Diversity and Freedom:
A Fundamental Tradeoff in Wireless Systems

David Tse
Department of EECS, U.C. Berkeley

September 23, 2003

University of Toronto



Wireless Fading Channels

e Fundamental characteristic of wireless channels: multi-path fading.



Wireless Fading Channels

e Fundamental characteristic of wireless channels: multi-path fading.

e Two important resources of a fading channel: diversity and
degrees of freedom.
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A channel with more diversity has smaller probability in deep fades.
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e Additional independent fading channels increase diversity.

e Spatial diversity: receive, transmit or both.



Example: Spatial Diversity
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e Additional independent fading channels increase diversity.
e Spatial diversity: receive, transmit or both.

e Repeat and Average: compensate against channel unreliability.
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Signals arrive in multiple directions provide multiple degrees of freedom
for communication.
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Signals arrive in multiple directions provide multiple degrees of freedom
for communication.

Same effect can be obtained via scattering even when antennas are
close together.
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The two resources have been considered mainly in isolation: existing
schemes focus on maximizing either the diversity gain or the
multiplexing gain.



Diversity vs. Freedom
Y Y
+><+\

——| FadingChannel:h, ——— |

= Spaid Chanel =

FadingChannel:h, - »

= Spatial Channel =

Fading Channel: h 3 ———» |

—» Fading Channel: h , —— |

The two resources have been considered mainly in isolation: existing
schemes focus on maximizing either the diversity gain or the
multiplexing gain.

The right way of looking at the problem is a tradeoff between the two
types of gain.



Diversity vs. Freedom
Y Y
+><+\

——| FadingChannel:h, ——— |

= Spaid Chanel =

FadingChannel:h, - »

= Spatial Channel =

Fading Channel: h 3 ———» |

—» Fading Channel: h , —— |

The two resources have been considered mainly in isolation: existing
schemes focus on maximizing either the diversity gain or the
multiplexing gain.

The right way of looking at the problem is a tradeoff between the two
types of gain.

The optimal tradeoff achievable by a coding scheme gives a
fundamental performance limit on communication over fading channels.



Talk Outline

e point-to-point MIMO channels (Zheng and Tse 02)
e multiple access MIMO channels (Tse, Viswanath, Zheng 03)

e cooperative relaying systems (Laneman,Tse, Wornell 02)



Point-to-point MIMO Channel
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Y = H:x: + wq, Wi ~v CN(O, 1)
e Rayleigh flat fading i.i.d. across antenna pairs (h;; ~ CN(0,1)).

e SNR is the average signal-to-noise ratio at each receive antenna.



Coherent Block Fading Model

e Focus on codes over [ symbols, where H remains constant.
e H is known to the receiver but not the transmitter.

e Assumption valid as long as

| < coherence time x coherence bandwidth.



Space-Time Block Code

Y =HX+W
» time
Y = H X + W
Y m x 1
space

Focus on coding over a single block of length .



Diversity Gain
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Diversity Gain

Motivation: Binary Detection

y =hx+w P. ~ P(||h]|| is small ) o« SNR™1

S
y1 =hix+w; — P. =~ P(||hy|,||hz]|| are both small)
y2 = hox +wy > x SNR—2

General Definition
A space-time coding scheme achieves diversity gain d, if

P.(SNR) ~ SNR™4



Spatial Multiplexing Gain

Motivation: Channel capacity (Telatar '95, Foschini'96)
C(SNR) ~ min{m,n}log SNR (bps/Hz)

min{m,n} degrees of freedom to communicate.



Spatial Multiplexing Gain

Motivation: Channel capacity (Telatar’ 95, Foschini'96)
C(SNR) ~ min{m,n}log SNR (bps/Hz)

min{m,n} degrees of freedom to communicate.

Definition A space-time coding scheme achieves spatial multiplexing
gain r, if

R(SNR) = rlog SNR
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Fundamental Tradeoff

A space-time coding scheme achieves

Spatial Multiplexing Gain » : R =rlogSNR
and
Diversity Gain d . P.~SNR¢

Fundamental tradeoff: for any r, the maximum diversity gain
achievable: dy, (7).

r— dp, ()

It is a tradeoff between data rate and error probability.



