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Abstract

Multi-hop is the current communication architecture of wireless mesh
and ad hoc networks. Information is relayed from each source to its
destination in successive transmissions between intermediate nodes.
A major problem regarding this architecture is its poor performance
at large system size: as the number of users in a wireless network
increases, the communication rate for each user rapidly decreases. Can
we design new communication architectures that significantly increase
the capacity of large wireless networks?

In this monograph, we present a scaling law characterization of
the information-theoretic capacity of wireless networks, which sheds
some light on this question. We show that the answer depends on the
parameter range in which a particular network lies, namely the oper-
ating regime of the network. There are operating regimes where the
information-theoretic capacity of the network is drastically higher than
the capacity of conventional multi-hop. New architectures can provide



substantial capacity gains here. We determine what these regimes are
and investigate the new architectures that are able to approach the
information-theoretic capacity of the network. In some regimes, there
is no way to outperform multi-hop. In other words, the conventional
multi-hop architecture indeed achieves the information-theoretic capac-
ity of the network. We discuss the fundamental factors limiting the
capacity of the network in these regimes and provide an understand-
ing of why conventional multi-hop indeed turns out to be the right
architecture.

The monograph is structured as follows: In Section 2, we discuss the
role of interference in wireless networks. We show that while current
communication architectures are fundamentally limited by interfer-
ence, new architectures based on distributed MIMO communication
can overcome this interference limitation, yielding drastic performance
improvements. Section 3 discusses the impact of power. We show that in
power-limited regimes, distributed MIMO-based techniques are impor-
tant not only because they remove interference but also because they
provide received power gain. We identify the power-limited operating
regimes of wireless networks and define the engineering quantities that
determine the operating regime of a given wireless network. We show
that unless the wireless network operates in a severely power-limited
regime, distributed MIMO communication provides significant capac-
ity gain over current techniques. Finally, in Section 4, we study how
the area of the network, i.e., space, impacts the capacity of the net-
work. This study enriches the earlier picture by adding new operating
regimes where wireless networks can be moderately or severely space-
limited. We see that unless the network is severely limited in space,
distributed-MIMO-based communication continues to provide drastic
improvements over conventional multi-hop.



1
Introduction

In wired networks, a source can send information to a destination by
routing it along a path, where intermediate nodes forward the infor-
mation towards the destination. The application of this strategy to
wireless networks has been the subject of a large body of research in
the past two decades. Similar to wired networks, packets are sent here
from each source to its destination via multiple intermediate nodes
acting as relays. Each relay decodes the packets sent from the previous
relay and forwards them to the next.

Multi-hop is a natural fit for wired networks; however, it is not clear
whether it provides a good premise for wireless. It is based on point-
to-point communication between nodes. Wired networks are already
composed of point-to-point links over which signals travel in isolation.
However, the notion of a point-to-point link is vague in the case of
wireless.

Wireless signals are not isolated and they interact in complex ways.
The signal transmitted by a given user is heard not only by its intended
receiver but also by all the receivers in the vicinity of the transmit-
ter. When there are multiple simultaneous transmissions over the same
frequency band, each receiver observes a mixture of all the transmitted
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4 Introduction

Fig. 1.1 Wired vs. wireless networks.

signals. Therefore, signals of interest to a receiver mix together with
overheard signals from other transmissions. As wired and wireless net-
works are so different in their fundamental nature, it is not clear
whether an architecture rooted in the practice of the former can provide
a good premise for the latter. (Figure 1.1).

Today, there is an increasing need to connect a massive number
of wireless devices and to support various resource-intensive applica-
tions. This leads us to especially discuss the performance of the conven-
tional multi-hop architecture in large wireless networks: Can multi-hop
efficiently support communication in large wireless networks or do we
need new architectures for the rapidly growing wireless networks of the
future? In particular, can new architectures tailored for wireless signifi-
cantly outperform multi-hop in large networks? In this monograph, we
study the information-theoretic capacity of large wireless networks, to
shed some light on these questions.

1.1 Interference

In this section, we argue that the performance of the conventional
multi-hop architecture is fundamentally limited by the interference
between simultaneous transmissions in the shared wireless medium.
However, this interference limitation is not fundamental and can
be overcome with new architectures tailored for wireless. We dis-
cuss hierarchical cooperation, an architecture that constructively uses
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interference for communication. As a result, it offers significant per-
formance gains in large networks. This section provides a summary of
Section 2 of this monograph.

1.1.1 Multi-hop is Interference Limited

Multi-hop is based on relaying information from sources to destina-
tions via successive point-to-point transmissions between intermediate
nodes. To do the point-to-point transmissions, we need to designate
nodes in the network as transmitter–receiver pairs. Each receiver is to
decode the message from its designated transmitter. Overheard signals
from other transmitters constitute harmful interference corrupting the
desired signals and are treated as additional noise at the receivers. The
choice of these transmitter–receiver pairs in the network is a major
optimization problem determining the throughput performance of the
multi-hop architecture.

In order to achieve high overall throughput, it is desired to choose
the transmitter–receiver pairs such that many of them can commu-
nicate simultaneously without interfering too much with each other.
This would provide a dense mesh for relaying information inside the
network. On the other hand, it is also desirable to have a large separa-
tion between every transmitter–receiver pair so that messages advance
by a large distance towards their destinations in every hop. The interfer-
ence between simultaneous transmissions poses a fundamental trade-off
between these two trends. Each transmission creates strong interfer-
ence for other receivers around its transmitter. The radius of this
strong interference zone is proportional to the transmitted power,
which is in turn proportional to the range of the targeted transmis-
sion (Figure 1.2). Therefore, the larger the separation between the
transmitter-receiver pairs in the network, the fewer of them can com-
municate at the same time.

In particular, if we allow for direct transmissions from the source
nodes in the network to their destinations, only few of these source-
destination pairs can communicate at a time, as source-destination
pairs in a network are typically separated by large distances. Consider
a network with a large number of users n, where users are randomly
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Fig. 1.2 Long vs. short-range communication in wireless networks. The nodes inside each
circle are subject to interference from the corresponding transmission.

paired into n/2 source-destination pairs. Each source wants to commu-
nicate to its corresponding destination node. Such a random pairing will
lead to Θ(n) pairs separated by a distance of the order of the diameter
of the network. If source-destination pairs are to communicate directly
with each other, these Θ(n) pairs should go one at a time. The per-
pair communication rate with such a time-sharing strategy decreases
as Θ(1/n) with increasing number of users n. Note that each pair gets
to transmit once in Θ(n) time slots.1

The other extreme is to confine to nearest-neighbor communication
inside the network. As wireless signals get attenuated with distance,
many local communications can be simultaneously active without inter-
fering too much with each other (spatial reuse). See Figure 1.2. In
particular, confining to nearest-neighbor communication maximizes the
number of simultaneous transmissions inside the network. However, to
cover long distances in short hops, each packet now has to be retrans-
mitted many times before getting to its final destination. This relaying
burden limits the achievable throughput.

In their seminal work [9] in 2000, Gupta and Kumar showed that
confining to nearest-neighbor transmissions maximizes the throughput
of multi-hop and provides an aggregate throughput of order Θ(

√
n)

in a network of n users. This corresponds to a per-user rate that

1 Here, transmissions are orthogonalized over time so that they do not interfere. Equiva-
lently, transmissions can be orthogonalized in frequency or in code space.
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scales as Θ(1/
√

n). Note that this scaling is significantly better than
the Θ(1/n) scaling with direct communication (single-hop) between
source-destination pairs. Nevertheless, it still decreases quite rapidly to
zero with an increasing number of users n. This limitation is precisely
due to the fact that in a nearest-neighbor multi-hop architecture, most
users have to relay information for Θ(

√
n) source-destination pairs on

average.
The sub-linear scaling of the system throughput is fundamentally

due to the need to reduce interference between point-to-point trans-
missions. If transmissions were not interfering, we could have many
simultaneous long distance transmissions in the network, ideally every
source could directly and simultaneously communicate to its destina-
tion. It is because of the interference that we need to confine to short
distance communication, in which case the resulting relaying burden
limits the system throughput.

1.1.2 Constructive Use of Interference: Hierarchical
Cooperation

A natural question is whether we can surpass the interference barrier
by allowing more sophisticated cooperation between the nodes, in par-
ticular by removing the restriction to point-to-point communication.
Can we design cooperation architectures whose performance scales with
system size? In Section 2, we present a hierarchical cooperation archi-
tecture that achieves an aggregate throughput of Θ(n1−ε) for any ε > 0.
An aggregate throughput scaling arbitrarily close to linear in the num-
ber of nodes means that there is essentially no interference limitation:
The rate for each source-destination pair does not degrade significantly,
even if the network serves a growing number of users. This result
demonstrates that the fundamental capacity of wireless networks can
be significantly higher than the capacity of multi-hop and that more
sophisticated cooperation architectures can provide substantial perfor-
mance gains in large networks.

The key to this result is distributed MIMO (multi-input multi-
output) communication. MIMO is a physical-layer technique, which
was originally developed in the classical point-to-point setting. In this



8 Introduction

setting, multiple antennas are installed on both the transmitter and the
receiver. This allows to simultaneously send an independent stream of
data from each transmit antenna. Each receive antenna observes a dif-
ferent combination of the transmitted signals. Jointly processing the
vector of received observations at the antennas allows the receiver to
remove the interference between the transmitted signals and recover
the original data streams [5, 29]. A natural approach to apply this con-
cept to the network setting is to have nodes cooperate in clusters to
form distributed transmit and receive antenna arrays. In this manner,
mutually interfering signals can be turned into useful ones that can be
jointly decoded at the receive cluster and spatial multiplexing gain can
be realized.

One way to incorporate distributed MIMO communication is to
transfer the packets of each source node to its destination in three
consecutive phases: The packets of a source node are first distributed
among a cluster of nodes in its vicinity. In a second phase, the nodes in
this source cluster simultaneously transmit these packets to a group of
nodes around the destination node. These simultaneous transmissions
can be regarded as distributed MIMO communication if the obser-
vations of the various nodes in the destination cluster can be jointly
processed. Therefore, in a third phase, the distributed MIMO obser-
vations should be collected at the actual destination node, which can
then jointly process these observations and recover the packets from its
source node.

The above strategy potentially offers performance gain via the
simultaneous long distance transmissions in the second phase. The
interference between these transmissions is not anymore harmful, as
they are jointly decoded at the end of the third phase. However, the
overhead introduced by the first and the third phases to establish
the necessary transmit and receive cooperation can drastically reduce
the useful throughput. The key to efficient cooperation in the first
and third phases is a digital and hierarchical architecture that makes
use of distributed MIMO communication at increasing scales. Coop-
eration first takes place between nodes within small local clusters.
These small clusters can operate simultaneously, as the decay of signals
with distance allows spatial reuse. The cooperation facilitates MIMO
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Fig. 1.3 The salient features of the hierarchical cooperation architecture.

communication over a larger spatial scale. This can then be used as
a communication infrastructure for cooperation within larger clusters
at the next level of the hierarchy. Continuing in this fashion, cooper-
ation can be achieved at an almost global scale. At the highest level
of the hierarchy, long-range MIMO communications can be performed
between clusters almost as large as the whole network. By increas-
ing the number of levels in such a hierarchical architecture, one can
get arbitrarily close to linear aggregate throughput scaling. Figure 1.3
illustrates the hierarchical architecture with a focus on the top two
levels.

The distributed MIMO-based approach summarized above is closely
related to physical-layer network coding. Physical-layer network cod-
ing [11, 34] is another recent paradigm in wireless networking, based
on the same motivation to embrace the wireless interference instead of
avoiding it. Physical-layer network coding allows for two strategically
picked transmissions to interfere at a relay node, which then forwards
the mixture of the two signals. The fundamental difference between dis-
tributed MIMO-based hierarchical cooperation and physical-layer net-
work coding is the scale over which wireless interference is embraced.
Physical-layer network coding maintains the multi-hop architecture at
the global scale and allows two local transmissions to interfere at each
hop. Such an approach has the potential to double the throughput
of the network, but no more (this was shown precisely in Ref. [17]).
In the hierarchical cooperation architecture, communication is orga-
nized so that wireless interference can be embraced at the global scale.
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It can be viewed as an aggressive form of physical-layer network cod-
ing, where Θ(n) transmissions are allowed to interfere instead of only
two. Consequently, the gain is more substantial: instead of doubling
the aggregate throughput, we can elevate its scaling from Θ(

√
n) to

linear in n.

1.2 Power

Interference is not the only factor that can potentially limit perfor-
mance in wireless networks. Power can be another limiting factor. In
some wireless networks, the reason to confine to short-range commu-
nication and relay packets via multiple transmissions may not be the
interference that would be caused by long distance communication. The
attenuation of wireless signals with distance may not allow sufficient
received SNR (signal-to-noise power ratio) to directly reach far-away
destinations. This can be the case due to a number of reasons:

(a) The power available at the nodes can be limited.
(b) The network can be distributed over a large geographical

area.
(c) The attenuation in the environment can be high.
(d) The network can be operating on a large bandwidth (wide-

band system).

The objective in such wireless networks is not only to deal with inter-
ference but also to transfer power efficiently to the receivers. In par-
ticular, in an extremely power-limited network interference may be far
below the noise level at the receivers. In such a regime, the strate-
gies that provide the best throughput would be the ones that utilize
power most efficiently. In this section, we discuss the question we raised
in the previous section by also putting power into play: Is the tradi-
tional multi-hop architecture able to efficiently transfer power in large
wireless networks? Can more sophisticated architectures, for example,
hierarchical cooperation, provide significant capacity improvement in
power-limited wireless networks?

The restriction to point-to-point communication in the traditional
multi-hop setting can now be questioned from the power point of view.
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In point-to-point communication, the signals received from a particu-
lar transmission are treated as noise at all but one receiver inside the
network. In the previous section, we have seen that with distributed
MIMO-based communication, we are able to turn mutually interfer-
ing signals into useful ones. By exploiting the broadcast nature of the
wireless medium, such techniques can provide a received power gain,
in addition to the spatial multiplexing gain emphasized in the previous
section. This power gain can translate into a significant capacity gain
in certain power-limited networks. The impact of power is discussed in
detail in Section 3. We provide below a short summary of the conclu-
sions of this section.

1.2.1 Impact of Power in the Point-to-point
Wireless Channel

To understand the impact of power in wireless networks, let us first
review how the amount of available transmission power impacts the
capacity of the point-to-point additive white Gaussian noise channel.
The capacity of this channel is given by Shannon’s famous formula

C = W log
(

1 +
P

N0W

)
(1.1)

in terms of the bandwidth of the channel W in Hz, received power P

in Watts, and noise power spectral density N0/2 in Watts/Hz.
The most important engineering parameter we associate with this

channel is SNR defined as

SNR =
P

N0W
.

This parameter determines the operating regime of the channel. When
SNR � 0 dB, the channel is in a power-limited regime: the capacity is
approximately linear in the power, and the performance depends criti-
cally on the power available, but not so much on the bandwidth. In this
regime, if we double the transmit power, we can approximately double
the channel capacity; however, doubling the bandwidth only marginally
improves capacity. In the bandwidth-limited (or high-SNR) regime,
where SNR � 0 dB, we have the opposite situation: the capacity is
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approximately linear in the bandwidth and the performance depends
critically on the bandwidth, but not so much on the power. These two
observations can be immediately verified from the capacity formula
in Equation (1.1), noting that when SNR � 0 dB, log(1 + x) ≈ x and
when SNR � 0 dB, the logarithm function gets saturated and increases
very slowly in its argument.

These two fundamentally different operating regimes have two com-
pletely different implications in terms of communication system design.
For a bandwidth-limited channel, the least we would expect from a
good communication strategy for this channel is that its performance
is approximately linear in the bandwidth, i.e., able to follow the trend
of the capacity. On the contrary, for a power-limited channel, we should
design a strategy whose performance increases linearly in the power.
In the sequel, we will call a strategy scaling optimal or simply optimal
for a certain regime, if its performance exhibits approximately the same
dependence to system parameters as the information-theoretic capacity
of the system.2 Note that there is no guarantee that a strategy which
is scaling optimal for a certain regime, meaning that its performance
exhibits approximately the right behavior in terms of system parame-
ters in this regime, would also be optimal for another regime.

1.2.2 Impact of Power in Wireless Networks

The interference discussion of the earlier section was implicitly based
on a regime where the capacity of the wireless network is bandwidth-
limited. The basis for the discussion was the scaling law approach of
Gupta and Kumar [9], which looks at how the capacity of the network
scales with the number of users. As the number of users in the wireless
network increases, the other parameters of the network, such as area,
bandwidth, per-user power, are kept fixed. This scaling results in a
large network whose information-theoretic capacity is approximately
given by nW . While the capacity of multi-hop in this regime behaves
as

√
nW , the capacity of the new hierarchical cooperation strategy

behaves as nW . This makes hierarchical cooperation scaling optimal in
this regime.

2 The approximation is within a poly-logarithmic factor.
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The discussion on the operating regimes of the point-to-point wire-
less channel suggests that we could also have power-limited operat-
ing regimes in wireless networks. In this case, however, the capacity
exhibits a completely different behavior. Indeed, power turns out to
be a more sophisticated player in wireless networks than in the point-
to-point case. There are a number of fundamentally different power-
limited regimes in wireless networks. This is first due to the fact that
the power limitation is jointly determined by a number of indepen-
dent parameters (a)–(d) listed above. These parameters have different
impact and their interplay creates a number of qualitatively differ-
ent cases. For example, a network that suffers power limitation due to
high attenuation in the environment is not equivalent to (cannot be
translated to) a network that suffers from limited power available at
the wireless nodes. Second, a wireless network can be power-limited in
different degrees. For example, in a severely power-limited wireless net-
work, channels between all pairs of nodes in the network are weak (of
low SNR). In less severe cases, only the channels between far-away pairs
are weak, whereas close-by nodes are connected via strong channels (of
high SNR).

The backbone of the hierarchical cooperation architecture intro-
duced in the previous section is distributed MIMO communication:
at the highest level of the hierarchy, we perform simultaneous long dis-
tance transmissions from a source cluster of Θ(n) nodes to a destination
cluster of Θ(n) nodes. The transmissions from each node in the source
cluster are heard by all the nodes inside the destination cluster, though
these Θ(n) simultaneous transmissions interfere with each other. When
the interference between these transmissions is removed via joint decod-
ing at the destination node, power-wise, it is as if we were able to
observe each transmission interference-free at Θ(n) different receivers.
In other words, for each transmission, the hierarchical cooperation
architecture collects the power received by the Θ(n) nodes inside the
destination cluster.

This leads to the following interesting fact: A priori, we may expect
to observe some sort of power limitation in a wireless network if
the received SNR between some pair of nodes in the network is not
sufficient for direct communication, most notably between far-away
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pairs. However, the information-theoretic capacity of the network is
bandwidth-limited and not power-limited, approximately given by nW ,
as long as n times the SNR between far-away pairs is larger than
0 dB. We define this quantity as the long distance SNR of the net-
work, denoted as SNRl: it is n times the received SNR of a point-of-
point channel with the transmitter and receiver separated by a distance
equal to the diameter of the network. Note that the diameter defines
the largest geographical scale for communication inside the network.
As long as SNRl � 0 dB, the wireless network is bandwidth-limited
and hierarchical cooperation is scaling optimal. This is not only because
hierarchical cooperation can handle interference efficiently as discussed
in the earlier section but also because it is able to efficiently exploit the
broadcasting nature of the wireless medium in this regime.

A wireless network starts to experience power limitation when the
long distance SNR drops below 0 dB. When SNRl � 0 dB, the network
is power-limited over the largest geographical scale but can still be
bandwidth-limited over a shorter communication scale. The optimal
cooperation architecture is determined by two parameters in this case.
The first one is the power path loss exponent of the environment, α.
It describes how fast signal power decays with distance: signals trans-
mitted from one node to another at distance r apart are subject to
a power loss of r−α, where typically 2 ≤ α ≤ 6. α = 2 corresponds to
free-space propagation and larger α to more lossy environment. The
power path loss exponent defines a dichotomy: when 2 ≤ α < 3, the
hierarchical cooperation architecture transfers power optimally inside
the network and achieves the information-theoretic capacity scaling of
the network. Signal power decays slowly with distance in this case and
hierarchical cooperation yields maximal received power by collecting
the received signals of Θ(n) nodes around each destination node.

When α ≥ 3, signal power decays fast with distance and long dis-
tance communication in the network is not preferable, even with its addi-
tionalΘ(n) power gain.Theoptimal architecturedepends on the strength
of the power limitation in the network, which is captured by a second
SNR parameter, the short distance SNR, denoted by SNRs. SNRs is the
received SNR in a point-to-point transmission over the typical nearest-
neighbor distance inside the network. The nearest-neighbor distance is
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the shortest scale for communication inside the network. When SNRs �
0 dB, communication over even the shortest geographical scale is lim-
ited in power. In this case, the conventional nearest-neighbor multi-hop
architecture is the fundamentally right strategy for transferring power; it
indeed achieves the information-theoretic scaling of the network capac-
ity. The broadcasting nature of the wireless media plays insignificant role
in such severely power-limited networks and therefore, confining to point-
to-point communication is not anymore suboptimal.

