo(
p
n) notation in (2).
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The randomness in the estimators translates into the random-
ness in the number of flows admitted, via (3). By performing a
linearization around the nominal perfect-knowledge operating
point given by (1), it can be shown that

(8)

This is given more formally in the following proposition.
Proposition III.1: As , convergesin

distribution to the random variable

(9)

where are independent, identically distributed
(i.i.d.) random variables.

Proof: The details of the proof are similar to that of [10,
Prop. 3.1] for the case of individual flow measurements.

It can be seen that the fluctuation in is due to both the
randomness in the mean and variance estimators, when they are
based only on aggregate loads. Contrast this with the case when
individual flow measurements are available, when the uncer-
tainty is due only to the measurement error in the mean band-
width estimator [10]. In that case

(10)

Comparing (10) with (8), we see that the uncertainty in the stan-
dard deviation disappears with individual flow measurements.
This is because individual flow measurements yieldsamples
per time instance for estimating the variance, while aggregate
measurements yield only one. For large, the effect of error in
the variance estimator vanishes in the former case but not the
latter.

It is also interesting to observe that is much more sensitive
to errors in the mean estimator than in the variance estimator.
The first term in (6), , is due to the estimation
error in the mean. From (6)

so we see that the effect of the mean estimation error on the
variability of is magnified by a factor of . On the other
hand, the randomness in the variance estimator enters directly
in (9). This is not very surprising, considering that the mean is a
first-order statistic and the variance is second order. Fortunately,
the mean estimator is much more accurate than the variance es-
timator when only aggregate flow information is available (the
former of order and the latter of order 1), and this com-
pensates exactly for the difference in order of magnitude of the
sensitivities. These observations will have implications in Sec-
tion VI-B.

We next investigate the effect of the variability in the number
of admitted flows on the QoS performance of the system. To
this end, consider the aggregate load at some future time
after admitting flows and without future admissions. This
is a sum of a random number of random variables, and using a

version of the Central Limit Theorem [11, Lemma II.2], we get
the following asymptotic approximation:6

(11)

Here again . Substituting (8), we get

(12)

Thus, for large , the overflow probability at time is

(13)
Now, since the s are , the random variables

and can be interpreted as unbiased
estimates of the mean and variance of a distribution
based on independent observations. As is well known (see,
for example, [3]), the two estimates are independent, and

which is a chi-square distribution with degrees of
freedom. If we now make the further assumption that the time
is sufficiently large such that (and, therefore, ) is inde-
pendent of , then is
independent of and is distributed as
and, hence

where is theStudent-t distribution with degrees
of freedom [3].

We summarize this formally in the following.
Proposition III.2: Suppose the target overflow probability

QoS is . Then as the system size grows

(14)

where is the complementary CDF of the distribution.
Note that this limit does not depend on the true mean and

variance, but only on the target QoS.
It is interesting to compare with the corresponding result

when individual flow measurements are available. A simple
generalization of [11, Prop. II.3] says that withindependent
individual flow measurements at each of thetime instants,
the asymptotic overflow probability is given by

(15)

To appreciate the difference, it is instructive to examine the
density of the distribution:

(16)
where is the Gamma function. For small , this distribu-
tion has a slow (polynomially) decaying tail as compared to the
doubly exponentially decaying tail of the Gaussian distribution.

6Note that this holds even thoughM and theX (t)s are dependent.
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Fig. 1. Overflow probabilityp as a function of the target overflow probability
p , for variousK [Student-t corresponds to aggregate measurements
according to (14),Gaussian to per-flow measurements according to (15)].

Thus, for small , the target overflow probability is missed sig-
nificantly more in the case when only aggregate measurements
are available; see Fig. 1. For , the actual overflow proba-
bility is very far away from and decreases very slowly with
the latter (the upper curve), while is quite close to the target
with individual flow measurements. As expected, as ,

approaches under both aggregate and individual flow mea-
surements.

The significant degradation observed above for small
under aggregate load measurements can be attributed to errors
in estimation of thevariance.With nonnegligible probability,
the variance can be significantly underestimated. In that case,
the certainty-equivalent admission control scheme will be very
aggressive in accepting flows, reserving very little bandwidth
margin to cater for the burstiness. This results in high overflow
probability when the flows are actually admitted.

