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Abstract—Interference is a major issue limiting the perfor-
mance in wireless networks. Cooperation among receivers can
help mitigate interference by forming distributed MIMO systems.
The rate at which receivers cooperate, however, is limited in most
scenarios. How much interference can one bit of receiver coop-
eration mitigate? In this paper, we study the two-user Gaussian
interference channel with conferencing decoders to answer this
question in a simple setting. We identify two regions regarding the
gain from receiver cooperation: linear and saturation regions. In
the linear region, receiver cooperation is efficient and provides a
degrees-of-freedom gain, which is either one cooperation bit buys
one over-the-air bit or two cooperation bits buy one over-the-air
bit. In the saturation region, receiver cooperation is inefficient
and provides a power gain, which is bounded regardless of the
rate at which receivers cooperate. The conclusion is drawn from
the characterization of capacity region to within two bits/s/Hz,
regardless of channel parameters. The proposed strategy consists
of two parts: 1) the transmission scheme, where superposition
encoding with a simple power split is employed and 2) the cooper-
ative protocol, where one receiver quantize-bin-and-forwards its
received signal and the other after receiving the side information
decode-bin-and-forwards its received signal.

Index Terms—Capacity to within a bounded gap, distributed
MIMO system, interference management, receiver cooperation.

I. INTRODUCTION

I N MODERN communication systems, interference is one
of the fundamental factors that limit performance. The sim-

plest information theoretic model for studying this issue is the
two-user interference channel. Characterizing its capacity re-
gion is a long-standing open problem, except for several spe-
cial cases (e.g., the strong interference regime [1]). The largest
achievable region to date is reported by Han and Kobayashi [2]
and the core of the scheme is a superposition coding strategy.
Recent progress has been made on both inner bounds and outer
bounds: Etkin, Tse, and Wang characterized the capacity region
of the two-user Gaussian interference channel to within one
bit [3] by using a superposition coding scheme with a simple
power-split configuration and by providing new upper bounds.
The bounded gap-to-optimality result [3] leads to an uniform ap-
proximation of the capacity region and provides a strong guar-
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antee on the performance of the proposed scheme. Later, Mota-
hari and Khandani [4], Shang, Kramer, and Chen [5], and An-
napureddy and Veeravalli [6] independently improve the outer
bounds and characterize the sum capacity in a very weak inter-
ference regime and a mixed interference regime.

In the above interference channel setup, transmitters or re-
ceivers are not allowed to communicate with one another and
each user has to combat interference on its own. In various
scenarios, however, nodes are not isolated and transmitters/re-
ceivers can exchange certain amount of information. Coopera-
tion among transmitters/receivers can help mitigate interference
by forming distributed MIMO systems which provide two kinds
of gains: degrees-of-freedom gain and power gain. The rate at
which they cooperate, however, is limited, due to physical con-
straints. Therefore, one of the fundamental questions is, how
much interference can limited transmitter/receiver cooperation
mitigate? How much gain can it provide?

In this paper, we consider a two-user Gaussian interference
channel with conferencing decoders to answer this question
regarding receiver cooperation. Transmitter cooperation is
addressed in [32]. Conferencing among encoders/decoders has
been studied in [7]–[12]. Our model is similar to those in [11]
and [12] but in an interference channel setup. The work in [11]
characterizes the capacity region of the compound multiple ac-
cess channel (MAC) with unidirectional conferencing between
decoders. For general setup (i.e., bidirectional conferencing),
it provides achievable rates and finds the maximum achievable
individual rate to within a bounded gap, but is not able to es-
tablish an uniform approximation result on the capacity region.
The work in [12] considers one-sided Gaussian interference
channels with unidirectional conferencing between decoders
and characterizes the capacity region in strong interference
regimes and the asymptotic sum capacity at high . For
general receiver cooperation, works including [13] and [14],
investigate cooperation in interference channels with a setup
where the cooperative links are in the same band as the links
in the interference channel. In particular, [14] characterizes
the sum capacity of Gaussian interference channels with
symmetric in-band receiver cooperation to within a bounded
gap. Our work, on the other hand, is focused on the Gaussian
interference channel with out-of-band (orthogonal) receiver
cooperation and studies its entire capacity region. Works on
interference channels with additional relays [15]–[17] and
two-hop interference-relay networks [18] are also related to our
problem, since the receivers also serve as relays in our setup.