When α ≥ 3, but SNRs � 0 dB, the nearest-neighbor scale is
bandwidth-limited. Note that SNRl � 0 dB; hence, the network is still
power-limited over distances of the order of the network diameter.
In this case, the broadcasting of wireless signals is significant up to
an intermediate geographical scale determined by the precise value of
SNRs and α. There is therefore the potential to improve performance
with long distance communication up to this particular geographical
scale. Beyond this scale, the network is power-limited and power atten-
uates rapidly for α > 3; hence, communication over longer distances is
inefficient. The optimal solution is to form MIMO clusters of an inter-
mediate size and then multi-hop across several clusters to get to the
final destination cluster. Each hop between adjacent clusters is now
performed using distributed MIMO transmissions of the corresponding
intermediate scale. This hybrid architecture is illustrated in Figure 1.4.

Fig. 1.4 Cooperate locally multi-hop globally: A generic optimal architecture for wireless
networks.
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Fig. 1.5 The four operating regimes. The optimal schemes in these regimes are I–II: Hierar-
chical cooperation, III — Multi-hop, IV — Hybrid Multi-hop + Hierarchical Cooperation.

The two extremes of this architecture are precisely traditional multi-
hop, where the cluster size is 1 and the number of hops is Θ(

√
n), and

hierarchical cooperation, where the cluster size is Θ(n) and the number
of hops is 1. This hybrid architecture combining hierarchical cooper-
ation with multi-hop provides a generic optimal solution for all wire-
less networks. For optimality, the cooperation scale should be adjusted
according to the power available in the network and the power path
loss exponent of the environment. The resultant four operating regimes
and the corresponding optimal schemes for each regime are illustrated
in Figure 1.5.

1.3 Space

The geographical area of the network not only plays a role in determin-
ing the received powers in the network, but also has an independent
impact on capacity. It determines the number of independent spatial
channels available for communication inside the wireless network. Infor-
mation is communicated in the form of electromagnetic waves and the
area of the network determines the diversity available in the phys-
ical channel. Consider the Θ(n) simultaneous long distance transmis-
sions between the source and the destination clusters in the hierarchical
cooperation architecture. Each node in the destination cluster observes
a linear combination of the transmitted electromagnetic signals, each
scaled and shifted according to the loss and delay in the corresponding
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path. The destination node can only remove the interference between
these transmissions via joint decoding, if the linear combinations of the
signals are independent. When the Θ(n) nodes in the source cluster
and the Θ(n) nodes in the destination cluster are packed together in
small geographical areas, the linear combinations of the transmitted sig-
nals cannot be anymore independent. In this section, we reconsider the
question raised in the earlier sections by concentrating on the impact
of space on the capacity of wireless networks.

As we discuss in detail in Section 4, there are Θ(
√

A/λ) spatial
degrees of freedom in a wireless network of area A, operating on a car-
rier wavelength λ. This is the number of independent spatial channels
available for communication inside the network. Limited by interfer-
ence, the multi-hop architecture can only achieve Θ(

√
n) degrees of

freedom. If the number of spatial degrees of freedom in the network is
already as small as Θ(

√
n), then multi-hop is fundamentally optimal,

as it is able to achieve the full degrees of freedom of the network. When
the available degrees of freedom in the network are more than Θ(

√
n),

there is the potential to exploit these additional degrees of freedom by
more sophisticated cooperation. We will discuss in Section 4 that when
the number of spatial degrees of freedom in the network is larger than
Θ(

√
n), the hierarchical cooperation architecture is able to achieve the

full degrees of freedom in the network given by

min(n,
√

A/λ).

In particular in wireless networks where
√

A/λ � n, there is no space
limitation, as there are sufficient spatial degrees of freedom for all users.
Hierarchical cooperation achieves linear aggregate throughput scaling
in this case.

1.4 Operating Regimes

In this monograph, we discuss three factors that can potentially limit
performance in wireless networks. We have already seen that the first
one, interference, usually thought of to be a major performance limita-
tion in wireless networks, can be overcome with cooperation between
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nodes. The latter two, power and space, impose fundamental limita-
tions on communication in wireless networks.

Can more sophisticated cooperation techniques provide significant
capacity gains over the conventional multi-hop architecture in large
wireless networks? We have seen that the answer to this question
depends on the parameter range in which a particular wireless network
lies. This naturally fits in a framework of operating regimes. Each oper-
ating regime corresponds to a subset of the parameter space where the
optimal architecture for cooperation is different. The underlying rea-
son is that the information-theoretic capacity of the network exhibits a
qualitatively different behavior in each of these regimes. We have seen
that there are many operating regimes where the information-theoretic
capacity of the network is significantly higher than the capacity of con-
ventional multi-hop and where architectures better tailored for wireless
networks, hierarchical cooperation in particular, can provide substan-
tial capacity gains. In certain regimes, most notably when the network
is severely limited in either power or space, there is no way to outper-
form multi-hop. In other words, the conventional multi-hop architec-
ture is able to achieve the information-theoretic scaling of the network
capacity and is fundamentally optimal.

Which of these operating regimes are most relevant to practice? The
above discussion also identifies the engineering quantities that deter-
mine the operating regime of a wireless network, such as short-range
SNR, long-range SNR, area, power path loss exponent, etc. Note that
these quantities can be easily computed or directly measured in the
network. In Example 1.1 below, we plug in some typical values for the
parameters of the network to get some insight on the most relevant
operating regimes for various applications in practice.

Example 1.1. Suppose that, as a communication systems engineer,
you need to suggest a communication architecture for a wireless
network which will operate on a university campus. The campus has an
area of A = 1 km2 and will operate around 3 GHz (λ = 0.1 m). Accord-
ing to the discussion in Section 1.3, the number of spatial degrees of
freedom in the network is given by

√
A/λ = 10’000. Therefore, if there
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are up to 10’000 students, we expect to have no space-limitation in the
network: there are sufficient spatial degrees of freedom for all users to
communicate. When there are more than 10’000 users, the network is
space-limited. However, multi-hop can achieve all the degrees of free-
dom only when the number of users in this network of area 1 km2 are
larger than 108, a humongous number. Up to this size, we need hier-
archical cooperation to exploit the available degrees of freedom in the
network. This suggests that although in practice, we might have wire-
less networks that are space-limited, severely space-limited networks
where multi-hop is the right architecture are very unlikely.

In addition, we would most often expect such a network to be
bandwidth-limited and not power-limited. Under free-space propaga-
tion, the transmitted power P and the received power Pr are related
by the Friis formula:

Pr =
GTx · GRx

(4πr/λ)2
P,

where r is the distance between the transmitter and the receiver and
GTx and GRx are the transmit and receive antenna gains. Assum-
ing unit transmit and receive antenna gains, the attenuation fac-
tor (GTx · GRx · λ2)/16π2 in the formula is 10−6. Assume transmitter
power P of 100 mW per node, thermal noise N0 at −174 dBm, a band-
width W of 10 MHz and noise figure NF = 10 dB. The SNR between
a transmitter and receiver pair separated by the maximal distance of
1 km is 54 dB. With 10’000 users in the network, the long distance SNR
is SNRl = 104 dB, very much in the high SNR regime. Note that even
if the transmit power per node is 1 mW, a value more typical for sensor
nodes, we still have SNRl = 84 dB, a bandwidth-limited network. In a
lossy environment, SNRl will be smaller, but can still be expected to
be well above 0 dB.

Therefore, with 10’000 students on the campus, we do not expect to
observe any power or space-limitation in the network. In this case, while
traditional multi-hop can achieve a total throughput of the order of
100 bits/s/Hz, hierarchical cooperation promises an aggregate through-
put of the order of 10’000 bits/s/Hz.
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1.5 Problem Formulation

The results presented in this monograph are based on a scaling law
characterization of the information-theoretic capacity of wireless net-
works. This scaling law formulation, developed mainly in Section 3.1,
is used as a mathematical tool to identify the operating regimes of
large wireless networks, without having to exactly characterize their
capacity. It is based on identifying the parameters of wireless networks
that have large operational range in practical applications, such as the
area of the network, the transmit power available at the users and the
bandwidth. Note that these are independent parameters, each of which
can be large or small in different applications. As there are no typical
values for these parameters, a thorough understanding of the capacity
requires to study the interplay between these parameters. We model
the interplay through a coupling to the number of users. Characteriz-
ing the scaling exponent of the capacity with the number of users for
all possible couplings accounts for all possible interplay between these
system parameters. Such a scaling law study allows not only to identify
the operating regimes of wireless networks but also to approximately
characterize the dependence of the information-theoretic capacity of
the network to major system parameters.

There are two aspects to such a scaling exponent characterization:
upper and lower bounds. Upper bounds on the best possible scal-
ing exponent are derived using tools from information theory. Lower
bounds are obtained by constructing explicit cooperation architectures
and computing the scaling exponents they achieve. An architecture is
called scaling optimal for a certain regime if it is able to achieve the
best possible scaling exponent in this regime. This means that the per-
formance of the architecture exhibits the same dependence to system
parameters as the capacity itself. Such an optimality definition has an
engineering significance: it guarantees that the gap to the information-
theoretic capacity of the network does not explode rapidly with any of
the system parameters.

The current text is slightly biased in detail towards lower bounds, as
we believe the architectures themselves are of higher engineering inter-
est than the theoretical proofs of their optimality. However, without
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going into too much technical detail, we also tried to give the main
intuition behind the information-theoretical upper bounds on capacity.

1.6 Historical Notes

The line of research that leads to the results summarized in this paper
was initiated by the seminal work of Gupta and Kumar in 2000 [9]. The
work of Gupta and Kumar was stimulating from several points of view.
First, it initiated the study of the scaling of the capacity of wireless
networks with the number of users. Such a scaling law formulation puts
the emphasis on large system size and is useful to devise architectural
guidelines for large wireless networks. The formulation turned out to
be more amenable to analysis than the long-sought capacity region in
information theory for a given number of users. Second, it introduced
a simple random network model that captures the essential aspects of
the problem: the spatial distribution of nodes over the network area
and the traffic requirement between them, the attenuation of wireless
signals with distance and the broadcasting and superposition nature of
wireless media. Most importantly, using this model, Gupta and Kumar
identified the interference-limited nature of the conventional multi-hop
architecture, showing that in the best case, it achieves a Θ(

√
n) scaling

of the system throughput. A scheme achieving exactly Θ(
√

n) through-
put for generic random wireless networks was then proposed in Ref. [6].

The work of Gupta and Kumar inspired the research tackling
the main question of interest in this monograph: Can we do better
by more sophisticated physical-layer processing? This question was
first addressed by Xie and Kumar [31]. They showed that whenever
SNRs � 0 dB and the power path loss exponent α of the environ-
ment is greater than 6, the nearest-neighbor multi-hop architecture
is in fact order-optimal. The work [31] was followed by several others
[1, 10, 16, 26, 32, 33]. Successively, they improved the threshold on
the path loss exponent α for which multi-hop is order-optimal due to
the severe power limitation SNRs � 0 dB (α > 5 in [10], α > 4.5 in [1],
α > 4 in [32], and α > 3 in [26]). The work of Franceschetti et al. [7]
established the optimality of multi-hop under severe space-limitation
(when

√
A/λ � √

n). A similar conclusion was earlier obtained in [25]
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by modeling the space limitation through a degenerate physical channel
model.

Aeron and Saligrama were the first to show that the interference
limitation suffered by conventional multi-hop can be surpassed with
more sophisticated cooperation: they exhibited a scheme that yields a
throughput scaling of Θ(n2/3). The hierarchical cooperation architec-
ture achieving aggregate throughput Θ(n1−ε) for any ε > 0 has been
introduced by the authors [26]. Both the scheme proposed by Aeron
and Saligrama and the hierarchical cooperation architecture are based
on combining MIMO communication [5, 29] with cooperative relaying
ideas from network information theory. In particular, the hierarchical
cooperation scheme critically employs compress-and-forward relaying,
a strategy introduced in [4] (see also Refs. [12, 13]). The hybrid architec-
ture combining hierarchical cooperation with multi-hop was introduced
in Ref. [23]. The same paper also shows that this hybrid architecture
surpasses multi-hop when the network is not severely power-limited,
either when α < 3 or when SNRs � 0 dB. The same hybrid architec-
ture was independently proposed in Ref. [20] to deal with arbitrary
placement of nodes inside the network area. The optimality of hier-
archical cooperation when the network is partially space-limited was
established in Refs. [14, 15, 27].

The characterization of wireless networks presented in this paper
is based on the operating regimes framework developed in Ref. [23].
This framework offers a unified perspective on various fragmented or
even seemingly contradicting results in this field. More importantly, it
allows the deduction of concise engineering principles from the theory.

There are many interesting ideas we have not included in this mono-
graph. In Refs. [20, 21], Niesen et al. extend some of the ideas in this
monograph to networks with arbitrary node placement and arbitrary
traffic demand. The work [24] investigates the throughput-delay trade-
off of the hierarchical cooperation scheme and [8] provides a refined
analysis of its performance.

In an independent line of research, Cadambe and Jafar [3] and Nazer
et al. [18] showed that interference alignment techniques provide an
alternative way of dealing with interference in wireless networks and
achieving high throughput. The scaling performance of these techniques
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in wireless networks has been discussed in Refs. [19, 28]. The basic idea
behind these techniques is fundamentally different from the schemes
discussed in this monograph, in the sense that communication between
order n source-destination pairs should be established in one shot, with-
out intermediate relaying. Instead, by making use of sophisticated sig-
naling at the transmitters, each destination receives a signal with two
orthogonal components, one of which is the intended signal, whereas
the other contains the interfering signals transmitted by all the other
users. The intended signal can then recovered at each destination by a
simple projection.

One of the major differences between interference alignment and
cooperative schemes is therefore that interference alignment schemes
do not rely on spatial reuse, which makes them superior in the regime
when SNR is extremely large. On the other hand, they heavily rely
on transmit channel state information, which is challenging to get
in practice, while the techniques discussed in this monograph require
channel state information only at the receiver side. Also, interference
alignment techniques are less efficient in terms of power transfer than
distributed MIMO transmissions: we have indeed seen above that dis-
tributed MIMO transmissions benefit from a significant power gain, of
the order of the number of nodes participating to the transmission; this
power gain is simply absent in interference alignment schemes.

1.7 Notation

To describe limiting behavior of functions, we often adopt the following
notation: For two functions f(n) and g(n), the notation f(n) = O(g(n))
means that |f(n)/g(n)| remains bounded as n increases. We express
g(n) = Θ(f(n)) to denote that f(n) = O(g(n)) and g(n) = O(f(n)).
Finally, f(n) = Ω(g(n)) if |g(n)/f(n)| remains bounded as n increases.



2
Interference

In this section, we study the impact of interference on the capacity of
wireless networks. We first highlight the interference-limited nature of
the multi-hop architecture. We then present a hierarchical cooperation
architecture that allows to overcome this interference barrier.

2.1 Model

In this section, we introduce a simple network and channel model that
will be used throughout the section. This model allows us to concentrate
on networks where interference is the only factor that can potentially
limit performance. The model will be successively refined in the next
two sections to incorporate the impacts of power and space.

2.1.1 A Random Network Model

There are n wireless nodes with transmitting and receiving capabilities,
which are uniformly and independently distributed in a square of area
A. Each node has an average power of P Watts and the network is
allocated a total bandwidth of W Hertz around a carrier frequency of
fc, fc � W . Every node is both a source and a destination for some

24
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traffic. The sources and destinations are randomly paired up one-to-
one without any consideration of node locations.1 Each source has the
same traffic rate R(n) bits/s/Hz to send to its destination node. The
aggregate throughput of the system is T (n) = nR(n). (In the sequel,
whenever we say that an aggregate throughput T (n) is achievable, we
implicitly mean that a rate of T (n)/n is simultaneously achievable for
all source-destination pairs in the network.) We restrict our attention
to the scaling of the aggregate throughput T (n) with an increasing
number of nodes n. The parameters A, P and W remain constant as
the number of nodes n in the network increases.

2.1.2 Channel Model

We assume that communication takes place over a flat channel and the
signal received by node i at time slot m is given by

Yi[m] =
∑
k �=i

Hik[m]Xk[m] + Zi[m], (2.1)

where Xk[m] is the signal sent by node k at time m and Zi[m] is addi-
tive white circularly symmetric Gaussian noise (AWGN) of power spec-
tral density N0/2 Watts/Hz. The complex baseband-equivalent channel
gain between node i and node k at time m is given by

Hik[m] =
√

Gr
−α/2
ik ejθik[m], (2.2)

where rik is the distance between the nodes, θik[m] is the random phase
at time m, uniformly distributed in [0,2π) and {θik[m],1 ≤ i ≤ n,1 ≤
k ≤ n} is a collection of i.i.d. random processes. The θik[m]’s and the
rik’s are also assumed to be independent. The parameters G and α ≥ 2
are assumed to be constants; α is called the power path loss exponent
of the environment. For example, under free-space line-of-sight propa-
gation, Friis’ formula applies and

|Hik[m]|2 =
GTx · GRx

(4πrik/λ)2
, (2.3)

1 Note that an equivalent model is to consider a network of 2n nodes, with n sources and
n destinations placed and paired up randomly. The capacity results derived under this
assumption might differ by a factor 2 from the results derived in the present monograph.
However, as our main focus is the study of capacity scaling laws, this is not an issue.
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so that

G =
GTx · GRx · λ2

16π2 , α = 2,

where GTx and GRx are the transmitter and receiver antenna gains,
respectively, and λ is the carrier wavelength.

Note that the channel is random, depending on the location of the
users and the phases. The locations are assumed to be fixed over the
duration of the communication. The phases are assumed to vary in a
stationary ergodic manner over time m (fast fading). The results can
also be extended to the slow fading case where phases are randomly
drawn from the i.i.d. uniform distribution over [0,2π) and then kept
fixed during the time of communication. We assume that the channel
gains are known at all the nodes.

Here are several comments about the model:

• The path loss model is based on a far-field assumption: The
distance rik is assumed to be much larger than the carrier
wavelength. When the distance is of the order or shorter than
the carrier wavelength, the simple path loss model obviously
does not hold anymore as path loss can potentially become
path “gain.” The reason is that near-field electromagnetics
now come into play. In a scaling regime, where the area of
the network is kept fixed as the number of users increases,
path loss will eventually become path gain for most pairs and
will be unbounded. This deficiency of the model is circum-
vented in the analysis as the performance depends on the
signal to interference plus noise power ratio (SINR), which
captures the relative strength of the paths with respect to
each other and remains always finite. Signals from close-by
nodes are much stronger than signals from far-away nodes.
This is the only property of the model in (2.2) that we use
in the analysis. This point is further elaborated at the end
of Sections 2.2 and 2.3.

• The random phase model is also based on a far-field assump-
tion: We are assuming that the nodes’ separation is at a much
larger spatial scale compared with the carrier wavelength, so
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that the phases can be modeled as completely random and
independent of the actual positions. In Section 4, we clarify
how large this spatial scale should be in order for the random
phase assumption to hold.

• We essentially assume a line-of-sight type environment and
ignore multi-path effects. With multi-paths, there is a further
randomness in the channel gains due to random constructive
and destructive interference of these paths. The results of the
section extend to the multi-path case.

• It is realistic to assume the variation of the phases as they
vary significantly when users move a distance of the order of
the carrier wavelength (fractions of a meter). The positions
determine the path losses and they, on the other hand, vary
over a much larger spatial scale. Hence, the positions are
assumed to be fixed.

2.2 Performance of Multi-hop

In the multi-hop scheme, the packets of a source-destination pair s–d

are communicated by successive point-to-point transmissions between
relaying nodes. Each relay node decodes the packets from the previous
relay and forwards them to the next. (Figure 2.1(a)).

We analyze the performance of multi-hop based on the following
simple architecture: Let us divide the network into square cells of area
Ac. Each cell contains M = Ac n/A nodes on the average. Assume that
each cell contains at least one node so that we can assign a node in each
cell to do the relaying job. Then, packets can be transferred from one
cell to the next via successive transmissions between the assigned relay
nodes in each cell. Each relay decodes the packets transmitted from its
neighboring cells, temporarily stores, re-encodes and forwards them to
the next cell in their respective direction of transportation. Hence, the
communication in the network is based on point-to-point transmissions
between pairs of nodes located in neighboring cells. The SNR of these
transmissions is lower bounded by

SNRr ≥ GP

N0W (
√

2Ac)α
, (2.4)
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Fig. 2.1 The multi-hopping scheme: (a) The packets of a source node s are delivered to its
destination node d by multi-hopping from one cell to the next. (b) A 9-TDMA scheme is
employed between cells to control inter-cluster interference. The shaded cells are simulta-
neously active. (c) The relaying traffic at node r is originated from or destined to one of
the nodes located in the shaded rectangles.

where
√

2Ac is an upper bound on the distance between two nodes
located in neighboring cells.