To compensate for the measurement uncertainty for a fixed
, one way is to choose a more conservative valueinstead of
in the admission rule (3) so that we can meet the desired target
. The appropriate value of can be calculated according to

the expression on the right-hand side of (15), i.e., chooseto
satisfy

for a given QoS requirement. Fig. 2 compares the adjusted
values of needed in the aggregate and individual flow
measurement cases. We see that much more compensation is
needed in the former case, especially for small. From (12),
we see that this conservative choice translates directly to a loss
in average utilization of

It is interesting to note that the difference between estima-
tion using individual flows and aggregate flow measurements is
analogous to that between estimating the mean of a Gaussian
distribution with and without knowing the variance. Without
knowing the variance, it has to be estimated from the data as

Fig. 2. Corrected overflow probabilityp as a function ofp .

well and the resulting confidence intervals are much larger than
when the variance is known.

IV. CRITICAL TIME SCALE

In the previous section, it was assumed that flows stay in the
system for infinite duration, and the goal of the MBAC is to de-
termine the appropriate number of flows to admit on the basis
of measurements of thelong-termmean and variance of their
stationary bandwidth distribution. If flow departure and arrival
dynamics are now taken into account, then a more basic ques-
tion is: What are the right statistics to measure? To address this
question, we now take a step back and look more carefully at the
interplay between flow dynamics, traffic fluctuation dynamics,
and the admission controller. We argue that one should still mea-
sure the mean and variance statistics of the traffic fluctuations,
but on a certaincritical time scaledictated by how fast flows
depart from the system.

As before, let be the aggregate bandwidth when there
are flows in the system, and suppose that the flows are i.i.d.
random processes, with stationary meanand variance . As
in (5), the Central Limit Theorem implies that for large

(17)

with the fluctuation of around on the order of .
Suppose now at time, there are flows in the system. This

is random as a result of both the admission control and the flow
departure processes. Let denote the aggregate bandwidth of
these flows. As in (11), the fluctuation of around its mean
has two components, one due to the fluctuation of the number of
flows in the system, and one due to the bandwidth fluctuation:

(18)

Because flows cannot be preempted from the system once ad-
mitted, the number of flows can only be lowered by letting flows
depart from the system while rejecting new ones. The aggregate
rate at which flows depart from the system in turn is approxi-
mately , where is the average flow holding time. This
is the rate at which can decrease if no new flows are admitted,
and corresponds to a “bandwidth departure rate” of .
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Fig. 3. Overbooking and tracking regimes. In the overbooking regime, bandwidth fluctuation is absorbed by overbooking resources, i.e., setting spare bandwidth
aside to accommodate the fluctuation of the aggregate load. In the tracking regime, bandwidth fluctuation is absorbed by a corresponding fluctuation of the number
of flows in the system.

First, assume that the aggregate bandwidthfluctuates over
a single time scale .7 This means the rate of bandwidth fluc-
tuation is of the order of . If ,
or , the rate of bandwidth fluctuation
is much faster than the flow bandwidth departure rate. As a
result, spare bandwidth has to be set aside by the MBAC to
cater for the burstiness of the traffic, and full link utilization
cannot be achieved. The amount of spare bandwidth is given by

. (See the first column of Fig. 3.)
Let us call this theoverbookingregime.

Consider the other extreme, when ,
i.e., the bandwidth fluctuation rate is much slower than the flow
departure rate. In this case, there is actually no need to set aside
spare bandwidth to cater for the fluctuations. Instead, the fluctu-
ations can simply be compensated for by controlling the number
of flows in the system. This is possible because flows are de-
parting fast enough. When happens to be larger than ,
i.e., exceeding the link capacity, the number of flows can be
lowered to such that the aggregate bandwidth does not
exceed the link capacity. This can be called thetrackingregime.
Provided that there are enough flows requesting admission, full
utilization can be achieved. (See the second column of Fig. 3.)
The time scale

can now be thought of as acritical time scaleseparating the
tracking and the overbooking regimes.

More generally, aggregate bandwidth fluctuates over multiple
time scales. The components having time scale can be
compensated for through flow admissions and departures, while
the components having time scale have to be ab-
sorbed through allocation of spare bandwidth in the link. (See
the last column of Fig. 3.) The answer to the question of “what
to measure” is now obvious: The slow time-scale fluctuations
should betrackedto allow for compensation, while the variance
of the fast time-scale fluctuations should be measured so that the
appropriate amount of spare bandwidth can be set aside. Note

7Informally, this means that the power of the processfY g is concentrated
around1=T in its power spectral density.

that the slow time-scale fluctuation is essentially the aggregate
bandwidth time-averaged over a sliding window of length.
Hence, this reasoning suggests that, as in the previous section,
we should be measuring the mean and variance of traffic fluc-
tuations, but now over rather than over the infinite horizon.

That the critical time scale is proportional to the average
flow duration is not surprising. What is more subtle is the
scaling of with . The reason for this is that the aggre-
gate flow departure rate grows linearly with, while the fluc-
tuations grow only like . As a result, as the system scales,
there are more fluctuations that can be compensated for by flow
departures, manifesting in a short critical time scale.

