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Abstract—DNA sequencing is the basic workhorse of modern
day biology and medicine. Shotgun sequencing is the dominant
technique used: many randomly located short fragments called
reads are extracted from the DNA sequence, and these reads are
assembled to reconstruct the original sequence. A basic question
is: given a sequencing technology and the statistics of the DNA
sequence, what is the minimum number of reads required for
reliable reconstruction? This number provides a fundamental
limit to the performance of any assembly algorithm. For a simple
statistical model of the DNA sequence and the read process, we
show that the answer admits a critical phenomenon in the asymp-
totic limit of long DNA sequences: if the read length is below
a threshold, reconstruction is impossible no matter how many
reads are observed, and if the read length is above the threshold,
having enough reads to cover the DNA sequence is sufficient to
reconstruct. The threshold is computed in terms of the Renyi
entropy rate of the DNA sequence. We also study the impact of
noise in the read process on the performance.

Index Terms—DNA sequencing, de novo assembly, information
theory.

I. INTRODUCTION

A. Background and Motivation

D NA sequencing is the basic workhorse of modern day bi-
ology and medicine. Since the sequencing of the Human

Reference Genome ten years ago, there has been an explosive
advance in sequencing technology, resulting in several orders
of magnitude increase in throughput and decrease in cost. This
advance allows the generation of a massive amount of data,
enabling the exploration of a diverse set of questions in bi-
ology and medicine that were beyond reach even several years
ago. These questions include discovering genetic variations
across different humans (such as single-nucleotide polymor-
phisms), identifying genes affected by mutation in cancer tissue
genomes, sequencing an individual’s genome for diagnosis
(personal genomics), and understanding DNA regulation in
different body tissues.
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Fig. 1. Schematic for shotgun sequencing.

Shotgun sequencing is the dominant method currently used
to sequence long strands of DNA, including entire genomes.
The basic shotgun DNA sequencing setup is shown in Fig. 1.
Starting with a DNAmolecule, the goal is to obtain the sequence
of nucleotides ( , , , or ) comprising it. (For humans, the
DNA sequence has about nucleotides, or base pairs.)
The sequencing machine extracts a large number of reads from
the DNA; each read is a randomly located fragment of the DNA
sequence, of lengths of the order of 100–1000 base pairs, de-
pending on the sequencing technology. The number of reads
can be of the order of 10s of millions to billions. The DNA as-
sembly problem is to reconstruct the DNA sequence from the
many reads.
When the human genome was sequenced in 2001, there was

only one sequencing technology, the Sanger platform [24].
Since 2005, there has been a proliferation of “next generation”
platforms, including Roche/454, Life Technologies SOLiD,
Illumina Hi-Seq 2000 and Pacific Biosciences RS. Compared to
the Sanger platform, these technologies can provide massively
parallel sequencing, producing far more reads per instrument
run and at a lower cost, although the reads are shorter in
lengths. Each of these technologies generates reads of different
lengths and with different noise profiles. For example, the 454
machines have read lengths of about 400 base pairs, while the
SOLiD machines have read lengths of about 100 base pairs. At
the same time, there has been a proliferation of a large number
of assembly algorithms, many tailored to specific sequencing
technologies. (Recent survey articles [17], [19], [21] discuss no
less than 20 such algorithms, and the Wikipedia entry on this
topic listed 42 [31].)
The design of these algorithms is based primarily on com-

putational considerations. The goal is to design efficient
algorithms that can scale well with the large amount of
sequencing data. Current algorithms are often tailored to partic-
ular machines and are designed based on heuristics and domain
knowledge regarding the specific DNA being sequenced. This
makes it difficult to compare different algorithms, not to men-
tion the difficulty of defining what is meant by an “optimal”
assembly algorithm for a given sequencing problem. One
reason for the heuristic approach taken toward the problem is
that various formulations of the assembly problem are known
to be NP-hard (see for example [12]).
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An alternative to the computational view is the information-
theoretic view. In this view, the genome sequence is regarded
as a random string to be estimated based on the read data. The
basic question is: what is the minimum number of reads needed
to reconstruct the DNA sequence with a given reliability? This
minimum number can be used as a benchmark to compare dif-
ferent algorithms, and an optimal algorithm is one that achieves
this minimum number. It can also provide an algorithm-inde-
pendent basis for comparing different sequencing technologies
and for designing new technologies.
This information-theoretic view falls in the realm of DNA

sequencing theory [30]. A well-known lower bound on the
number of reads needed can be obtained by a coverage anal-
ysis, an approach pioneered by Lander and Waterman [13].
This lower bound is the number of reads such that with a
desired probability, say , the randomly located reads cover
the entire genome sequence. The number can be easily
approximated:

where and are DNA and read length, respectively. While
this is clearly a lower bound on the minimum number of reads
needed, it is in general not tight: only requiring the reads to cover
the entire genome sequence does not guarantee that consecutive
reads can actually be stitched back together to recover the entire
sequence. The ability to do that depends on other factors such
as the repeat statistics of the DNA sequence and also the noise
profile in the read process. Thus, characterizing the minimum
number of reads required for reconstruction is, in general, an
open question.

B. Main Contributions

In this paper, we make progress on this basic problem. We
first focus on a very simple model:
1) The DNA sequence is modeled as an i.i.d. random process
of length with each symbol taking values according to a
probability distribution on the alphabet .

2) Each read is of length symbols and begins at a uniformly
distributed location on the DNA sequence and the locations
are independent from one read to another.

3) The read process is noiseless.
Fix an and let be the minimum

number of reads required to reconstruct the DNA with proba-
bility at least . We would like to know how
behaves in the asymptotic regime when and grow to in-
finity. It turns out that in this regime, the ratio depends on
and through a normalized parameter:

We define

Let be the Renyi entropy of order 2, defined to be

(1)

Fig. 2. Critical phenomenon.