We propose a strategy achieving the capacity region uni-
versally to within 2 bits/s/Hz per user, regardless of channel
parameters. The two-bit gap is the worst case gap which can
be loose in some regimes, and it is vanishingly small at high
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Fig. 1. The gain from limited receiver cooperation.

when compared to the capacity. The strategy consists of
two parts: 1) the transmission scheme, describing how trans-
mitters encode their messages and 2) the cooperative protocol,
describing how receivers exchange information and decode
messages. For transmission, both transmitters use superposition
coding [2] with the same common-private power split as in the
case without cooperation [3]. For the cooperative protocol, it
is appealing to apply the decode-forward or compress-forward
schemes, originally proposed in [19] for the relay channel,
like most works dealing with more complicated networks,
including [10]–[13], [20], etc. It turns out neither conventional
compress-forward nor decode-forward achieves capacity to
within a bounded gap for the problem at hand. On the other
hand, [21]–[25] observe that the conventional compress-for-
ward scheme [19] may be improved by the destination directly
decoding the sender’s message instead of requiring to first
decode the quantized signal of the relay. We use such an
improved compress-forward scheme as part of our cooperative
protocol. One of the receivers quantizes its received signal at
an appropriate distortion, bins the quantization codeword and
sends the bin index to the other receiver. The other receiver then
decodes its own information based on its own received signal
and the received bin index. After decoding, it bin-and-forwards
the decoded common messages back to the former receiver
and helps it decode. Note that although an arbitrary number of
rounds is allowed in the conferencing formulation, it turns out
that two rounds are sufficient to achieve within 2 bits of the
capacity.

We identify two regions regarding the gain from receiver co-
operation: linear and saturation regions, as illustrated through
a numerical example in Fig. 1. In the plot we fix the signal-to-
noise ratios and interference-to-noise ratios to be
20 dB and 15 dB respectively and we plot the user data rate
versus the cooperation rate. In the linear region, receiver coop-
eration is efficient, in the sense that the growth of each user’s
“over-the-air” data rate is roughly linear with respect to the
capacity of receiver-cooperative links. The gain in this region
is the degrees-of-freedom gain that distributed MIMO systems
provide. On the other hand, in the saturation region, receiver co-
operation is inefficient in the sense that the growth of each user’s

over-the-air data rate becomes saturated as one increases the rate
in receiver-cooperative links. The gain is the power gain which
is bounded regardless of the cooperation rate. We will focus on
the system performance in the linear region, because not only
that in most scenarios the rate at which receivers can cooperate
is limited, but also that the gain from cooperation is more sig-
nificant.

With the bounded gap-to-optimality result, we find that the
fundamental gain from cooperation in the linear region as fol-
lows: either one cooperation bit buys one over-the-air bit or two
cooperation bits buy one over-the-air bit until saturation, de-
pending on channel parameters. In the symmetric setup, at high

, when is below 50% of in dB scale, one-bit coop-
eration per direction buys roughly one-bit gain per user until full
receiver cooperation performance is reached, while when is
between 67% and 200% of in dB scale, one-bit cooperation
per direction buys roughly half-bit gain per user. (The example
in Fig. 1 falls in the latter case, and as can be seen, the slope of
the linear region is about 0.5.) In the weak interference regime,
for a given pair of , when the receiver-cooperative
link capacity , cooperation between receivers can
get a close-to-interference-free (that is, within a bounded gap)
performance. In the strong interference regime, in contrast to
that without cooperation, system performance can be boost be-
yond interference-free performance, by utilizing receiver-coop-
erative links not only for interference mitigation but also for for-
warding desired information, since the cross link is stronger than
the direct link.

The rest of this paper is organized as follows. In Section II,
we introduce the channel model and formulate the problem. In
Section III, we provide intuitive discussions about achievability
and motivate our two-round strategy. Then we give examples to
illustrate why it is not a good idea to use cooperative protocols
based on conventional compress-forward or decode-forward. In
Section IV, we describe the strategy concretely and derive its
achievable rates and in Section V we show that the achievable
rate region is within 2 bits per user to the outer bounds we
provide. In addition, we characterize the capacity region of the
compound MAC with conferencing decoders to within 1 bit, as
a by-product. In Section VII, focusing on the symmetric setup,
we illustrate the fundamental gain from receiver cooperation by
deriving the optimal number of generalized degrees of freedom
(g.d.o.f.) and compare it with the achievable ones of suboptimal
schemes.

II. PROBLEM FORMULATION

A. Channel Model

The two-user Gaussian interference channel with confer-
encing decoders is depicted in Fig. 2.