Although the discussion here is informal, the main point is
to motivate the MBAC design to be presented in the next sec-
tion. The importance of the critical time scale will be demon-
strated more precisely in the performance analysis of the pro-
posed MBAC (Section VI).

V. MBAC DESIGN

A. Basic Architecture

Fig. 4 shows the basic architecture of the proposed MBAC
design that realizes the conceptual ideas developed in the last
section. By means of a pair of low-pass and high-pass filters,
the aggregate bandwidth processis decomposed into a high-
frequency component and a low-frequency component
such that , both with a cutoff frequency of .
The high-frequency process is used in order to estimate the
amount of spare bandwidth that has to be put aside in order to
accommodate fast time-scale fluctuations through overbooking.
Hence, we wish to estimate the variance of . The low-
frequency process is used to estimate the “current mean”

of the flows. Together, these two estimates determine the
current number of flows that should be in the system in order to
accommodate the slow time-scale fluctuations through tracking.

B. Variance Estimator

How should we estimate the variance of the high-fre-
quency component of the aggregate traffic? Recall the main in-
sight we gained from Section III:
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Fig. 4. Decomposition of the measured aggregate bandwidth into a
high-frequency component for the variance estimator and a low-frequency
component for the mean estimator.

• With only aggregate measurements, the performance of an
MBAC can be quite poor if there are only a small number

of independent load measurements. Either the target
is missed significantly, or a very conservative admission
control scheme is needed to compensate for the measure-
ment errors. This effect is mainly due to estimation error
in thevariance.

This suggests that a long measurement window for estimating
the variance is needed for robust performance and high link
utilization. Essentially, we need more measurementsover time
to make up for the lack of measurementsover individual flows.
Since the fast fluctuations by definition occur at time scale
or shorter, one can expect to get roughly independent measure-
ments of spaced at apart. The above observation thus
translates into the need of a measurement window with length

, .
With this choice of measurement window size, a natural

question is the robustness to nonstationarities, especially due
to heterogeneity of flows entering and leaving the network. We
will address this issue when we analyze the performance of the
MBAC design under a heterogeneous traffic model.

C. Description of the Proposed MBAC

We now give a specific algorithm to make admission deci-
sions based on the architecture just described. We first specify
the filters. For simplicity, the filters will be defined in continuous
time, although in practice they will be implemented in discrete
time via sampling of the traffic. While many low-pass filters can
be used, for concreteness let us consider a simple first-order AR
filter with impulse response given by

(19)

where is the unit step function. Let

be the low-pass filter for estimating the variance, where
is the window length for the variance estimator. Ifis the

aggregate load at time, the estimated mean is then

(20)

where is the number of flows in the system at time. One
can think of as theinstantaneous averageper-flow band-
width. The high-pass component of the aggregate load is

which corresponds to filtering through a filter with impulse
response . The estimate of the high-pass variance is given
by

(21)

The number of flows admissible by the MBAC at time
is given by the solution to the equation

(22)

The MBAC, therefore, admits a new flow if ,
i.e., if

(23)

and rejects it otherwise.
The left-hand side of (23) can be interpreted as the estimated

available spare bandwidth (after acceptance of the new flow),
and the right-hand side as the estimatedrequiredspare band-
width to accommodate the fast time-scale fluctuations.

One observation is that although the algorithm uses aggregate
rather than individual load measurements, it still needs to keep
track of the number of flows in the system (). In Section VII,
we discuss a relaxed version of the above admission criterion
that does not even require this knowledge. This is beneficial for
distributed admission control.

VI. PERFORMANCE OFMBAC SCHEME

We now analyze the performance of the MBAC scheme pro-
posed above in a fully dynamical model with flow arrival and de-
partures. We assume that the effective arrival rate is infinite, i.e.,
there are always flows waiting to be admitted into the network.
Thus, admission control decisions are made continuously at all
times. Clearly, the QoS performance (overflow probability) ex-
perienced by admitted flows of any admission control algorithm
under finite arrival rate will be no worse than its performance in
this model.8 Another advantage of this model is that we need
not worry about the specific flow arrival process, which may be
difficult to model in practice. From the analysis point of view,
this model is convenient, as the link is always filled with at least
the number of flows deemed admissible by the controller. The
drawback of this arrival model is that it only yields an upper
bound on the utilization achieved under finite arrival loads.