Ourmain result, Theorem 1, yields a critical phenomenon: when
is below the threshold , reconstruction is impossible,

i.e., , but when is above that threshold, the ob-
vious necessary condition of coverage is also sufficient for re-
construction, i.e., . A simple greedy algorithm is
able to reconstruct using this minimum coverage depth. The sig-
nificance of the threshold is that when , with high
probability, there are many repeats of length in the DNA se-
quence, while when , with high probability, there
are no repeats of length . Thus, another way to interpret the
result is that is a repeat-limited regime, while

is a coverage-limited regime. The result is sum-
marized in Fig. 2.
A standard measure of data requirements in DNA sequencing

projects is the coverage depth , which is the average
number of reads covering each base pair. Thus,

is the coverage depth required to cover the DNA sequence
with probability (as predicted by Lander–Waterman), and

is the minimum coverage depth required
to reconstruct the DNA sequence with probability . The
quantity can, therefore, be interpreted as the (asymp-
totic) normalized minimum coverage depth required to recon-
struct the DNA sequence.
In a related work, Arratia et al. [2] showed that

is a necessary and sufficient condition for reconstruction of the
i.i.d. DNA sequence if all length subsequences of the DNA se-
quence are given as reads. This arises in a technology called se-
quencing by hybridization. Obviously, for the same read length
, having all length subsequences provides more informa-
tion than any number of reads from shotgun sequencing, where
the reads are randomly sampled. Hence, it follows that

is also a necessary condition for shotgun sequencing.
What our result says is that this condition together with cov-
erage is sufficient for reconstruction asymptotically.
The basic model of i.i.d. DNA sequence and noiseless reads

is very simplistic. We provide two extensions to our basic re-
sult: 1) Markov DNA statistics and 2) noisy reads. In the first
case, we show that the same result as the i.i.d. case holds except
that the Renyi entropy is replaced by the Renyi entropy
rate of the Markov process. In the second case, we analyze the
performance of a modification of the greedy algorithm to deal
with noisy reads and show that the effect of noise is to increase
the threshold on the read length below which reconstruction is
impossible.
Even with these extensions, our models still miss several im-

portant aspects of real DNA and read data. Perhaps the most
important aspect is the presence of long repeats in the DNA se-
quences of many organisms, ranging from bacteria to humans.
These long repeats are poorly captured by i.i.d. or even Markov
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models due to their short-range correlation. Another aspect is
the nonuniformity of the sampling of reads from the DNA se-
quences. At the end of this paper, wewill discuss how our results
can be used as a foundation to tackle these and other issues.

C. Related Work

Li [14] has also posed the question of minimum number
of reads for the i.i.d. equiprobable DNA sequence model.
He showed that if , then the number of reads
needed is , i.e., a constant multiple of the
number needed for coverage. Specializing our result to the
equiprobable case, we see that reconstruction is possible with
probability if and only if and the number
of reads is . Not only is our characterization
necessary and sufficient, we have a much weaker condition on
the read length , and we get the correct prelog constant on the
number of reads needed. As will be seen later, many different
algorithms have the same scaling behavior in the number of
reads they need, but it is the prelog constant that distinguishes
them.
A common formulation of DNA assembly is the shortest

common superstring (SCS) problem. The SCS problem is
the problem of finding the shortest string containing a set of
strings, where in the DNA assembly context, the given strings
are the reads and the superstring is the estimate of the original
DNA sequence. While the general SCS problem with arbitrary
instances is NP-hard [12], the greedy algorithm is known to
achieve a constant factor approximation in the worst case
(see, e.g., [8] and [26]). More related to our work, the greedy
algorithm has been shown to be optimal for the SCS problem
under certain probabilistic settings [7], [15]. Thus, the reader
may have the impression that our results overlap with these
previous works. However, there are significant differences.
First, at a basic problem formulation level, the SCS problem

and the DNA sequence reconstruction problem are not equiv-
alent: there is no guarantee that the SCS containing the given
reads is the original DNA sequence. Indeed, it has already been
observed in the assembly literature (see, e.g., [16]) that the SCS
of the reads may be a significant compression of the original
DNA sequence, especially when the latter has a lot of repeats,
since finding the SCS tends to merge these repeats. For ex-
ample, in the case of very short reads, the resulting SCS is defi-
nitely not the original DNA sequence. In contrast, we formulate
the problem directly in terms of reconstructing the original se-
quence, and a lower bound on the required read length emerges
as part of the result.
Second, even if we assume that the SCS containing the reads

is the original DNA sequence, one cannot recover our result
from either [7] or [15], for different reasons. The main result
(Theorem 1) in [15] says that if one models the DNA sequence
as an arbitrary sequence perturbed by mutating each symbol in-
dependently with probability and the reads are arbitrarily lo-
cated, the average length of the sequence output by the greedy
algorithm is no more than a factor of of the length of
the SCS, provided that , i.e., .
However, since , the condition on in their theorem im-
plies that . Thus, for a fixed , they actually only showed
that the greedy algorithm is approximately optimal to within a

factor of , and optimal only under the further condition
that . In contrast, our result shows that the greedy algo-
rithm is optimal for any , albeit under a weaker
model for the DNA sequence (i.i.d. or Markov) and read loca-
tions (uniform random).
Regarding [7], the probabilistic model they used does not

capture the essence of the DNA sequencing problem. In their
model, the given reads are all independently distributed and not
from a single “mother” sequence, as in our model. In contrast, in
our model, even though the original DNA sequence is assumed
to be i.i.d., the reads will be highly correlated, since many of
the reads will be physically overlapping. In fact, it follows from
[7] that, given reads and the read length scaling like ,
the length of the SCS scales like . On the other hand, in
our model, the length of the reconstructed sequence would be
proportional to . Hence, the length of the SCS is much longer
for the model studied in [7], a consequence of the reads being
independent and therefore much harder to merge. So the two
problems are completely different, although coincidentally the
greedy algorithm is optimal for both problems.

D. Notation and Outline

A brief remark on notation is in order. Sets (and probabilistic
events) are denoted by calligraphic type, e.g., , , , vectors
by boldface, e.g., , , , and random variables by capital let-
ters such as , , . Random vectors are denoted by capital
boldface, such as , , . The exceptions to these rules, for
the sake of consistency with the literature, are the (nonrandom)
parameters , , and . The natural logarithm is denoted by

. Unless otherwise stated, all logarithms are natural and all
entropies are in units of nats.
The rest of this paper is organized as follows. Section II-A

gives the precise formulation of the problem. Section II-B
explains why reconstruction is impossible for read length
below the stated threshold. For read length above the threshold,
an optimal algorithm is presented in Section II-C, where a
heuristic argument is given to explain why it performs opti-
mally. Sections III and IV describe extensions of our basic
result to incorporate read noise and a more complex model for
DNA statistics, respectively. Section V discusses future work.
Appendixes contain the formal proofs of all the results in the
paper.

II. I.I.D. DNA MODEL

This section states the main result of this paper, addressing
the optimal assembly of i.i.d. DNA sequences. We first formu-
late the problem and state the result. Next, we compare the per-
formance of the optimal algorithm with that of other existing
algorithms. Finally, we discuss the computational complexity
of the algorithm.

