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A Time-Scale Decomposition Approach to
Measurement-Based Admission Control
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Abstract—We propose a time-scale decomposition approach from the application to the network [9], [11], [14]. Instead of
to measurement-based admission control (MBAC). We identify a the application explicitly specifying the traffic, the network
critical time scale T3, such that: 1) aggregate traffic fluctuation attempts to “learn” the statistics of existing flows by making
slower than T}, can be tracked by the admission controller and oy jine measurements. This approach has several important
compensated for by flow admissions and departures; and 2) fluc- advantages. First, the application-specified traffic descriptor

tuations faster than 7}, have to be absorbed by reserving spare be trivially simpl K S d |
bandwidth on the link. The critical time scale is shown to scale as Can be trivially simple (e.g., a peak rate). Second, an overly

T;,/+/m, where Ty, is the average flow duration andn is the size of COnservative specification does not result in an overallocation
the link in terms of number of flows it can carry. An MBAC design  of resources for the entire duration of the session. Third, when
is presented which filters aggregate measurements into low- and traffic from different flows are multiplexed, the QoS experi-
high-frequency components separated at the cutoff frequency enced depends often on theggregatebehavior, the statistics
1/Ty, using the low-frequency component to track slow time-scale ¢ \yhich are easier to estimate than those of an individual flow.
traffic fluctuations and the high-frequency component to estimate . .

the spare bandwidth needed. Our analysis shows that the schemeTh'S,' IS a consequence of the IaW_ of large numbers. It is t.hus
achieves high utilization and is robust to traffic heterogeneity, €asier to predict aggregate behavior rather than the behavior of
multiple time-scale fluctuations and measurement errors. The an individual flow.

scheme uses only measurements of aggregate bandwidth and does In order for an MBAC approach to be successful in practice,

not need to keep '[I’aCk Of per-ﬂOW information. |t has to fulflll Several requ"'ements
Index Terms—Admission control, measurement, resource allo-  * Robustness:An MBAC must be able to ensure a QoS on
cation, time scales. behalf of applications in the same way asatgriori descriptor-

based counterpart does. This is not trivial, as measurement in-
evitably has some uncertainty to it, leading to admission errors.
The QoS should also be robust to flow heterogeneity, to the fluc-
N ORDER TO make quality-of-service (QoS) guarantees taations on many time scales that are a general property of net-
network must exercise flow admission control. Admissiowork traffic [1], [6], [16], [17], as well as to very heavy offered
decisions are based on some traffic characterization, such adedels, e.g., due to “flash crowds.”
fective bandwidths [7], [15] or leaky bucket descriptors [18]. « Resource utilization: The QoS of admitted flows could
The traditional approach to admission control assumes thabeimproved by being overly conservative in admission control,
traffic descriptor is provided by the user or application for eadhereby allocating more resources per flow than necessary. This
flow prior its establishment [19]. However, this approach suffeis undesirable, because the secondary goal for the MBAC is to
from several problems. Chief among them is the inability of th@aximize link utilization, subject to the QoS constraint for the
user or application to come up with tight traffic descriptbes admitted flowst
fore establishing the flow. This is especially so when the band-+ Implementation: The cost of deploying an MBAC system
width fluctuates over multiple time scales. Another problem imust be smaller than its benefits cited above. For this, the MBAC
that this traffic descriptor and the associated QoS guarantee slesuld be modular, in the sense that adding the measurement
fines acontractbetween the application and the network andnachinery to the existing infrastructure should be as nonintru-
therefore, a need to police this traffic specification. This is diffisive as possible. Also, the computational complexity of the al-
cult for statistical traffic descriptors. Also, the need for a policegorithm used to make admission decisions needs to be scalable
makes the network architecturally more complex. in the flow arrival rate and in the link capacity.
Measurement-Based Admission Conti®BAC) avoids  In this paper, we propose an MBAC design that fulfills the

these problems by shifting the task of traffic specificatioabove requirements. Our design is robust to fluctuations on mul-
tiple time scales in the traffic and to flow heterogeneity, and

achieves high link utilization despite the inherent measurement
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system for a finite time gives admission decisions a certain tinttgat they admit, given identical traffic characteristics [5]. How-
horizon, which we call theritical time scale This critical time ever, MBACs differ significantly in their ability to achieve a de-
scale determines the fluctuations in the aggregate bandwidtted QoS robustly, i.e., with little a-priori knowledge of traffic
that can be compensated through flow admissions and depdraracteristics and without excessive tuning. A perfectly robust
tures. For example, a slow increase in the aggregate bandwisitBAC would have the QoS target itself as the only param-
may be compensated simply by departing flows to avoid reter and would require no tuning at all, because the actual QoS
source overload. A slow decrease in the aggregate bandwidtbuld be equal to this targeegardless of the traffic charac-
may be compensated for by admitting more flows to benefiristics In practice, it is not possible to completely decouple
from the released bandwidth. The MBAC design exploits thgerformance from traffic characteristics, and all MBACs pos-
by decomposing the aggregate bandwidth fluctuation into a fastss additional tuning parameters. Tuning essentially amounts
time-scale and a slow time-scale component with respect to thesearching in a possibly multidimensional parameter space.
critical time scale. The fast time-scale component is used to @herefore, the main benefit of an analytic model such as the
timate the spare bandwidth to be set aside to absorb short-teme discussed in this paper is that it replaces this search with an
fluctuations that cannot be “followed” by flow arrivals and deexplicit relationship between traffic characteristics and tuning
partures. The slow time-scale component is used to track flygarameters.
tuations that do not need spare bandwidth, but are compensatethe paper is structured as follows. In Section I, the basic
by flow arrivals and departures. This results in higher utilizatiomodel is introduced. In the next two sections, we focus on two
than a scheme which sets aside spare bandwidth for fluctuatics®ies that are central to understanding the proposed MBAC de-
atall time scales. We will show that an appropriate critical timsign. In Section Ill, we first study the impact on performance
scale isT}, /+/n, whereT}, is the average flow duration in theof admission decisions based only on aggregate bandwidth in-
system and is the size of the system in terms of the number dbrmation, as opposed to per-flow bandwidth information. In
flows it can carry. Section 1V, we identify the critical time scale through a study
In our earlier work on MBAC [11], the main issue we adof the dynamics of the system that arise due to fluctuations
dressed was measurement uncertainty. Using a simple, anadytthe aggregate bandwidth of flows in the system and due to
ical model of an idealized MBAC, we studied the impact ofiow arrivals and departures. Combining the insights obtained
measurement errors on the quality of service. The main insightthese two sections, we present our MBAC design in Sec-
gained from that model was an understanding of the comptien V. In Section VI, we analyze the performance of the pro-
cated dynamics that arise as a result of bandwidth fluctuatiopssed MBAC scheme under both homogeneous and heteroge-
measurement uncertainty, flow arrivals and departures, and eséeus traffic models, and provide some simulation results. Sec-
mation memory. These insights motivate the MBAC design préen VIl discusses how the MBAC scheme can be modified for
sented in this paper and the mathematical machinery developedistributed implementation within the framework of diffserv.