We first analyze the performance of the MBAC when the
traffic is homogeneous. Then we will extend the analysis to a
heterogeneous traffic model. The main new ingredient here is
that flow heterogeneity leads to a time-varying flow mix in the
system. Under a natural heterogeneous traffic model, we show
that the time constants of the filters in the proposed MBAC

8However, the utilization would be slightly lower when the flow arrival rate
is finite. The infinite arrival model introduced in [10] reflects our belief that
robustness to heavy offered load is more important than maximizing utilization
during periods of modest load.
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scheme are scaled appropriately to track and compensate for this
time variation.

Compared with the analysis in Section III, the performance
analysis in this section is heuristic in nature. Rigorous justifi-
cations will invoke the theory of weak convergence of random
processes. This was done in the related analysis in [10], and we
expect that a similar treatment can be done for this paper as well.

A. Homogeneous Flows

We first consider the homogeneous case when the band-
width process of each flow is identically distributed,
stationary, and ergodic. The mean rate of each flow isand
the covariance function is .
The capacity is scaled as .

Our analysis is in the asymptotic regime whereis large, i.e.,
. As we scale up the system, we keep the critical time

scale fixed, such that the average flow holding time scales as
. The earlier discussion on the fundamental nature

of suggests why this scaling makes sense, as it allows us to
focus on the time scale “where the action is.” The same scaling
is used in our earlier paper [11].

The key quantities to be analyzed are, which is the number
of flows the MBAC determines thatshould beadmissible at time
, and , which is the number of flows that are actually in

the system at time. In the asymptotic regime of large capacity
(equivalent to large ), both of these quantities are of order,
with random fluctuation of order . This is due to the Central
Limit Theorem. The goal is to analyze the fluctuation to enable
us to approximate the overflow probability.

We can analyze the distribution of the process in a sim-
ilar way as in Section III. First, let us focus on the aggregate load

. Write

Recall that is the set of flows that are in the system at time.
By the Central Limit Theorem for the sum of a random number
of random variables [as in (11)]

(24)

where is a zero-mean Gaussian process. To compute the
covariance function of , consider for

Now, both and are random variables of order. Be-
cause the flow holding time is scaled as , with fixed,
the number of flows that depart during the time interval
are of the order of . Hence, is of the order of .
This implies that

where is the covariance function of an individual flow:

Hence, one can take the covariance function of the approxi-
mating Gaussian process to be .

We now have the approximation

(25)

Using (20), the low-pass mean estimator is asymptotically given
by

where is the Gaussian process after filtering
by the low-pass filter defined in (19).

By a linearization of the defining (22) for , it can be shown
that, analogous to Proposition III.1

(26)

Hence, the number of admissible flows at timeis a random
quantity with fluctuations of order due to the randomness
in the statistical estimators and . The term repre-
sents the compensation for the slow time-scale fluctuations by
the MBAC; the term represents the spare bandwidth
catered for the fast time-scale fluctuations.

If the measurement window size is chosen such
that , we observe that is approximately a constant

for any , where

is the variance of the high-frequency component of a flow band-
width process. This observation can be understood intuitively
as follows. The high-frequency component has fluctuations at
time scale or shorter, so, roughly, samples spaced atapart
are independent. If , the estimate of the power in the
high-frequency component will be very accurate. This is analo-
gous to taking a large number of independent measurements
of the aggregate load in the simple model studied in Section III.
Substituting this into (26), we obtain the following:

(27)

The actual number of flows in the system at time is no
less than because there are always flows waiting to be ad-
mitted and thus the system is always filled to the limit as cur-
rently determined by the MBAC. On the other hand,can be
strictly greater than as flows that were admitted earlier stay
for a certain duration and, thus, cannot perfectly follow the
fluctuations of . To compute , first observe that if is the
last time at or before timethat flows were admitted, then the
number of flows in the system at time is precisely the same
as the number of flows admissible at time, i.e., .
In between time and time , no new flows were admitted.
Hence, if we let be the number of flows departed in time
interval , then

(28)

On the other hand, forany

(29)

where is the number of flowsadmittedduring .
Thus, we conclude from (28) and (29) that

(30)
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This relationship quantifies precisely how much control the
admission scheme has on the number of flows in the system. At
time , the ideal number of flows desired in the system is, but

is close to only if the flow departure rate is very high.
For finite departure rates, exceeds , and to still provide
the desirable level of QoS, spare bandwidth has to be allocated
in the admission scheme.

Under the scaling of for fixed , the number of
flows departed in can be calculated to be

(31)

Substituting (27) and (31) into (30), we obtain the following
asymptotics for in the regime of large :

Thus, the actual number of flows in the network is a random
process which fluctuates on the order of . Under the pro-
posed MBAC, the randomness is due only to the randomness in
the low-pass mean bandwidth estimatorand not that of the
variance estimator. This is because the measurement window
chosen has a much longer time scale than that of the high-fre-
quency fluctuations we want to measure.