In order to increase the capacity of the architecture, it is desired to
have many relaying nodes operate simultaneously inside the network.
The decay of signals with distance in (2.1) allows spatially separated
transmitter–receiver pairs to communicate simultaneously without cre-
ating too much interference to each other (spatial reuse). For example,
in order to control interference, we can employ a simple time-division
strategy (TDMA) between neighboring cells such as the 9-TDMA strat-
egy illustrated in Figure 2.1(b). With this strategy, only the relay nodes
in the shaded cells are allowed to transmit simultaneously, while nodes
in the other cells are either receiving a transmission or remain inactive.
This ensures that there is a guard region free of interfering transmitters
around every receiving node in the network. By shifting the pattern in
Figure 2.1(b) in the successive time slots, we can ensure that each relay
node transmits a constant fraction 1/9 of the total time. Under such
a TDMA strategy, the interference-to-noise ratio experienced by any
receiver in the network can be upper bounded by

INRr ≤ KISNRr (2.5)

for a constant KI independent of n and SNRr. Although the proof
of this fact is quite straightforward, this is a major observation that
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allows spatial reuse in wireless networks. Therefore, we formally state
and prove this result in Lemma 2.1 at the end of this section.

Shannon’s familiar capacity formula for the point-to-point AWGN
channel allows us to relate the SNRr and INRr to the achievable trans-
mission rate in bits/s/Hz between two nodes in neighboring cells. Treat-
ing the interference as additional noise, the outbound rate of any relay
node is given by

Rr =
1
9

log
(

1 +
SNRr

1 + INRr

)
≥ 1

9
log
(

1 +
SNRr

1 + KISNRr

)
.

The factor 1/9 accounts for the performance loss due to TDMA between
neighboring clusters. When SNRr is lower bounded by a constant inde-
pendent of n, this rate is also lower bounded by a constant. As Ac ≤ A,
observe from (2.4) that for any choice of Ac, SNRr is at least as large
as GP/(N0W (

√
2A)α), which is constant. Therefore, Rr = Θ(1).

Assume that the communication between each source-destination
pair is relayed by following a simplistic route, first proceeding horizon-
tally and then vertically as shown in Figure 2.1(a). Then, it is easy to
observe that the relaying traffic at a particular relay node r is generated
either by the source nodes located in the same horizontal slab or the
destination nodes located in the same vertical slab as r. The number of
nodes contained in a slab of area

√
AcA is at most (1 + δ)

√
Mn w.h.p.2

for any δ > 0 by Lemma A.1. This means that the outbound rate Rr of
each relay node has to be shared at most among 2(1 + δ)

√
Mn source-

destination pairs, yielding

RMH ≥ 1
2(1 + δ)

√
Mn

Rr (2.6)

rate per source-destination pair. Observe that reducing Ac to the near-
est neighbor scale A/n, which corresponds to M = 1, maximizes this
rate by minimizing the relaying burden. Let us define the received SNR
over the typical nearest-neighbor distance

√
A/n as

SNRs :=
GP

N0W (
√

A/n)α
. (2.7)

2 With high probability: With probability approaching 1 when n increases. See Appendix A
for a precise definition.
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By choosing Ac = A/n, multi-hop achieves an aggregate throughput

TMH ≥ K0
√

n log
(

1 +
SNRs

1 + KISNRs

)
, (2.8)

where K0 > 0 and KI > 0 are constants independent of n. As SNRs is
lower bounded by a constant, this aggregate throughput is Θ(

√
n).

There is one subtlety in the above discussion. When the cell size
is reduced to A/n, our initial assumption that all cells are non-empty
is violated w.h.p. However, using methods from percolation theory, it
can be shown that even if some cells are empty, w.h.p. we can find-
approximate horizontal and vertical paths that are composed of non-
empty cells. The straight horizontal and vertical routes in Figure 2.1(a)
can be replaced by these approximate straight horizontal and vertical
routes and Ω(

√
n) aggregate throughput scaling can be achieved (see

Ref. [6] for a detailed discussion of this fact).
Is this the best scaling achievable by multi-hop? Can we improve

the performance by a more careful analysis or by better optimizing
the architecture? For example, the relaying burden at each node was
bounded above based on the worst-case assumption that all source-
destination pairs in the network are separated by the maximal 2

√
A

Manhattan distance.3 Or one can modify the architecture to follow
straight-line routes between the source and destination pairs so as to
decrease the number of hops taken by each packet. Such improvements
cannot alter the scaling performance and Θ(

√
n) is the best scaling

achievable by the multi-hop architecture. Indeed, it can be shown that
with the random network and traffic model of Section 2.1, most of
the source-destination pairs in the network are separated by a dis-
tance of Θ(

√
A) w.h.p. Therefore, the worst-case assumption of 2

√
A

Manhattan distance between the source-destination pairs is order-wise
precise. On the other hand, following a straight-line path between the
source-destination pairs decreases the number of hops by at most a
factor of

√
2 and does not improve the scaling performance.

3 The Manhattan distance between two points is by definition the sum of the vertical and
horizontal distances separating the two points.
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To summarize, the discussion on the scaling performance of multi-
hop above provides the following insights:

• Increasing the hop range
√

Ac in the multi-hop architecture
decreases the number of hops between source and destina-
tion nodes. However, due to interference it also decreases the
number of simultaneous transmissions inside the network, the
spatial reuse factor. This contention is resolved in the favor
of short-range communication. Confining to nearest-neighbor
transmissions maximizes the capacity of multi-hop. It can be
readily observed from (2.6) that long-distance transmissions,
taking Ac = A or M = n, yield only aggregate throughput
Θ(1). In this case, the architecture is reduced to simple time
sharing between source-destination pairs in a round-robin
fashion.

• Multi-hop is fundamentally limited by interference. Because
of interference, we can accommodate Θ(n) simultaneous
transmissions inside the network only if they are local,
i.e., over the nearest-neighbor distance. On the other hand,
the traffic demand in the network is such that we need to
establish Θ(n) simultaneous global communications, i.e., over
distances of the order of the diameter of the network. Try-
ing to meet the global traffic demand with local transmis-
sions leads to a fundamental relaying burden. Along these
lines, Gupta and Kumar proved in [9] that conditioned on
the assumption of interference being treated as noise in the
network, no better aggregate throughput scaling than O(

√
n)

can indeed be achieved in wireless networks.

We conclude the section by proving (2.5) in the following lemma.
Note that the lemma holds for any choice of the cluster size Ac.

Lemma 2.1 (Spatial Reuse Lemma). Consider the 9-TDMA
scheme in Figure 2.2. Let SNRr be the received SNR at a relay node r,
from its corresponding transmitter t in a neighboring cell. The node r

is subject to interference from the clusters simultaneously active with t
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according to the 9-TDMA scheme. For α > 2, the interference-to-noise
ratio at r satisfies

INRr ≤ KI1SNRr,

where KI1 is constant independent of n. When α = 2,

INRr ≤ KI2SNRr logn,

where KI2 is another constant independent of n.

Proof of Lemma 2.1. Consider a node r receiving transmission from
node t. The interfering signal received by node r is given by

Ir =
∑
k∈Ut

HrkXk,

where Ut denotes the set of nodes transmitting simultaneously with
the node t under the 9-TDMA strategy. Xk is the signal transmitted
by node k ∈ Ut. Hrk is the channel coefficient between nodes r and k

given by (2.2). Note that as the interfering signals Xk transmitted from
different nodes k are independent, the interference-to-noise ratio at r

is given by

INRr =
∑
k∈Ut

GP

N0W (rrk)α
.

As illustrated in Figure 2.2, the interfering cells Ut can be grouped
based on their distance to r such that each group Ut(i) contains 8i cells
or less. All the cells in group Ut(i) are separated by a distance larger
than (3i − 2)

√
Ac from r for i = 1,2, . . . . Recall that Ac is the cell area.

The number of such groups can be simply bounded by the total number
of cells n/M in the network. Thus,

INRr <

n/M∑
i=1

∑
k∈Ut(i)

GP

N0W ((3i − 2)
√

Ac)α

≤ GP

N0W (
√

Ac)α

n/M∑
i=1

8i
1

(3i − 2)α
. (2.9)
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Fig. 2.2 Grouping of interfering clusters in the 9-TDMA scheme.

The last summation is convergent for α > 2. Using this fact together
with (2.4), we conclude that

INRr ≤ KI1SNRr,

for a constant KI1 independent of n. For α = 2, the summation in (2.9)
is of order log n and INRr can be bounded as

INRr ≤ KI2 logn SNRr,

where KI2 is another constant independent of n. �

2.3 Hierarchical Cooperation

In this section, we present a hierarchical cooperation architecture that
achieves almost linear aggregate throughput scaling under the same
model. This result is stated in the following theorem.

Theorem 2.2. For any ε > 0, there exists a constant Kε > 0 indepen-
dent of n such that w.h.p., an aggregate throughput

T (n) ≥ Kε n
1−ε (2.10)

is achievable in the network using hierarchical cooperation.
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Remark 2.3. The performance in Theorem 2.2 can be achieved even if
nodes use a fraction 1/n of their available power P . In other words, the
hierarchical cooperation scheme requires only Θ(1/n) average power to
achieve the scaling in Equation (2.10).

Remark 2.4. The performance in Theorem 2.2 can be achieved for
any arbitrary pairing between the source and destination nodes, not
necessarily a random one as defined earlier in Section 2.1.

This theorem is complemented by the one that follows, which states
that there is no way to get a better capacity scaling than O(n logn)
in a wireless network of size n. Therefore, in the scaling sense, the
architecture in Theorem 2.2 is very close to optimal. The two theorems,
Theorems 2.2 and 2.5, together establish the best possible capacity
scaling in wireless networks up to logarithmic terms. We first prove
Theorem 2.5 and devote the rest of the section to prove Theorem 2.2.

Theorem 2.5. The aggregate throughput achieved by any scheme is
bounded above by

T (n) ≤ K n log n

w.h.p. for some constant K > 0 independent of n.

Proof of Theorem 2.5. One easy way to understand the result in the
theorem is the following: Assume there was no interference between the
transmissions inside the network. In other words, assume each source
node s in the network was able to communicate to its destination node
d as if they were completely on their own and the whole bandwidth of
the system was granted to their exclusive use. Then the communication
rate between the pair s–d is given by Shannon’s capacity formula as

Rsd(n) = log
(

1 +
GP

N0Wrα
sd

)
, (2.11)
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where rsd is the separation between the nodes s and d. By part (b)
of Lemma A.1, the minimum distance between any two nodes in the
network is larger than

√
A/(n1+δ), w.h.p, for any δ > 0. Plugging this

lower bound for rsd in Equation (2.11), yields

Rsd(n) ≤ log
(

1 +
GP

N0W (
√

A)α
nα(1+δ)

)
, (2.12)

which is O(logn). Therefore, the aggregate throughput is O(n logn).
However, this argument is not precisely correct as the existence

of other nodes can help the pair s−d to enhance their communication
rate beyond (2.11). A precise information-theoretical argument assumes
that the only communication to establish inside the network is the one
between the pair s−d and all the other nodes in the network help
s−d to communicate. In other words, the resources of the network
are granted exclusively to the pair s−d. Obviously, the communication
rate between the pair s−d under this optimistic scenario can only be
larger than the rate achieved between s−d in the original set-up. This
optimistic communication rate between s−d is, in turn, upper bounded
by the total information rate that can be transfered from s to the rest
of the network. This corresponds to the capacity of the single-input
multiple-output (SIMO) channel between the source node s and the
rest of the network. The capacity of this SIMO channel is well-known
to be [30]

RSIMO = log


1 +

P

N0W

n∑
i=1
i�=s

|His|2

 = log


1 +

GP

N0W

n∑
i=1
i�=s

1
rα
is


.

Plugging the lower bound ris ≥ √
A/(n1+δ), we observe that the resul-

tant upper bound on Rsd(n) differs from the one in (2.12) by a factor
of n inside the logarithm. In other words, the help of the other nodes
in the network can yield an increase in the SNR of the pair s−d by a
polynomial factor in n. This power gain translates to a constant fac-
tor gain for the communication rate. We conclude that the aggregate
throughput in the original network is upper bounded by

T (n) ≤ n log
(

1 +
GP

N0W (
√

A)α
nα(1+δ)+1

)
,
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w.h.p for any possible communication strategy, which is again
O(n logn). �

The remainder of the section is devoted to the proof of Theorem 2.2,
which is based on the following lemma.

Lemma 2.6. Consider α > 2. Assume there exists a scheme that
achieves for each n, with probability at least 1 − e−nc1 , an aggregate
throughput

T (n) ≥ K1 nb

for any arbitrary pairing between the source and the destination nodes
(i.e., not necessarily a random pairing, as assumed earlier in Sec-
tion 2.1). K1 and c1 are positive constants independent of n and the
source-destination pairing, and 0 ≤ b < 1. Moreover, assume that the
scheme is able to achieve this performance by using only P/n aver-
age power per node. Then, one can construct another scheme for this
network that achieves a higher aggregate throughput

T (n) ≥ K2n
1/(2−b)

again for any arbitrary pairing between the source and the destination
nodes. K2 > 0 is another constant independent of n and the pairing.
The failure rate for the new scheme is upper bounded by e−nc2 for
another positive constant c2. The per-node average power needed to
achieve this higher throughput is again only P/n.

The lemma above is stated under slightly different conditions than
those in Section 2.1. First, it is restricted to α > 2, when Theorem 2.2
holds for α ≥ 2. To prove the theorem for α = 2, one needs a slightly
modified version of the lemma. The difference comes from the fact that
with TDMA schemes such as the 9-TDMA scheme used in Lemma 2.1,
the aggregate interference scales like log n when α = 2, while it is con-
stant when α > 2. This creates a minor modification in the analysis.
We concentrate only on the case α > 2 in the remainder of this section.

The remainder of the conditions in Lemma 2.6 are somewhat more
general than those in Theorem 2.2. The throughputs in the lemma
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are achieved for any arbitrary pairing between the source and destina-
tion nodes, therefore in particular for a random pairing. Note that even
though the pairings in Lemma 2.6 are not random but arbitrary, there is
still randomness in the distribution of nodes over the network area and
in the channel coefficients. The probabilities for achieving the claimed
throughputs are over this remaining randomness in the problem. Note
that these throughputs are achievable in any realization of the ran-
dom network with exponentially small probability of failure which is
stronger than our definition of high probability used in Theorem 2.2.
(See Appendix A for the definition of high probability.) Finally, the
required per node power in the lemma decreases to zero as P/n as
n increases. As we prove next, Theorem 2.2 follows from a recursive
application of Lemma 2.6, and it can be readily verified from the proof
of Theorem 2.2 below that it indeed holds under these more general
conditions. These observations are emphasized in Remarks 2.3 and 2.4,
as this more general form of the theorem will be used in Section 3.

Proof of Theorem 2.2. Lemma 2.6 is the key step to build a hierarchical
architecture and prove Theorem 2.2. As 1/(2 − b) > b for 0 ≤ b < 1, as
illustrated in Figure 2.3, the new scheme in the lemma is always better
than the old one. Therefore, as soon as there is a scheme to start with,
the lemma can be applied recursively, yielding a scheme that achieves
better throughput scaling at each step of the recursion.

We start with a simple strategy where source-destination pairs
take turns in a round-robin fashion to directly communicate with each
other (TDMA). At the end of Section 2.2, we noted that such a time-
division strategy corresponds to Ac = A in the multi-hop formulation
and achieves a throughput Θ(1), i.e., b = 0. This performance is inde-
pendent of the source-destination pairing and the placement of nodes
inside the network area. Therefore, the probability of failing to achieve
the Θ(1) throughput with this strategy in a random network is 0.
Moreover, as each source is only transmitting 1/nth of the time, the
average power consumed per node is Θ(1/n).

Therefore, time-division satisfies the conditions of Lemma 2.6 with
b = 0. Starting with b = 0 and applying the lemma recursively h times,
we get a scheme that achieves Θ(nh/(h+1)) aggregate throughput. Given



38 Interference

f(b)=1/(2•b)

1/2

0 3/42/3 1
b

1/2

1

Fig. 2.3 Function f(b) = 1/(2 − b) representing the increase in the throughput exponent b
from one level of the recursion to the next.

any ε > 0, we can now choose h such that h/(h + 1) ≥ 1 − ε and we
get a scheme that achieves Θ(n1−ε) aggregate throughput scaling with
high probability. Alternatively, we can also start with the multi-hop
strategy, which was shown to achieve a throughput Θ(

√
n), i.e., b = 1/2,

in Section 2.2 and save one step in the recursion. This concludes the
proof of Theorem 2.2. �

We now sketch how the new scheme is constructed given the old
scheme and provide a back-of-the-envelope analysis of the scaling law
it achieves. A rigorous proof of Lemma 2.6 can be found in Ref. [26].

Proof of Lemma 2.6. The scheme that proves Lemma 2.6 is based on
clustering and long-range distributed MIMO transmissions between the
clusters. We divide the network into square cells of area Ac. Each cell
contains a cluster of M = Acn/A nodes on the average. For the sake of
simplicity, we will assume in the sequel that each cell contains exactly
M nodes.4 Let us focus now on a particular source node s and its
destination node d. s sends M bits to d in the following three steps:

(1) Node s distributes its M bits among the M nodes in its
cluster, one for each node,

4 In Appendix A, we show that each cell contains Θ(M) nodes with high probability. This
is sufficient for proving the scaling law results in this section.
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(2) These nodes together can then form a distributed transmit
antenna array, sending the M bits simultaneously to the
destination cluster where d lies,

(3) Each node in the destination cluster gets one observation
from the distributed MIMO transmission. It quantizes this
observation and ship it to d, which can then do joint MIMO
processing of all the observations and decode the M trans-
mitted bits from s.

From the network point of view, all source-destination pairs have
to eventually accomplish these three steps. Step 2 is long-range com-
munication and only one source-destination pair can operate at a time.
Steps 1 and 3 involve only local communications and can be paral-
lelized across source-destination pairs. Combining all these leads to
three phases in the operation of the network:

Phase 1 Transmit Cooperation. Clusters work in parallel
according to a time-division schedule similar to the 9-TDMA scheme
discussed in Lemma 2.1. The TDMA scheme allows a constant fraction
of the clusters to operate simultaneously. Within a cluster, each source
node has to distribute its M bits among its neighbors, 1 bit for each
node, such that at the end of the phase, each node has 1 bit from each
of the source nodes in the same cluster. As there are M source nodes in
each cluster, this gives a total traffic of exchanging M(M − 1) ∼ M2

bits. (Recall our assumption that each node is a source for some com-
munication request and a destination for another.) The key observation
is that this is similar to the original problem of communicating between
n source-destination pairs in a network of area A, but now on a smaller
network of size M and area Ac. More precisely, this traffic demand of
exchanging M2 bits can be divided into M sessions. In each session,
we assign M source-destination pairs to communicate their 1 bit.5 The
sessions are handled one after another. Below we will argue that we
can use the scheme given in the hypothesis of the lemma to handle
the traffic in each session and that it achieves an aggregate throughput

5 As the scheme in the hypothesis of the lemma works for any pairing, the splitting of the
total traffic into M sessions can be done quite arbitrarily.
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Fig. 2.4 Nodes inside clusters F , G, H and J are illustrated while exchanging packets in
Phases 1 and 3. Note that in Phase 1 the exchanged packets contain the source bits whereas
in Phase 3 they contain the quantized MIMO observations. Clusters work in parallel. In
this Figure 2.5, we highlight three source-destination pairs s1−d1, s2−d2 and s3−d3, such
that nodes s1 and d3 are located in cluster F , nodes s2 and s3 are located in clusters H
and J , respectively, and nodes d1 and d2 are located in cluster G.

Θ(M b) bits/time slot in each session. Therefore, each session can be
completed in Θ(M1−b) time slots, and the M sessions in Θ(M2−b)
time slots. As the time-division scheme between the clusters introduces
a constant factor, this phase is completed also in Θ(M2−b) time slots
for the whole network. (Figure 2.4).

Phase 2: Cooperative MIMO. We perform successive long-
distance distributed MIMO transmissions between source-destination
pairs, one transmission at a time. In each one of the MIMO transmis-
sions, say the one between s and d, the M bits of s are simultaneously
transmitted by the M nodes in its cluster to the M nodes in the cluster
of d. Note that each node in the destination cluster observes a mixture
of the transmitted signals from the nodes in the source cluster. In the
following section, we will show that if these observations are relayed to
the actual destination node d and jointly processed, the M simultane-
ously transmitted bits can be recovered. As the M bits from the source
cluster are transmitted simultaneously, each MIMO transmission takes
Θ(1) time slots. The long-distance MIMO transmissions are repeated
successively for each source-destination pair; hence, we need Θ(n) time
slots to complete the phase for the whole network. (Figure 2.5).
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Fig. 2.5 Successive MIMO transmissions are performed between clusters. (a) depicts the
MIMO transmission from cluster F to G, where packets originally belonging to s1 are
simultaneously transmitted by all nodes in F to all nodes in G, the cluster containing
d1. (b) The second MIMO transmission is from H to G, serving the s2−d2 pair, and
(c) illustrates the MIMO transmission from cluster J to F , serving the s3−d3 pair.