Main Result: Optimal Tradeoff

(Zheng and Tse 02)
As long as block length I > m +n — 1:

(0,mn)
0+
=1
=
‘©
o
P
@
()
=
&)
(min{m,n},0)

Spatial Multiplexing Gain: r=R/log SNR
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Main Result: Optimal Tradeoff

(Zheng and Tse 02)
As long as block length I > m +n — 1:
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Spatial Multiplexing Gain: r=R/log SNR

Diversity Gain:

For integer r, it is as though r transmit and r receive antennas were
dedicated for multiplexing and the rest provide diversity.



Main Result: Optimal Tradeoff

(Zheng and Tse 02)
As long as block length I > m +n — 1:
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Spatial Multiplexing Gain: r=R/log SNR

For integer r, it is as though r transmit and r receive antennas were
dedicated for multiplexing and the rest provide diversity.



What do I get by adding one more antenna at the
transmitter and the receiver?



d(r)

Diversity Advantage:

Adding More Antennas

Spatial Multiplexing Gain: r=R/log SNR




Adding More Antennas
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Diversity Advantage:

Spatial Multiplexing Gain: r=R/log SNR

e Capacity result : increasing min{m,n} by 1 adds 1 more degree of
freedom.



Adding More Antennas

d(r)

Diversity Advantage:

Spatial Multiplexing Gain: r=R/log SNR

e Capacity result: increasing min{m,n} by 1 adds 1 more degree of
freedom.

e [radeoff curve: increasing both m and n by 1 yields multiplexing
gain +1 for any diversity requirement d.
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Geometric Picture for General m x n Channels

Multiplexing gain = r (r integer)
MIMO Channel

Good H
Full Rank

Rank(H)=r



Geometric Picture for General m x n Channels

Multiplexing gain = r (r integer)

MIMO Channel
Typical Bad H

€ Rank(H)=r

The co-dimension of the sub-manifold of rank » matrices within the set
of all m x n matrices is (m —r)(n —r).



Geometric Picture for General m x n Channels

Multiplexing gain = r (r integer)

MIMO Channel
Typical Bad H

€ Rank(H)=r

The co-dimension of the sub-manifold of rank » matrices within the set
of all m x n matrices is (m —r)(n —r).

P. ~ SNR—(m—r)(n—T)



Typical Error Events

e In1x1and 1 xn channels, error occurs when the channel gain
|h||? is small.

e In general m x n channel, error occurs when some or all of the
singular values of H are small. There are many ways for this to
happen.

e High SNR analysis shows that errors occur typically when H is
close to a rank r matrix.



Tradeoff Analysis of Specific Designs

Focus on two transmit antennas.

Y =HX+W
Repetition Scheme: Alamouti Scheme:
> time > time
*
X = X1 O X = X1 -X ,%
0 X1

space space

y1 = ||H||Fx1 + W1 y1y2] = [|H||p[x1x2] + [Ww1w2]



Comparison: 2 x 1 System
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Comparison: 2 x 1 System

d(r)

Diversity Gain:

Y

Repetition:  y1 = ||H||px1 + W

Alamouti: [y1y2] = ||HHF[X1X2] -+ [W1W2]

Optimal Tradeoff
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Spatial Multiplexing Gain: r=R/log SNR



Comparison: 2 x 2 System
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Comparison: 2 x 2 System
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Comparison: 2 x 2 System
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Repetition:  y1 = ||H||px1 + W

\k Alamouti: [y1y2] = HHHF[X1X2] + [W1W2]




Talk Outline

e point-to-point MIMO channels
e Multiple access MIMO channels

e cCooperative relaying systems



Multiple Access
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In a point-to-point link, multiple antennas provide diversity and
multiplexing gain.

In a system with K users, multiple antennas can be used to discriminate
signals from different users too.

Continue assuming i.i.d. Rayleigh fading, n receive antennas, m
transmit antennas per user.