in [11] serves as a basis for its performance analysis. Section VIII contains the conclusions.
In the performance analysis of our proposed MBAC, we relax
two assumptions made in our earlier work. First, we assume that Il. BASIC MODEL

the admission controller only has information about the evolu- o ) ) ) )
tion of the aggregate bandwidthavailable to make admission We will first outline the basic model which we will use
decisions. This is in contrast with our earlier work, where widiroughout the paper to study various basic measurement-based
assumed that the bandwidth of each individual flow is know@dmission control issues, to motivate our MBAC design, and,
Basing admission decisions only on aggregate informationfigally, to analyze its performance.
appealing from an implementation viewpoint, as we do not re- The network resource considered is a bufferless single link
quire the MBAC to gather and maintain per-flow informationwith capacityc. Flows arrive over time, requesting service. Once
Therefore, we seek a clear understanding of the impact of err8gsv i has been admitted, its bandwidth requiremghi(-) }
associated with aggregate measurements. fluctuates over time while in the system. We assume that the
Second, we consider the situation when flows hetero- flow holding time in the system is exponentially distributed with
geneousFlows may represent many different types of medigean},; the departures of the flows are independent of each
(e.g., audio or video), they may be encoded at different levelther and independent of the bandwidth proce¢sés-)}.
of quality, and they may use different end-to-end control mech-An admission control scheme decides whether to accept or re-
anisms. Therefore, we must expect that flows are very hetejeet a new flow requesting service; an MBAC scheme makes de-
geneous in their statistical behavior. On the other hanthdin cisions based solely on observation of the past traffic flokRes-
vidual flow corresponds typically to a single instance of an agource overload occurs when the instantaneous aggregate band-
plication (such as a videoconference), of an encoding methegdth demands; exceeds the link capacity, and the QoS is mea-
and of a control mechanism. Therefore, we expedtdividual sured by the steady-state overflow probability:= Pr{S, >
flow to be well modeled as a stationary and ergodic randog. The goal of an admission control scheme is to meet a de-
process. We will show that the proposed MBAC scheme pafired QoS objective, (i.e.,p; < p,) while maintaining a high
forms well in the presence of heterogeneous flows, even withaiferage utilizatior2[S;] of the link.
anya priori classfication of flows. Several processes are of importance in this paper. We denote
Most MBAC schemes that have been proposed in the lit17,} as theestimatechumber of flows deemeddmissibleby

erature—including ours—are capable of a broad range of ofy MBAC scheme at time, and {N,} as theactual number
erating points in terms of link utilization and quality of ser-

vice. In fact, it has recently been noted that most MBACs arezp practice, rough information such as the peak rate of the new flow is used
essentially equivalent in terms of the set of operating poinds well. This can be incorporated in an obvious way in our proposed scheme.
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of flows in the system at time The interpretation oMM, is that be carried on the link if each has constant bandwjdtfhus,

the MBAC will continue admitting flows untilV, is greater than (o« /1)+/n is the (normalized) amount of spare bandwidth left
M;. Becausé\l; is determined by past measuremefit®; } is to cater for the (known) burstiness. We also observe that the
a random process and so{i%’; }. FurthermoreF; denotes the number of flows admitted is deterministic in this perfect knowl-
set of flows in the system at time Obviously,| F;| = N;. edge scenario.

Our design and analysis is based on the assumption of a larg&he above scheme motivates the followicegrtainty-equiv-
link in which many flows can be accommodated and no singédent MBAC, when the statistics of the flows are not known
flow dominates. The performance analysis is asymptotic in tlaepriori but can only be estimated from aggregate flow infor-
link sizec. mation. Based on estimatgsandé? of the mean and variance,

the MBAC scheme allowd/, flows in the system at time 0,
Ill. A GGREGATEVERSUSINDIVIDUAL FLOW MEASUREMENTS  With M satisfying

In [11], we analyzed the impact of measurement errors for 0 np — Mofi _ 3)
MBAC schemes which can measure the individual flow rates ov/ My !

{X;()}. In this paper, we would like to design z_;\schem_e wh_ic\r,g,here the estimates are given by
only makes use of the past aggregate flow information, i.e., i i )
{S;}. This section focuses on a simplified model to quantify . 1 & St 1 & (Sp —np)
the performance loss associated with this coarser granularity of* *= % Z o Y T KR Z " )
information. The insights gained here prepare us for the MBAC k=1
design in Section V, and are also interesting on their own rigr?t[‘d
The analysis in this section does not deal directly with flow ar- n
rivals and departures. We consider only the simple case of flows Sy o= Z Xi(tr)
with homogeneous statistics. We focus on the effect of past mea- i=1
surement uncertainty on the number of admissible fldfysat

time 0, and then study the resulting impact on the QoS objectival_he estimateg, and 42 are obtained by averaging ové

at a future time if M, flows were admitted onto the link and .
remained in the system. A simple MBAC scheme is used ass%mples of the aggregate loald (> 2). Note thatMy is now a

; ) . . o
vehicle for this purpose. Analysis of the complete model Withandom quantity, being a function ofthe estimatemda”. We

flow dynamics and heterogeneous flows will be done in Sege interested in the distribution &, for largen but fixed K.

tion VI after the full MBAC design is proposed in Section V. or ease of analysis, letus assume that the sample {irpare

This present section can be viewed as a parallel to [10, sec. ﬁFaced sufficiently far apart such that the loads at distinct times

Suppose the bandwidth processes of the flows are statistic&l 3(/3 independent. For large by the Central Limit Theorem
independent and identical, and the stationary bandwidth distri- SP =nu+Y/n+o (\/ﬁ) t<0 (5)
. N o .
ofthe Nk ioc e et £/u. them can be thought of as “EreY: ~ V(0 o2 . .
the svstem si-ze When th.e s sl:ém size large. the number of Substituting this into (4) yields the following expressions for
y i y ge, {he mean and variance estimators:

flows m in the system will be large, and by the Central Limi

k=1

is the aggregate load of flows in the system at timec 0.4

K
Theorem . 1 1 1
. MZM—FT(?ZY%)_{—O(T) (6)
LS Xi(t) — | ~ N(0, 0?) tAT = "
-7 ilt) — ~ » O
vm |5 6% = 5% +o(1) ()
irrespective of the statistics of the individual flows. where
Consider then the following hypothetical admission control K K 2
scheme with perfect knowledge of the paramejeendo? a 63 = 1 Z Y, — 1 Z Y, | .
priori: Acceptn* flows with n* satisfying the equation K—-1 & fOK —=
[C - "*“} = p, (1) ForafixedK, the variance estimate’ approaches? in distri-
ovn* bution for large system size. Note, however, that this estimate

whereQ(-) is the complementary cumulative distribution funcremains random, unlike the mean estimate which approaches
tion (CDF) of av (0, 1) Gaussian random variable apglis the  which is the true mean.

QoS objectiveFor large capacities, it follows from solving (1) o ,
40Observe here that the estimation is based ows. In the actual model with

and SUbSt'tu“ngl = C/'“ that flow dynamics, this should be the actual number of flows in the system which
x 0Qg fluctuates arounck. However, in a large system, this number will be close to
no=n- 1 Vin+o (\/ﬁ) (@) and the discrepancy in replacing it byin the estimators are of a negligible
effect.

whereq, := Q~'(p,) ando(y/n ) denotes a term which grows  sype central Limit Theorem states thed — nu)/+/n converges in distri-
slower than,/n. Note thatn is the number of flows that can butiontoaV(0, 1) Gaussian random variatig. By Skorohod's theorem [4, p.
333, Th. 25.6], one can in fact put the random variables in the same probability
3Note that here, as in the sequel, we are ignoring the factith&t an integer  space such th&tS7* (w) — nu)//n — Yi(w) for every sample point. Thus,
and therefore (1) cannot be satisfied exactly in general. In the regime of laigg5), theo(/n) term refers to a sequence of random varialjlds, (w)} .,
capacities, however, the approximation is good and the discrepancy can besigsh that4,, (w)/+/n — 0 for all w. This is consistent with and in fact a gen-
nored. eralization of our usage of the \/n) notation in (2).
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The randomness in the estimators translates into the randamrsion of the Central Limit Theorem [11, Lemma I11.2], we get
ness in the number of flows admitted, via (3). By performing the following asymptotic approximaticn:
linearization around the nominal perfect-knowledge operating Mo
point given by (1), it can be shown that Sy = Z X;(t) = Mop+Y/n+o(vn). (11)
=1

K
My =n — % <% Z Y, + aqg,}() +o(Vn). (8 Here agairt; ~ N (0, o?). Substituting (8), we get
K
k=1 1 N
St = np+ <Yt K Z Yi, — aan) Vn+o (\/ﬁ) - (12)
k=1
Thus, for largen, the overflow probability at time is

K
1 1
_ K Pr{S; >nu}t =Pr¢{ — [V} — = Yi, | >a, .
1(1 ¢ - KE it q
— = Y. Y, + a0k ) {01‘ < k=1

<K t q s) (13)