Once we obtain an approximation for, we can immediately
deduce an approximation for the aggregate loadvia (25) and,
hence, the steady-state overflow probability

(32)

Hence, the overflow probability converges to

(33)

To repeat, is a zero-mean Gaussian process with covari-
ance function , and is the low-pass filtered
version of .

Expression (33) can be interpreted as ahitting probabilityof
a Gaussian process ( ) on a moving boundary, and an
approximation of such a probability is given by [12], [13]

(34)
where , is the right derivative
of the function at , and is the proba-
bility density function. This expression can be numerically com-
puted given the covariance function of the individual flow
process. It is an approximation in the sense that as , the
ratio of the expression and the probability (33) approaches 1.

Let us apply the above results on two specific examples to ob-
tain a better intuitive understanding of how the MBAC scheme
functions. Under a separation of time-scale assumption, we will
see that the choice of the low-pass filter time scale asis the
appropriate one. More generally, (34) can be used to assess the
impact of using a different low-pass filter time scale on the per-
formance of the MBAC scheme.9

9Expression (33) depends on the low-pass filter time scale through the second-
order properties offZ g.

1) Single Time-Scale Traffic:Suppose now the individual
flow has covariance function

with correlation at a single time scale . By straightforward
calculations, the covariance function of is

and the variance of the high-frequency component is

Consider the regime when ; this can be considered
as a separation between the burst and flow time scales, and cor-
responds to the overbooking regime discussed in Section IV.

so that

Thus, the target QoS is met using our scheme. In this case, the
traffic fluctuations are all of a faster time scale than and
resources have to be overbooked to absorb them. If we overbook
by any amount less than the full varianceof the fluctuation,
the QoS target will not be met.

For general , we can use (34) to compute the performance.
This is plotted in Fig. 5 for two values of . We see that the actu-
ally achieved is close to the target across the whole range
of . As increases beyond the critical time scale, the
spare bandwidth reserved to absorb the high-frequency bursti-
ness is reduced accordingly, thus maximizing utilization while
still meeting the target QoS. Contrast this with the performance
of the per-flow scheme considered in [11], which always re-
serves spare bandwidth proportional to, where is the total
variance. The per-flow scheme is effectively using a low-pass
filter with a time scale much larger than . When is of
the order or larger than , this results in over-allocation of re-
sources, as seen in the drop in.

2) Multiple Time-Scale Traffic:Let us now consider the sit-
uation when an individual flow has correlation at two time scales

and . More concretely, suppose

where and are zero-mean independent sta-
tionary processes with covariance functions
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Fig. 5. Overflow probability of the proposed aggregate scheme and a per-flow
scheme which always overbooks at�.

Then we can decompose the scaled aggregate fluctuation
and the low-pass output accord-

ingly. The covariance functions of is given by

and for

(35)

Now, consider the regime when and .
By performing a rescaling of time, we can write the overflow
probability (33) as

(36)

Using (35), we see that for

(37)

and

(38)

This means that the process has variance and
is highly correlated over time (with correlation coefficient close
to 1 for all ), while the process is close to zero.

Thinking of as the fast time-scale fluctuation and as
the slow time-scale fluctuation of the traffic, this means that the
low-pass filter tracks the latter almost perfectly (at the time scale
defined by ) but leaves the former essentially unchanged. It

can also be verified that . Using (36), the overflow
probability can be seen to be close to the target.

The choice of as the memory time scale of the low-pass
filter is important to keep the utilization high. Using (32) and
again rescaling time, the average utilization is given by

Now, for the regime considered above and the memory time
scale equal to , one can calculate that , i.e.,
over the critical time scale, is highly correlated and, hence,
remains essentially constant. Thus, the supremum above is
achieved at , and

The spare bandwidth is precisely left for catering for
the fast time-scale fluctuation.

Suppose now that the memory time scale of the low-pass filter
is chosen to be larger than . As the memory time scale ap-
proaches , some of the slow fluctuations (at the time scale

) are filtered into the high-frequency component, resulting in
a larger than necessary spare bandwidth. In the extreme case
when , , resulting in a utilization of

Compared with the case when , this represents a loss
of utilization of

This calculation serves as a validation of the design choice of
as the low-pass filter time scale, and confirms our informal

discussions on the importance of the critical time scale.