Multiuser Diversity-Multiplexing Tradeoff

Suppose we want every user to achieve an error probability:

P, ~ SNR™¢

and a data rate

R =rlogSNR bits/s/Hz.

What is the optimal tradeoff between the diversity gain d and the
multiplexing gain r?

Assume a coding block length [ > Km + n — 1.



Optimal Multiuser D-M Tradeoff: m <n/(K + 1)

(Tse, Viswanath and Zheng 02)
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Diversity Gain:

Spatial Multiplexing Gain: r=R/log SNR

In this regime, the diversity-multiplexing tradeoff of each user is as
though it is the only user in the system, i.e. d;kn,n(r)



Multiuser Tradeoff: m >n/(K + 1)
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Spatial Multiplexing Gain : r = R/log SNR

Single-user diversity-multiplexing tradeoff up to r* =n/(K + 1).



Multiuser Tradeoff: m >n/(K + 1)
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Spatial Multiplexing Gain : r = R/log SNR

Single-user diversity-multiplexing tradeoff up to r* = m/(K + 1).

For r from n/(K + 1) to min{n/K,m}, tradeoff is as though the K users
are pooled together into a single user with K'm antennas and rate Kr,
i.e. d% (Kr) .

Km,n



Benefit of Dual Transmit Antennas
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Benefit of Dual Transmit Antennas
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Question: what does adding one more antenna at each mobile buy me?

Assume there are more users than receive antennas.
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Diversity Gain : d (r)

Answer

Optimal tradeoff

1 Tx antenna

Spatial Multiplexing Gain : r = R/log SNR




Answer

*

Diversity Gain : d (r)

2 Tx antenna

Optimal tradeoff

Spatial Multiplexing Gain : r = R/log SNR

Adding one more transmit antenna does not increase the number of
degrees of freedom for each user.

However, it increases the maximum diversity gain from n to 2n.

More generally, it improves the diversity gain d(r) for every r.



Suboptimal Receiver: the Decorrelator/Nuller
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Consider only the case of m = 1 transmit antenna for each user and
number of users K < n.



Tradeoff for the Decorrelator
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Spatial Multiplexing Gain : r = R/log SNR

Maximum diversity gain isn — K + 1. ‘costs K — 1 diversity gain to null
out K — 1 interferers.” (Winters, Salz and Gitlin 93)



Tradeoff for the Decorrelator

*

Diversity Gain : d (r)

n-K+1

Decorrelator

1

Spatial Multiplexing Gain : r = R/log SNR

Maximum diversity gain is n — K + 1.

“costs K — 1 diversity gain to null

out K — 1 interferers.” (Winters, Salz and Gitlin 93)

Adding one receive antenna provides either more reliability per user or
accommodate 1 more user at the same reliability.



Tradeoff for the Decorrelator

*

Diversity Gain : d (r)

Optimal tradeoff

Spatial Multiplexing Gain : r = R/log SNR

Maximum diversity gain is n — K + 1: ‘“costs K — 1 diversity gain to null
out K — 1 interferers.” (Winters, Salz and Gitlin 93)

Adding one receive antenna provides either more reliability per user or
accommodate 1 more user at the same reliability.

Optimal tradeoff curve is also a straight line but with a maximum
diversity gain of n.

Adding one receive antenna provides more reliability per user and
accommodate 1 more user.



Talk Outline

e point-to-point MIMO channels
e Mmultiple access MIMO channels

e cooperative relaying systems
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Cooperative Relaying

Channel 1 Y RX

Tx 1 Y Channel 2

Cooperation Y
Tx 2

Cooperative relaying protocols can be designed via a
diversity-multiplexing tradeoff analysis.

(Laneman, Tse and Wornell 02)



Tradeoff Curves of Relaying Strategies
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Tradeoff Curves of Relaying Strategies
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Tradeoff Curves of Relaying Strategies
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Conclusion

Diversity-multiplexing tradeoff is a unified way to look at performance
over wireless channels.

Future work:

e Code and receiver design to achieve good tradeoffs.

e Application to other wireless scenarios.