Transmitter-Receiver Links: The transmitter-receiver links
are modeled as the normalized Gaussian interference channel

where the additive noise processes , are in-
dependent , i.i.d. over time. In this paper, we use to
denote time indices. Transmitter intends to convey message
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Fig. 2. Channel model.

to receiver by encoding it into a block codeword ,
with transmit power constraints

for arbitrary block length . Note that the outcome of each
encoder depends solely on its own message. Messages
are independent. Define channel parameters

Receiver-Cooperative Links: For , the
receiver-cooperative links are noiseless with capacity from
receiver to . Encoding must satisfy causality constraints: for
any time index , the cooperation signal from
receiver 2 to 1, , is only a function of

and the cooperation signal from re-
ceiver 1 to 2, , is only a function of

.
In the rest of this paper, we use to denote the sequence

.

B. Strategies, Rates, and Capacity Region

We give the basic definitions for the coding strategies, achiev-
able rates of the strategy, and the capacity region of the channel.

Definition 2.1 (Strategy and Average Probability of Error):
An -strategy consists of the following: for

, ,
1) message set for user ;
2) encoding function , at

transmitter ;
3) set of relay functions such that

at receiver ;
4) decoding function

, at
receiver .

The average probability of error

Definition 2.2 (Achievable Rates and Capacity Region): A
rate tuple is achievable if for any and for all
sufficiently large , there exists an strategy with

, for , such that . The capacity
region is the collections of all achievable .

C. Notations

We summarize below the notations used in the rest of this
paper.

• For a real number , denotes its posi-
tive part.

• For sets in an -dimensional space,
denotes the direct sum of and

. denotes the convex hull of the set .
• With a little abuse of notations, for , denotes

the modulo- sum of and .
• Unless specified, all the logarithms are of base 2.

III. MOTIVATION OF STRATEGIES

Before introducing our main result, we first provide intu-
itive discussions about achievability and motivate our two-round
strategy (to be described in detail in Section IV) from a high-
level perspective. Then we give examples to illustrate why co-
operative protocols based on conventional compress-forward or
decode-forward may not be good for cooperation between re-
ceivers to mitigate interference. Throughout the discussion in
this section, we will make use of the linear deterministic model
proposed in [25], [26].

The linear deterministic model is a tool for studying Gaussian
networks so that an uniform approximation of the capacity can
be found. It is also used for the two-user interference channel
[27]. The model captures the signal interaction in the original
Gaussian scenario to some extent and is useful for illustrating
some subtle facts which are not easy to be uncovered in the
Gaussian scenario. Throughout this paper, all discussions in-
volving the linear deterministic model are either aimed to eluci-
date a certain phenomenon that arises in the Gaussian scenario,
or to provide an intuitive argument for a certain claim without
rigorously proving it.

A. Optimal Strategy in the Linear Deterministic Channel

First, consider the following symmetric channel:
, and . Set

to be 2/3 of in dB scale, that is, .
Set . The corresponding linear deterministic
channel (LDC) is depicted in Fig. 3. The bits at the levels of
transmitters/receivers can be thought of as chunks of binary ex-
pansions of the transmitted/received signals. Note that in this
example, one bit in the LDC corresponds to bits in
the Gaussian channel. Because , the least signifi-
cant bit (LSB) of each transmitter appears below noise level at
the other receiver and is invisible.

In the discussions below, bit denotes the bit sent at
the th level from the most significant bit (MSB) at transmitter
1 and similarly denotes the bit sent at the th level at
transmitter 2.

We begin with the baseline where two receivers are not al-
lowed to cooperate. The transmitted signals are naturally broken
down into two parts: 1) the common levels, which appear at both
receivers and 2) the private levels, which only appear at its own
receiver. Each transmitter splits its message into common and
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Fig. 3. An example channel. (a) Without cooperation. (b) With cooperation.

private parts, which are linearly modulated onto the common
and private levels of the signal respectively. Each receiver then
decodes both user’s common messages and its own private mes-
sage by solving the linear equations it received. This is shown
to be optimal in the two-user interference channel [27]. In this
example [Fig. 3(a)], bits and are common, while and

are private. The sum capacity without cooperation is 4 bits.
One cannot turn on the bit (or ) since the number of vari-
ables (bits) to be solved at the receiver 1, that is, ,
has already met the maximum number of equations it has.