Phase 3: Receive Cooperation. Clusters work in parallel similar
to the first phase. The goal of this phase is to collect the MIMO obser-
vations from the previous phase at the actual destination nodes inside
the clusters. As there are M destination nodes inside each cluster, each
cluster has received M MIMO transmissions in Phase 2. Each MIMO
transmission is intended for a different destination node. Thus, each
node in the cluster has M received observations, one from each of the
MIMO transmissions, and each observation is to be conveyed to a dif-
ferent destination node in its cluster. Nodes quantize each observation
into fixed Q bits (independent of M and n); hence, there are now a
total of QM2 bits to exchange inside each cluster. The traffic is equiv-
alent to the one in the first phase. Using exactly the same strategy, we
conclude the phase in Θ(M2−b) time slots.

Assuming that each destination node is able to decode the transmit-
ted bits from its source node from the M quantized signals it gathers
by the end of Phase 3, we can calculate the rate of the scheme as fol-
lows. Each source node is able to transmit M bits to its destination
node; hence, nM bits in total are delivered to their destinations in
Θ(M2−b + n + M2−b) time slots, yielding an aggregate throughput of
the order of

nM

M2−b + n + M2−b
bits per time slot.

Maximizing this throughput by choosing M = n1/(2−b) yields T (n) =
Θ(n1/(2−b)) for the aggregate throughput, which is the result in
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Lemma 2.6. For the sake of simplicity, we assumed that each packet
contains a single bit in the above discussion. A precise description of the
scheme would assume that each source node communicates M packets
to its destination, each packet containing a constant number of bits.
This would, in turn, scale the duration of each phase by a constant
factor, but would not change the scaling law conclusion.

We made two non-trivial assumptions in the above discussion that
need to be verified:

(a) The scheme in the hypothesis of Lemma 2.6 achieves M b

aggregate throughput inside the clusters in Phases 1 and 3.
(b) The distributed MIMO transmissions between two clusters

achieve an aggregate rate scaling linearly in M . Equivalently,
we can transmit M independent streams of constant rate
from the source cluster, and the destination node is able to
recover these streams from the M quantized observations it
gathers at the end of Phase 3.

Moreover, Lemma 2.6 makes the following additional claims about the
new scheme that we also need to verify

(c) the new scheme uses power P/n per node;
(d) the scheme works for any arbitrary pairing of the source-

destination nodes;
(e) the failure probability of the new scheme is exponentially

small.

We next verify the above statements:

(a) We need to verify that the scheme in the hypothesis of
Lemma 2.6 can achieve M b aggregate throughput inside
the sessions in Phases 1 and 3, when a constant fraction
of the clusters are operating simultaneously according to
a time-division schedule, such as the 9-TDMA scheme in
Lemma 2.1. Let us first argue that the scheme in the hypoth-
esis of Lemma 2.6 requires power P/M(Ac/A)α/2 per node
to achieve M b throughput in a network of M nodes dis-
tributed on area Ac. This follows from the scale-invariance of



2.3 Hierarchical Cooperation 43

the model and the fact that the impact of smaller distances
directly translates to larger received power: If a scheme
requires power P/M when there are M nodes distributed
on an area A, it will require P/M(Ac/A)α/2 power when the
M nodes are distributed on an area Ac. In the later case, the
distances are decreased by a factor of

√
Ac/A and hence for

the same transmitted power, the received power is increased
by a factor of (A/Ac)α/2. More generally, according to our
model in Section 2.1, a network with area A and power P/M

per node is equivalent to a network of area Ac and the power
per node reduced to P/M(Ac/A)α/2 instead of P/M .
Hence, we choose to operate with power P1 = P/M(Ac/A)α/2

per node in Phases 1 and 3. The total power transmitted by
a cluster is M P1. Plugging this effective transmitted power
of a cluster for P in (2.9) yields

INR ≤ KI
GP

N0W (
√

A)α

for the inter-cluster INR, which is constant. Therefore, the
inter cluster interference power is of the order of the thermal
noise power in the system. Simply treating it as additional,
we can achieve M b aggregate throughput simultaneously
inside all clusters in Phases 1 and 3.

(b) As distributed MIMO transmission lies at the heart of the
proposed architecture, we devote the following section to
discuss the capacity of distributed MIMO and verify this
claim.

(c) In (a), we chose to operate the scheme in the hypothesis
of Lemma 2.6 with power P1 = P/M(Ac/A)α/2 per node in
Phases 1 and 3. As M = Acn/A and α ≥ 2,

P

M

(
Ac

A

)α/2

=
P

n

(
Ac

A

)α/2−1

≤ P

n
.

In the following section while verifying item (b) above, we
will prove that the scheme uses power not larger P/n also in
the second phase.
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(d) This can be simply observed from the fact that the construc-
tion of the new scheme does not impose any constraint on
the pairing of the source-destination nodes.

(e) The new scheme fails only if the cells of area Ac fail to contain
order M nodes or when the old scheme fails to achieve its
promised throughput inside one of the clusters in Phases 1
and 3. By Lemma A.1(b), each cell contains an order of M =
Acn/A nodes with exponentially small probability of error.
On the other hand, the number of times the old scheme is
employed in the construction of the new scheme is polynomial
in n and M (it is used in M sessions inside each of the n/M

clusters) when its failure probability decreases exponentially
in M . We can use the union bound to conclude that the
failure probability for the new scheme is also exponentially
small. �

Proving Theorem 2.2 by recursively applying Lemma 2.6, we have
built a hierarchical architecture to achieve the desired throughput. At
the lowest level of the hierarchy, we use the simple time-division scheme
to exchange packets for cooperation among small clusters. Combining
this with longer range MIMO transmissions, we get a higher through-
put scheme for cooperation among nodes in larger clusters at the next
level of the hierarchy. Finally, at the top level of the hierarchy, the coop-
eration clusters are of the order n1−ε nodes, almost the network size,
and MIMO transmissions take place on a global scale over distances of
the order

√
A, to meet the desired traffic demands. Figure 1.3 in the

introduction shows the resulting hierarchical scheme with a focus on
the top two levels.

It is important to understand the aspects of the channel and the
network model, which the scheme made use of in achieving the linear
capacity scaling:

• The path attenuation decay law 1/rα (α ≥ 2) ensures that
the aggregate signals from far-away nodes are much weaker
than signals from close-by nodes. This enables (a constant
fraction of) the clusters to operate simultaneously in the
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first and third phases. (This is similar to the spatial reuse
in multi-hop.)

• The area of the network A and the per-user power P remain
constant as the number of users in the network increases.
This ensures that the received SNR between every pair
of nodes in the network is lower bounded by a constant
GP/(N0W (

√
2A)α), bounded away from zero even as the

network grows. As a result, the MIMO transmissions in the
second phase and therefore the overall scheme do not suffer
any power limitation and can achieve linear scaling. Indeed,
Remark 2.3 states that there is sufficient power to achieve
linear scaling as long as GP/(N0W (

√
2A)α) is Ω(1/n).

• The random i.i.d. channel phases enable full spatial multi-
plexing gain for the long-range MIMO transmissions, as we
prove in the following section.

In the following two sections, we will investigate the optimal coop-
eration architectures for wireless networks when the last two conditions
fail to hold.

2.4 Capacity of Distributed MIMO

In this section, we prove that the capacity of the distributed MIMO
transmission between two clusters of M nodes (Figure 2.6) scales
linearly in M . Roughly speaking, this means that to transmit M bits
from the source cluster, we need a constant number of time slots (inde-
pendent of M), which was the assumption made in Proof of Lemma 2.6.
We provide two alternative proofs for this fact. We first concentrate on

Fig. 2.6 A transmit cluster S of M nodes and a receive cluster D of M nodes separated by
a distance d.
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one particular decoding strategy at the final destination node. We show
that using this decoding strategy the destination node is able to recover
the M independent streams from the source cluster. The second proof
directly starts with the well-known capacity expression for the MIMO
channel from information theory and shows that it scales linearly in M .
This second proof will be useful when we discuss the impact of space
on the capacity of wireless networks in Section 4.

We will ignore the quantization process and assume that the obser-
vations of all the nodes inside the destination cluster are available to
the destination node as they are. (The proof of the fact that the quan-
tization process does not alter the linear scaling of the MIMO capacity
can be found in Ref. [26].) Let X be an M × 1 vector such that its kth
entry Xk denotes the signal transmitted by node k in the source cluster
S. Let Y be an M × 1 vector containing the received observations of
the M nodes in the destination cluster denoted by D. According to the
model (2.1), X and Y are related by

Y [m] = H[m]X[m] + Z[m], (2.13)

where H[m] is the M × M matrix and Hik[m] is the channel coefficient
between k ∈ S and i ∈ D given in (2.2). Z[m] is a vector of i.i.d. cir-
cularly symmetric complex Gaussian random variables. Note that the
new scheme in Lemma 2.6 is only allowed to use P/n average power
per node. However, as distributed MIMO transmissions are performed
successively in the second phase, each cluster transmits only a fraction
M/n of the total duration of the phase and stays inactive in the rest of
the time. Therefore, the nodes, when active, can transmit with power
P/M per node and still satisfy their average power constraint of P/n.
We assume in the sequel that E[|Xk[m]|2] = P/M for all k ∈ S.

Let the distance between the two clusters S and D be rSD. Observe
that for any i ∈ D, k ∈ S,

rSD ≤ rik ≤ rSD + 2
√

2Ac.

When S and D are not neighboring clusters, we also have rSD ≥ √
Ac.

These two relations yield

a :=
(

1
1 + 2

√
2

)α

≤
(

rSD

rik

)α

≤ 1, (2.14)
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when S and D are not neighboring clusters. In other words, r−α
ik =

r−α
SD ρik, where all ρik lie in the interval [a,1]. We will make use of this

fact in the sequel. When S and D are neighboring cluster, a similar
result can be established by using only the nodes located on the left
half of S and the nodes located in the right half of D in Figure 2.6.
This ensures a separation of at least

√
Ac between the transmitting and

receiving nodes.
For convenience of notation, we rewrite the model in (2.13) as

Y [m] = bF [m]X[m] + Z[m], (2.15)

where b =
√

G/r
α/2
SD and F [m] is a scaled version of the channel matrix

H[m], namely Fik[m] = ρike
jθik[m].

2.4.1 Matched Filtering

Given the received vector Y [m] and the channel matrix F [m], let the
destination node construct the following signal:

Ŷ [m] = F [m]∗(bF [m]X[m] + Z[m]),

where F ∗ denotes the complex conjugate transpose of the matrix F .
The kth entry of this vector is given by

Ŷk[m] = b
∑
i∈D

|Fik[m]|2Xk[m] + b
∑

i∈D,l∈S,
l �=k

F ∗
ik[m]Fil[m]Xl[m]

+b
∑
i∈D

Fik[m]Zi[m].

Let the destination node try to decode the stream Xk[m] transmitted
by k ∈ S based on Ŷk[m] by treating the interference from the other
streams as noise. Note that the first term in the above expression cor-
responds to the desired signal Xk. The second term is the interference
from the other streams, and the last term is the thermal noise. The
noise power is upper bounded by

E



∣∣∣∣∣b
∑
i∈D

Fik[m]Zi[m]

∣∣∣∣∣
2

 ≤ N0W,
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because of relation (2.14) and the fact that the random variables Zi[m],
i ∈ D at different receivers are independent. The interference power is
upper bounded by

E



∣∣∣∣∣∣∣∣
b
∑

i∈D,l∈S,
l �=k

F ∗
ik[m]Fil[m]Xl[m]

∣∣∣∣∣∣∣∣

2
 ≤ GP

rα
SD

M,

because of relation (2.14) and the fact that the phases of the complex
channel gains are independent for different pairs in the network. On the
other hand, the received power of the desired signal is lower bounded by

E



∣∣∣∣∣b
∑
i∈D

|Fik[m]|2Xk[m]

∣∣∣∣∣
2

 ≥ a2 GP

rα
SD

M.

Therefore, this decoding strategy allows each transmitter k ∈ S to
transmit at a rate

Rk = log
(

1 +
Ma2GP

N0Wrα
SD + MGP

)
.

As this rate is lower bounded by a constant independent of M , this
implies that we can get linear scaling for the distributed MIMO trans-
missions in Phase 2.

2.4.2 Mutual Information

Consider the channel in (2.15). Assuming that Xk[m] are i.i.d. circu-
larly symmetric Gaussian random variables of power P/M , the mutual
information of this MIMO channel, which corresponds to the number
of bits/s/Hz that can be transmitted simultaneously over the channel,
is given by the following expression (see Ref. [29] for detailed explana-
tions):

I(X;Y,F ) = E

(
logdet

(
I +

SNR
M

FF ∗
))

, (2.16)

where SNR = GP/N0Wrα
SD and the expectation is taken over the ran-

dom phases. Let λ1, . . . ,λM denote the M eigenvalues of the matrix
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1/MFF ∗. Using the fact that the determinant of a matrix is the
product of its eigenvalues, we obtain

I(X;Y,F ) = E

(
M∑
i=1

log(1 + SNRλi)

)
.

This formula shows that at fixed SNR, the mutual information is essen-
tially proportional to the number of non-vanishing eigenvalues of the
channel matrix 1/MFF ∗ (by “non-vanishing,” we mean here the eigen-
values that remain of order 1 as M increases). As a direct analysis of
the asymptotic behavior of the eigenvalues is difficult to perform in
the present case (because the channel matrix entries Fik have differ-
ent variances), we derive in the following a lower bound on the mutual
information, using the Paley–Zygmund inequality of Appendix B.

Let λ be an eigenvalue picked uniformly at random among
λ1, . . . ,λM (note that the eigenvalues λ1, . . . ,λM are themselves ran-
dom as the matrix 1/MFF ∗ is determined by the random phases).
The above mutual information can be rewritten as

I(X;Y,F ) = M
1
M

M∑
i=1

E(log(1 + SNRλi)), (2.17)

= M E(log(1 + SNRλ)), (2.18)

≥ M log(1 + SNR t)P(λ > t)

for any t ≥ 0. Equation (2.17) follows by linearity of the expectation.
In order to obtain (2.18), we recognize that the resultant expression
in Equation (2.17) contains an averaging over the eigenvalues. The
expectation in Equation (2.18) is over the random variable λ. By the
Paley–Zygmund inequality in Lemma B.1 for a non-negative random
variable λ and a constant t such that 0 ≤ t < E(λ), we have

P(λ > t) ≥ (E(λ) − t)2

E(λ2)
.

We therefore obtain

I(X;Y,F ) ≥ M log(1 + SNRt)
(E(λ) − t)2

E(λ2)
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and need to compute both E(λ) and E(λ2). We have

E(λ) =
1
M

E

(
Tr
(

1
M

FF ∗
))

=
1

M2

M∑
i,k=1

E(|Fik|2),

=
1

M2

M∑
i,k=1

ρ2
ik ≥ a2.

The first equality follows from the fact that
∑M

i=1 λi = Tr(1/MFF ∗)
and that the expected value of the randomly and uniformly chosen
eigenvalue λ is given by 1/M

∑M
i=1 λi. The rest simply follows by eval-

uating the resultant expectation with respect to the independent dis-
tribution across different channel gains. For E(λ2), by using the fact∑M

i=1 λ2
i = Tr(1/MFF ∗1/MFF ∗) we obtain

E(λ2) =
1
M

E

(
Tr
(

1
M2 FF ∗FF ∗

))
=

1
M3

M∑
iklm=1

E(FikFlkFlmFim),

≤ 2
M3

M∑
ikm=1

E(|Fik|2)E(|Fim|2) =
2

M3

M∑
ikm=1

ρ2
ikρ

2
im ≤ 2;

hence, E(λ) ≥ a2 and E(λ2) ≤ 2. This leads us to the conclusion that
for any t < a, we have

I(X;Y,F ) ≥ M log(1 + SNR t)
(a2 − t)2

2
. (2.19)

Choosing, for example, t = a/2 shows that I(X;Y,F ) grows at least
linearly with M . The exact statement and the proof of the Paley–
Zygmund inequality is given in Appendix B.
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Power

In this section, we study the impact of power on the capacity of wireless
networks. For this purpose, we first extend the scaling law formulation
in Section 2.1 to a multi-parameter scaling-law problem. The way we
scaled the parameters of the network in the earlier section (increase
the number of users as the area of the network, the per-user power
and the bandwidth of the system remain fixed) results in a network
where all the pairwise channels are strong (of high SNR). The goal of
the current section is to understand optimal architectures for wireless
networks where this is not necessarily the case. For this purpose, we
study different scalings of the system parameters in this section, which
uncovers power-limited operating regimes in wireless networks. Indeed,
to obtain a complete picture of the impact of power on capacity, we need
to study all possible limits with respect to the key parameters. This
leads to a multi-parameter scaling-law problem, which is formulated in
Section 3.1.

Using this new formulation, we first evaluate the performance of
the two architectures discussed in the previous section, multi-hop and
hierarchical cooperation, in power-limited networks. In Section 3.3, we
present a hybrid architecture that combines these two strategies and
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we show that this new architecture performs strictly better than both
of the earlier architectures in most interesting parameter ranges. In
Section 3.5, we derive a multi-parameter information-theoretic upper
bound on the scaling of the network capacity. This upper bound shows
that the three architectures mentioned so far, multi-hop, hierarchical
cooperation and a combination of the two, are sufficient for achieving
the capacity of all wireless networks, as far as scaling is concerned. At
the same time, none of these strategies can be left out. That is, there
is a regime where each of these architectures performs strictly better
than the others.

3.1 A Multi-Parameter Scaling-Law Problem

Shannon’s classical capacity formula

CAWGN(W,Pr/N0) = W log2

(
1 +

Pr

N0W

)
bits/s (3.1)

of a point-to-point additive white Gaussian noise (AWGN) channel with
bandwidth W Hz, received power Pr Watts, and white noise with power
spectral density N0/2 Watts/Hz plays a central role in communication
system design. The formula not only quantifies exactly the performance
limit of communication in terms of system parameters, but perhaps
more importantly also identifies two fundamentally different operating
regimes . The operating regime of the channel is determined by the key
parameter: the SNR defined as

SNR :=
Pr

N0W
.

In the power-limited (or low SNR) regime, where SNR � 0 dB, the
capacity is approximately linear in the power and the performance
depends critically on the power available, but not so much on the
bandwidth. In the bandwidth-limited (or high SNR) regime, where
SNR � 0 dB, the capacity is approximately linear in the bandwidth
and the performance depends critically on the bandwidth, but not so
much on the power. This understanding of the two operating regimes of
the AWGN channel can be summarized by the following approximation
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formula for the capacity

CAWGN(W,Pr/N0) ∝
{

W, if SNR � 0dB,
Pr/N0, if SNR � 0dB.

(3.2)

The design of good communication schemes is primarily driven by the
operating regime one is in.

Now, imagine the capacity formula (3.1) was not at our disposal
and we were interested in finding (3.2) that approximates the depen-
dence of the capacity on the two resources in the channel and identifies
the two qualitatively different operating regimes depending on SNR.
The approximation (3.2) can be obtained by studying the interplay
between the two resources, the bandwidth and the power, as a scaling
law problem. Suppose Pr/N0 and W are coupled to each other via a
parametric formula, Pr/N0 = W0m

γ1 and W = W1m
γ2 with γ1,γ2 fixed

real numbers and m a dummy parameter. W0 and W1 are positive con-
stants of appropriate units. Assume further that for any γ1,γ2, we are
able to characterize the scaling exponent in m of the spectral efficiency
ρAWGN = CAWGN/W in bits/s/Hz

eAWGN(γ1,γ2) := lim
m→∞

logρAWGN(γ1,γ2)
logm

. (3.3)

For the AWGN channel, we would obtain

eAWGN(γ1,γ2) =
{

0, if γ1 − γ2 ≥ 0,

γ1 − γ2, if γ1 − γ2 < 0.

This can be expressed in a simpler form as

eAWGN(γ) =
{

0, if γ ≥ 0,

γ, if γ < 0.
(3.4)

if we define γ = γ1 − γ2 and SNR = Pr/N0W = mγ . (From now on,
we ignore the constants W0, W1 that are required for matching the
units in the parametric formula above, but do not change the scal-
ing law.) The characterization of the scaling exponent in (3.4) can be
used to deduce the approximation (3.2) for the capacity: Note that
for large m, γ > 0 corresponds to SNR � 0 dB. In this case, the spec-
tral efficiency (CAWGN/W ) in (3.4) is constant, i.e., does not exhibit



54 Power

a significant dependence on either W or Pr. Equivalently, the capacity
in bits/s is linear in W as given in (3.2). Therefore, the scaling law
problem (3.3) when characterized for any γ1, γ2 can be used as a tool
to discover the operating regimes of the AWGN channel and obtain
an approximate characterization of its capacity. We next define a sim-
ilar scaling law problem for wireless networks, the solution of which
leads to an analogous characterization of the capacity of large wireless
networks.