A. Formulation and Result

The DNA sequence is modeled as an i.i.d.
random process of length with each symbol taking values ac-
cording to a probability distribution on the
alphabet . For notational convenience, we instead
denote the letters by numerals, i.e., . To avoid
boundary effects, we assume that the DNA sequence is circular,
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Fig. 3. Circular DNA sequence which is sampled randomly.

with if mod ; this simplifies the exposition,
and all results apply with appropriate minor modification to the
noncircular case as well.
The objective of DNA sequencing is to reconstruct the

whole sequence based on reads drawn randomly from
the sequence (see Fig. 3). A read is a substring of length
from the DNA sequence. The set of reads is denoted by

. The starting position of read is
denoted by , so . The set of starting
positions of the reads is denoted . We
assume that the starting position of each read is uniformly
distributed on and the positions are independent
from one read to another.
An assembly algorithm takes a set of reads

and returns an estimated sequence .
We require perfect reconstruction, which presumes that the
algorithm makes an error if .1 We let denote the proba-
bility model for the (random) DNA sequence and the sample
positions , and the error event. A question of
central interest is: what are the conditions on the read length
and the number of reads such that the reconstruction error
probability is less than a given target Unfortunately, this is
in general a difficult question to answer. We instead ask an
easier asymptotic question: what is the ratio of the minimum
number of reads to the number of reads needed to cover
the sequence as , with being
a constant, and which algorithm achieves the optimal perfor-
mance asymptotically? More specifically, we are interested in

, which is defined as

(2)

The main result for this model is the following.

1The notion of perfect reconstruction can be thought of as a mathematical
idealization of the notion of “finishing” a sequencing project as defined by the
National Human Genome Research Institute [18], where finishing a chromo-
some requires at least 95% of the chromosome to be represented by a contiguous
sequence.

Fig. 4. Two pairs of interleaved repeats of length create ambiguity: from
the reads, it is impossible to know whether the sequences and are as shown,
or swapped.

Theorem 1: Fix an . The minimum normalized cov-
erage depth min is given by

min
if
if

(3)

where is the Renyi entropy of order 2 defined in (1).
Section II-B proves the first part of the theorem that recon-

struction is impossible for . Section II-C shows
how a simple greedy algorithm can achieve optimality for

.

B. : Repeat-Limited Regime

The random nature of the DNA sequence gives rise to a va-
riety of patterns. The key observation in [27] is that there are two
patterns whose appearance in the DNA sequence precludes re-
construction from an arbitrary set of reads of length . In other
words, reconstruction is not possible even if the -spectrum,
the multiset of all substrings of length appearing in the DNA
sequence, is given. The first part of Theorem 1 is proved by
showing that if , then one of the two patterns ex-
ists in the DNA sequence and reconstruction is impossible.
The first pattern is the three-wise repeat of a substring of

length . The second pattern is interleaved repeats of length
, depicted in Fig. 4. Arratia et al. [2] carried out a thorough

analysis of randomly occurring repeats for the same i.i.d. DNA
model as ours, and showed that the interleaved repeats pattern
is the typical event causing reconstruction to be impossible. The
following lemma is a consequence of [2, Th. 7] (see also [6]).
Lemma 2 (see [2]: Fix . An i.i.d. random DNA

sequence contains interleaved repeats of length
with probability .
We give a heuristic argument for the lemma, following [2],

based on the expected number of repeats. Denoting by the
length- subsequence starting at position , we have

(4)

Now, the probability that two specific physically disjoint
length- subsequences are identical is

where is the Rényi entropy of order 2.
Ignoring the terms in (4) in which and overlap gives
the lower bound

(5)
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Taking , with , this quantity approaches
zero if , infinity if .
The heuristic step is to use the expected value as a surrogate

for the actual number of repeats, allowing us to deduce that if
, there are many repeats. Now, as shown in [2], the

positions of the repeats are distributed uniformly on the DNA,
so it is likely that some pair among the many pairs of repeats is
interleaved. This is exactly the statement of Lemma 2.
Let us see why is actually the correct threshold

for the existence of interleaved repeats. First, as a consequence
of Lemma 11 in Appendix A, we may safely neglect the terms
in (4) due to the (significantly fewer) physically overlapping
subsequences, implying that the right-hand side of (5) is a good
estimate for the expected number of repeats. Next, as noted
immediately after (5), if , then the right-hand
side—and hence the expected number of repeats—vanishes
asymptotically. But if there are no repeats, there can be no
interleaved repeats.
We now prove the first part of Theorem 1, which states that if

, then , i.e., reliable reconstruction
is impossible.
Proof of Theorem 1, Part 1: Having observed a sequence of

reads , the optimal guess for the DNA sequence is
given by the maximum a posteriori (MAP) rule

(6)

To show the result, it thus suffices to argue that the MAP rule
(6) is in error, , with probability at least .
The probability of observing reads given a DNA

sequence is

Now suppose the DNA sequence has interleaved repeats of
length as in Fig. 4. If denotes the sequence obtained
from by swapping and , then the number of occurrences of
each read in and is the same, and hence

Moreover, , so

It follows that the MAP rule has probability of reconstruction
error of at least conditional on the DNA sequence having
interleaved repeats of length , regardless of the number of
reads. By Lemma 2, this latter event has probability approaching
1 as , for . Since , this implies
that for sufficiently large , , proving the
result.
Remark: Note that for any fixed read length , the proba-

bility of the interleaved repeat event will approach 1 as the DNA
length . This means that if we had defined the minimum
normalized coverage depth for a fixed read length , then for

any value of , the minimum normalized coverage depth would
have been . It follows that in order to get a meaningful result,
one must scale with , and Lemma 2 suggests that letting
and grow, while fixing is the correct scaling.

C. : Coverage-Limited Regime

In this section, we show that if , then as stated
in Theorem 1, . For this range of , reads are suf-
ficiently long that repeats no longer pose a problem. The bottle-
neck, it turns out, is covering the sequence. We first review the
coverage analysis of Lander and Waterman [13] and then show
how a simple greedy algorithm can reconstruct reliably when
the sequence is covered by the reads.
In order to reconstruct the DNA sequence, it is necessary

for the reads to cover the DNA sequence (see Fig. 5): Clearly
one must observe each of the nucleotides, but worse than
the missing nucleotides, gaps in coverage create ambiguity
in the order of the contiguous pieces. Thus, ,
the minimum number of reads needed in order to cover the
entire DNA sequence with probability , is a lower bound
to , the minimum number of reads needed to
reconstruct with probability . The classical 1988 paper
of Lander and Waterman [13] studied the coverage problem in
the context of DNA sequencing, and from their results, one can
deduce the following asymptotics for .
Lemma 3 (see [13]): For any :

Note that the lemma is consistent with the estimate
(see Section I).

A standard coupon collector-style argument proves Lemma
3 in [13]. An intuitive justification of the lemma, which will
be useful in the sequel, is as follows. To a very good approxi-
mation, the starting positions of the reads are given according
to a Poisson process with rate , which means that
each offset has an exponential distribution. It follows that
the probability that there is a gap between two successive reads
is approximately and the expected number of gaps is
approximately

Asymptotically, this quantity is bounded away from zero if
and approaches zero otherwise, in agreement with Lemma

3.
We now show that in the parameter regime under considera-

tion, , a simple greedy algorithm (perhaps surpris-
ingly) attains the coverage lower bound. The greedy algorithm
merges the reads repeatedly into contigs,2 and the merging is
done greedily according to an overlap score defined on pairs of
strings. For a given score, the algorithm is described as follows.
Greedy Algorithm: Input: the set of reads .
1) Initialize the set of contigs as the given reads.
2) Find two contigs with largest overlap score, breaking ties
arbitrarily, and merge them into one contig.