B. Heterogeneous Flows

To study the robustness of the MBAC scheme to flow het-
erogeneity, consider the following heterogeneous traffic model.
The th flow is given by

where and are random variables, identically distributed
and independent from flow to flow. The processes are
i.i.d. with zero mean and unit variance, and are stationary and
ergodic with covariance function ; they are also indepen-
dent of s and s. They represent the in-flow statistical fluctu-
ations. The random variables and represent the long-term
mean and variance of the flow; they differ from flow to flow but
remain fixed once the flow is in progress. The processes
represent the in-flow statistical fluctuations, which we model as
statistically identical and independent ofs and s for sim-
plicity. The random variables and have the following sta-
tistics:

One can think of the distribution of as modeling the
typical flow mix. At any time, the composition of flows in the
network may deviate from this typical mix. Also, we only model
heterogeneity in first- and second-order traffic statistics because
our asymptotic analysis only depends on them.

As in the homogeneous case, we are here interested in the
regime where the capacity is large, is fixed, and the
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average flow duration scales as . The aggregate load
in the system is given by

We decompose the load into three terms:
1) , which can be thought of as the aggregate load if all

flows are transmitting at their average rateand the flow
mix is exactly the same as the typical mix;

2) , where the sum is over the flows currently
in the system, is the deviation of the current mix of the
flows from the typical mix;

3) , which is the fluctuation of the flows
from their long-term average rates.

Similar to (24) in the homogeneous case, we can approxi-
mate the third term by , where is a zero-mean Gaussian
process. The covariance function of can be calculated
as follows:

Hence, .
Using the Central Limit Theorem for a random number of

summands, we can approximate the second term by ,
where is a zero-mean Gaussian process. To compute the
covariance function of , consider

where . The convergence in the last line fol-
lows from the fact that and that out of the flows
in the system at time 0, the expected number of flows still re-
maining in the system at time is . Hence, we have

The process is the slow time-scale fluctuation in the
aggregate load due to the change in flow mix over time. The
scaling by emphasizes the fact that this process is evolving
at the time scale of the flow arrivals and departures.

Summarizing the above, we have

(39)

We note that the time fluctuation in theflow variancesdue
to heterogeneity has disappeared in the approximation (39) of
the aggregate load; only the typical variancematters. On the
other hand, the fluctuation in the mean rates re-
mains. The reason is that the aggregate load is much more sen-
sitive to the mean fluctuation, a first-order effect, than variance

fluctuation, a second-order effect. We have in fact seen this phe-
nomenon in Section III, where we performed a measurement
error analysis. This observation will have important ramifica-
tions in the estimation of the high-pass variance.

Continuing on the performance analysis, the low-pass mean
estimator is given by [via (20)]

where . We note that the filter can track the
slow time-scale fluctuation perfectly; this is because
the filter has a much shorter time scalethan .

The number of admissible flows is given by

(40)

where is the high-pass variance estimator given by (21). If
the variance measurement window is chosen to be
much larger than , then it can be shown that

(41)

Although this statement is identical to the corresponding one for
the homogeneous case, the reason why it is true is more subtle.
Recall that the memory time scale for the high-pass variance es-
timator is much larger than . Hence, the heterogeneous mix of
flows actually changes significantly during this time. However,
the low sensitivity of the aggregate load to the fluctuation of the
variances ensures that the variance estimator remains accurate.

We can now compute the asymptotic distribution of, the
number of flows in the system.

where the first equality follows from (30), the second equality
from (31), (40), and (41), and the third equality from the fact
that so that remains essentially constant in the
maximization.

The aggregate load and the overflow probability can be sim-
ilarly obtained, as follows:

and

Comparing these results with (32) and (33), we observe that the
(asymptotic) utilization and overflow probability for the hetero-
geneous model are the same as those for ahomogeneousmodel,
where each flow has the same mean rateand the same vari-
ance . There are two reasons. First, the process de-
scribing the change of the mean rates of the flow mix in the
system is completely filtered into the low-frequency component
and perfectly compensated for by tracking. Second, the fluctu-
ation due to change in flow variances has an insignificant
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Fig. 6. Simulated overflow probabilityp for different values ofK andn =
10 000, based on theStar Warstrace; target overflow probabilityp = 10 .

impact on the aggregate load and the overflow probability. This
ensures that although the memory time scale for estimating the
high-pass variance is much longer than, the estimates will
not be significantly corrupted by outdated data.

The above performance analysis of the proposed scheme
under a heterogeneous traffic model gives further evidence to
the efficiency and robustness of the design, particularly in the
choice of as the filter time scale for tracking the low-pass
mean, and a much longer averaging interval to esti-
mate the high-pass variance . For example, if the low-pass
filter time scale were chosen to be of the order ofand not

, then unnecessary spare bandwidth will have to be reserved
for the slow time-scale fluctuations due to flow heterogeneity.
In the extreme case when the filter time scale is much larger
than , an excess bandwidth proportional to, the standard
deviation of in the flow mix, is needed. This corresponds
to the case when very conservative admission control is per-
formed, solely based on prior knowledge of flow statistics and
without benefiting from the on-line measurements.