In Section 2, we were interested in characterizing the scaling expo-
nent of the aggregate throughput T (n) = nR(n) with the number of
nodes n, when the parameters A, P and W remained constant as n

increases. Equivalently, A, P and W were coupled with n as A = V0 n0,
P = V1 n0, W = V2 n0, where V0, V1 and V2 are constants with appro-
priate units. This particular limit allowed us to focus exclusively on
the impact of interference in wireless networks, as it results in a high
SNR regime for the whole network: even the received SNR between the
most far away pairs in the network, given by P/N0W (

√
A)α, remains

lower bounded by a constant when n increases. This models the sce-
nario where all users have high SNR connections with each other. This
is a practically relevant case as illustrated in Example 1.1. As can be
observed directly from the SNR expression P

N0W (
√

A)α
, a network can

be in this high SNR regime due to a number of reasons: a large number
of users can be distributed on a relatively small area, the power avail-
able at the wireless users can be large or the available bandwidth can
be relatively small.

We now want to address networks that can potentially suffer from
power limitation. For this purpose, we can consider another limit that
now results in vanishing received SNR between some pairs of nodes
in the network as n increases. For example, A = V0 n1, P = V1n

0,
W = V2n

0 is one such limit, which yields a low SNR regime for most
pairwise channels inside the network. It can be readily verified that
the SNR between all pairs inside the network either decreases to zero
with increasing n or remains upper bounded by a constant.1 However,
considering one arbitrary limit can miss out much of the interesting

1 We interpret a channel in both high and low SNR, if the SNR does not depend on n.
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parameter space, especially because, as we will see later in this section,
there are multiple power-limited regimes in wireless networks. A sin-
gle limit can capture only one of them. Moreover, this particular limit
A = V0n

1, P = V1n
0, W = V2n

0, usually referred to as the extended
scaling in the literature, is not the most interesting one: It does not
allow us to study the common scenario where the channels between
nearby nodes are in the high SNR regime, while those between far-
away nodes are in the low SNR regime.

In this section, we want to study all possible interplay between A, P

and W . These are three independent parameters of the network, each
of which can take on a wide range of values in practice. In complete
analogy to the AWGN case, we formulate the interplay as a scaling law
problem, focusing on the large n limit. In the most general sense, we
let A = nβ1 , P = nβ2 , W = nβ3 and identify the scaling exponent

e(β1,β2,β3) := lim
n→∞

log T (n,β1,β2,β3)
log n

(3.5)

of the aggregate throughput T (n) = nR(n) in bits/s/Hz, for any
β1,β2,β3. (Note that the actual aggregate capacity of the network in
bits/s is the bandwidth times T (n).)

In parallel to the point-to-point AWGN case, the scaling law prob-
lem in (3.5) can be expressed in a simpler form. For the channel
model in (2.2), we will see that the aggregate throughput (expressed
in bits/s/Hz) depends on A, P and W only through a single SNR
parameter. As opposed to the point-to-point case, there are many SNR
parameters in a network corresponding to channels between different
pairs of nodes. We can take any of these different SNR parameters as
a reference. Here, without loss of generality, we choose to work with
the received SNR over the typical nearest-neighbor distance in the net-
work, denoted by SNRs. Already defined in (2.7), it corresponds to the
received SNR in a point-to-point transmission over the typical nearest-
neighbor distance

√
A/n in the network.2

2 Note that from SNRs and n, we can determine the SNR for communicating at any other
scale in the network. For example, the SNR between the most far-away pairs in the network,
typically separated by a distance Θ(

√
A), is n−α/2SNRs as the diameter is

√
n times the

nearest-neighbor distance.
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Therefore, the scaling law problem in (3.5) can be equivalently
stated as characterizing the scaling exponent

e(β) := lim
n→∞

log T (n,β)
log n

(3.6)

of the aggregate throughput T (n) for any real β where SNRs = nβ. In
the setting of Section 2, SNRs = nα/2, where α is the power path loss
exponent of the environment in (2.2). We have seen in this case that

lim
n→∞

log T (n)
log n

= 1,

hence, e(α/2) = 1. The main technical result in the present section is
the characterization of e(β) for any real β.

3.2 Multi-hop and Hierarchical Cooperation in
Power-Limited Networks

In this section, we evaluate the performance of multi-hop and hierar-
chical cooperation in power-limited wireless networks.

3.2.1 Multi-hop

The aggregate throughput of multi-hop is given in (2.8)

TMH ≥ K0
√

n log
(

1 +
SNRs

1 + KISNRs

)
,

where K0 and KI are constants. As multi-hop is based on nearest-
neighbor transmissions, not surprisingly, its aggregate throughput
is determined by SNRs. When SNRs � 0 dB, or equivalently when
SNRs = nβ and β > 0, TMH = Θ(

√
n). This was the case in the pre-

vious section. The multi-hop architecture becomes power-limited when
the nearest-neighbor channels are in the low-SNR regime. In this case,
TMH = Θ(

√
nSNRs). To summarize,

TMH =
{

Θ(
√

n), if SNRs � 0dB,

Θ(
√

nSNRs), if SNRs � 0dB,
(3.7)

or in terms of scaling exponent,

eMH(β) =
{

1/2, if β ≥ 0,

1/2 + β, if β < 0.
(3.8)
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3.2.2 Bursty Hierarchical Cooperation

From Theorem 2.10 and Remark 2.3 in Section 2, the hierarchical
cooperation architecture achieves an aggregate throughput Θ(n1−ε) for
any ε > 0 when the power available at the nodes is Ω(1/n) (and also
W = Θ(1) and A = Θ(1)). As the impact of power is to determine the
received SNR’s in the network, this power requirement can be equiva-
lently stated in terms of received SNR. Let us take the nearest-neighbor
SNR defined in (2.7) as a reference. It can be easily verified from the
definition of SNRs and the requirement P = Ω(1/n) when W = Θ(1)
and A = Θ(1) that hierarchical cooperation achieves Θ(n1−ε) scaling
if SNRs = Ω(nα/2−1). Note that stating the power requirement of the
scheme in terms of SNR is more informative; it says that whether linear
scaling can be achieved in a network or not is determined by the joint
impact of P , A and W on SNR (and not their individual scalings).
Now, what is the performance of hierarchical cooperation in networks
where the parameters P , A and W are such that SNRs = O(nα/2−1)?

In such networks, we can consider a simple “bursty” modification of
the hierarchical cooperation architecture, which runs the hierarchical
scheme as it is during a fraction

n1−α/2SNRs

of the time with elevated power P/(n1−α/2 SNRs) per node and remains
silent for the rest of the time. (Note that as SNRs = O(nα/2−1),
n1−α/2SNRs ≤ 1 for large n.) This bursty strategy consumes

P

n1−α/2SNRs
· n1−α/2SNRs = P

power on the average and achieves an aggregate throughput scaling

n1−α/2SNRs · n1−ε.

Note that during operation, the effective nearest-neighbor SNR is
increased by a factor of 1/n1−α/2SNRs as the transmit power is
increased by the same factor. Therefore, SNRs = Θ(nα/2−1) and the
scheme achieves Θ(n1−ε) aggregate throughput. However, as the
scheme operates only a fraction of the time, the effective aggregate
throughput is n1−α/2SNRs times this.
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In terms of the scaling exponent of the aggregate throughput, hier-
archical cooperation together with this bursty modification achieves

eHC(β) =
{

1, if β ≥ α/2 − 1,

2 − α/2 + β, if β < α/2 − 1,

when SNRs = nβ.
Note that this “bursty” transmission strategy has a high peak-to-

average power ratio. However, although we consider bursty transmis-
sions in time in the above discussion, such burstiness can just as well be
implemented over frequency with only a fraction of the total bandwidth
W used. For example, this can be implemented in an OFDM system,
using a subset of the sub-carriers at any one time, but putting more
energy in the active sub-carriers. This way, the peak power remains
constant over time.

In the above discussion, the quantity n1−α/2SNRs stands as a major
parameter. Depending on whether this quantity is larger or smaller than
Θ(1), the hierarchical cooperation architecture is power-limited or not.
There is a physical-interpretation to this quantity as the long distance
SNR in the network. Let us define

SNRl := n1−α/2SNRs, (3.9)

or equivalently from (2.7)

SNRl = n
GP

N0W (
√

A)α
. (3.10)

This quantity corresponds to n times the received SNR of a
transmitter–receiver pair separated by a distance equal to the diam-
eter of the network. There are Θ(n) nodes located at distance Θ(

√
A)

to any given node in the network. Hence, n times the SNR between
the most far-away nodes can be interpreted as the total SNR that can
be transferred to a node over this largest spatial scale. Similarly, the
short-distance SNR in (2.7) can be interpreted as the total SNR that
can be transfered to a node over the nearest-neighbor scale. However,
as nodes have only a constant number of nearest neighbors, the short-
distance SNR is simply the SNR of a nearest-neighbor pair. Note that
when α ≥ 2, the long-distance SNR is always smaller than or equal to
the short-distance SNR in the network.
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In terms of this new SNR parameter, the performance of hierarchical
cooperation can be expressed as

THC =
{

Θ(n1−ε), if SNRl � 0dB,

Θ(n1−εSNRl), if SNRl � 0dB.
(3.11)

Therefore, roughly speaking, THC = n1−ε log(1 + SNRl). This corre-
sponds to the capacity of a MIMO transmission between two clusters of
antennas, each of size Θ(n1−ε) and separated by a distance Θ(

√
A). The

backbone of the hierarchical cooperation architecture is such MIMO
transmissions performed at the highest level of the hierarchy. There-
fore, the performance is roughly given by the capacity of these MIMO
transmissions.

Comparing the performances of multi-hop and hierarchical coop-
eration in (3.7) and (3.11), respectively, together with the relation
SNRl = n1−α/2SNRs, we observe that the network experiences power
limitation if SNRl � 0 dB. In such power-limited networks, hierarchical
cooperation performs better than multi-hop when 2 ≤ α ≤ 3; observe
that the second line of (3.11) is always larger than the second line
of (3.7) in this case. Signal power decays slowly with distance when
2 ≤ α ≤ 3, and hierarchical cooperation yields maximal received power
by collecting the received signals of a large number of nodes. Therefore,
it performs better than multi-hop. When α > 3, signal power decays
fast with distance; hence, long-distance communications are not prefer-
able. Multi-hop performs better than hierarchical cooperation in this
case; the second line of (3.7) is larger than the second line of (3.11).

3.3 A Hybrid Architecture: MIMO — Multi-hop

Is this the best performance we can get in power-limited wireless net-
works, i.e., when SNRl � 0 dB? We next show that a hybrid archi-
tecture combining hierarchical cooperation with multi-hop performs
significantly better than either of these strategies alone when α > 3
and SNRs � 0 dB. Note that as SNRs = nα/2−1SNRl, there is a wide
range of parameters where SNRs � 0 dB, while SNRl � 0 dB. This cor-
responds to the heterogeneous case where the short-range links are
strong (of high SNR) and the long-range links are weak (of low SNR)
in a network.
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Theorem 3.1. Let α > 2, SNRs � 0 dB and SNRl � 0 dB. For any
ε > 0, there exists a constant K3 > 0 independent of n such that w.h.p.,
an aggregate throughput

TMIMO−MH ≥ K3
√

nSNR1/(α−2)−ε
s

is achievable in the network, using a hybrid architecture combining
hierarchical cooperation with multi-hop.

In terms of scaling exponent, this result can be stated as

eMIMO−MH(β) =
1
2

+
β

α − 2
, if α > 2, β ≥ 0 and β < α/2 − 1.

Note that for β ≥ 0, this scaling exponent is larger than 1/2, the scal-
ing exponent achieved by pure multi-hop. In particular, when α > 3,
it is also better than the scaling exponent achieved by pure hierarchi-
cal cooperation, which performs worse than multi-hop in this case, as
pointed out earlier.

We describe in detail how the hybrid architecture operates in the
proof of Theorem 3.1. On the global scale, this hybrid architecture is
similar to multi-hop. The network is divided into cells and the packets
of each source-destination pair are transferred by hopping from one
cell to the next. At each hop, the packets are decoded and then re-
encoded for the next hop. The architecture differs from multi-hop by
the fact that each hop is performed via cooperative MIMO transmission
assisted by hierarchical cooperation. The architecture is illustrated in
Figure 1.4.

Proof of Theorem 3.1. Let us divide the network into square cells of
area Ac. Let M = Acn/A be the average number of nodes contained in
each cell. Below, we argue more precisely that for our particular choice
of Ac, Lemma A.1(a) ensures that there are Θ(M) nodes in all cells
w.h.p. We relay the packets of the source-destination pairs by hopping
from one cell to the next and perform each hop by distributed MIMO
transmissions. As in the case of pure multi-hopping, we follow a sim-
plistic route between the source-destination pairs by first relaying the



3.3 A Hybrid Architecture: MIMO — Multi-hop 61

packets horizontally and then vertically, as shown in Figure 1.4. Hence,
the relaying burden imposed on a given cell is due to the source nodes
that lie in its horizontal slab and destination nodes that lie in its verti-
cal slab. The number of nodes contained in a slab of area

√
Ac A is at

most (1 + δ)
√

Mn w.h.p. for any δ > 0 by Lemma A.1(a). Hence, there
can be at most O(

√
Mn) source-destination routes that pass through

a given cell. Let us arbitrarily associate the source-destination pairs
whose routes pass through a given cell with one of the M nodes in this
cell, such that each node is associated with at most O(

√
n/M) source-

destination pairs. The only rule that we need to respect while doing this
association is that if a source-destination route starts or ends in a cer-
tain cell, then the node associated with this source-destination pair in
this cell should naturally be its source or destination node, respectively.
The nodes associated with a source-destination pair will act as relays
for this source-destination pair during the multi-hop operation. They
will decode, temporarily store and forward the packets of this source-
destination pair. At each hop, the packets of the source-destination pair
will be transferred from its relay node in one cell to its relay node in
the next cell via distributed MIMO transmissions.

Note that the total relaying traffic departing from a given cell
is composed of O(

√
Mn) point-to-point links between the nodes in

this cell and the nodes in its four neighboring cells, such that each
node is source for O(

√
n/M) links. This traffic can be organized into

O(
√

n/M) sessions such that in each session we assign M links with
source nodes in one cell and destination nodes in a neighboring cell
to relay their packets. Note that these two neighboring cells together
with the traffic in each session can be viewed as a small wireless net-
work of 2M nodes randomly and uniformly distributed on a rectangu-
lar area 2

√
Ac × √

Ac and paired to M source-destination pairs. (Con-
sider, for example, the two cells highlighted in Figure 1.4.) Assume
the long-distance SNR in this small network, SNRl(Ac), is � 0 dB,
where

SNRl(Ac) = M
GP

N0W (
√

Ac)α
= M1−α/2SNRs. (3.12)
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If we use hierarchical cooperation to establish the M links in this
small network, we get an aggregate throughput Θ(M1−ε) by (3.11). As
SNRl(Ac) � 0 dB, there is no power limitation for hierarchical coopera-
tion in this small network. (Note that by Remark 2.4, Θ(M1−ε) scaling
can be achieved for any arbitrary source-destination pairing.) This cor-
responds to M−ε rate for each of the M links involved. As we have to
time-share between the O(

√
n/M) sessions, with this strategy the cell

can provide an outbound relaying rate of Θ(
√

MM−ε/
√

n) to each of
the source-destination pairs that are routed through the cell.

To conclude that the hybrid architecture achieves a rate
Θ(

√
MM−ε/

√
n) per source-destination pair, we should ensure that

we can provide this rate simultaneously at all hops. A time-division
strategy between the transmitting cells, such as the 9-TDMA scheme
used in Section 2.2, can be used to control the inter-cell interference, so
that when treated as additional noise, the inter-cell interference does
not degrade significantly the hop capacity derived above. Such a TDMA
strategy also ensures that each cell is active a constant fraction of the
time; hence, the overhead introduced by the TDMA strategy does not
alter the scaling.

We conclude that the aggregate throughput achieved by the hybrid
architecture is given by

TMIMO−MH = Θ(
√

nM1/2−ε). (3.13)

We therefore see that combining multi-hop with hierarchical coop-
eration provides an

√
M -fold gain for the aggregate throughput as

compared with pure multi-hop, which corresponds to M = 1 in the
above discussion. Choosing larger M in (3.13) yields a larger aggre-
gate throughput, as it increases the hop capacity. Note that if we could
choose M = n, we could get linear scaling, in which case the scheme
reduces to pure hierarchical cooperation. However, as SNRl � 0 dB,
the assumption SNRl(Ac) � 0 dB we have made earlier is not satisfied
for Ac = A; hence, M cannot be as large as n. From (3.12), we see that
the largest cluster size that satisfies the condition SNR(Ac) � 0 dB is
given by

M = SNR1/(α/2−1)
s and Ac = (A/n)SNR1/(α/2−1)

s . (3.14)
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This is the largest geographical scale in the network over which the
power limitation is not felt. Any larger cluster size increases the relay-
ing burden without increasing the hop capacity. Combining (3.14) and
(3.13) completes the proof of Theorem 3.1. �

Remark 3.2. Note that the above strategy is a decode-and-forward
strategy, in the sense that after each hop, clusters perform the entire
decoding of the received message (via local hierarchical cooperation),
before retransmitting it further. One could then ask whether pure
amplify-and-forward MIMO transmissions between clusters would not
be easier to perform in this case. The problem is that the through-
put of such a scheme degrades with increasing system size, because of
two problems: noise amplification at each hope is the first one; second
the end-to-end MIMO channel matrix looses degrees of freedom over
multiple hops.

3.4 Operating Regimes of Large Wireless Networks

Combining the performances of the three architectures discussed so far,
pure hierarchical cooperation, pure multi-hop and the hybrid combina-
tion of the two in Theorem 3.1, we obtain the following lower bound
for the scaling exponent of wireless networks:

e(α,β) ≥




1, β ≥ α/2 − 1, Hierarchical
cooperation,

2 − α

2
+ β, β < α/2 − 1, Bursty HC,

and 2 ≤ α < 3,

1
2

+ β, β ≤ 0 Multi-hop,

and α ≥ 3,

1
2

+
β

(α − 2)
, 0 < β < α/2 − 1 MIMO multi-hop.

and α ≥ 3,

(3.15)

Note that we shifted notation from e(β) to e(α,β), in order to
emphasize the explicit dependence on α. In Section 3.5, we prove
that this lower bound on e(α,β) is tight by deriving a matching
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information-theoretic upper bound on e(α,β). This implies that the
architectures in (3.15) yield the best possible scaling exponent in the
corresponding regimes; therefore, these are scaling optimal architec-
tures for wireless networks.

In parallel to the point-to-point case discussed in Section 3.1, the
characterization of the scaling exponent in (3.15) allows one to obtain
an approximation of the capacity of wireless networks, which identifies
the dependence of the capacity to major system parameters. In order
to obtain a formula similar to (3.2), let us define Pr as the received
power from a node at the typical nearest-neighbor distance. The earlier
defined quantities SNRs and SNRl can be expressed in terms of this
quantity as

SNRs =
Pr

N0W
and SNRl =

n1−α/2Pr

N0W
.

Then, the total capacity C of large wireless networks, in bits/s, is
approximately given by

C ∝




nW, if SNRl � 0dB,

n2−α/2Pr/N0, if SNRl � 0dB
and 2 ≤ α ≤ 3,

√
nPr/N0, if SNRs � 0dB and α > 3,

√
nW

α−3
α−2 (Pr/N0)1/(α−2), if SNRl � 0dB, SNRs � 0dB

and α > 3.

(3.16)
This approximation identifies four qualitatively different regimes in
wireless networks, depending on the two SNR parameters we defined
earlier: the short-distance SNR and the long-distance SNR.

The first regime in (3.16) is degrees of freedom-limited regime. The
bandwidth and the number of nodes in the network together constitute
the available degrees of freedom in the system. In this regime, the net-
work does not face any power limitation, as even the long distance SNR
in the network is large. Thus, long distance communication is feasible
and good communication schemes should exploit this feasibility. On the
other hand, the network is degrees of freedom limited; hence, good com-
munication schemes for this regime should also achieve the full degrees
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of freedom in the system. These are the properties of the hierarchical
cooperation architecture: The communication in the network is done
via cooperative MIMO transmissions between large clusters of nodes
(of size almost of order n) and at distance of the order of the diam-
eter of the network. The performance of the MIMO transmissions is
linear in the number of nodes, implying that interference limitation is
removed by cooperation, and full degrees of freedom are achieved, at
least as far as scaling is concerned.

In all the other regimes, the long-distance received SNR is less than
0 dB. Hence, the network is power-limited and the transfer of power
becomes important in determining performance. In the second regime,
i.e., when α ≤ 3, signal power decays slowly with distance and the
total power transfer is maximized by global cooperation. Cooperative
MIMO communication not only achieves the full degrees of freedom
in the system, but it also provides a power gain by combining signals
received at different nodes. This power gain becomes important in this
regime. Note that this is a power-limited regime; hence, the perfor-
mance depends critically on the available power, but not so much on
the bandwidth.

When α > 3, signals decay fast with distance, and the transfer of
power is maximized by cooperating at smaller scales. In this case, there
is no benefit in combining the signals received by a large cluster of
nodes. The total power received by such a large cluster is already dom-
inated by the power received by few nodes in the cluster, located clos-
est to the transmit cluster. It is more beneficial to perform shorter
range communication between clusters containing fewer nodes. Then,
the rest of nodes in the network can undertake simultaneous transmis-
sions, suggesting the idea of spatial reuse. When the nearest-neighbor
SNRs � 0 dB (third regime), the communication scale reduces to the
nearest-neighbor distance. The optimal strategy in this regime is to
confine to nearest-neighbor transmissions and multi-hop information
across the network. The point-to-point nearest-neighbor transmissions
are power-limited, as SNRs � 0 dB; hence, the overall capacity of the
network is also power-limited.