2Here, a contig means a contiguous fragment formed by overlapping
sequenced reads.
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Fig. 5. Reads must cover the sequence.

Fig. 6. Greedy algorithm merges reads into contigs according to the amount
of overlap. At stage , the algorithm has already merged all reads with overlap
greater than . The red segment denotes a read at the boundary of two contigs;
the neighboring read must be offset by at least .

3) Repeat Step 2 until only one contig remains.
For the i.i.d. DNAmodel and noiseless reads, we use the overlap
score defined as the length of the longest suffix of
identical to a prefix of .
Showing optimality of the greedy algorithm entails showing

that if the reads cover the DNA sequence and there are no re-
peats of length , then the greedy algorithm can reconstruct the
DNA sequence. In the remainder of this section, we heuristically
explain the result, and we give a detailed proof in Appendix A.
Since the greedy algorithm merges reads according to

overlap score, we may think of the algorithm as working in
stages, starting with an overlap score of down to an overlap
score of 0. At stage , the merging is between contigs with
overlap score . The key is to find the typical stage at which the
first error in merging occurs. Assuming no errors have occurred
in stages , consider the situation in stage , as
depicted in Fig. 6. The algorithm has already merged the reads
into a number of contigs. The boundary between two neigh-
boring contigs is where the overlap between the neighboring
reads is less than or equal to ; if it were larger than , the two
contigs would have been merged already. Hence, the expected
number of contigs at stage is the expected number of pairs
of successive reads with spacing greater than . Again
invoking the Poisson approximation, this is roughly equal to

where .
Two contigs will be merged in error in stage if the length

suffix of one contig equals the length prefix of another contig
from a different location. Assuming these substrings are physi-
cally disjoint, the probability of this event is

Hence, the expected number of pairs of contigs for which this
confusion event happens is approximately

(7)

This number is largest either when or . This sug-
gests that, typically, errors occur in stage or stage 0 of the
algorithm. Errors occur at stage if there are repeats of length

Fig. 7. Minimum normalized coverage depth obtained by the sequential algo-
rithm is in the middle, given by ; the minimum normalized
coverage depth obtained by the -mers-based algorithm is at top, given by

.

substrings in the DNA sequence. Errors occur at stage 0 if
there are still leftover unmerged contigs. The no-repeat condi-
tion ensures that the probability of the former event is small and
the coverage condition ensures that the probability of the latter
event is small. Hence, the two necessary conditions are also suf-
ficient for reconstruction.

D. Performance of Existing Algorithms

The greedy algorithm was used by several of the most
widely used genome assemblers for Sanger data, such as phrap,
TIGR Assembler [25], and CAP3 [9]. More recent software
aimed at assembling short-read sequencing data uses different
algorithms. We will evaluate the normalized coverage depth
of some of these algorithms on our basic statistical model and
compare them to the information-theoretic limit. The goal is
not to compare between different algorithms; that would have
been unfair since they are mainly designed for more complex
scenarios including noisy reads and repeats in the DNA se-
quence. Rather, the aim is to illustrate our information-theoretic
framework and make some contact with the existing assembly
algorithm literature.
1) Sequential Algorithm: By merging reads with the largest

overlap first, the greedy algorithm discussed above effec-
tively grows the contigs in parallel. An alternative greedy
strategy, used by software like SSAKE [29], VCAKE [11], and
SHARCGS [5], grows one contig sequentially. An unassem-
bled read is chosen to start a contig, which is then repeatedly
extended (say toward the right) by identifying reads that have
the largest overlap with the contig until no more extension
is possible. The algorithm succeeds if the final contig is the
original DNA sequence.
The following proposition gives the normalized coverage

depth of this algorithm.
Proposition 4: The minimum normalized coverage depth

for the sequential algorithm is if

.
The result is plotted in Fig. 7. The performance is strictly

worse than that of the greedy algorithm.We give only a heuristic
argument for Proposition 4.
Motivated by the discussion in the previous section, we seek

the typical overlap at which the first error occurs in merging
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a read; unlike the greedy algorithm, where this overlap corre-
sponds to a specific stage of the algorithm, for the sequential al-
gorithm, this error can occur anytime between the first and last
merging.
Let us compute the expected number of pairs of reads which

can be merged in error at overlap . To begin, a read has the
potential to be merged to an incorrect successor at overlap if
it has overlap less than or equal to with its true successor,
since otherwise the sequential algorithm discovers the read’s
true successor. By the Poisson approximation, there are roughly

reads with physical overlap less than or equal to
with their successors. In particular, if , there
will be no such reads, and so we may assume that lies between

and .
Note furthermore that in order for an error to occur, the

second read must not yet have been merged when the algorithm
encounters the first read, and thus, the second read must be
positioned later in the sequence. This adds a factor one-half.
Combining this reasoning with the preceding paragraph, we
see that there are approximately

pairs of reads which may potentially be merged incorrectly at
overlap .
For such a pair, an erroneous merging actually occurs if the

length- suffix of the first read equals the length- prefix of the
second. Assuming (as in the greedy algorithm calculation) that
these substrings are physically disjoint, the probability of this
event is .
The expected number of pairs of reads that aremerged in error

at overlap , for , is thus approximately

(8)

This number is largest when or
. Plugging into (8), we see that the expression

approaches zero whenever . Plugging into the
latter value and performing some arithmetic manipulations, we
conclude that the expression in (8) approaches zero whenever

and , as in Proposition 4.
2) -mer-Based Algorithms: Many recent assembly algo-

rithms operate on -mers instead of directly on the reads them-
selves. -mers are length subsequences of the reads; from
each read, one can generate -mers. One of the early
works which pioneer this approach is the sort-and-extend tech-
nique in ARACHNE [23]. By lexicographically sorting the set
of all the -mers generated from the collection of reads, iden-
tical -mers from physically overlapping reads will be adja-
cent to each other. This enables the overlap relation between the
reads (so called overlap graph) to be computed in
time (time to sort the set of -mers) as opposed to the
time needed if pairwise comparisons between the reads were
done.
Another related approach is the de Bruijn graph approach