7
k=1
. ) ) o Now, since theY;, s are N(0, o?), the random variables
where Y, , RN Yy, are independent, identically d'St”b“tEd(l/K) f_l Y;, and 6% /o2 can be interpreted as unbiased
(|.|.d.|2)N(]9, fT_h) rgndqlm vfarr|]ables. ¢ imil hat of 1oestimates of the mean and variance d¥ &), %) distribution
roof: The details of the proof are similar to that of [ based onK independent observations. As is well known (see,

Prop. 3.1] for the case of individua_\l flow measurements. o example, [3]), the two estimates are independent, and
It can be seen that the fluctuation M, is due to both the K1
-1,

randomness in the mean and variance estimators, when they are —5— O ~ XK1
based only on aggregate loads. Contrast this with the case wh o
individual flow measurements are available, when the unc
tainty is due only to the measurement error in the mean ba
width estimator [10]. In that case

This is given more formally in the following proposition.
Proposition Ill.1: Asn — oo, (My — n)//n convergesn
distributionto the random variable

_ri]ch is a chi-square distribution witli’' — 1 degrees of
2edom. If we now make the further assumption that the time
is sufficiently large such thaX;(¢) (and, thereforey;) is inde-
pendent ofX;(t,), ..., X;(tx), thenY, — (1/K) S r_, Vs, is

K independent of ;- and is distributed a&/ (0, ((K +1)/K)o?
Mozn—ﬂ iX:Ytﬁ-oéqf‘f +o(vn). (10) and, hence oA /)
H K k=1

K 1 1 &

Comparing (10) with (8), we see that the uncertainty in the stan- K+1 65 Y, - K Z Yio | ~ T
dard deviatiow disappears with individual flow measurements. . k=1 .
This is because individual flow measurements yielsamples WhereZx . istheStudent-t  distribution withK —1 degrees
per time instance for estimating the variance, while aggreg&tefreedom [3]. _ _ _
measurements yield only one. For largethe effect of errorin e summarize this formally in the following. N
the variance estimator vanishes in the former case but not th&roposition 1ll.2: Suppose the target overflow probability
|atter. QoS isp,. Then as the system size grows

Itis also interesting to observe thih, is much more sensitive K
to errors in the mean estimator than in the variance estimator, lim Pr{sS; > nu} = Fr 1 < K+l Q_l(pq)> (14)

The first term in (6),1/K Z,If:l Y, , is due to the estimation . S
error in the mean. From (6) whereFk is the complementary CDF of th&, _; distribution.

p Note that this limit does not depend on the true mean and
) variance, but only on the target Qo
UKZ Yo, = vn (i — p) +o(1) It is interesting to compare Witr?the corresponding result
k=1 when individual flow measurements are available. A simple
so we see that the effect of the mean estimation error on @@neralization of [11, Prop. 11.3] says that withindependent
variability of M, is magnified by a factor of/n. On the other individual flow measurements at each of tRetime instants,
hand, the randomness in the variance estimator enters dire8§ asymptotic overflow probability is given by
in (9). This is not very surprising, considering that the meanis a K
first-order statistic and the variance is second order. Fortunately, Q < K+l Ql(pq)> (15)
the mean estimator is much more accurate than the variance es-
timator when only aggregate flow information is available (the To appreciate the difference, it is instructive to examine the
former of orderl/,/n and the latter of order 1), and this comdensity of theZx_, distribution:
pensates exacrt1Iy for tge difference ilrl] r?rder of rlnagnitude of thef (@) T (%) <1 N 72 >—(K/2)
sensitivities. These observations will have implications in Sec- fk—1(7) =
tion VI-B. P V(K =D (557 K-1
We next investigate the effect of the variability in the numb%herel“(-) is the Gamma function. For small, this distgilb?—

of admitted flows\/, on the QS performance of the system. Tﬂon has a slow (polynomially) decaying tail as compared to the

this end, consider the aggregate load at some futurettim® X . ) . o
after admittingM, flows and without future admissions. ThistUny exponentially decaying tail of the Gaussian distribution.

is a sum of a random number of random variables, and using &Note that this holds even thougH, and theX(#)s are dependent.




554 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 4, AUGUST 2003

Overflow probability p; as a function of Pq Corrected target overflow probability p’q as a function of Pq
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Fig.1. Overflow probability ; as a function of the target overflow probability Fig. 2. Corrected overflow probability, as a function op, .
pq, for various K [Student-t corresponds to aggregate measurements . . .
according to (14)Gaussian to per-flow measurements according to (15)]. Well and the resulting confidence intervals are much larger than

e . when the variance is known.
Thus, for smallK, the target overflow probability is missed sig-

nificantly more in the case when only aggregate measurements
are available; see Fig. 1. Faf = 5, the actual overflow proba-
bility p is very far away fronp, and decreases very slowly with In the previous section, it was assumed that flows stay in the
the latter (the upper curve), whijg is quite close to the target system for infinite duration, and the goal of the MBAC is to de-
with individual flow measurements. As expected,Jas— oo, termine the appropriate number of flows to admit on the basis
ps approaches, under both aggregate and individual flow meaof measurements of tHeng-termmean and variance of their
surements. stationary bandwidth distribution. If flow departure and arrival

The significant degradation observed above for snféll dynamics are now taken into account, then a more basic ques-
under aggregate load measurements can be attributed to erfigrsis: What are the right statistics to measure? To address this
in estimation of thevariance.With nonnegligible probability, question, we now take a step back and look more carefully at the
the variance can be significantly underestimated. In that cagerplay between flow dynamics, traffic fluctuation dynamics,
the certainty-equivalent admission control scheme will be ve@jd the admission controller. We argue that one should still mea-
aggressive in accepting flows, reserving very little bandwidgtre the mean and variance statistics of the traffic fluctuations,
margin to cater for the burstiness. This results in high overfloliit on a certaireritical time scaledictated by how fast flows
probability when the flows are actually admitted. depart from the system.

To compensate for the measurement uncertainty for a fixedAs before, letS;* be the aggregate bandwidth when there
K, one way is to choose a more conservative Vp[]u'estead of aren flows in the system, and suppose that the flows are i.i.d.
p, inthe admission rule (3) so that we can meet the desired tarf@tdom processes, with stationary meaand variance>. As
pq. The appropriate value gf, can be calculated according toin (5), the Central Limit Theorem implies that for large
th(i_ ef>;pressmn on the right-hand side of (15), i.e., chgfge SP = np+ Yiv/n+o(yn) (17)
satis

IV. CRITICAL TIME SCALE T},

with the fluctuation ofS?* aroundny on the order of/n.
K Suppose now at timg there aréV; flows in the system. This
Fr_4 ( K+1 Q_l(pﬁ,)> = Pq is random as a result of both the admission control and the flow
departure processes. L&t denote the aggregate bandwidth of
for a given QoS requirement. Fig. 2 compares the adjustg}fseNt flows. As in (11), the fluctuation of; ground its mean
as two components, one due to the fluctuation of the number of

values of p/ needed in the aggregate and individual flo ; . .
q .
measurement cases. We see that much more compensatidiPys In the system, and one due to the bandwidth fluctuation:

needed in the former case, especially for snallFrom (12), S¢ =Ny +Yi/n+o (\/ﬁ)
we see that this conservative choice translates directly to a loss
in average utilizatiors[S;] of =np+Y/n—(n—Np+o(Vn).  (18)
_ _ . Because flows cannot be preempted from the system once ad-
Q7' (@) — Q7 (p)] E [6x] V. oy q

mitted, the number of flows can only be lowered by letting flows
It is interesting to note that the difference between estimdepart from the system while rejecting new ones. The aggregate
tion using individual flows and aggregate flow measurementsriste at which flows depart from the system in turn is approxi-
analogous to that between estimating the mean of a Gaussisatelyn/T},, whereT, is the average flow holding time. This
distribution with and without knowing the variance. Withouis the rate at whiclV, can decrease if no new flows are admitted,
knowing the variance, it has to be estimated from the data @sd corresponds to a “bandwidth departure rate?of1,.
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Fig. 3. Overbooking and tracking regimes. In the overbooking regime, bandwidth fluctuation is absorbed by overbooking resources, i.e.reékindvsioih
aside to accommodate the fluctuation of the aggregate load. In the tracking regime, bandwidth fluctuation is absorbed by a correspondingfltieuatimber
of flows in the system.