C. Simulation Results

We have performed trace-based simulations of our MBAC to
verify the results of the performance analysis. The goal is to
evaluate how well the MBAC performs with real network traffic,
in particular traffic that exhibits fluctuations on a wide range of
time scales.

The simulation is based on a compressed video trace of the
movieStar Wars, which has been extensively studied in the lit-
erature and has been shown to exhibit fluctuations on all time
scales [8].10 In Figs. 6 and 7, we plot the measured overflow
probability as a function of the critical time scale, for dif-
ferent values of the high-pass variance estimation window

.11

In Fig. 6, we can clearly see that is necessary to obtain
a sufficiently reliable variance estimation. Small values of
( ) lead to system overload, with the overflow probability

10The details of the simulation setup are described in [11].
11In contrast to the numerical results in Fig. 5, there is no notion of a time-

scale separation parameterT =T here, as we make no assumptions about the
correlation structure of the trace. We plot thex axis of Figs. 6 and 7 as a function
of 1=T in analogy with Fig. 5.

Fig. 7. Simulated overflow probabilityp for different values ofK andn =

100, based on theStar Warstrace; target overflow probabilityp = 10 .

exceeding the target by up to two orders of magnitude. If
is chosen large enough, we observe thatis within about

a half order of magnitude of the target, depending on the flow
holding time . Note that in the numerical results of Fig. 5, we
have observed a similar “bump” in the overflow probability for
the regime where the correlation and the critical time scales are
close.

The results in Fig. 7 look qualitatively very similar, but
they are offset toward higher overflow probabilities by about a
half order of magnitude. The reason for this is as follows. The
amount of spare bandwidth is on the order of flows, i.e.,
ten flows in this simulation. The discretization effect due to the
fact that bandwidth does not depart the system continuously,
but in discrete steps at flow termination is not negligible, and
increases the overflow probability. However, this effect is
and can easily be compensated for.

VII. I MPLEMENTATION OF MBAC WITHIN THE

DIFFERENTIATED SERVICESARCHITECTURE

The Internet research community has been grappling for a
long time with the conflicting goals of scalability and guaran-
teeing QoS. Currently, the differentiated services architecture
(diffserv) being defined within the IETF is the most promising
solution to this problem [2]. Diffserv is capable of offering a
reasonable set of QoS guarantees while maintaining one of the
basic tenets of the Internet architecture: a stateless core. In the
diffserv framework, only edge routers are aware of and manipu-
late individual flows; core routers only handle traffic aggregates
through a small set of per-hop behaviors (PHBs).

In this section, we discuss a variant of our MBAC that can be
implemented in such an architecture. For this, we have to relax
the assumptions about what information an MBAC has avail-
able to make admission decisions. We have assumed throughout
this work that the MBAC does not collect any per-flow measure-
ments or maintain any per-flow state, but wedid assume that the
MBAC knows the exact number of flows in the system. Specifi-
cally, in order to compute (23), the MBAC has to precisely know
the current number of flows in the system at time. In the
diffserv architecture, this is undesirable due to the distributed
nature of flow admission. Core routers can only be expected to
collect and process aggregate traffic measurements. An ingress
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router would use either in-band (e.g., using probe packets) or
out-of-band signaling (e.g., RSVP [20]) to query core routers
along the path of the new flow.12A core router then performs a
local admission test, and updates the in-band probe packet or the
out-of-band signaling message accordingly. However, the core
router does not keep track of ongoing flows and, therefore, the
admission test cannot rely on knowledge of.13

We now discuss a conservative approximation to the admis-
sion criterion (23) that does not rely on the number of flows. In
Section V-C, exact knowledge of is necessary in the com-
putation of the estimated per-flow statisticsand . Let us
try to forgo computing these per-flow statistics and instead use
the correspondingaggregatevariables. The goal is to develop
an admission criterion analogous to (23), but that does not ex-
plicitly depend on . It is convenient to repeat (23) here in a
slightly modified form:

(42)

Recall that the left-hand side estimates the spare capacityafter
admitting the new flow; estimates the average rate of the
new flow, i.e., we have implicitly assumed that the new flow
is statistically identical to the existing flows.

Without knowledge of the number of flows , we cannot
compute an estimator of the per-flow mean rate. This has
two consequences. First, we have to replace the estimatefor
the new flow, e.g., with a peak-rate constraint. Fortunately, for
large , replacing with in (42) does not affect performance.
The reason for this is that even though the peak rate assumption
is conservative, as soon as a flow is admitted, the dependence
of future admission decisions on this flow isonly through its
contribution to themeasuredaggregate bandwidth. Therefore,
a conservative choice ofonly affects one flow at a time. This
effect is , and therefore negligible in a large system.