The most interesting regime and the one that is most
counterintuitive, given our understanding of the point-to-point AWGN
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channel, is the fourth regime, when α > 3 and SNRl � 0 dB; however,
SNRs � 0 dB. Note that as SNRl � 0 dB, this is still a power-limited
regime and optimal schemes should transfer power efficiently across the
network. However, SNRs � 0 dB; hence, the nearest-neighbor transmis-
sions are now bandwidth-limited and not power-efficient in translating
the power gain into capacity gain. There is potential for increasing
the throughput by spatially multiplexing transmission via cooperation
within clusters of nodes and performing distributed MIMO. Yet, the
clusters cannot be as large as the size of the network, as SNRl � 0 dB
and power attenuates rapidly for α > 3. The exact cooperation scale is
dictated by the exact amount of power available and the power path
loss exponent.

It turns out that the optimal scheme in this regime is to cooperate
hierarchically within clusters of an intermediate size, perform MIMO
transmission between adjacent clusters and then multi-hop across sev-
eral clusters in order to reach the final destination. The optimal cluster
size is chosen such that the received SNR in the MIMO transmissions is
at 0 dB. Any smaller cluster size results in power inefficiency. Any larger
cluster size would reduce the amount of spatial reuse, without provid-
ing any extra benefit in terms of power transfer. The two extremes of
this architecture are precisely the traditional multi-hop scheme, where
the cluster size is 1 and the number of hops is

√
n, and the long-range

cooperative MIMO scheme, where the cluster size is of order n and
the number of hops is 1. Note also that because short-range links are
bandwidth-limited and long-range links are power-limited, the network
capacity is both bandwidth and power-limited. Thus, the capacity is
sensitive to both the amount of bandwidth and the amount of power
available. This regime is fundamentally a consequence of the heteroge-
neous nature of the links in the network.

3.5 Upper Bound on the Throughput Scaling

In this section, we derive an information-theoretic upper bound on the
capacity scaling of wireless networks. The upper bound is information-
theoretic because it emerges from basic assumptions on the physical
channel and the network, and no specific assumption is made about the
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communication or networking technique employed. As such, it charac-
terizes the ultimate performance limit in wireless networks and applies
globally to any possible network communication scheme. It turns out
that the performance of the schemes described in the previous sections
match asymptotically the upper bound derived below. Thus, the cur-
rent and the previous sections together characterize the capacity scaling
of wireless networks for the model described in Section 2.

3.5.1 Main Result

Recall the definition of the scaling exponent of the total throughput T

defined earlier in Section 3.1,

e(α,β) = lim
n→∞

log T

log n
,

where

β = lim
n→∞

log SNRs

log n
.

is the scaling exponent of

SNRs =
GP

N0W (
√

A/n)α
. (3.17)

The main result of this section is to establish the following tight upper
bound on the aggregate throughput scaling achieved by any scheme in
the network, which matches the lower found in (3.15). The following
section is devoted to the proof of this theorem.

Theorem 3.3. The scaling exponent of the aggregate throughput T

is bounded above with high probability by

e(α,β) ≤




1, β ≥ α/2 − 1, Regime I,
2 − α/2 + β, β < α/2 − 1 Regime II,

and 2 ≤ α < 3,

1/2 + β, β ≤ 0 and α ≥ 3, Regime III,
1/2 + β/(α − 2), 0 < β < α/2 − 1 Regime IV,

and α ≥ 3,
(3.18)
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for α ≥ 2 and any real β, where β is the scaling exponent of the nearest-
neighbor SNR.

The upper bounds for the dense and extended scalings extensively
studied in the literature can be found as special cases of the above
result. In the dense scaling, the area, the bandwidth and the power
are constants that do not depend on n. It can be observed from
(3.17) that SNRs = Θ(nα/2), or equivalently dense networks correspond
to β = α/2, which falls in Regime I in (3.18), yielding an exponent
e(α,α/2) ≤ 1. This was the upper bound derived in Theorem 2.5. In the
extended scaling A = n, while P and W are constants independent of n.
In (3.17), SNRs = Θ(1) or equivalently β = 0. Thus, depending on the
power path loss exponent, extended networks fall in either the second
or the third regime in (3.18), with an exponent equal to

e(α,0) ≤
{

2 − α/2, 2 ≤ α ≤ 3,

1/2, α > 3.

Note that neither the dense nor the extended scaling touches the fourth
regime.

3.5.2 Cutset Upper Bound

We consider a cut dividing the network area into two equal halves. We
are interested in bounding above the sum of the rates of communica-
tions passing through the cut from left to right. These communications
with source nodes located on the left and destination nodes located on
the right half domain are depicted in bold lines in Figure 3.1. Statisti-
cally, half of the nodes are located on the left-hand side of the network,
and half of these nodes have their destination located on the right-hand
side (this can be made precise using arguments similar to Lemma A.1).
Hence, the above-mentioned sum-rate is equal to 1/4th of the total
throughput T with high probability. The maximum achievable sum-
rate between these source-destination pairs is bounded above by the
capacity of the MIMO channel between all nodes S located to the left
of the cut and all nodes D located to the right. Under the fast fading
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fl

Fig. 3.1 The cut-set considered in Section 3.5.2. The communication requests that pass
across the cut from left to right are depicted in bold lines.

assumption, we have (see Ref. [29] for detailed explanations)

TL→R ≤ max
Q(H)≥0

E(Qkk(H))≤P/W,∀k∈S

E

(
logdet

(
I +

1
N0

HQ(H)H∗
))

,

(3.19)
where

Hik =
√

Gejθik

r
α/2
ik

, k ∈ S, i ∈ D.

The mapping Q(·) is from the set of possible channel realizations H

to the set of positive semi-definite transmit covariance matrices.3 The
diagonal element Qkk(H) corresponds to the power allocated to the
kth node for channel state H. Let us simplify notation by introducing
the nearest-neighbor SNR defined earlier in (2.7) and also rescale the
distances in the network by this nearest-neighbor distance, defining

r̂ik :=
1√
A/n

rik and Ĥik :=
ejθik

r̂
α/2
ik

. (3.20)

3 Indeed, full channel state information is assumed at the transmitter nodes; hence, the
transmit covariance matrix can be tuned according to the channel state realizations.
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Note that the first transformation rescales space and maps our original
network of area

√
A × √

A to a network of area
√

n × √
n. Conse-

quently, the matrix Ĥ defined in terms of the rescaled distances relates
to such a network with area n. Normalizing the typical nearest-neighbor
distance to 1 provides the convenience that the received SNR in a point-
to-point transmission between two nodes at rescaled distance r̂ can be
simply expressed as SNRsr̂

−α. We can thus rewrite (3.19) in terms of
these new variables as4

TL→R ≤ max
Q(Ĥ)≥0

E(Qkk(Ĥ))≤1,∀k∈S

E

(
logdet(I + SNRs ĤQ(Ĥ)Ĥ∗)

)
. (3.21)

One way to upper bound (3.21) is through upper bounding the
capacity by the total received SNR, formally using the relation

logdet(I + SNRs ĤQ(Ĥ)Ĥ∗) ≤ Tr(SNRs ĤQ(Ĥ)Ĥ∗). (3.22)

The upper bound is tight only if the SNR received by each right-hand
side node, i.e., each diagonal entry of the matrix SNRs ĤQ(Ĥ)Ĥ∗,
is small. (Note that the relation in (3.22) relies on the inequality
log(1 + x) ≤ x, which is only tight if x is small.) Whether this is the
case or not depends on SNRs. It can be shown that if SNRs ≤ 1, the
network is highly power-limited and the received SNR is small, i.e.,
decays to zero with increasing n, for every right-hand side node. Using
(3.22) will yield a tight upper bound in that case. However, in the
general case, SNRs can be arbitrarily large, which can result in high
received SNR for certain right-hand side nodes that are located close
to the cut or even for all nodes in D. Hence, before using (3.22), we
need to distinguish between those nodes in D that receive high SNR
and those that have poor power connections to the left-hand side.

4 Networks with area extending linearly with the number of users are usually called extended
networks in the literature. By rescaling distances, we map our original network to such
an extended network. However, the problem itself does not reduce to the extended scaling
problem, as we do not necessarily assume that SNRs = 1 here. Indeed, we maintain full
generality and are interested in characterizing the whole regime SNRs = nβ , where β can
be any real number.
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Assumption 3.1. For the sake of simplicity in the presentation, we
assume in this section that there is a rectangular region located imme-
diately to the right of the cut that is cleared of nodes. Formally, we
assume that the set of nodes E = {i ∈ D : 0 ≤ x̂i ≤ 1} is empty, where
x̂i denotes the horizontal coordinate of the rescaled position r̂i = (x̂i, ŷi)
of node i. In fact, w.h.p., this property does not hold in a random
realization of the network. However, making this assumption allows to
exhibit the central ideas in the following derivation in a simpler manner.
A rigorous derivation of the result (without this particular assumption)
can be found in Ref. [22].

Let VD denote the set of nodes located on a rectangular strip imme-
diately to the right of the empty region E. Formally, VD = {i ∈ D : 1 ≤
x̂i ≤ v̂}, where 1 ≤ v̂ ≤ √

n/2 and v̂ − 1 is the rescaled width of the
rectangular strip VD (Figure 3.1). We would like to tune v̂ so that VD

contains the right-hand side nodes with high received SNR from the
left-hand side; i.e., those nodes whose received SNR is larger than a
threshold, say 1. Note, however, that we do not yet know the covari-
ance matrix Q of the transmissions from the left-hand side nodes, which
is to be determined from the maximization problem in Equation (3.21).
Thus, we cannot really compute the received SNR of a right-hand side
node. For the purpose of specifying VD, however, let us arbitrarily look
at the case where Q is the identity matrix and let us define the received
SNR of a right-hand side node i ∈ D, when left-hand side nodes are
transmitting independent signals at full power, to be

SNRi :=
∑
k∈S

P

N0W
|Hik|2 = SNRs

∑
k∈S

|Ĥik|2 = SNRsd̂i, (3.23)

where we have defined

d̂i :=
∑
k∈S

|Ĥik|2. (3.24)

Later, we will see that this arbitrary choice of identity covariance matrix
is indeed asymptotically optimal (Lemma 3.5). A good approximation
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for d̂i is

d̂i ≈ x̂2−α
i , (3.25)

where x̂i denotes the rescaled horizontal coordinate of the right-hand
side node i ∈ D. (This fact is made precise in Lemma 3.7.) Recall that
1 ≤ x̂i ≤ √

n/2 and as α ≥ 2, d̂i is decreasing in x̂i. Using (3.23) and
(3.25), we can identify three different regimes and specify v̂ accordingly:

(1) If SNRs ≥ nα/2−1, then SNRi � 1,∀ i ∈ D. Hence, let us
choose v̂ =

√
n/2 or equivalently VD = D in this case.

(2) If SNRs ≤ 1, then SNRi � 1,∀ i ∈ D. Thus, let us choose
v̂ = 1 or equivalently VD = ∅.5

(3) If 1 < SNRs < nα/2−1, then let us choose

v̂ =

{√
n/2, if α = 2,

SNR1/(α−2)
s , if α > 2,

so that we ensure SNRi � 1,∀ i ∈ VD.

We now would like to break the information transfer from the left-
half domain S to the right-half domain D in (3.21) into two terms. The
first term governs the information transfer from S to VD. The second
term governs the information transfer from S to the remaining nodes on
the right-half domain, i.e., D\VD. Recall that the characteristic of the
nodes in VD is that they have good power connections to the left-hand
side, that is, the information transfer from S to VD is not limited in
power, but can be limited in degrees of freedom. Thus, it is reasonable
to bound the rate of this first information transfer by the cardinality
of the set VD, rather than the total received SNR. On the other hand,
the remaining nodes in D\VD have poor power connections to the left-
half domain and the information transfer to these nodes is limited in
power; hence, using (3.22) is tight. Formally, we proceed by applying
the generalized block Hadamard’s inequality (also known as Fischer’s
inequality), which yields

logdet(I + SNRsĤQ(Ĥ)Ĥ∗) ≤ logdet(I + SNRsĤ1Q(Ĥ)Ĥ∗
1 )

+logdet(I + SNRsĤ2Q(Ĥ)Ĥ∗
2 ),

5 Note that here we make use of the earlier assumption of an empty strip E of width 1.
Without the assumption, we would need to choose v̂ < 1 in this part.
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where Ĥ1 and Ĥ2 are obtained by partitioning the original matrix Ĥ:
Ĥ1 is the rectangular matrix with entries Ĥik,k ∈ S,i ∈ VD and Ĥ2

is the rectangular matrix with entries Ĥik,k ∈ S,i ∈ D\VD. In turn,
Equation (3.21) is bounded above by

TL→R ≤ max
Q(Ĥ1)≥0

E(Qkk(Ĥ1))≤1,∀k∈S

E(logdet(I + SNRsĤ1Q(Ĥ1)Ĥ∗
1 ))

+ max
Q(Ĥ2)≥0

E(Qkk(Ĥ2))≤1,∀k∈S

E(logdet(I + SNRsĤ2Q(Ĥ2)Ĥ∗
2 )).

(3.26)

The first term in (3.26) can be bounded by applying Hadamard’s
inequality once more, or equivalently, by considering the sum of the
capacities of the individual multiple-input single-output (MISO) chan-
nels between nodes in S and each node in VD,

max
Q(Ĥ1)≥0

E(Qkk(Ĥ1))≤1,∀k∈S

E(logdet(I + SNRsĤ1Q(Ĥ1)Ĥ∗
1 ))

≤
∑
i∈VD

log

(
1 + nSNRs

∑
k∈S

|Ĥik|2
)

, (3.27)

≤ (v̂ − 1)
√

n log n log(1 + n2+α(1/2+δ)SNRs), (3.28)

w.h.p. for any δ > 0. Inequality (3.27) comes from the fact that for any
covariance matrix Q of the transmissions from S, the SNR received by
each node i ∈ VD is smaller than nSNRsd̂i. Inequality (3.28) is obtained
by using the crude bound d̂i ≤ n1+α(1/2+δ), which follows from the fact
that the rescaled minimal separation between any two nodes in the
network is larger than 1/n1/2+δ w.h.p. for any δ > 0 (Lemma A.1(a))
and the number of nodes in S are smaller than n. On the other hand,
the number of nodes in VD is upper bounded by (v̂ − 1)

√
n log n w.h.p

(Lemma A.1(b)).
The second term in (3.26) is the capacity of the MIMO channel

between nodes in S and nodes in D\VD. The following lemma provides
an upper bound on the capacity of this channel. Although the main
idea is to upper bound the capacity by the total received SNR using
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inequality (3.22), this is not done immediately as we first need to waive
out the possibility of communicating only through non-typically good
channel matrices. Once inequality (3.22) is applied, we need to han-
dle the maximization over all admissible covariance matrices that are
allowed to be functions of the channel state realizations.

Note that the upper bound given in the lemma below holds in gen-
eral for any choice of v̂, or equivalently D\VD. However, recall our
earlier discussion that the upper bound will be tight only if the set
D\VD is tuned appropriately.

Lemma 3.5. Let SNRtot be the total SNR received by all the nodes
in D\VD, when nodes in S are transmitting independent signals at full
power, i.e.,

SNRtot :=
∑

i∈D\VD

SNRi = SNRs

∑
i∈D\VD

d̂i. (3.29)

Recall that SNRi has been defined in (3.23) as the SNR received by the
node i ∈ D under independent transmissions from the left-hand side.
Then, for every ε > 0,

max
Q(Ĥ2)≥0

E(Qkk(Ĥ2))≤1,∀k∈S

E(logdet(I + SNRsĤ2Q(Ĥ2)Ĥ∗
2 )) ≤ nεSNRtot.

(3.30)
Moreover, if D\VD �= ∅ the scaling of the total received SNR can be
evaluated to be

SNRtot ≤
{

K1SNRsn
2−α/2(log n)3, 2 ≤ α < 3,

K1SNRsv̂
3−α√

n(log n)3, α ≥ 3,
(3.31)

w.h.p., where K1 > 0 is a constant independent of SNRs and n.

Lemma 3.5 says couple of surprising things. First of all, it says that
independent signaling at the transmit nodes is sufficient to achieve the
cutset upper bound (up to a multiplicative factor of order nε). Note
that, a priori, on the left-hand side of (3.30), nodes are allowed to
cooperate and do any sort of transmit beamforming over channel state
realizations. Lemma 3.5 says that this is not necessary. This explains



3.5 Upper Bound on the Throughput Scaling 75

why we earlier based our choice of v̂ on the assumption of independent
transmissions from the left-hand side nodes. Independent signaling is
indeed good enough, at least as far as the scaling of the capacity is
concerned.

Second, depending on α, the lemma identifies a dichotomy on how
the received SNR under independent transmissions scales with system
size (3.31). This dichotomy can be interpreted as follows. The total
received SNR is dominated either by the power transferred between
node pairs separated by a relatively short distance (of the order of v̂)
or by the power transferred between nodes far away (at distance of
the order of

√
n). There are relatively fewer node pairs at distance v̂;

however, the channels between these pairs are considerably stronger
than the pairs at distance

√
n. When the attenuation parameter α is

less than 3, the received power is dominated by the transfer between
the large number of node pairs at distance

√
n. There are n2 node

pairs separated by a rescaled distance of the order of
√

n, which yields
a total SNR transfer of SNRs × n2 × √

n
−α between these pairs. This

is the first term in (3.31), up to logarithmic terms. When α ≥ 3, the
received SNR in the cutset bound is dominated by the power transferred
between node pairs at distance v̂. There are an order of

√
n × v̂3 pairs

located at distance of the order of v̂. (Consider the nodes in S located
up to v̂ rescaled horizontal distance to the cut and those nodes in
D\VD located up to 2v̂ horizontal distance to the cut. Then count the
number of node pairs that are separated with a distance of the order
of v̂.) Hence, the total SNR transfer between these node pairs is equal
to

√
nv̂3 × (v̂)−α. This argument yields the second term in (3.31), up

to logarithmic terms.
Combining the upper bounds (3.28) and (3.30) together with our

choices for v̂ specified earlier, we get an upper bound on TL→R in terms
of SNRs and n. Here, we state the final result in terms of scaling expo-
nents. We have

e(α,β) ≤




1, β ≥ α/2 − 1,

2 − α/2 + β, β < α/2 − 1 and 2 ≤ α < 3,

1/2 + β, β ≤ 0 and α ≥ 3,

1/2 + β/(α − 2), 0 < β < α/2 − 1 and α ≥ 3,

(3.32)
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where we identify four different operating regimes depending on α

and β.
Note that in the first regime, Equation (3.28) gives the dominant

term for the upper bound on the capacity with v̂ =
√

n/2 (or equiv-
alently VD = D), while (3.30) is zero. The capacity of the network is
limited by the degrees of freedom of an n × n MIMO transmission
between the left-hand side and the right-hand side nodes.

In the second regime, v̂ =
√

n/2 also and Equation (3.30) together
with the corresponding upper bound being the first line of (3.31) yields
a larger contribution than (3.28). The capacity is limited by the total
received SNR in a MIMO transmission between the left-hand side nodes
and D\VD. Note that this total received SNR is equal (in order) to
the power transferred in a MIMO transmission between two groups of
n nodes separated by a distance of the order of the diameter of the
network, i.e., n2 × (

√
n)−α × SNRs.

In the third regime, the capacity is determined by (3.30) with
v̂ = 1, or equivalently VD = ∅; hence, (3.28) is zero. The correspond-
ing upper bound is the second line of (3.31). The capacity in this
regime is still limited by the total SNR received by nodes in D\VD

(= D now); however, the total is now dominated by the SNR trans-
ferred between the nearest nodes to the cut, i.e.,

√
n pairs separated

by the nearest-neighbor distance (v̂ = 1), yielding
√

n × SNRs. Note
that this is where we make use of the assumption that there are no
nodes located at rescaled distance smaller than 1 to the cut. Owing to
this assumption, the choice v̂ = 1 vanishes the upper bound (3.28) and
simultaneously yields K1SNRs

√
n(log n)2 in the last line in (3.31) for

the total SNR transferred from S to D. If there were nodes closer than
rescaled distance 1 to the cut, we would need to choose v̂ < 1 to vanish
the contribution from (3.28), which would yield a larger value for the
term K1SNRsv̂

3−α√
n(log n)2, as α ≥ 3 in this regime. The difficulty is

the following. We would like to conclude that in this regime, the power
transfer between left- and right-hand side nodes is dominated by the
contribution of the order

√
n nearest-neighbor pairs located around the

cut. However, there can be a pair of nodes, one node on the left and
the other one on the right of the cut, which is separated by a dis-
tance much smaller than the nearest-neighbor distance in the network
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and the capacity of the channel between these two nodes can be much
larger than the total contribution of the

√
n nearest-neighbor pairs.