First, assume that the aggregate bandwigtiiluctuates over that the slow time-scale fluctuation is essentially the aggregate
a single time scal&..” This means the rate of bandwidth fluc-bandwidth time-averaged over a sliding window of len@th
tuation is of the order ob\/n/T.. If nu/T;, < o\/n/T., Hence, this reasoning suggests that, as in the previous section,
orT. < (o/u)(Th/y/n), the rate of bandwidth fluctuation we should be measuring the mean and variance of traffic fluc-
is much faster than the flow bandwidth departure rate. Astaations, but now ovef;, rather than over the infinite horizon.
result, spare bandwidth has to be set aside by the MBAC toThat the critical time scal&), is proportional to the average
cater for the burstiness of the traffic, and full link utilizatiorflow durationT}, is not surprising. What is more subtle is the
cannot be achieved. The amount of spare bandwidth is givendsaling of7}, with 1/,/n. The reason for this is that the aggre-
w(n — E[Ng]) = p(n — n*). (See the first column of Fig. 3.) gate flow departure rate grows linearly with while the fluc-
Let us call this theoverbookingegime. tuations grow only like,/n. As a result, as the system scales,
Consider the other extreme, wh&h > (o/u)(1h/+/n), there are more fluctuations that can be compensated for by flow
i.e., the bandwidth fluctuation rate is much slower than the flodepartures, manifesting in a short critical time scale.
departure rate. In this case, there is actually no need to set asid&lthough the discussion here is informal, the main point is
spare bandwidth to cater for the fluctuations. Instead, the fluctia- motivate the MBAC design to be presented in the next sec-
ations can simply be compensated for by controlling the numb#sn. The importance of the critical time scale will be demon-
of flows in the system. This is possible because flows are dstrated more precisely in the performance analysis of the pro-
parting fast enough. Whe#f;* happens to be larger than:, posed MBAC (Section VI).
i.e., exceeding the link capacity, the number of flows can be
lowered toV; < n such that the aggregate bandwidth does not V. MBAC DESIGN
exceed the link capacity. This can be calledttiaekingregime.
Provided that there are enough flows requesting admission, al
utilization can be achieved. (See the second column of Fig. 3.)Fig. 4 shows the basic architecture of the proposed MBAC
The time scale design that realizes the conceptual ideas developed in the last
B section. By means of a pair of low-pass and high-pass filters,
Ty :=Tn/V/n the aggregate bandwidth procetss decomposed into a high-
frequency componeri/ and a low-frequency componesif
can now be thought of as aitical time scaleseparating the such thatS; = S + S}, both with a cutoff frequency df/7},.
tracking and the overbooking regimes. The high-frequency proces§’ is used in order to estimate the
More generally, aggregate bandwidth fluctuates over multiptgnount of spare bandwidth that has to be put aside in order to
time scales. The components having time sédles> T3, canbe accommodate fast time-scale fluctuations through overbooking.
compensated for through flow admissions and departures, whilence, we wish to estimate the variangg of S/7. The low-
the components having time scald’ < Tj have to be ab- frequency procesS§/ is used to estimate the “current mean”
sorbed through allocation of spare bandwidth in the link. (S¢g of the flows. Together, these two estimates determine the
the last column of Fig. 3.) The answer to the question of “whatrrent number of flows that should be in the system in order to
to measure” is now obvious: The slow time-scale fluctuatiormccommodate the slow time-scale fluctuations through tracking.
should berackedto allow for compensation, while the variance
of the fast time-scale fluctuations should be measured so thatheVariance Estimator

appropriate amount of spare bandwidth can be set aside. Notey, should we estimate the varianed, of the high-fre-

TInformally, this means that the power of the proc¢ss} is concentrated JUENCY component of the aggregate traffic? Recall the main in-
around1/T. in its power spectral density. sight we gained from Section lllI:

Basic Architecture
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'C‘L";’;f':a:fn; ‘ where N, is the number of flows in the system at timeOne
can think ofS; /N, as thenstantaneous avageper-flow band-
9 ﬁt width. The high-pass component of the aggregate load is

s H._ p
t_ 4, | o L'l' Se = St = Niju

';ﬂ 'R which corresponds to filtering; through a filter with impulse

-y ;’;Eiﬁgf:, A 3 *r;;sponsét — ¢¢. The estimate of the high-pass variance is given
t s

1/2
. (21)

2

high-pass _, oo o
cutoff =1/Tp L ~H _ [/ |:Stliq- Stli'u h du:| h..dr
0

o = —
. . t

Smoothlng window Nt—‘r 0 Nt—u

Time-constant Tg

The number of flows\/; admissible by the MBAC at time

Fig. 4. Decomposition of the measured aggregate bandwidth into 'g@given by the solution to the equation

high-frequency component for the variance estimator and a Iow—frequeH

component for the mean estimator. ¢ — Myji,
——— | =py- 22
» With only aggregate measurements, the performance of an @ < VMeH ) Pa (22)

MBAC can be quite poor if there are only a small number o MBAC. therefore. admits a new flow ¥, > N, + 1
K of independent load measurements. Either the targef ' ’ - '

is missed significantly, or a very conservative admission

control scheme is needed to compensate for the measure- ¢ — (N + 1)jie > a6 /Ny + 1 (23)
ment errors. This effect is mainly due to estimation error
in the variance. and rejects it otherwise.

This suggests that a long measurement window for estimatingrhe left-hand side of (23) can be interpreted as the estimated
the variancer3; is needed for robust performance and high linkvailable spare bandwidth (after acceptance of the new flow),
utilization. Essentially, we need more measurememts time and the right-hand side as the estimatequired spare band-
to make up for the lack of measuremeater individual flows  width to accommodate the fast time-scale fluctuations.

Since the fast fluctuations by definition occur at time séle  One observation is that although the algorithm uses aggregate
or shorter, one can expect to get roughly independent measuyggher than individual load measurements, it still needs to keep
ments ofo}; spaced aff}, apart. The above observation thusrack of the number of flows in the systerVy). In Section VI,
translates into the need of a measurement window with lengile discuss a relaxed version of the above admission criterion
KTy, K > 1. that does not even require this knowledge. This is beneficial for

With this choice of measurement window size, a naturdistributed admission control.
guestion is the robustness to nonstationarities, especially due
to heterogeneity of flows entering and leaving the network. We VI]. PERFORMANCE OEMBAC SCHEME
will address this issue when we analyze the performance of th

MBAC design under a heterogeneous traffic model. GiNe now analyze the performance of the MBAC scheme pro-

posed above in a fully dynamical model with flow arrival and de-
. artures. We assume that the effective arrival rate is infinite, i.e.,
C. Description of the Proposed MBAC Ehere are always flows waiting to be admitted into the network.
We now give a specific algorithm to make admission decFhus, admission control decisions are made continuously at all
sions based on the architecture just described. We first spedifyies. Clearly, the QoS performance (overflow probability) ex-
the filters. For simplicity, the filters will be defined in continuougperienced by admitted flows of any admission control algorithm
time, although in practice they will be implemented in discretender finite arrival rate will be no worse than its performance in
time via sampling of the traffic. While many low-pass filters caithis modek Another advantage of this model is that we need
be used, for concreteness let us consider a simple first-order A6t worry about the specific flow arrival process, which may be

filter with impulse response given by difficult to model in practice. From the analysis point of view,
this model is convenient, as the link is always filled with at least
g 1= NL exp (_;) " (19) the number of flows deemed admissible by the controller. The

T, L drawback of this arrival model is that it only yields an upper

bound on the utilization achieved under finite arrival loads.
We first analyze the performance of the MBAC when the
1 ¢ traffic is homogeneous. Then we will extend the analysis to a
he == T eXP ( T ) un heterogeneous traffic model. The main new ingredient here is
s s that flow heterogeneity leads to a time-varying flow mix in the
be the low-pass filter for estimating the variance, whEre= System. Under a natural heterogeneous traffic model, we show
KT, is the window length for the variance estimatorSjfis the that the time constants of the filters in the proposed MBAC

aggregate load at time the estimated mean is then 8However, the utilization would be slightly lower when the flow arrival rate

© g is finite. The infinite arrival model introduced in [10] reflects our belief that
t—7 g, dr (20) robustness to heavy offered load is more important than maximizing utilization
I during periods of modest load.

whereu, is the unit step function. Let

iy =
0 Ntfr
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scheme are scaled appropriately to track and compensate for Hesice, one can take the covariance function of the approxi-

time variation. mating Gaussian proce$s; } to bep(r).
Compared with the analysis in Section lll, the performance We now have the approximation
analysis in this section is heuristic in nature. Rigorous justifi- S, & Ny + /nY,. (25)

cations will invoke the theory of weak convergence of random ) ) _ _
processes. This was done in the related analysis in [10], and W&IN9 (20), the low-pass mean estimator is asymptotically given
expect that a similar treatment can be done for this paper as .