[10], [20]. In this approach, the -mers are represented
as vertices of a de Bruijn graph and there is an edge between
two vertices if they represent adjacent -mers in some
read (here adjacency means their positions are offset by one). A

naive de Bruijn algorithm discards the reads after construction
of the de Bruijn graph (all actual de Bruijn-based algorithms use
the read information to some extent, including [10] and [20]).
The DNA sequence reconstruction problem is then formulated
as finding an Eulerian cycle traversing all the edges of the de
Bruijn graph.
The performance of these algorithms on the basic statistical

model can be analyzed by observing that two conditions must be
satisfied for them to work. First, should be chosen such that
with high probability, -mers from physically disjoint parts of
the DNA sequence should be distinct, i.e., there are no repeated
length- subsequences in the DNA sequence. In the sort-and-
extend technique, this will ensure that two identical adjacent
-mers in the sorted list belong to two physically overlapping

reads rather than two physically disjoint reads. Similarly, in the
de Bruijn graph approach, this will ensure that the Eulerian cycle
will be connecting -mers that are physically overlapping.
This minimum can be calculated as we did to justify Lemma
2:

(9)

The second condition for success is that all successive reads
should have a physical overlap of at least base pairs. This
is needed so that the reads can be assembled via the -mers.
According to the Poisson approximation, the expected number
of successive reads with spacing greater than base pairs
is roughly . To ensure that with high probability, all
successive reads overlap by at least base pairs, this expected
number should be small, i.e.,

(10)

Substituting (9) into (10) and using the definition ,
we obtain

The minimum normalized coverage depth of this algorithm
is plotted in Fig. 7. Note that the performance of the -mer-
based algorithms is strictly less than the performance achieved
by the greedy algorithm. The reason is that for ,
while the greedy algorithm only requires the reads to cover the
DNA sequence, the -mer-based algorithms need more, that
successive reads have (normalized) overlap at least .

E. Complexity of the Greedy Algorithm

A naive implementation of the greedy algorithm would re-
quire an all-to-all pairwise comparison between all the reads.
This would require comparisons, resulting in unaccept-
ably high computational cost for in the order of tens of mil-
lions. However, drawing inspiration from the sort-and-extend
technique discussed in the previous section, a more clever im-
plementation would yield a complexity of . Since

, this represents a huge saving. We compute the com-
plexity as follows. Recall that in stage of the greedy algorithm,
successive reads with overlap are considered. Instead of doing
many pairwise comparisons to obtain such reads, one can simply
extract all the -mers from the reads and perform a sort-and-ex-
tend to find all the reads with overlap . Since we have to apply



6280 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 10, OCTOBER 2013

sort-and-extend in each stage of the algorithm, the total com-
plexity is .
An idea similar to this and resulting in the same complexity

was described by Turner [26] (in the context of the SCS
problem), with the sorting effectively replaced with a suffix
tree data structure. Ukkonen [28] used a more sophisticated
data structure, which essentially computes overlaps between
strings in parallel, to reduce the complexity to .

III. MARKOV DNA MODEL

In this section, we extend the results for the basic i.i.d. DNA
sequence model to a Markov sequence model.

A. Formulation and Result

The problem formulation is identical to the one in
Section II-A except that we assume the DNA sequence is
correlated and model it by a Markov source with transition ma-
trix , where .
Remark 5: We assume that the DNA is a Markov process of

order 1, but the result can be generalized to Markov processes
of order as long as is constant and does not grow with .
In the basic i.i.d. model, we observed that the minimum nor-

malized coverage depth depends on the DNA statistics through
the Rényi entropy of order 2. We prove that a similar depen-
dence holds for Markov models. In [22], it is shown that the
Rényi entropy rate of order 2 for a stationary ergodic Markov
source with transition matrix is given by

where , and
. In terms of this quantity, we state the following

theorem.
Theorem 6: The minimum normalized coverage depth of a

stationary ergodic Markov DNA sequence is given by

if
if

(11)

B. Sketch of Proof

Similar to the i.i.d. case, it suffices to show the following
statements:
1) If , for sufficiently large

.
2) If , then .
The following lemma is the analog of Lemma 2 for the

Markov case and is used in a similar way to prove statement 1.
Lemma 7: If , then a Markov DNA sequence

contains interleaved repeats with probability .
To justify Lemma 7, we use a similar heuristic argument as

for the i.i.d. model, but with a new value for the probability that
two physically disjoint sequences and are equal:

The lemma follows from the fact that there are roughly such
pairs in the DNA sequence. A formal proof of the lemma is
provided in Appendix B.

Statement 2 is again a consequence of the optimality of the
greedy algorithm, as shown in the following lemma.
Lemma 8: Suppose . Then, the greedy algorithm

with exactly the same overlap score as used for the i.i.d. model
can achieve minimum normalized coverage depth min .
Lemma 8 is proved in Appendix B. The key technical step

of the proof entails showing that the effect of physically over-
lapping reads does not affect the asymptotic performance of the
algorithm, just as in the i.i.d. case.

IV. NOISY READS

In our basic model, we assumed that the read process is noise-
less. In this section, we assess the impact of noise on the greedy
algorithm.

A. Formulation and Result

The problem formulation here differs from Section II-A in
two ways. First, we assume that the read process is noisy and
consider a simple probabilistic model for the noise. A nucleotide
is read to be with probability . The nucleotides within
a read are perturbed independently, i.e., if is a read from the
physical underlying subsequence , then

Additionally, the noise is assumed to be independent for dif-
ferent reads.
Second, we require a weaker notion of reconstruction. Instead

of perfect reconstruction, we aim for perfect layout. By perfect
layout, we mean that all the reads are mapped correctly to their
true locations. Note that perfect layout does not imply perfect
reconstruction, since the consensus sequence may not be iden-
tical to the DNA sequence. On the other hand, since coverage
implies that most positions on the DNA are covered by
many reads, the consensus sequence will be correct in most po-
sitions if we achieve perfect layout.
Remark: In the jargon of information theory, we are mod-

eling the noise in the read process as a discrete memoryless
channel with transition probability . Noise processes in
actual sequencing technologies can be more complex than this
model. For example, the amount of noise can increase as the
read process proceeds, or there may be insertions and deletions
in addition to substitutions. Nevertheless, understanding the ef-
fect of noise on the assembly problem in this model provides
considerable insight into the problem.
We now evaluate the performance of the greedy algorithm for

the noisy read problem.
To tailor the greedy algorithm to the noisy reads, the only

requirement is to define the overlap score between two dis-
tinct reads. Given two reads and , we would like to know
whether they are physically overlapping with length . Let
and of length be the suffix of and prefix of , respec-
tively. We have the following hypotheses for and :
1) : and are noisy reads from the same physical
source subsequence;

2) : and are noisy reads from two disjoint source
subsequences.
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The decision rule that is optimal in trading off the two types
of error is the MAP rule, obtained by a standard large devia-
tions calculation (see, for example, [4, Chs. 11.7 and 11.9].) In
log-likelihood form, the MAP rule for this hypothesis testing
problem is

(12)
where , , and are the marginals of the
joint distribution , and is a parameter re-
flecting the prior distribution of and .
We can now define the overlap score, whereby two reads

and have overlap at least if the MAP rule on the length
suffix of and the length prefix of read decides . The
performance of the greedy algorithm using this score is given in
the following theorem.
Theorem 9: The modified greedy algorithm can achieve nor-

malized coverage depth if , where

and the distribution is given by

with the solution to the equation

The statement of Theorem 9 uses the Kullback–Leibler diver-
gence of the distribution relative to , defined as

(13)

The details of the proof of the theorem are in Appendix C. To
illustrate the main ideas, we sketch the proof for the special case
of uniform source and symmetric noise.