Second, we have to define approximations to the high and
low-pass filtered aggregate bandwidth, and , that are in-
dependent of the number of flows .

(43)

(44)

The estimated variance of the aggregatefast time-scale
component can be computed from as follows:

(45)
It is tempting to use the following admission criterion:

(46)

where, analogous to (23), the left-hand side of (46) is an esti-
mation of the available spare bandwidth after admission of the
new flow, and the right-hand side is the estimated required spare

12The admission decision could also be made by a centralizedbandwidth
broker, which collects traffic measurements from the entire network. However,
for scalability, the bandwidth broker is unlikely to maintain records for indi-
vidual flows as well.

13In principle, a core router could keep track of the number of flows without
identifying individual flows by tracking flow admissions and departures; how-
ever, it is obvious that this is not robust to problems such as loss of a signaling
message or to a node failure.

Fig. 8. Illustration of the uncorrected low-pass filtered aggregate bandwidth
processA and the corrected processA . A new flow should be admitted only
if A is below the threshold given byc � r � � �̂ ; A reacts too slowly
to new flows, leading to possible overload (by admitting flows b and c).

bandwidth to accommodate fast time-scale fluctuations of the
aggregate bandwidth.

However, this does not work. The problem is that the band-
width of a new admitted flow is not immediately reflected in

. This is in contrast to the term in (23), which reacts
to a flow admission immediately through the increment of.
Now, suppose that the flow arrival rate is very high. Using (46),
the MBAC could admit a potentially large number of flows in a
very short period of time and overload the system. This point is
illustrated in Fig. 8: The three flows a, b, and c to the right ar-
riving in rapid succession increase the aggregate bandwidth
in discontinuous steps; the low-pass filtered processin (46)
increases too slowly to avoid admission of too many flows; in
this example, only flow a should have been admitted.

Specifically, suppose a new flow is admitted at time. Then
the mean of the low-pass filtered aggregate bandwidth

increases instantaneously by the mean rateof the new
flow. However, the mean of only converges to exponen-
tially with time-constant , because the increase in the aggre-
gate bandwidth due to the new flow is low-pass filtered. The dif-
ference between the means of the two processes afteris there-
fore approximately . To cor-
rect for new flows, we have to add this term to the low-pass esti-
mate for each admitted flow. We obtain a corrected low-pass
estimate , which is given by

(47)

where is the convolution operation. The function contains
a Dirac pulse for each arriving flow

(48)

where is the arrival time of flow , and is its peak rate.
Suppose that the aggregate bandwidth only changes at dis-

crete time instants. Then can be computed recursively as fol-
lows. Let denote the time instants where the aggregate band-
width changes or where a new flow is admitted.

(49)

where

(50)
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The admission criterion with the correction term becomes

(51)

We have seen that replacing with in (42) did not in itself
affect the performance, because it affectsonly the new flow de-
manding admission. Nevertheless, for the criterion (51) without
knowledge of above, the peak-rate assumption does incur a
penalty in utilization proportional to . The reason is
that the correction terms added to in (49)persistover a time
scale of . This effect is , because the MBAC admits on
the order of new flows per critical time scale , each
of which results in a conservative correction. Thus,overesti-
mates on average by an amount proportional to .
This utilization penalty is the price for the limited information
available to the MBAC to make robust admission decisions.

VIII. C ONCLUSION

Previous approaches to the admission control problem
generally make a time-scale separation assumption between
the burst time scale and the flow arrival and departure time
scale. Under this assumption, admission control only relies on
burst time-scale statistics, and a measurement-based scheme
estimates these statistics to compute the number of admissible
flows. For real-world traffic exhibiting multiple time-scale
dynamics and flow heterogeneity, the time-scale separation
assumption is questionable and the notion of "burst time-scale"
ill defined. By explicitly incorporating flow dynamics into
the picture, we have shown that there is a critical time-scale

on which the traffic statistics is relevant for
admission control purposes. This time scale depends only on
flow dynamics and is decoupled from the traffic statistics of
the flows, thus allowing us to bypass the difficult question of
defining a burst time scale. The MBAC scheme proposed in this
paper tracks the mean and estimates the variance of the traffic
fluctuations at this time scale and makes admission control
decisions accordingly. The measurement windows for these
statistics are sized to make the estimation errors negligible.
We have shown that the scheme is robust with respect to flow
heterogeneity and bandwidth fluctuations on multiple time
scales, achieves high resource utilization, and is amenable to
an efficient implementation using only aggregate bandwidth
measurements and without maintaining per-flow information.
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