1
e L,
A. Homogeneous Flows e & p+ N t

We first consider the homogeneous case when the band- ) ) o
width process{X;(-)} of each flow is identically distributed, WhereZ; = (g+Y), is the Gaussian process after filterifig }
stationary, and ergodic. The mean rate of each flow mnd PY the low-pass filtey defined in (19). )
the covariance function is(t) := E[(X;(0) — u)(X;(£) — p). By a linearization of the q_ef|n|ng (22) favl,, it can be shown
The capacity: is scaled asu. that, analogous to Proposition IIl.1

Our analysis is in the asymptotic regime wheris large, i.e., Vn H
n — oo. As we scale up the system, we keep the critical time My mn - u (2 + aq67') - (26)
scaleT}, fixed, such that the average flow holding time scales fence, the number of admissible flows at timis a random
Ty = /nTy. The earlier discussion on the fundamental natuegiantity with fluctuations of ordeg/n due to the randomness
of Tj, suggests why this scaling makes sense, as it allows ugriahe statistical estimatoyg ands . The term—/nZ, repre-
focus on the time scale “where the action is.” The same scalisgnts the compensation for the slow time-scale fluctuations by
is used in our earlier paper [11]. the MBAC; the term-+/na,, 6 represents the spare bandwidth

The key quantities to be analyzed arg, which is the number catered for the fast time-scale fluctuations.
of flows the MBAC determines thahould beadmissible attime  |f the measurement window siZ& = KT}, is chosen such
t, and Ny, which is the number of flows that are actually inthat K > 1, we observe that/? is approximately a constant
the system at time. In the asymptotic regime of large capacity;; for anyt, where
(equivalent to large), both of these quantities are of order 2 _ , )
with random fluctuation of ordey/n. This is due to the Central ) H = Va_r [X:(0) = (g% X3)(0)]

Limit Theorem. The goal is to analyze the fluctuation to enabig the variance of the high-frequency component of a flow band-
us to approximate the overflow probability. width process. Thls observation can be understood mtt_Jltlver

We can analyze the distribution of the procéa } inasim- @S follows. The high-frequency component has fluctuations at
ilar way as in Section 1. First, let us focus on the aggregate lodifne scal€l}, or shorter, so, roughly, samples spacefiaapart

S,. Write are independent. I > 1, the estimate of the power in the
high-frequency component will be very accurate. This is analo-

St = Nyp + Z [X:i(t) — ul. gous to taking a large numbéf of independent measurements
i€F, of the aggregate load in the simple model studied in Section llI.

. ) . Substituting this into (26), we obtain the following:
Recall thatF; is the set of flows that are in the system at titne 9 (26) g

By the Central Limit Theorem for the sum of a random number M, ~n— @ (Zi + agom) - 27
of random variables [as in (11)] 7

1 The actual number of flow#/; in the system at time is no
NG S Xi(t) =l =Y (24)  less thanM, because there are always flows waiting to be ad-
i€F, mitted and thus the system is always filled to the limit as cur-
where{Y;} is a zero-mean Gaussian process. To compute tiantly determined by the MBAC. On the other hand,can be
covariance function ofY; }, consider fors < ¢ strictly greater thar/; as flows that were admitted earlier stay
1 1 for a certain duration and, thud]; cannot perfectly follow the
D) — X;(s) — p] - — X, (t) — fluctuations ofM;. To computeV,, first observe that i* is the
vn L;;[ ()= vn i;[ ) M]] last time at or before timethat flows were admitted, then the

number of flows in the system at timé is precisely the same
1 X, X (1 as the number of flows admissible at tintg i.e., Ny« = M.
o > [Xils) = ullXu(t) = pl| - In between times* and timet, no new flows were admitted.

7N . Hence, if we letD]s, t] be the number of flows departed in time
Now, both N, and N, are random variables of order Be- interval[s, ], then

cause the flow holding time is scaled a@ﬁ, with T3, fixed, B . 1 .
the number of flows that depart during the time interjalt] Ni =Ny = DIs", t] = My = D[s", 1]. (28)
are of the order of/n. Hence,|.F, N F| is of the order ofn.  On the other hand, faanys < ¢

=E

This implies that Ny =N, + Als,t] — D[s,#] > N, — D[s,t] > M, — DJ[s, 1]
1 (29)

E|= X;(s) — pl[Xi(t) — p]| — p(t — _ _ _
n iefzmﬂ[ () = pl Xt M]] plt =) where Als, t] is the number of flowsadmittedduring [s, ¢].

wherep(7) is the covariance function of an individual flow: Thus, we conclude from (28) and (29) that
N; =sup{M; — DJs, t]} . (30)

p(7) :=E[[Xi(0) — p][Xi(r) — ull . s<t
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This relationship quantifies precisely how much control the 1) Single Time-Scale TrafficSuppose now the individual
admission scheme has on the number of flows in the system.flisiv has covariance function
timet, the ideal number of flows desired in the systemig but It|
N; is close toM; only if the flow departure rate is very high. p(t) = o” exp <_T>
For finite departure ratesy; exceeds\Vi;, and to still provide ¢
the desirable level of QoS, spare bandwidth has to be allocawith correlation at a single time scale. By straightforward

in the admission scheme. B B calculations, the covariance function{¥,} is
Under the scaling df}, = +/nTj}, for fixed T},, the number of ) ~
flows departed itjs, t] can be calculated to be pz(t) = ~‘7 - % exp (_%ﬂ) — exp <_|]€_|>
t— 2 (L) -1 ¢ h ¢
D[s, t] ~ == /n. (31) [(T) }

o . " ] _and the variance of the high-frequency component is
Substituting (27) and (31) into (30), we obtain the following

asymptotics forV; in the regime of large::

S A
Hos<t Th
Thus, the actual number of flows in the network is a rando
process which fluctuates on the ordergh. Under the pro-
posed MBAC, the randomness is due only to the randomness in (1) ~ LT\ » It 0
the low-pass mean bandwidth estimaggrand not that of the pz\t) = o exp =
variance estimator. This is because the measurement window,,q

th 2
—= 0 .
Tc + Th
Consider the regime wheh. < Th; this can be considered

as a separation between the burst and flow time scales, and cor-
P%sponds to the overbooking regime discussed in Section IV.

o} =

2

T T

chosen has a much longer time scale than that of the high-fre- 2 . 2
guency fluctuations we want to measure. TH =0
Once we obtain an approximation fdg, we can immediately so that

deduce an approximation for the aggregate l6ada (25) and, "

hence, the steady-state overflow probabitity= Pr{S; > c} Pr {Sup {YO —Zs+ = 5} > aan}
s<0 h

St~ nu-{-\/ﬁ-sslg) {Yt m 2 Tﬁh(t B S) - aqUH} - (32) ~ Pr {Sup {Yo + ﬁs} > aqa}
s<0 h