B. Sketch of Proof for Uniform Source and Symmetric Noise

In this section, we provide an argument to justify Theorem 9
in the case of uniform source and symmetric noise. Concretely,

and the noise is symmetric with tran-
sition probabilities:

if
if .

(14)

The parameter is often called the error rate of the read
process. It ranges from 1% to 10% depending on the se-
quencing technology.
Corollary 10: The greedy algorithm with the modified def-

inition of overlap score between reads can achieve normalized
coverage depth if , where

and satisfies

Fig. 8. Performance of the modified greedy algorithm with noisy reads.

Fig. 9. Plot of as a function of for the uniform source and symmetric
noise model.

Here, is the divergence between a and a
random variable.

Proof: The proof follows by applying Theorem 9. For uni-
form source and symmetric noise, the optimum is attained
when . The result is written
in terms of which is a function of the optimal value .
The performance of this algorithm is shown in Fig. 8. The

only difference between the two curves, one for noiseless reads
and one with noisy reads, is the larger threshold at
which the minimum normalized coverage depth becomes one.
A plot of this threshold as a function of is shown in Fig. 9. It
can be seen that when , ,
and increases continuously as increases.
We justify the corollary by the following argument. In the

noiseless case, two reads overlap by at least if the length
prefix of one read is identical to the length suffix of the other
read. The overlap score is the largest such .When there is noise,
this criterion is not appropriate. Instead, a natural modification
of this definition is that two reads overlap by at least if the
Hamming distance between the prefix and the suffix strings is
less than a fraction of the length . The overlap score between
the two reads is the largest such . The parameter controls how
stringent the overlap criterion is. By optimizing over the value
of , we can obtain the following result.
We picture the greedy algorithm as working in stages, starting

with an overlap score of down to an overlap score of 0. Since
the spacing between reads is independent of the DNA sequence
and noise process, the number of reads at stage given no errors
have occurred in previous stages is again roughly

To pass this stage without making an error, the greedy algorithm
should correctly merge those reads having spacing of length
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to their successors. Similar to the noiseless case, the greedy al-
gorithm makes an error if the overlap score between two non-
consecutive reads is at stage ; in other words
1. the Hamming distance between the length suffix of the
present read and the length prefix of some read which is
not the successor is less than by random chance.
A standard large deviations calculation shows that the
probability of this event is approximately

which is the probability that two independent strings of
length have Hamming distance less than . Hence, the
expected number of pairs of contigs for which this confu-
sion event happens is approximately

(15)

Unlike the noiseless case, however, there is another impor-
tant event affecting the performance of the algorithm. The
missed detection event is defined as

2. the Hamming distance between the length suffix of the
present read and the length prefix of the successor read is
larger than due to an excessive amount of noise.

Again, a standard large deviations calculation shows that the
probability of this event for a given read is approximately

where is the probability that the th symbol in
the length suffix of the present read does not match the th
symbol in the length prefix of the successor read (here we are
assuming that ). Thus, the expected number of contigs
missing their successor contig at stage is approximately

(16)

Both (15) and (16) are largest when either or . Sim-
ilarly to the noiseless case, errors do not occur at stage 0 if the
DNA sequence is covered by the reads. The coverage condition
guarantees no gap exists in the assembled sequence. From (15)
and (16), we see that no errors occur at stage if

Selecting to minimize the right-hand side results in the two
quantities within the minimum being equal, thereby justifying
Corollary 10.
The algorithm described in this section is only one particular

scheme to handle noisy reads. A natural question is whether
there is any better scheme. We answer this question in the af-
firmative in a subsequent work [32]. In particular, we showed
that for any noisy read channel, there is a threshold on the noise
level such that below this threshold, noiseless performance can
be asymptotically achieved. In the example of uniform source
and symmetric noise, this threshold is 19%. This is in contrast
to the performance of the greedy algorithm, which degrades as
soon as the noise level is non-zero.

V. DISCUSSIONS AND FUTURE WORK

This paper seeks to understand the basic data requirements
for shotgun sequencing, and we obtain results for a few simple
models. The models for the DNA sequence and read process in
this paper serve as a starting point from which to pursue exten-
sions to more realistic models. We discuss a few of the many
possible extensions.
1) Long repeats: Long repeats occur in many genomes, from

bacteria to human. The repetitive nature of real genomes is un-
derstood to be a major bottleneck for sequence assembly. Thus,
a caveat of this paper is that the DNA sequence models we have
considered, both i.i.d. and Markov, exhibit only short-range
correlations, and therefore fail to capture the long-range cor-
relation present in complex genomes. Motivated by this issue,
a follow-up work [3] extends the approach of this paper to
arbitrary repeat statistics, in particular the statistics of actual
genomes, overcoming the difficulties posed by the lack of a
good probability model for DNA. The read model considered
in [3] is the same uniform noiseless model we consider.
We briefly summarize the results and approach of [3]. First,

Ukkonen’s condition that there is no interleaved or triple re-
peats of length at least is generalized to give a lower
bound on the read length and the coverage depth required for
reconstruction in terms of repeat statistics of the genome. Next,
they design a de Brujin graph-based assembly algorithm that
can achieve very close to the lower bound for repeat statistics
of a wide range of sequenced genomes. The approach results in
a pipeline, which takes as input a genome sequence and desired
success probability , computes a few simple repeat sta-
tistics, and from these statistics computes a feasibility plot that
indicates for which and reconstruction is possible.
2) Double-strandedness: The DNA sequence is double

stranded and consists of a sequence and its reverse com-
plement . Reads are obtained from either of the two strands,
and a natural concern is whether this affects the results. It
turns out that for the i.i.d. sequence model considered in this
paper (as well as the Markov model), the asymptotic minimum
normalized coverage depth remains the same. The optimal
greedy algorithm is modified slightly by including the reverse
complements of the reads as well as the originals, and stopping
when there are two reconstructed sequences and . The
heuristic argument follows by observing that the probability of
error at stage given in (7) is changed only by a factor 2, which
does not change the asymptotic result. The rigorous proof
involves showing that the contribution from overlapping reads
is negligible, where the notion of reads overlapping accounts
for both the sequence and its reverse complement.
3) Read process: There are a number of important proper-

ties of the read process which can be incorporated into more
accurate models. Beyond the substitution noise considered in
this paper, some sequencing technologies (such as PacBio) pro-
duce insertions and deletions. Often bases come with quality
scores, and these scores can be used to mitigate the effect of
noise. Other interesting aspects include correlation in the noise
from one base to another (e.g., typically producing several errors
in a row), nonuniformity of the error rate within a read, and cor-
relation of the noise process with the read content. Aside from
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noise, a serious practical difficulty arises due to the positions of
reads produced by some sequencing platforms being biased by
the sequence, e.g., by the GC content. Noise and sampling bias
in the reads make assembly more difficult, but another impor-
tant direction is to incorporate mate-pairs into the read model.
Mate-pairs (or paired-end reads) consisting of two reads with
an approximately known separation help to resolve long repeats
using short reads.
4) Partial reconstruction: In practice, the necessary condi-

tions for perfect reconstruction are not always satisfied, but it
is still desirable to produce the best possible assembly. While
the notion of perfect reconstruction is relatively simple, defining
what “best” means is more delicate for partial reconstructions;
one must allow for multiple contigs in the output as well as er-
rors (misjoins). Thus, an optimal algorithm is one which trades
off optimally between the number of contigs and number of
errors.