Even though this may be the case for the cut considered, it is not pos-
sible to rely on such pairs for communicating inside the network, as
these pairs do not form a path inside the network w.h.p. This fact is
made precise in Ref. [22].

The most interesting regime is the fourth one. Both (3.28) and
(3.30), with the choice v̂ = SNR1/(α−2)

s , yield the same contribution.
Note that (3.28) upper bounds the information transfer to VD, the
set of nodes that have bandwidth-limited connections to the left-hand
side. This information transfer is limited in degrees of freedom. On the
other hand, (3.30) upper bounds the information transfer to D\VD, the
set of nodes that have power-limited connections to the left-hand side.
This second information transfer is power-limited. Therefore, in this
regime, the network capacity is limited in both degrees of freedom and
power, as increasing the bandwidth increases the first term (3.28) and
increasing the power increases the second term (3.30). This behavior
is a consequence of the heterogeneous nature of links in a network and
does not occur in point-to-point links. �
Proof of Lemma 3.5. We are interested in the scaling of the MIMO
capacity,

max
Q(Ĥ2)≥0

E(Qkk(Ĥ2))≤1,∀k∈S

E(logdet(I + SNRsĤ2Q(Ĥ2)Ĥ∗
2 )). (3.33)

A natural way to upper bound (3.33) is to first relax the individual
power constraint

E(Qkk(Ĥ2)) ≤ 1, ∀k ∈ S

to a total power constraint

E(TrQ(Ĥ2)) ≤ |S|,
where |S| denotes the cardinality of the set S. In the present context,
however, this is not convenient, as the matrix Ĥ2 is badly conditioned:
some nodes in S are close to the cut and some are far apart; hence,
the impact of their 1 Watt power on the system performance is quite
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different. A total transmit power constraint allows the transfer of power
from the nodes far away from the cut to those nodes that are located
close to the cut, resulting in a loose bound. Instead, we will relax the
individual power constraints to a total weighted power constraint, where
the weight assigned to a node is proportional to the impact of its unit
power. The impact is measured by the total received power on the right-
hand side of the cut, per Watt of transmit power from that left-hand
side node.

Let us normalize the columns of the matrix Ĥ2 by dividing each
column k by its norm. Let wk denote the squared L2-norm of the kth
column

wk =
∑

i∈D\VD

|Ĥik|2,

We define the normalized matrix

H̃ik =
1√
wk

Ĥik, i ∈ D\VD, k ∈ S. (3.34)

The expression (3.33) is then equal to

max
Q̃(H̃)≥0

E(Q̃kk(H̃))≤wk,∀k∈S

E(logdet(I + SNRsH̃Q̃(H̃)H̃∗)).

Note that SNRswk corresponds to the total received SNR by the nodes
in D\VD of the signal sent by the user k ∈ S. Having weighted each
of the individual power constraints in (3.33) by their impact, we now
relax them to a total power constraint, which yields the following upper
bound for (3.33),

max
Q̃(H̃)≥0

E(TrQ̃(H))≤Wtot

E(logdet(I + SNRsH̃Q̃(H̃)H̃∗)),

where

Wtot =
∑
k∈S

wk =
∑

k∈S,i∈D\VD

|Ĥik|2.

Let us now define, for given n ≥ 1 and ε > 0, the event

Bn,ε = {‖H̃‖2 > nε},
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where ‖A‖ denotes the largest singular value of the matrix A. Note
that all the diagonal elements of H̃H̃∗ are roughly of the same order
(up to a factor log n), which in turn implies that this matrix is better
conditioned than the original matrix Ĥ2Ĥ

∗
2 : namely, it can be shown

that there exists K2 > 0 such that

E(‖H̃‖2) ≤ K2 (log n)3

for all n. The following more precise statement is shown in Ref. [22].

Lemma 3.6. There exists K2 > 0 such that for all l ≥ 0 and all n,

E(‖H̃‖2l) ≤ (K2(log n)3)2l.

The method of proof relies on the analysis done for matrices with
i.i.d. entries (see, for example, Ref. [2]). The main difference in the
present case is that entries do not share all the same variance, which
explains the appearance of an additional log n factor in the upper bound
on the largest singular value of H̃.

As a consequence of this lemma, we obtain, using Chebychev’s
inequality,

P(Bn,ε) = P(‖H̃‖2 > nε) ≤ E(‖H̃‖2l)
nεl

≤ K2 n1−εl (logn)3 ≤ K2 n−p,

(3.35)
where p ≥ 1 can be chosen arbitrarily large by choosing l accordingly.

It follows that

max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E(logdet(I + SNRsH̃Q̃(H̃)H̃∗))

≤ max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E(logdet(I + SNRsH̃Q̃(H̃)H̃∗)1Bn,ε)

+ max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E(logdet(I + SNRsH̃Q̃(H̃)H̃∗)1Bc
n,ε

). (3.36)

The first term in (3.36) refers to the event that the channel matrix
H̃ is accidentally ill-conditioned. As the probability of such an event
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is polynomially small by (3.35), the contribution of this first term is
actually negligible. In the second term in (3.36), the matrix H̃ is well-
conditioned, and this term is actually proportional to the maximum
SNR transfer from S to D\VD. Details follow below.

For the first term in (3.36), we use Hadamard’s inequality and
obtain

max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E(logdet(I + SNRs H̃Q̃(H̃)H̃∗)1Bn,ε)

= max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E(logdet(I + SNRsH̃Q̃(H̃)H̃∗)|Bn,ε)P(Bn,ε),

≤ max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E


 ∑

i∈D\VD

log(1 + SNRsH̃iQ̃(H̃)H̃∗
i )

∣∣∣∣∣∣Bn,ε


P(Bn,ε),

where H̃i is the ith row of H̃. By the fact that

H̃iQ̃(H̃)H̃∗
i = Tr(H̃iQ̃(H̃)H̃∗

i ) ≤ ‖H̃i‖2Tr(Q̃(H̃)),

where ‖H̃i‖2 is the squared norm of H̃i, and using Jensen’s inequality,
this expression in turn is bounded above by

max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

∑
i∈D\VD

log(1 + SNRs E(‖H̃i‖2TrQ̃(H̃)|Bn,ε))P(Bn,ε)

≤ max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

∑
i∈D\VD

log(1 + SNRsE(‖H̃i‖2TrQ̃(H̃))/P(Bn,ε))P(Bn,ε),

≤n log
(

1 + SNRs
nWtot

P(Bn,ε)

)
P(Bn,ε).

The last inequality follows from upper bounding ‖H̃i‖2 by

‖H̃i‖2 =
∑
k∈S

|Ĥik|2 1
wk

≤
∑
k∈S

1 ≤ n,

which follows from the definition of H̃ in (3.34). The fact that the
rescaled minimum distance between the nodes in S and D\VD is at
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least 1 yields

Wtot =
∑

k∈S,i∈D\VD

|Ĥik|2 < n2.

Note that x �→ x log(1 + 1/x) is increasing on [0,1] and using (3.35),
we finally obtain that for any p ≥ 1, there exists K2 > 0 such that

max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E(logdet(I + SNRsH̃Q̃(H̃)H̃∗)1Bn,ε)

≤ K2n
1−p log

(
1 + SNRs

n3+p

K2

)
,

which decays polynomially to zero with arbitrary exponent as n tends
to infinity.

For the second term in (3.36), we simply have

max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E(logdet(I + SNRsH̃Q̃(H̃)H̃∗)1Bc
n,ε

)

≤ max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E(Tr(SNRsH̃Q̃(H̃)H̃∗)1Bc
n,ε

),

≤ max
Q̃(H̃)≥0

E(TrQ̃(H̃))≤Wtot

E(SNRs‖H̃‖2TrQ̃(H̃)1Bc
n,ε

),

≤ nεSNRsWtot.

The last thing that therefore needs to be checked is the scaling of Wtot

stated in Lemma 3.5.
Let us divide the rescaled network area of size n into n squarelets of

area 1. By Part (b) of Lemma A.1, there are no more than log n nodes
in each squarelet, with high probability. Let us consider grouping the
squarelets on the left of the cut into

√
n horizontal rectangular areas of

height 1 and width
√

n/2, as shown in Figure 3.2. Let Sm denote the
nodes in S that are located on the mth rectangle, so that S =

⋃√
n

m=1 Sm.
We are interested in bounding above

Wtot =
∑
k∈S

wk =

√
n∑

m=1

∑
k∈Sm

wk.
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fl

Fig. 3.2 The displacement of the nodes inside the squarelets to squarelet vertices, indicated
by arrows.

Let us consider, for a given m,

∑
k∈Sm

wk =
∑

k∈Sm,i∈D\VD

|Ĥik|2 =
∑

k∈Sm,i∈D\VD

r̂−α
ik . (3.37)

Note that if we move the points that lie in each squarelet of Sm together
with the nodes in the squarelets of D\VD onto the squarelet vertex as
indicated by the arrows in Figure 3.2, all the terms in the summation
in (3.37) can only increase, as the displacement can only decrease the
Euclidean distance between the nodes involved. Note that the modifi-
cation results in a regular network with at most log n nodes at each
squarelet vertex on the left and at most 2log n nodes at each squarelet
vertex on the right. Considering the same reasoning for all rectangular
slabs Sm,m = 1, . . . ,

√
n allows to conclude that Wtot for the random

network is with high probability less than the same quantity computed
for a regular network where nodes are located on a square grid of dis-
tance 1, with log n nodes at each left-hand side vertex and 2log n nodes
at each right-hand side vertex.

The most convenient way to index the node positions in a reg-
ular network is to use double indices. The left-hand side nodes are
located at positions (−kx,ky) for kx = 0, . . . ,

√
n/2,ky = 0, . . . ,

√
n and

those on the right at positions (ix, iy) where ix = v̂, . . . ,
√

n/2 for v̂ ≥ 1
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and iy = 0, . . . ,
√

n, so that

Ĥik =
ejθik

((ix + kx)2 + (iy − ky)2)α/4

and

wkx,ky =

√
n/2∑

ix=v̂

√
n∑

iy=0

1
((ix + kx)2 + (iy − ky)2)α/2 , (3.38)

which yields the following upper bound for Wtot of the random network,

Wtot ≤ 2(log n)2
√

n/2∑
kx=0

√
n∑

ky=0

wkx,ky . (3.39)

The following lemma establishes the scaling of wkx,ky defined in
Equation (3.38).

Lemma 3.7. There exist constants K3,K4 > 0 independent of kx,ky

and n such that

wkx,ky ≤
{

K3 log n, if α = 2,

K3 (v̂ + kx)2−α, if α > 2,

and

wkx,ky ≥ K4 (v̂ + kx)2−α for α ≥ 2.

The rigorous proof of the lemma is given in Ref. [22]. A heuristic
way of thinking about the approximation

wkx,ky ≈ (v̂ + kx)2−α

can be obtained through the Laplace principle. The summation in
wkx,ky scales the same as the maximum term in the sum times the
number of terms, which have roughly this maximum value. The max-
imum term is of the order of 1/(v̂ + kx)α. The terms that take on
roughly this value are those for which ix runs from v̂ to the order of
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2v̂ + kx and iy runs from ky to ky plus or minus the order of v̂ + kx.
There are roughly (v̂ + kx)2 such terms. Hence, wkx,ky ≈ 1/(v̂ + kx)α ·
(v̂ + kx)2 = (v̂ + kx)2−α.

We can now use the upper bound given in Lemma 3.7, which gives

√
n∑

kx,ky=0

wkx,ky ≤




K5 n log n, if α = 2,

K5 n2−α/2, if 2 < α ≤ 3,

K5
√

n log n, if α = 3,

K5 v̂3−α√
n, if α > 3

for another constant K5 > 0 independent of n. This upper bound
combined with (3.39) yields (3.31) and completes the proof of
Lemma 3.5. �



4
Space

The results presented in the two previous sections crucially rely on the
fact that the degrees of freedom of MIMO transmissions are of the
order of the number of nodes participating to the transmission. This
fact was established in Equation (2.19) at the end of Section 2, based
on the assumption that the phase shifts φik[m] in the channel model
(2.2) are uniformly distributed on [0,2π] and independent across node
pairs. This is a standard model in wireless communication based on
a far-field assumption: under free-space propagation, the phase shifts
derived from Maxwell’s equations are given by

φik = 2πrik/λ,

where rik is the distance between nodes i and k, and λ is the carrier
wavelength. When the distances between the nodes are at a much larger
spatial scale compared with λ, so that the phases φik get completely
mixed even when nodes move insignificantly, the phases are modeled as
completely random and independent of the actual positions. However,
in a large network regime there is a large number of phase variables,
n2 of them. It is not clear how large the spatial separation between
the nodes, or equivalently the area of the network, should be for such

85
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a large collection of variables to behave approximately independent of
each other.

The goal of this section is to develop a quantitative basis for the intu-
itive justification of the i.i.d. phase model: we identify the conditions
under which the i.i.d. phase model hence the conclusions of the earlier
two sections hold in wireless networks. We also investigate regimes where
the i.i.d. phase model fails to hold. Such regimes are space-limited. We
extend the approximate characterization of the capacity and our discus-
sion on optimal architectures from the previous sections to space-limited
regimes. We show that the distributed MIMO-based architectures devel-
oped in the earlier sections provide significant capacity gains over multi-
hop even when the i.i.d. phase model fails to hold.

4.1 Model

As in the previous sections, we assume that nodes are randomly spread
out in a square planar region of area A. We assume that each node has a
device equipped with one antenna, oriented in the direction perpendic-
ular to the plane. Using a standard dipole model for the antennas and
assuming free-space propagation, one can derive the following expres-
sion from Maxwell’s equations for the channel attenuation coefficient
between nodes i and k:

Hik =
√

G
exp(2πjrik/λ)

rik
, (4.1)

where λ is the carrier wavelength, rik is the distance between nodes i

and k and G is the Friis constant given by

G = Gt Gr

(
λ

4π

)2

with Gt and Gr being the transmit and receive antenna gains, respec-
tively. The goal of the current section is to rethink some of the conclu-
sions of the earlier sections based on this more fundamental physical
channel model, which is a direct consequence of Maxwell’s equations
for free-space propagation. In particular, we characterize the scaling
exponent

ephy(ν) := lim
n→∞

log T (n,ν)
log n
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of the best achievable aggregate throughput T (n) = nR(n) under this
new channel model for any ν > 0 when A = nν . In complete analogy
with the power discussion of Section 3, this characterization provides
an understanding of the impact of the area of the network, the space,
on the capacity of wireless networks and of the space-limited operating
regimes of these networks. We do not address in this section the joint
effect of both power and space limitations. This would require the char-
acterization of the scaling exponent under this new channel model for
the complete interplay between the system parameters A, P and W .
This is an open problem. Instead, we specify later conditions to avoid
power limitation in the network.

Let us point towards the main differences between this model and
the model (2.2) considered in Sections 2 and 3. The phase shifts in
(4.1) are deterministic functions of the distances between the nodes,
as opposed to being independent and uniformly distributed random
variables in (2.2); consequently, they do not vary over time, contrary
to what was assumed in (2.2). Finally, the path loss exponent α is equal
to 2 in this model, because of the free-space propagation assumption.

Considering the above line-of-sight model might seem restrictive
a priori, as it is well known that in practical scenarios, there are addi-
tional fading effects, mainly due to scattering and multi-path propa-
gation. Adding such effects into the picture would actually bring us
back to the first model (2.2), under which the efficiency of MIMO
transmissions has already been demonstrated. Instead, the line-of-
sight model corresponds to the worst-case scenario, where the MIMO
transmissions are the least efficient and spatial limitation is therefore
expected to be the most severe. We will see nevertheless in the following
that distributed MIMO transmissions can still improve the aggregate
throughput scaling of wireless networks under this free-space model.

4.2 Upper Bound on the Throughput Scaling

The work [7] of Franceschetti et al. was the first to show that the
predictions of the i.i.d. phase model in (2.2) and the physical channel
model introduced in this section can be different; the capacity of wire-
less networks can suffer from space limitation, which is not predicted by
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the random phase model. In this section, we review the result obtained
in Ref. [7]. The main assumptions made in there are the following:

(1) The basic channel model is a variant of the line-of-sight model
(4.1) derived from Maxwell’s equations, which exhibits the
same features as the one presented here. In addition, Ref. [7]
also considers the presence of scatterers.

(2) The area A of the network is assumed to grow linearly with
the number of nodes n, so as to ensure a constant density of
nodes.

Under these assumptions, the following upper bound is obtained in
Ref. [7] on the throughput scaling of the network:

T (n) = O(
√

n(log n)2). (4.2)

Let us give here a glimpse of the key ideas behind this result, as
described in Ref. [7]:

• The result is obtained via the upper bounding technique
discussed in Section 3.5.2: the network throughput is upper
bounded by the maximum information transfer between two
subsets of nodes of equal size. A thin layer of constant width
is assumed to separate these two subsets.

• The discrete problem is first translated into a continuous
one; the n × n channel matrix H between the two subsets
of nodes therefore becomes a continuous operator describing
the propagation of the electromagnetic field over space.

• The propagation operator is then decomposed into three
parts and a refined analysis of the spectral properties of the
operator over the above-mentioned separating layer shows
that it can only convey up to O(

√
n log n) independent sig-

nals in this region, limiting therefore the total capacity of
the transmission by this amount (the extra log n factor in
the result comes from the potential power gain due to the
presence of n transmitting nodes).

The above result can at first lead to the conclusion that the total
degrees of freedom in the network is upper bounded by

√
n due to

the constraints imposed by the physical channel and that multi-hop
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is scaling optimal. A deeper look from the perspective of the multi-
parameter formulation of Section 3.1 reveals that this not quite the
case. If we look at the more general scaling law problem of character-
izing the scaling of the capacity when

A = nν for any ν > 0,

under the new channel model, we can uncover the individual depen-
dencies of the capacity to A and n. In this case, the upper bound (4.2)
translates into1

T (n) =




O(
√

n(log n)2), if
√

A/λ � √
n,

O(
√

A/λ(log(
√

A/λ)2), if
√

n � √
A/λ � n,

O(n(log n)2), if
√

A/λ � n.

(4.3)

The limitation uncovered in Ref. [7] via the physical channel model
is therefore not a universal limitation depending only on the number
of nodes; it is rather about space. The second line of (4.3) says that
the throughput of the network is limited by the diameter of the
network (normalized by the carrier wavelength), a quantity that can
be interpreted as the number of spatial degrees of freedom available
in the network. The throughput cannot scale faster than this number.
The conclusion that the capacity cannot scale faster than

√
n in (4.2)

comes from the assumption that A grows linearly in n, so that
√

A/λ

is proportional to
√

n. When
√

A/λ is as small as
√

n, the first line
of (4.3) says that the throughput cannot scale faster than

√
n (up

to logarithmic terms). In this case, the spatial degrees of freedom
available in the network are so few that they can be already exploited
by multi-hop. (It is easy to verify that the multi-hop architecture
discussed in Section 2.2 achieves the same

√
n scaling under the new

channel model.) More sophisticated cooperation is useless in this case.

1 As usual, this result is based on characterizing the scaling exponent of the aggregate
throughput. In terms of the scaling exponent, we have

ephy(ν) ≤



1/2, if ν < 1,
ν/2, if 1 ≤ ν < 2,
1, if ν ≥ 2.

However, as it is more informative, in this section we skip the statement of the results in
terms of the scaling exponent and only refer to the corresponding approximations of the
capacity as in (4.3).
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However, for actual networks, there is a huge difference between√
A/λ and

√
n as illustrated by the numerical example below. In such

a case, (4.3) allows for much better scaling than
√

n, a scaling linear
in min(

√
A/λ,n) up to logarithmic terms. In particular, when

√
A/λ

is larger than n it allows for linear scaling in n, while the performance
of multi-hop is always

√
n independent of

√
A/λ. The remaining ques-

tion we investigate in the following section is whether these additional
degrees of freedom can be exploited by the distributed MIMO-based
architectures developed in the previous sections. Earlier, we have inves-
tigated the benefits of these architectures based on the i.i.d. phase
model. Here, by investigating their performance under the more funda-
mental physical channel model, we also gain insight about the regimes
where conclusions from the i.i.d. phase model hold or fail to hold.

Example 4.1. Take an example of a network serving n = 10’000 stu-
dents on a campus of 1 km2, operating at 3GHz: the corresponding
carrier wavelength is 0.1m.

√
A/λ = 10’000, while

√
n is only 100, two

orders of magnitude smaller. In such a network, the spatial degrees of
freedom available for communication are many more than what can be
exploited by multi-hop. Indeed here,

√
A/λ is comparable with n. Even

though 10’000 users on 1 km2 seems like a pretty dense network, there
are still sufficient spatial degrees of freedom for all the users in the
system; we are at the boundary between the second and third regimes
in Equation (4.3).

4.3 Optimal Cooperation

The main result of this section can be summarized as follows: provided
there is enough available power (this is to be made precise below), the
upper bounds on the throughput scaling obtained in Equation (4.3)
are all achievable, up to logarithmic factors. Accordingly, the optimal
operation of the network falls into three different operating regimes:

(1)
√

A/λ � √
n: The number of spatial degrees of freedom is

too small, more sophisticated cooperation is useless and
nearest-neighbor multi-hopping is optimal.
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(2)
√

A/λ � n: The number of spatial degrees of freedom is n,
the optimal performance can be achieved by the same hier-
archical cooperation scheme introduced in Section 2 and
provides dramatic gain over multi-hop. Spatial degree of
freedom limitation does not come into play and the perfor-
mance is as though phases were i.i.d. uniform across node
pairs.