Hence, the overflow probability; converges to
’ P Vs 9 =Pr{Yy > ayo} =p,.
Pr {sup {YO — 7+ ﬁ_LS} > aan} ) (33) Thus, the target QoS is met using our scheme. In this case, the
s<0 h traffic fluctuations are all of a faster time scale than and
To repeat{Y;} is a zero-mean Gaussian process with covafgsources have to be overbooked to absorb them. If we overbook

ance functiorp(-), andZ, = (g * Y), is the low-pass filtered by any amount less than the full variang& of the fluctuation,
version of{Y;}. the QoS target will not be met.
Expression (33) can be interpreted dsitting probability of For generall., we can use (34) to compute the performance.

a Gaussian proces§Y, — Z, }) on a moving boundary, and anThisis plotted in Fig. 5 for two values of, . We see that the actu-

approximation of such a probability is given by [12], [13] ally achieveq?f is close to the target, across .the whole range
of T.. As T, increases beyond the critical time scdlg, the

L[>~ g0l + ;Lht Qq0H + % t aqoH spare bandwidth reserved to absorb the high-frequency bursti-
2 / 0™ (0) o3 (1) o(t) dt + Q(m) ness is reduced accordingly, thus maximizing utilization while

0 (34) still meeting the target QoS. Contrast this with the performance
whereo(t) = B[(Z_, — Y3)2], v(0) is the right derivative of the per-flow sche_me con5|de_red in [11], wh|_ch always re-
of the ?urgc)tionaz([g) attt _ %) ;nijd(/)((-)) is theN?O. 1) proba- serves spare bandwidth proportionabtowhereos? is the total

bility density function. This expression can be numerically co __;etlrlanc_fh Thf per-fIO\lN scherr]ntla IS eff?r::twel)\/Nl;]smgTa _Iow}pass
puted given the covariance functip(-) of the individual flow liter with a time scale much larger that. €n’e IS O
process. It is an approximation in the sense that,as: 0, the the order or Iarger_ thathy,, this _results in over-allocation of re-
ratio of the expression and the probability (33) approaches 150UrCes, as seen in the droppin

Let us apply the above results on two specific examples to ob—z) Multiple Time-Scale Traffic:Let us now consider the sit-

tain a better intuitive understanding of how the MBAC schentédtion whenan individual flow has correlation attwo time scales
functions. Under a separation of time-scale assumption, we will a1d72. More concretely, suppose

see that the choice of the low-pass filter time scaléjass the X(t)=p+ XD+ XD0)

appropriate one. More generally, (34) can be used to assess the

impact of using a different low-pass filter time scale on the pewhere{:X ")(.)} and{X *)(-)} are zero-mean independent sta-
formance of the MBAC schentfe. tionary processes with covariance functions

9Expression (33) depends on the low-pass filter time scale through the second- (1) — 42 _ﬂ (2) — 2 _ﬂ
order properties of Z; }. p'(t) = o7 exp ] p'(t) = o5 exp , )
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as a function of T /T
¢'h

102 _ Preognomin®®? , can also be verified thaty ~ o;. Using (36), the overflow

probability can be seen to be close to the target.

+ ~ MRS T The choice ofl}, as the memory time scale of the low-pass
5 filter is important to keep the utilization high. Using (32) and

again rescaling time, the average utilization is given by

E[So] ® nu+ vnE [sup {—ZfTv] .t ,us}} — o1agy/n.
s<0 '

€l

; Now, for the regime considered above and the memory time

ol | ] scale equal td},, one can calculate thaty (1,t) ~ o3, i.e.,

\ over the critical time scale7, is highly correlated and, hence,

b remains essentially constant. Thus, the supremum above is
~ Porfiom pa-te8 \ achieved at = 0, and

GO Aggregate, pg=1e-3 \
10°k —0 iggﬁfzwa'é’fjf:i_s 4 E[So] ~ nu + VnE[Zo] — o1a4v/n = np — oraq/n.

Y The spare bandwidth; o, /n is precisely left for catering for
Jpe e - e - the fast time-scale fluctuation.

T, Suppose now that the memory time scale of the low-pass filter

Fig.5. Overflow probability of the proposed aggregate scheme and a per-fligvchosen to be Iarger thah,. As the memory time scale ap-
scheme which always overbooksat proachesl’, some of the slow fluctuations (at the time scale
Then we can decompose the scaled aggregate fluctuitien 72) are filtered into the high-frequency component, resulting in
YY) + v, and the low-pass outpdt, = Z'V + Z» accord- @ larger than necessary spare bandwidth. In the extreme case

ingly. The covariance functions ¢& @) (-)} is given by whenT}, > T», 0% = 0% + o3, resulting in a utilization of

) o2 Th t t np — o2 +o2a \/ﬁ
p(zj)(t> = # TeXp <—|~—|> — exp <—|T—|> , Vo1 2 (i
(%) -1 " / Compared with the case whék, = Ty, this represents a loss

. of utilization of
7=1,2

and fors, t < 0 (\/o% + 032 — 01> agV/n.

E [(Yo(j) - ij))(YO(j) - Zgj))] _ This calculation serves as a validation of the design choice of
Ty, as the low-pass filter time scale, and confirms our informal

o? t i discussions on the importance of the critical time s@ale
= JJQ» - I _ [exp<?> +exp<%>} +p(Zj)(t —s). (35) P a3

y
L+ 7 ! ! B. Heterogeneous Flows
Now, consider the regime whehiy < Tj, andTy > T,. To study the robustness of the MBAC scheme to flow het-
By performing a rescaling of time, we can write the overflovgrogeneity, consider the following heterogeneous traffic model.
probability (33) as Theith flow is given by
Pr {sup {YO - Z% + us} > aqcrH} Xi(t) := pi + o:Ui(t)
s<0 w8

wherey; ando; are random variables, identically distributed
1 1 5 5 and independent from flow to flow. The procesgé5s(-)} are
= Pr{sgg{yo( ' Z%)S + Yo( ) Z,(th)s + NS} > O‘qUH} - 1.i.d. with zero mean and unit variance, and are stationary and
o= ergodic with covariance functiopy (¢); they are also indepen-
(36) dentofu;s ando;s. They represent the in-flow statistical fluctu-
Using (35), we see that for, ¢ < 0 ations. The ra_ndom variables ando? represent the long-term
mean and variance of the flow; they differ from flow to flow but

EKYOO) _ 70 )(Y()(l) _ 7 )] ~E {(yo(l))j —=¢2? (37) remainfixed once the flowisin progress. The proce$sgé )}
Tht

Ths represent the in-flow statistical fluctuations, which we model as
and statistically identical and independent fs ando;s for sim-
plicity. The random variableg; ando? have the following sta-
B(vi? - 22) (% - 2®) =0 (38) tistics:

B[] = p Var[u] =0* Elo7] = o
©One can think of the distribution dfu;, o7) as modeling the
typical flow mix. At any time, the composition of flows in the
network may deviate from this typical mix. Also, we only model
Thinking ont(l) as the fast time-scale fluctuation aﬁ;ﬁ” as heterogeneity in first- and second-order traffic statistics because
the slow time-scale fluctuation of the traffic, this means that theur asymptotic analysis only depends on them.
low-pass filter tracks the latter almost perfectly (at the time scaleAs in the homogeneous case, we are here interested in the
defined by1},) but leaves the former essentially unchanged. legime where the capacity= nu is large, T}, is fixed, and the

This means that the proce{s)s’o(l) — Zg)f} has variance? and

is highly correlated over time (with correlation coefficient clos

to 1foralls, t), while the procesi@YO(z) —Zg)t} is close to zero.
h
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average flow duratiofi}, scales as/ﬁfh. The aggregate load fluctuation, a second-order effect. We have in fact seen this phe-
in the system is given by nomenon in Section Ill, where we performed a measurement
S — N L X,(8) — il error _anaIyS|s._Th|s_ observatpn will have important ramifica-
! ot Z (i = ) + Z [Xi(8) = pu] tions in the estimation of the high-pass variance.

e ‘€ Continuing on the performance analysis, the low-pass mean
We decompose the load into three terms: estimator is given by [via (20)]

1) N:u, which can be thought of as the aggregate load if all 1 1
flows are transmitting at their average rateand the flow fit = p+ —= Ly, + —= Z
mix is exactly the same as the typical mix; vn v )

2) e, (i~ p), where the sumis over the flows currently"\’here_Zt = (g x V). We note that the filter can track the
in the system, is the deviation of the current mix of th&low time-scale fluctuatiof L.z, } perfectly; this is because
flows from the typical mix; the filter has a much shorter time scélgthanT}, = /n Tj.