APPENDIX A
PROOF OF THEOREM 1, PART 2

We first state and prove the following lemma. This result can
be found in [2], but for ease of generalization to theMarkov case
later, we include the proof.

Lemma 11: For any distinct substrings and of length
of the i.i.d. DNA sequence:
1) If the strings have no physical overlap, the probability that
they are identical is .

2) If the strings have nonzero physical overlap, the probability
that they are identical is bounded above by .
Proof: We give notation for the probability that any dis-

tinct bases in the DNA sequence are identical:

The proof of part 1 is immediate: Consider
and having no physical overlap. In this case,
the events for are indepen-
dents and equiprobable. Therefore, the probability that
is given by

We now prove part 2. For the case of overlapping strings
and , suppose that a substring of length from the DNA
sequence is shared between the two strings. Without loss of gen-
erality, we assume that and are, respectively, the prefix and
suffix of . Let and be the quotient and remainder of
divided by , i.e., , where .
It can be shown that if and only if is a string of
the form , where and have length and

. Since the number of copies of and are, respec-
tively, and , the probability of observing a structure
of the form is given by

where follows from the fact that for all
. Since , we have . Therefore, the

probability that for two overlapping strings is bounded
above by

This completes the proof.
Proof of Theorem 1, Part 2: The greedy algorithm finds

a contig corresponding to a substring of the DNA sequence if
each read is correctly merged to its successor read with
the correct amount of physical overlap between them, which is

.3 If, in addition, the whole sequence is
covered by the reads, then the output of the algorithm is exactly
the DNA sequence .
Let be the event that some read is merged incorrectly; this

includes merging to the read’s valid successor but at the wrong
relative position, as well as merging to an impostor. Let be
the event that the DNA sequence is not covered by the reads.
The union of these events, , contains the error event .
We first focus on event .
Since the greedy algorithm merges reads with highest

overlap score, we may think of the algorithm as working in
stages starting with an overlap score of down to an overlap
score of 0. Thus, naturally decomposes as ,
where is the event that the first error in merging occurs at
stage .
Recall that the greedy algorithm uses overlap score given by

defined as the length of the longest suffix
of identical to a prefix of . Additionally, for a read that
is the successor to , let denote the physical overlap
between them. Thus, is the physical overlap between and
its predecessor.
Now, we claim that

(17)

where

(18)

(19)

If the event occurs, then either there are two reads and
such that is merged to its successor , but at an

overlap larger than their physical overlap, or there are two reads
and such that is merged to , an impostor. The

first case implies the event . In the second case, in addition to
, it must be true that the physical overlaps , ,

since otherwise at least one of these two reads would have been
merged at an earlier stage. (By definition of , there were no
errors before stage .) Hence, in this second case, the event
occurs.
Now we will bound and . First, let us consider

the event . This is the event that two reads that are not neigh-
bors with each other were merged by mistake. Intuitively, event
says that the pairs of reads that can potentially cause such

confusion at stage are limited to those with short physical
overlap with their own neighboring reads, since the ones with

3Note that the physical overlap can take negative values.
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large physical overlaps have already been successfully merged
to their correct neighbor by the algorithm in the early stages.
In Fig. 6, these are the reads at the ends of the contigs that are
formed by stage .
For any two distinct reads and , we define the event

From the definition of in (18), we have . Ap-
plying the union bound and considering the fact that ’s are
equiprobable yields

Let be the event that the two reads and have no
physical overlap. Using the law of total probability, we obtain

Since happens only if ,
. Hence,

(20)

We proceed with bounding as follows:

where follows from the fact that given , the events
and are independent, and follows

from Lemma 11 part 1.
Note that the event implies

that no reads start in the intervals and
. We claim that given , the two intervals

are disjoint: otherwise (since the intervals are empty) is the
successor of , contradicting . Thus, the probability
that there is no read starting in the intervals is given by

Using the inequality , we obtain

(21)

We now turn to . We first observe that im-
plies that the length of the physical overlap between and
is strictly less than . Conditional on , this overlap must be
strictly between zero and , an event we denote by . Thus

where follows from the fact that given , the events
and are independent, and follows

from Lemma 11 part 2. Since corresponds to the event
that there is no read starting in the interval ,
we obtain

Applying the inequality , we obtain

Putting all terms together, we have

(22)

where

(23)

The first term reflects the contribution from the reads with no
physical overlap and the second term from the reads with phys-
ical overlap. Even though there are lots more of the former than
the latter, the probability of confusion when the reads are phys-
ically overlapping can be much larger. Hence, both terms have
to be considered.
Let us define

From the definition of in (19), we have . Applying
the union bound and using the fact that the ’s are equiprobable
yields ; hence

Applying Lemma 11 part 2, we obtain

Using the inequality , we obtain

(24)

Using the bounds (22) and (24), we get

where is defined in (23). Since is monotonic in , we can
further bound by

(25)
Since , vanishes exponentially in and the

second term on the right-hand side of (25) has no contribution
asymptotically. Now, choose
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A direct computation shows that for this choice of ,
. Hence, the bound (25) implies that

. Moreover, the probability of no coverage
also goes to zero with this choice of . Hence, the probability
of error in reconstruction also goes to zero. This implies
that the minimum number of reads required to meet the desired
reconstruction error probability of at most satisfies

for sufficiently large and with . Writing
and noting that in

our scaling, in the limit, we have

Combining this with Lemma 3, we get

But since , it follows that

completing the proof.

APPENDIX B
PROOF OF THEOREM 6

The stationary distribution of the source is denoted by
. Since has positive entries, the Perron–Frobe-

nius theorem implies that its largest eigenvalue is real
and positive and the corresponding eigenvector has positive
components. We have

(26)

(27)

where . This completes the
proof.