(3)
√

n � √
A/λ � n: The number of degrees of freedom is

smaller than n; hence, the spatial limitation is felt, but
larger than what can be achieved by simple multi-hopping.
A modification of the hierarchical cooperation scheme
achieves the optimal scaling in this regime.

Note that it is the second case,
√

A/λ � n, when the physical chan-
nel model yields the same conclusion with the i.i.d. phase model from
the previous sections: provided that there is sufficient power hierarchi-
cal cooperation can achieve linear scaling. This identifies

√
A/λ � n as

the regime where the i.i.d. phase model is appropriate. The other two
regimes for

√
A/λ � n are newly uncovered by the physical channel

model and are not predicted by the i.i.d. phase model.
The precise statement of the result is given in the following theorem.

Theorem 4.2. Consider a wireless network of n nodes distributed uni-
formly at random over a square area A such that A = nν for ν ≥ 1 and
assume that the long-distance SNR in this network defined in (3.10) is
greater than or equal to 0dB. Then for any ε > 0, there exists a con-
stant K > 0 independent of n and A such that the following throughput
can be achieved with high probability as n grows large:

T (n) ≥ K min(n,
√

A/λ)1−ε.

Recall from Section 3 that the condition SNRl ≥ 0 dB ensures that
the network is not power-limited; there is enough power available for
the long-range MIMO transmissions, at all levels of the hierarchy. Note
that as the path loss attenuation α is equal to 2 in the present case, the
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long-range SNR of the network is also equal to the short-range SNR
(see Equation (3.9)).

The key for the proof of the above theorem is to characterize the
degrees of freedom of the MIMO transmissions used in the hierarchi-
cal cooperation scheme under the new physical channel model. In the
following sections, we prove Theorem 4.2 by capitalizing on a result
on the spatial degrees of freedom in MIMO, which is later proved in
Section 4.4.

4.3.1 Spatial Degrees of Freedom of MIMO Transmissions

It has been shown at the end of Section 2 that under the random phase
model (2.2), the number of bits that can be transmitted simultaneously
in a MIMO transmission between two clusters of M nodes is of order M

(provided a high enough SNR between the two clusters). This is due
to the independence assumption regarding the random phase shifts
φik[m] in (2.2), which implies that the channel matrix H between the
two clusters is full rank with high probability. Under the line-of-sight
model (4.1), the phase shifts are linear functions of the inter-node dis-
tances and are therefore strongly correlated; hence, it is not guaranteed
anymore that the matrix H is full rank.

As we show in Section 4.4, it turns out that the number of spa-
tial degrees of freedom in a MIMO transmission is still relatively high
under the line-of-sight model, provided the area occupied by each clus-
ter is large and the distance between the two clusters is not too large
compared with the diameter of the clusters. More precisely, it can be
shown that under the line-of-sight model (4.1), the capacity of a MIMO
transmission between two clusters of M nodes is linear in M as soon
as (up to logarithmic factors)

Ac

λd
≥ M, (4.4)

provided the long-distance SNR between these two clusters defined as

SNR(d) = M
GPm

N0W d2 (4.5)

is greater than or equal to 0dB, where Ac is the area occupied by
each cluster, λ is the carrier wavelength, Pm is the average transmit
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Fig. 4.1 Two square clusters of area Ac separated by distance d.

power per node during the MIMO transmissions, and d is the distance
between the two clusters, assumed to be greater than or equal to

√
Ac

(Figure 4.1).
In Section 4.4, we state the above result in a precise manner and

provide an intuitive argument for its proof. Meanwhile, let us explore
what consequences it has on the throughput scaling of wireless net-
works.

4.3.2 Optimal Schemes

Capitalizing on the result of the previous section, we now complete
the proof of Theorem 4.2, dividing the analysis into the two regimes√

A/λ ≥ n and
√

n ≤ √
A/λ < n.

Full Hierarchical Cooperation (
√

A/λ ≥ n). In this regime, no spa-
tial limitation is felt at the network level and the upper bound in (4.3)
allows for throughput scaling linear in n. Potentially hierarchical coop-
eration can achieve arbitrarily close to linear scaling. One needs to
check, however, that the MIMO transmissions taking place at all lev-
els of the scheme are fully efficient, i.e., have capacity scaling linearly
in the number of nodes in the clusters. Consider therefore a MIMO
transmission between two clusters of size M and area Ac = AM/n. In
the hierarchical cooperation scheme, these two clusters are part of a
larger cluster of size M ′ and area A′

c = AcM
′/M in the next level of

the hierarchy. The separation d between the two clusters is therefore
upper bounded by

d ≤
√

A′
c =

√
AcM ′/M.
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This in turn implies that the ratio Ac/λd is lower bounded by

Ac

λd
≥ Ac

λ
√

AcM ′/M
=

√
AcM/M ′

λ
.

As
√

A/λ ≥ n by assumption, we obtain that
√

Ac/λ = (
√

AM/n)/λ ≥√
nM , which implies that

Ac

λd
≥
√

nMM/M ′ ≥ M,

as n is greater than or equal to M ′. Hence, condition (4.4) is satisfied
and MIMO transmissions at all the levels of the hierarchical coopera-
tion scheme operate with full degrees of freedom, just like in the case of
i.i.d. phases. These transmissions also have sufficient power, satisfying
the power condition in (4.5). Recall from Section 2.4 that during the
MIMO transmissions, we transmit with elevated power Pm = M ′P/M

per node. We still satisfy the average power constraint P per node,
because each cluster transmits only a fraction M/M ′ of the total time
because of the time-division between the MIMO transmissions. There-
fore, the SNR for the MIMO transmissions is given by

SNR(d) = M
GPm

N0WA′
c

= M ′ GP

N0WA′
c

= n
GP

N0WA
> 0dB.

where the last inequality follows from the power condition SNRl =
nGP/(N0WA) > 0dB for the network in Theorem 4.2. Therefore,
MIMO transmissions at each level of the hierarchy have full degrees
of freedom and sufficient power. Hierarchical cooperation achieves an
aggregate throughput scaling arbitrarily close to linear in n in this case.

Hierarchical Cooperation under Spatial Limitation (
√

n ≤√
A/λ < n). In this regime, Equation (4.3) shows that a linear through-

put scaling is not achievable by any means. Nevertheless, the question
remains whether one could outperform multi-hopping strategies, whose
asymptotic performance Θ(

√
n) is strictly suboptimal compared with

the upper bound O(
√

A/λ). A direct application of the hierarchical
cooperation scheme fails to improve on multi-hop in this case; however,
it turns out that a simple adaptation of the scheme to this spatially
limited situation achieves the optimal scaling.



4.4 Analysis of the Spatial Degrees of Freedom 95

The idea is the following: organize the communication of the n

source-destination pairs into n/N sessions, each involving N source-
destination pairs, where N =

√
A/λ. It is possible to choose here the

nodes in a way such that each group of N nodes statistically occupies
the total area of the network. This way, no group of N nodes considered
alone feels the spatial limitation, as for this diluted network N =

√
A/λ

and we are in the first case above. The sessions operate successively
and the traffic in each session is handled using hierarchical coopera-
tion where only the N chosen nodes are involved. The rest of nodes
remain silent. As nodes are active only a fraction of N/n of the total
time, when active they can transmit with elevated power Pm = nP/N

and still satisfy their individual power constraint P . Therefore, for the
diluted network of N nodes in each session, the long-range SNR is

N
GPm

N0WA
= n

GP

N0WA
> 0dB.

Therefore, the diluted network is neither power nor space-limited
and hierarchical cooperation achieves aggregate throughput of order
N1−ε = (

√
A/λ)1−ε for any fixed ε > 0. With time-division across dif-

ferent groups of nodes, the same throughput is achievable in the whole
network. This completes the proof of Theorem 4.2. �

4.4 Analysis of the Spatial Degrees of Freedom

We first reformulate precisely condition (4.4), as well as the claim made
in Section 4.3.1, and then provide the key ideas behind the proof of this
claim. The complete proof can be found in Ref. [27].

Lemma 4.3. Consider two square clusters of area Ac separated by
distance d (see Figure 4.1), with each cluster containing M nodes dis-
tributed uniformly at random over Ac. Let

√
Ac � d � Ac, and let the

nodes in the transmit cluster DT perform independent signalling with
power P each, such that the long-distance SNR between these two
clusters defined as

SNR(d) = M
GP

N0W d2
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is greater than or equal to 0dB. Then, there exists a constant K > 0
independent of M , Ac and d such that the capacity of the MIMO
channel from the transmitting cluster DT to the receiving cluster DR

is lower bounded by CMIMO ≥ KM with high probability as M grows
large, as soon as

Ac/(λd)
log(Ac/(λd))

≥ KM . (4.6)

Proof Idea. Under the above assumptions, the capacity of the MIMO
channel can be expressed as

CMIMO = logdet
(

I +
SNR(d)

M
FF †

)
,

where SNR(d) is assumed to be greater than or equal to 0dB, and F

is the rescaled M × M channel matrix whose entries are given by

Fik =
d√
G

Hik =
d

rik
exp(2πjrik/λ).

The entries of F have therefore a magnitude of order 1, as d ≤ rik ≤
d + o(d).

The first observation to be made is that the above capacity does
not fluctuate much with respect to the random placement of the nodes.
More precisely, it can be shown using standard concentration tech-
niques that for any t > 0,

P(|CMIMO − E(CMIMO)| > tM1/2+ε) ≤ e−2t2M2ε
.

What remains therefore to be shown is that under condition (4.6),

E(CMIMO) = Ω(M).

In order to obtain a lower bound on this expression, we use the same
technique as in Section 2.4.2 and first show that there exists K > 0
such that

E(CMIMO) ≥ K
M4

E(Tr(FF †FF †))
. (4.7)
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The proof of this statement is relegated to Appendix A towards the
end of the present section. Let us explore here the consequences of this
inequality. As observed above, |Fik| � 1, so

E(Tr(FF †FF †)) =
M∑

i,k,l,m=1

E(FikF
∗
lkFlmF ∗

im),

=
M∑

i,k,m=1

E(|Fik|2|Fim|2) +
M∑

i,k,l=1
i�=l

E(|Fik|2|Flk|2)

+
M∑

i,k,l,m=1
i�=l,k �=m

E(FikF
∗
lkFlmF ∗

im),

� 2M3 +
M∑

i,k,l,m=1
i�=l,k �=m

E(FikF
∗
lkFlmF ∗

im).

It follows that Θ(M3) ≤ E(Tr(FF †FF †)) ≤ Θ(M4), and correspond-
ingly, Θ(1) ≤ E(CMIMO) ≤ Θ(M). The best scenario occurs when the
random variables Fik are centered and i.i.d., which is the situation
encountered in Section 2; in this case, the four-sums term above van-
ishes; hence,

E(Tr(FF †FF †)) = O(M3), E(CMIMO) = Ω(M),

and the MIMO communication benefits from the full spatial degrees of
freedom. In our case, Fik � exp(2πjrik/λ); hence,

E(Tr(FF †FF †))

� 2M3 +
M∑

i,k,l,m=1
i�=l,k �=m

E(exp(2πj(rik − rlk + rlm − rim)/λ)).

If it was the case that all points were aligned on the same horizontal
line, then the phase shifts would cancel completely: rik − rlk + rlm−
rim = 0, and this would lead to

E(Tr(FF †FF †)) = O(M4), E(CMIMO) = Ω(1),
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which would mean no spatial degrees of freedom for the MIMO trans-
mission.2

In between these two extreme cases, where phases rotate indepen-
dently, on the one hand, and are linearly dependent, on the other hand,
lies the two-dimensional situation. We present a simplified argument
below, showing that when condition (4.6) is met, the phase shifts gen-
erated by the random node placement are sufficiently important to
ensure that the above four sums term remains small, providing there-
fore enough spatial degrees of freedom for the MIMO transmission.

The distance rik between two points xi in DT and yk in DR is
given by

rik = ‖xi − yk‖ =
√

(d +
√

Ac(xi1 + yk1))2 + Ac(xi2 − yk2)2,

where the chosen coordinate system is illustrated in Figure 4.2; in par-
ticular, the horizontal and vertical coordinates xi1, yk1, xi2, yk2 are
rescaled so as to lie in the interval [0,1] each. Using the assumption
that d � √

Ac, we obtain the following approximation3:

rik � d +
√

Ac(xi1 + yk1) +
Ac

2d
(xi2 − yk2)2.

Based on this approximation, a short algebraic computation shows that

rik − rlk + rlm − rim � −Ac

d
(xl2 − xi2)(ym2 − yk2).

Fig. 4.2 Coordinate system.

2 Technically speaking, as Equation (4.7) only provides a lower bound on E(CMIMO), a
further check would be required in order to conclude. It turns out that the MIMO capacity
is indeed Θ(1) in this case.

3 Let us point out here that the validity of this approximation is subject to caution. Never-
theless, it provides an intuitive argument justifying the existence of condition (4.6).
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We see here that due to the differences in the vertical coordinates,
the sum of these four terms is not equal to zero, contrary to the one-
dimensional case mentioned above. The computation of the expectation
gives

E(exp(2πj(rik − rlk + rlm − rim)/λ))

�
∫ 1

0
dxi2

∫ 1

0
dxl2

∫ 1

0
dyk2

∫ 1

0
dym2

×exp
(

−2πj
Ac

λd
(xl2 − xi2)(ym2 − yk2)

)
. (4.8)

This multiple integral is shown below to be upper bounded by

K
λd

Ac
log
(

Ac

λd

)
,

which shows in turn that if condition (4.6) is met, then

E(Tr(FF †FF †)) ≤ 2M3 + M4K
λd

Ac
log
(

Ac

λd

)
= O(M3).

Combining this with (4.7) shows that E(CMIMO) = Ω(M); the MIMO
transmission is therefore fully efficient in this case; this completes the
proof of Lemma 4.3. �
Proof of the Lower Bound (4.7). The proof follows the lines of
Section 2.4.2: We have

E(CMIMO) = E

(
logdet

(
I +

SNR(d)
M

FF †
))

,

= ME(log(1 + SNR(d)λ)) ≥ M log(1 + SNR(d)t)P(λ > t),

where t > 0 and λ is an eigenvalue of (1/M)FF †, picked uniformly at
random. By Paley–Zygmund’s inequality (see Appendix B), we obtain
that for 0 < t < E(λ),

E(CMIMO) ≥ M log(1 + SNR(d)t)
(E(λ) − t)2

E(λ2)
.

As observed above, the entries of F are of order 1; hence,

E(λ) =
1
M

E

(
Tr
(

1
M

FF †
))

=
1

M2

M∑
i,k=1

E(|Fik|2) � 1.
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In addition,

E(λ2) =
1
M

E

(
Tr

((
1
M

FF †
)2
))

=
1

M3 E(Tr(FF †FF †)),

hence, choosing finally t = 1/2 in the above estimate gives

E(CMIMO) ≥ log(1 + SNR(d)/2)
4

M4

E(Tr(FF †FF †))
,

which proves the claim. �
Computation of the Multiple Integral (4.8). The computation of the
innermost integral gives∫ 1

0
dym2 exp

(
−2πj

Ac

λd
(xl2 − xi2)(ym2 − yk2)

)

= − λd

2πjAc(xl2 − xi2)

× exp
(

−2πj
Ac

λd
(xl2 − xi2)(ym2 − yk2)

)∣∣∣∣
ym2=1

ym2=0
,

implying that∣∣∣∣
∫ 1

0
dym2 exp

(
−2πj

Ac

λd
(xl2 − xi2)(ym2 − yk2)

)∣∣∣∣ ≤ K
λd

Ac

1
|xl2 − xi2| ,

for a constant K > 0 independent of Ac and d. Dividing the integral
over the x’s into two domains |xl2 − xi2| ≤ ε and |xl2 − xi2| > ε, we
therefore obtain

|E(exp(2πj(rik − rlk + rlm − rim)/λ))|

≤ 2ε + 2
∫ 1−ε

0
dxi2

∫ 1

xi2+ε
dxl2K

λd

Ac

1
|xl2 − xi2|

≤ 2ε + K
λd

Ac
log(1/ε).

As this upper bound is valid for any 0 < ε < 1, choosing ε = λd/Ac

leads to the desired result:

|E(exp(2πj(rik − rlk + rlm − rim)/λ))| ≤ K
λd

Ac
log
(

Ac

λd

)
. �



A
Regularity Properties of Random Networks

In the following lemma, we state several properties that are satisfied
with high probability in a random realization of the network with n

nodes. For a sequence of random variables An and a sequence of num-
bers bn,

An ≤ bn, with high probability (w.h.p.)

if

lim
n→∞P(An ≤ bn) = 1.

The regularity properties given below arise from the assumption that
nodes are distributed uniformly at random over the network area and
source-destination pairings are also formed randomly without any con-
sideration of node locations.

Lemma A.1. The random network of n nodes with area A and random
source-destination pairings satisfies the following properties:

(a) Let us partition the network area A into cells of area Ac,
where Ac can be a function of n and A. Then for any

101
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0 < δ < 1, the number of nodes inside each cell is in the
interval ((1 − δ)(Ac/A)n,(1 + δ)(Ac/A)n) with probability
larger than 1 − (2A/Ac)e−Λ(δ)(Ac/A)n, where Λ(δ) is inde-
pendent of n, A and Ac, and satisfies Λ(δ) > 0 when δ > 0.

(b) The minimal distance between any two nodes in the net-
work is larger than

√
A/n1+δ, for any δ > 0, w.h.p.

Remark A.2. Even though the condition is not explicitly mentioned
above, part (a) of the above lemma is interesting only when

Acn

A
≥ nγ for some γ > 0,

which does not include the case where, for example, A scales like n and
Ac is constant.

Proof of Lemma A.1.

(a) The proof of the statement is a standard application of the
exponential Chebyshev inequality. Note that the number of
nodes in a given cell is a sum of n i.i.d Bernoulli random
variables Bi, such that P(Bi = 1) = (Ac/A). For any s > 0,
we have

P

(
n∑

i=1

Bi ≥ (1 + δ)
Ac

A
n

)

= P(es
∑n

i=1 Bi ≥ es(1+δ)(Ac/A)n) (A.1)

≤ (E[esB1 ])ne−s(1+δ)(Ac/A)n

=
(

es Ac

A
+
(

1 − Ac

A

))n

e−s(1+δ)(Ac/A)n

≤ e(Ac/A)n(es−1) e−s(1+δ)(Ac/A)n

= e−(Ac/A)nΛ+(δ) (A.2)

by choosing s = ln(1 + δ), where Λ+(δ) = (1 + δ) ln(1+
δ) − δ. Note that Λ+(δ) > 0 when δ > 0. The probability of
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having a cell with more than (1 + δ)(Ac/A)n nodes is upper
bounded by the union bound as

P

(
∃a cell with#of nodes ≥ (1 + δ)

Ac

A
n

)
≤ A

Ac
e−(Ac/A)nΛ+(δ).

The proof for the lower bound follows similarly and yields

P

(
n∑

i=1

Bi ≤ (1 − δ)
Ac

A
n

)
= P(e−s

∑n
i=1 Bi ≥ e−s(1−δ)(Ac/A)n)

≤ e−(Ac/A)nΛ−(δ)

by choosing s = − ln(1 − δ), where Λ−(δ) = (1 − δ) ln(1 −
δ) + δ. The conclusion follows by defining Λ(δ) = min(Λ−(δ),
Λ+(δ)).

(b) Consider one specific node in the network which is at distance
larger than

√
A/n1+δ to all other nodes in the network for

some δ > 0. This is equivalent to saying that there are no
other nodes inside a circle of area πA/n2+2δ around this
node. The probability of such an event is(

1 − π

n2+2δ

)n−1
.

Moreover, the minimum distance between any two nodes in
the network is larger than

√
A/n1+δ if and only if this con-

dition is satisfied for all nodes in the network. Thus, by the
union bound we have

P

(
minimum distance in the network is smaller than

√
A

n1+δ

)

≤ n

(
1 −

(
1 − π

n2+2δ

)n−1
)

,

which decreases to zero as 1/n2δ with increasing n. Therefore,
the minimal distance between any two nodes in the network
is larger than

√
A/n1+δ, for any δ > 0 w.h.p.



B
The Paley–Zygmund Inequality

Lemma B.1. Let X be a non-negative random variable such that
E(X2) < ∞. Then for any t ≥ 0 such that t < E(X), we have

P(X > t) ≥ (E(X) − t)2

E(X2)
.

Proof of Lemma B.1. By the Cauchy–Schwarz inequality, we have for
any t ≥ 0

E(X1X>t) ≤
√

E(X2)P(X > t)

and also, if t < E(X),

E(X1X>t) = E(X) − E(X1X≤t) ≥ E(X) − t > 0.

Therefore,

P(X > t) ≥ (E(X) − t)2

E(X2)
. �
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