3) D ier, [Xi(t) — pi], which is the fluctuation of the flows The number of admissible flows is given by
from their long-term average rates. vn H

Similar to (24) in the homogeneous case, we can approxi- My ~n — o (Leym, + Ze + g6y’ (40)

mate the third term by/n V;, whereV is a zero-mean Gaussian AH . : . .
process. The covariance functipgi(-) of V; can be calculated whereg,” is the high-pass variance estimator given by (21). If

the variance measurement wind@y = K1}, is chosen to be

follows: .
asto owsl ) much larger thaff}, then it can be shown that
E vn Z [Xi(s) — pa] - n Z [Xi(t) — Nz]‘| 6 ~ 0% = Var[Vy — (g% V)]
1€F 1€Fy
© © — o*Var[U(0) — (g % U)(0)]. (41)
1 Although this statement is identical to the corresponding one for
E |- Xi(s) — ][ X (t) — py o .
n iefsz [Xi(s) =l Xalt) = o ]] the homogeneous case, the reason why it is true is more subtle.
o Recall that the memory time scale for the high-pass variance es-
— E(Xi(s) — pa)(Xi(t) — pi)] timator is much larger thafy, . Hence, the heterogeneous mix of
_E [U2U1’(S)Ui(f/)] flows actually_c_hanges significantly during this time. I—_lowever,
' the low sensitivity of the aggregate load to the fluctuation of the
= o?pu(t —s). variances ensures that the variance estimator remains accurate.

We can now compute the asymptotic distribution\gf, the

H v (1) = o?pur(t). _
ence,py (1) = o~ pu(t) d?umber of flows in the system.

Using the Central Limit Theorem for a random number
summands, we can approximate the second terqily.,,z,, Nt = sup {M, — D[s, t]}
where{L,} is a zero-mean Gaussian process. To compute the '
covariance function of L, }, consider

E %Z[m—u]-% > lni—nl

n t—s
/R sup {n— % (Lsjz, + Zs + ago™) — — \/ﬁ}

s<t

1€Fq j€.7:'1'h7 ~n — ﬂ Lt/Th + @ Sup{_ZS — /L( ,~_ 8) — aqu}
o Ho os<t Th
1 9 where the first equality follows from (30), the second equality
=E n Z [1i — u] from (31), (40), and (41), and the third equality from the fact
i€FonFr,+ thatT;, >> 1 so thatL,,7, remains essentially constant in the
2 —1 maximization.

—vie
wherev? = E[[u; — p]?]. The convergence in the last line fol-

lows from the fact thafVy /n — 1 and that out of théV, flows N
in the system at time 0, the expected number of flows still re- St~ Ny + \/ﬁLt/Th +VnV;

The aggregate load and the overflow probability can be sim-
ilarly obtained, as follows:

maining in the system at timE, 7 is Noe~". Hence, we have p(t — s)
pL(T):vze_T. znu—l—\/ﬁsslg{Vt—Zs—fh—aan}

The process.;r, is the slow time-scale fluctuation in theand

aggregate load due to the change in flow mix over time. The S

scaling byT;, emphasizes the fact that this process is evolving Pr{So > nu} =Pr Slgg’ Vo—Zs+ T’ > Qq0H (-

at the time scale of the flow arrivals and departures.

Summarizing the above, we have Comparing these results with (32) and (33), we observe that the

(asymptotic) utilization and overflow probability for the hetero-
S & Nep + \/ﬁLt/Th +Vn V. (39) geneous model are the same as those fmmaogeneoumodel,

We note that the time fluctuation in thHkw variancesdue where each flow has the same mean gatend the same vari-
to heterogeneity has disappeared in the approximation (39)asfces2. There are two reasons. First, the procesg, } de-
the aggregate load; only the typical variamematters. On the scribing the change of the mean rates of the flow mix in the
other hand, the fluctuation in the mean rafggn L,,r, } re- systemis completely filtered into the low-frequency component
mains. The reason is that the aggregate load is much more sard perfectly compensated for by tracking. Second, the fluctu-
sitive to the mean fluctuation, a first-order effect, than varian@ion due to change in flow variances has an insignificant
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Fig. 7. Simulated overflow probability; for different values ofX” andn =
100, based on th&tar Warstrace; target overflow probability, = 10~2.

Fig. 6. Simulated overflow probability; for different values ofX” andn =
10000, based on th&tar Wardgrace; target overflow probability, = 103.

exceeding the target by up to two orders of magnitude. If
is chosen large enough, we observe fhats within about
Ralf order of magnitude of the target, depending on the flow
olding timeT},. Note that in the numerical results of Fig. 5, we
have observed a similar “bump” in the overflow probability for
& regime where the correlation and the critical time scales are

impact on the aggregate load and the overflow probability. TH;
ensures that although the memory time scale for estimating
high-pass variance is much longer thBpn the estimates will h
not be significantly corrupted by outdated data.

The above performance analysis of the proposed sche
under a heterogeneous traffic model gives further evidence

the efficiency and robustness of the design, particularly in theThé results in Fig. 7 look qualitatively very similar, but

choice of 7}, as the filter time scale for tracking the low-pasgey are offset toward higher overflow probabilities by about a
mean, and a much longer averaging intefial= K7}, to esti-  hajf order of magnitude. The reason for this is as follows. The
mate the high-pass varianeg;. For example, if the low-pass gmount of spare bandwidth is on the order,6# flows, i.e.,
filter time scale were chosen to be of the ordeflpfand not e, fiows in this simulation. The discretization effect due to the
T}, then unnecessary spare bandwidth will have to be reseryggh that bandwidth does not depart the system continuously,
for the slow time-scale fluctuations due to flow heterogeneity,; in discrete steps at flow termination is not negligible, and

In the extreme case when_ the filter tir_ne scale is much larggkreases the overflow probability. However, this effeadid )
thanTj,, an excess bandwidth proportional ¢pthe standard 5nd can easily be compensated for.

deviation of i in the flow mix, is needed. This corresponds
to the case when very conservative admission control is per-
formed, solely based on prior knowledge of flow statistics and
without benefiting from the on-line measurements.

VII. I MPLEMENTATION OF MBAC WITHIN THE
DIFFERENTIATED SERVICES ARCHITECTURE

The Internet research community has been grappling for a
C. Simulation Results long time with the conflicting goals of scalability and guaran-
We have performed trace-based simulations of our MBAC Eaeing QoS. Currently, the differentiated services architecture
iffserv) being defined within the IETF is the most promising

verify the results of the performance analysis. The goal is uti hi bl 21 Diff : ble of offeri
evaluate how well the MBAC performs with real network trafficS° ution to this problem [2]. Diffserv IS Capable ot ofiering a
asonable set of QoS guarantees while maintaining one of the

in particular traffic that exhibits fluctuations on a wide range dffaS :
time scales. basic tenets of the Internet architecture: a stateless core. In the