1) Proof of Lemma 7: In [2], Arratia et al. showed that in-
terleaved repeats are the dominant term preventing reconstruc-
tion. They also used Poisson approximation to derive bounds
on the event that is recoverable from its -spectrum. We take
a similar approach to obtain an upper bound under the Markov

model. First, we state the following theorem regarding Poisson
approximation of the sum of indicator random variables; cf., [1].

Theorem 12 (Chen–Stein Poisson Approximation): Let
, where s are indicator random variables for

some index set . For each , denotes the set of indices
where is independent from the -algebra generated by all
with . Let

(28)

(29)

Then

(30)

where and is the total variation dis-
tance4 between and Poisson random variable with the
same mean.

2) Proof of Lemma 7: Let denote the event that there
is no two pairs of interleaved repeats in the DNA sequence.
Given the presence of repeats in , the probability of can
be found by using the Catalan numbers [2]. This probability is

. If denotes the random variable indicating the
number of repeats in the DNA sequence, we obtain,

To approximate , we partition the sequence as

where and .
Each has length and will be denoted by .
We write with to mean and

for . In other words, means that
there is a repeat of length at least starting from locations

and in the DNA sequence
and the repeat cannot be extended from left. The requirement

is due to the fact that allowing left extension ruins
accuracy of Poisson approximation as repeats appear in clumps.
Let . Let with denote

the indicator random variable for a repeat at , i.e.,
. Let . Clearly,

Letting , we obtain

4The total variation distance between two distributions and is defined
by , where is the -algebra
defined for and
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For any , let be the total variation distance between and
its corresponding Poisson distribution with mean

. Then, we obtain

We assume for all and let . For this
region, the exponential factor within the summation is mono-
tonically decreasing and

(31)

To calculate the bound, we need to obtain an upper bound for
and a lower bound for . We start with the lower bound on .
From Markov property and for a given ,

where . Therefore,

(32)

To bound , we make use of the Chen–Stein method. Let
. Note that has

cardinality . Since given , is independent of the
sigma-algebra generated by all , , we can use
Theorem 12 to obtain

(33)

where and are defined in (28) and (29), respectively. Since
for all , we can con-

clude that . Therefore,

Since ,

In order to compute , we need an upper bound on .
By using (27), we obtain

Hence,

Using the bound for , we have the following bound for the
total variation distance:

Form the above inequality, we can choose . Substi-
tuting into (31) yields

(34)

From the definition of in (32), we have

Therefore, if , then and go, respec-
tively, to infinity and zero exponentially fast. Since the right-
hand side of (34) approaches zero, we can conclude that with
probability , there exists a two pairs of interleaved re-
peats in the sequence. This completes the proof.

3) Proof of Lemma 8: The proof follows closely from that
of the i.i.d. model. In fact, we only need to replace Lemma 11
with the following lemma.

Lemma 13: For any distinct substrings and of length
of the Markov DNA sequence:
1) If the strings have no physical overlap, the probability that
they are identical is bounded above by .

2) If the strings have physical overlap, the probability that
they are identical is bounded above by .
Proof: For the first part, the Markov property gives

where the last line follows from (27).
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We now prove the second part. Without loss of generality,
we assume that and
for some . Let and be the quotient and
remainder of dividing by . From decomposition
of as , where for
all and , one can deduce that
if and only if for all and

. Hence, we have

where follows from the Cauchy–Schwarz inequality and
follows from the fact that . In , some extra terms
are added to the inequality. comes from (27), and finally,
comes from the fact that and .

APPENDIX C
PROOF OF THEOREM 9

As explained in Section IV-A, the criterion for overlap
scoring is based on the MAP rule for deciding between two
hypotheses: and . The null hypothesis indicates that
two reads are from the same physical source subsequence.
Formally, we say that two reads and have overlap score

if is the longest suffix of and prefix of
passing the criterion (12).
Let , where is the cardinality of the

channel’s output symbols. The following theorem is a standard
result in the hypothesis testing problem; cf., [4, Ch. 11.7].

Theorem 14: Let and be two random sequences of
length . For the given hypotheses and and their corre-
sponding MAP rule (12),

and

where

and is the solution of

Paralleling the proof of the noiseless case, we first prove
the following lemma concerning erroneous merging due to im-
poster reads.

Lemma 15 (False Alarm): For any distinct -mers and
from the set of reads:
1) If the two -mers have no physical overlap, the probability
that is accepted is

(35)

2) If the two -mers have physical overlap, the probability that
is accepted is

(36)

where is a constant.
Proof: The proof of the first statement is an immediate

consequence of Theorem 14.
We now turn to the second statement. We only consider the

case , and note that the more general statement can be de-
duced easily by following similar steps. Let .
Since s are not independent, we cannot directly use Theorem

14 to compute . However, we claim that s
can be partitioned into two disjoint sets and of the same
size, where the s within each set are independent. Assuming
the claim,

where follows from the union bound. Since , one
can use Theorem 14 to show (36).
It remains to prove the claim. To this end, let be the amount

of physical overlap between and . Without loss of gen-
erality, we assume that is the shared DNA se-
quence. Let and be the quotient and remainder of di-
vided by , i.e., where

. Since is even, is even. Let be the set of indices
where either for

or .
We claim that the random variables s with are inde-
pendent. We observe that depends only on and .
Consider two indices . The pairs
and are disjoint iff . By the
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construction of , one can show that for any
. Hence, s with are independent. A sim-

ilar argument shows s with
are independent. This completes the proof.
Due to noise, two physically overlapping reads may not pass

the criterion. To deal with this event, we state the following
lemma.

Lemma 16 (Missed Detection): Let and be two dis-
tinct -mers from the same physical location. The probability
that is accepted is bounded by

Proof: This is an immediate consequence of Theorem 14.

Proof of Theorems 9: Similar to the proof of achievability
result in the noiseless case, we decompose the error event into

, where is the event that some read is merged incor-
rectly and is the event that the DNA sequence is not covered
by the reads. The probability of the second event, similar to the
noiseless case, goes to zero exponentially fast if . We
only need to compute . Again, can be decomposed as

, where is the event that the first error in merging
occurs at stage . Moreover,

(37)

where

(38)

(39)

Note that here the definition of is different from that of (19)
as for the noiseless reads the overlap score is never less than the
physical overlap. However, in the noisy reads, there is a chance
for observing this event due to misdetection.
The analysis of follows closely from that of the noiseless

case. In fact, using Lemma 15 which is a counterpart of Lemma
11 and following similar steps in calculation of in the
noiseless case, one can obtain

(40)

where

(41)

To compute , we note that , where

Applying the union bound and considering the fact that ’s are
equiprobable yields

Hence,

Using Lemma 15 part 2 and Lemma 16 yields

where

Combining all the terms, we obtain

To show that that , it is sufficient to argue that ,
, , and go to zero exponentially in . Considering first

and , they vanish exponentially in if which
implies . The terms and vanish exponentially
in if

Since and for any choice of ,
one can optimize over to obtain the result given in the theorem.
This completes the proof.
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