The simulation is based on a compressed video trace of fHEServ framework, only edge routers are aware of and manipu-
movie Star Wars which has been extensively studied in the litlate individual flows; core routers only handle traffic aggregates

erature and has been shown to exhibit fluctuations on all tirffough a small set of per-hop behaviors (PHBS).
scales [8]10 In F|gs 6 and 7, we p|0t the measured overflow In this SeCtIOI’l, we discuss a variant of our MBAC that can be

probability p; as a function of the critical time scale, for dif-implemented in such an architecture. For this, we have to relax
ferent values of the high-pass variance estimation windipw:  the assumptions about what information an MBAC has avail-
KTy, able to make admission decisions. We have assumed throughout
In Fig. 6, we can clearly see thAt >> 1 is necessary to obtain this work that the MBAC does not collect any per-flow measure-
a sufficiently reliable variance estimation. Small valueskbf ments or maintain any per-flow state, but did assume that the
(K < 1) lead to system overload, with the overflow probabiliyMBAC knows the exact number of flows in the system. Specifi-
1OThe details of the simulati t deseribed in 111 cally, in order to compute (23), _the MBAC hasto preusely know
L cetar’s of fne simuiation Setup are cescribe n [11]. _ the current number of flowd/, in the system at time. In the
In contrast to the numerical results in Fig. 5, there is no notion of a imegcary architecture, this is undesirable due to the distributed
scale separation paramef€r/ T}, here, as we make no assumptions about thé L
correlation structure of the trace. We plot thexis of Figs. 6 and 7 as a function Nature of flow admission. Core routers can only be expected to
of 1/T}, in analogy with Fig. 5. collect and process aggregate traffic measurements. An ingress
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router would use either in-band (e.g., using probe packets) or
out-of-band signaling (e.g., RSVP [20]) to query core routers
along the path of the new floWA core router then performs a
local admission test, and updates the in-band probe packet or the
out-of-band signaling message accordingly. However, the core
router does not keep track of ongoing flows and, therefore, the
admission test cannot rely on knowledgeN\gf13

We now discuss a conservative approximation to the admis-
sion criterion (23) that does not rely on the number of flows. In
Section V-C, exact knowledge d¥, is necessary in the com-
putation of the estimated per-flow statistigsands . Let us
try to forgo computing these per-flow statistics and instead use
the correspondingggregatevariables. The goal is to develop 3
an admission criterion analogous to (23), but that does not ex-

licitly depend onN.. It is convenient to repeat (23) here in &19- 8- lllustration of the uncorrected low-pass filtered aggregate bandwidth
P y dep ¢ P ( ) processA’ and the corrected proceds' . A new flow should be admitted only

slightly modified form: if A} is below the threshold given by— + — «,64; AL reacts too slowly
N N ~H to new flows, leading to possible overload (by admitting flows b and c).
¢ — Nofie — fir > g6 /Ny + 1. (42) gtop (by 9 )

Recall that the left-hand side estimates the spare capaftity bandwidth to accommodate fast time-scale fluctuations of the

admitting the new flow;i; estimates the average rate of th@eggregate bandwidth.

new flow, i.e., we have implicitly assumed that the new flow However, this does not work. The problem is that the band-

is statistically identical to the existing flows. width of a new admitted flow is not immediately reflected in
Without knowledge of the number of flowd;, we cannot Af. This is in contrast to the ternV, i, in (23), which reacts

compute an estimator of the per-flow mean rate This has 10 & flow admission immediately through the incremenf\of

two consequences. First, we have to replace the estidte NOW, suppose that the flow arrival rate is very high. Using (46),

the new flow, e.g., with a peak-rate constrainEortunately, for the MBAC could admit a potentially large number of flows in a

largen, replacingii, with r in (42) does not affect performance.yery short perlpd of time and overload the system. Thls'pomt is

The reason for this is that even though the peak rate assumpt|btftrated in Fig. 8: The three flows a, b, and c to the right ar-

is conservative, as soon as a flow is admitted, the dependeﬁn¥ igc'gnr?r?lﬂjg(;(t:gsz!c;ﬂér;gssazesg}ﬁtggegge%g;g;nn?‘\%;jth
of future admission decisions on this flow asly through its PS, P P '

contribution to themeasuredaggregate bandwidth. Therefore!NcT€ases too slowly to avoid admission of too many flows; in

i hoi fonlv affect f tati Thi this example, only flow a should have been admitted.
a conservative choice atonly affects one flow at a ime. This Specifically, suppose a new flow is admitted at titpeThen
effectisO(1), and therefore negligible in a large system.

the mean of the low-pass filtered aggregate bandwitfth—=

Secondz we have to define approximationi to the high ag\gﬁt increases instantaneously by the mean faté the new
low-pass filtered aggregate bandwidff! andS7, that are in- g,y However, the mean ofZ only converges t& exponen-

i
1
l
l
1
1
1
I
1
1
1
I
1
1
:
b

dependent of the number of flows. tially with time-constanfl},, because the increase in the aggre-
AL o s dr ~ ni 43 gate bandwidth due to the new flow is low-pass filtered. The dif-

R A (43)  ference between the means of the two processeg gftethere-

fore approximateE[SE — AL] ~ pexp((to —t)/Ty). To cor-
A =8, — Al =~ SH. (44)  rectfor new flows, we have to add this term to the low-pass esti-

The estimated variancg# of the aggregatefast time-scale mateA” for each admitted flow. We obtain a corrected low-pass
; N
componentd? can be computed from ¥ as follows: estimatedy, which is given by
1/2 A} = (AF + N) * g¢ (47)

ge'] Je'e) 2
~AH __ H H ~ . . . . .
9t = [/0 [At—r - /0 AP d“} he dT] ~VNOoH-  wherex is the convolution operation. The function contains
' (45) a Dirac pulse for each arriving flow

c— AtL —-—r> aq&fH (46) i

where, analogous to (23), the left-hand side of (46) is an es\ﬁhsel:etioiz;ht?];r?xgl;im?eOfglth\géﬁgsvriditshitgrﬁeikhglteés at dis-
mation of the available spare bandwidth after admission of t@g bp ggreg y 9

) o . . ete timeinstants. Th can be computed recursively as fol-
new flow, and the right-hand side is the estimated required SPRs. Lett; denote theetﬁ;\ne instants w%ere the aggregxfo\te band-

12The admission decision could also be made by a centrabzedwidth Width S; changes or where a new flow is admitted.

broker, which collects traffic measurements from the entire network. However, | A
for scalability, the bandwidth broker is unlikely to maintain records for indi- Atq- = ¢iAti,1 + (1 - ¢i)5t471 ‘H"'l{ﬂow admission at ¢; } (49)
vidual flows as well. h
13In principle, a core router could keep track of the number of flows WithOlth ere
identifying individual flows by tracking flow admissions and departures; how-
pi=e (

It is tempting to use the following admission criterion: N\ = Z ré(t —t;) (48)

ever, it is obvious that this is not robust to problems such as loss of a signaling
message or to a node failure.

lisi i ti) . (50)
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The admission criterion with the correction term becomes [9]
c— A} =71 > auH. (51)
[10]

We have seen that replacipg with = in (42) did not in itself
affect the performance, because it affemtty the new flow de-
manding admission. Nevertheless, for the criterion (51) withouil1]
knowledge ofN; above, the peak-rate assumption does incur a
penalty in utilization proportional tor — p)/n. The reasonis [12]
that the correction terms addedAg in (49) persistover a time
scale off},. This effectisO(y/n), because the MBAC admits on 3
the order ofO(y/n) new flows per critical time scalé&},, each
of which results in a conservative correction. Tha$,overesti-
matesV,/i; on average by an amount proportiona(te- i) /n.
This utilization penalty is the price for the limited information [15]
available to the MBAC to make robust admission decisions.

[14]

[16]
VIIl. CONCLUSION

Previous approaches to the admission control problerfi?]
generally make a time-scale separation assumption betwem
the burst time scale and the flow arrival and departure time
scale. Under this assumption, admission control only relies o

. L 9
burst time-scale statistics, and a measurement-based scheﬂ‘lel
estimates these statistics to compute the number of admissible
flows. For real-world traffic exhibiting multiple time-scale [20
dynamics and flow heterogeneity, the time-scale separation
assumption is questionable and the notion of "burst time-scale"
ill defined. By explicitly incorporating flow dynamics into
the picture, we have shown that there is a critical time-scale
T, = Tn/+/n on which the traffic statistics is relevant for
admission control purposes. This time scale depends only
flow dynamics and is decoupled from the traffic statistics ¢
the flows, thus allowing us to bypass the difficult question ¢
defining a burst time scale. The MBAC scheme proposed in tt
paper tracks the mean and estimates the variance of the tre
fluctuations at this time scale and makes admission cont
decisions accordingly. The measurement windows for the
statistics are sized to make the estimation errors negligible.

We have shown that the scheme is robust with respect to flgP
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