With receiver cooperation, the natural split of transmitted sig-
nals does not change. This suggests that the encoding proce-
dure and the aim of each decoder remain the same. Each re-
ceiver with the help from the other receiver, however, is able to
decode more information because it has additional linear equa-
tions. Since each user’s private message is not of interest to the
other receiver, a natural scheme for receiver cooperation is to
exchange linear combinations formed by the signals above the
private signal level so that the undesired signal does not pol-
lute the cooperative information. In this example, as illustrated
in Fig. 3(b), with one-bit cooperation in each direction in the
LDC, the optimal sum rate is 5 bits, achieved by turning on one
over-the-air bit . This causes collisions at the second level at
receiver 1 and at the third level at receiver 2, but they can be re-
solved with cooperation: receiver 1 sends to receiver 2
and receiver 2 sends to receiver 1. Now receiver 1 can solve

and receiver 2 can solve . In fact,
the exchanged linear combinations are not unique. For example,
receiver 1 can send and receiver 2 can send
and this again achieves the same rates. As long as receiver 1
does not send a linear combination containing the private bit
and the sent linear combination is linearly independent of the
signals at receiver 2 (and vice versa for the linear combination
sent from receiver 2 to receiver 1), the scheme is optimal for this

Fig. 4. An asymmetric example. (a) Suboptimal scheme. (b) Optimal scheme.

example channel. The above discussion regarding the scheme in
the LDC naturally leads to an implementable one-round scheme
in the Gaussian channel, where both receivers quantize and bin
their received signals at their own private signal level.

In the above example, it is optimal that each receiver sends
to each other linear combinations formed by its received sig-
nals above its private signal level. Is this optimal in general?
The answer is no. Consider the following asymmetric example:

, is 2/3 of in dB and is 1/3 of
in dB. and . The

corresponding LDC is depicted in Fig. 4, where one bit in the
LDC corresponds to in the Gaussian channel. First
consider the same scheme as that in the previous exmaple. Note
that if receiver 2 just forwards signals above its private signal
level, it can only forward to receiver 1 and achieves up to
2 bits. On the other hand, if receiver 2 forwards to receiver 1,
which is below user 2’s private signal level, it achieves
bits. From this example, we see that once there is “useful” in-
formation (which should not be polluted by the receiver’s own
private bits) which lies at or below the private signal level (in
this example, the bit ), the one-round scheme described in the
previous example is suboptimal. To extract the useful informa-
tion at or below the private signal level, one of the receivers (in
this example, receiver 2) can first decode and then form linear
combinations using (decoded) common messages only.

It turns out that without loss of generality, the above situation
(where there is useful information for the other receiver lies at
or below the private signal level) only happens at most at one
receiver. In other words, there exists a receiver where no useful
information (for the other receiver) lies at or below the private
signal level. The reason is the following:

1) It is straightforward to see that the capacity re-
gion is convex and hence if a scheme can achieve

for all , it
is optimal.
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2) If , we weigh user 1’s rate more. Since the pri-
vate bits are cheaper to support in the sense that they do
not cause interference at receiver 2, user 1 should be trans-
mitting at its full private rate, which is equal to the number
of levels at or below the private signal level at receiver 1.
Therefore, all levels at or below the private signal level are
occupied by user 1’s private bits and there is no useful in-
formation at receiver 1 for receiver 2.

3) Similarly if , there is no useful information at
receiver 2 for receiver 1 at or below the private signal level.

Hence, the following two-round strategy turns out to be optimal
in the LDC (the proof is omitted here): if , receiver 1
forms a certain number (no more than the cooperative link ca-
pacity) of linear combinations composed of the signals above its
private signal level and sends them to receiver 2. After receiver 2
decodes, it forms a certain number of linear combinations com-
posed of the decoded common bits and sends them to receiver 1.
If , the roles of receiver 1 and 2 are exchanged. Note that
depending on the operating point in the capacity region, we use
different configurations, implying that time-sharing is needed to
achieve the full capacity region.

From the above discussion, a natural and implementable two-
round strategy for Gaussian channels emerges. For the transmis-
sion, we use a superposition Gaussian random coding scheme
with a simple power-split configuration, as described in [3]. For
the cooperative protocol, one of the receivers quantize-and-bins
its received signal at its private signal level and forwards the bin
index; after the other receiver decodes with the helping side in-
formation, it bin-and-forwards the decoded common messages
back to the first receiver and helps it decode. In Section V, we
shall prove that this strategy achieves the capacity region uni-
versally to within 2 bits per user.

B. Conventional Compress-Forward and Decode-Forward

We have motivated the two-round strategy to be proposed for-
mally in the next section from a high level perspective. Below
we shall illustrate why conventional compress-forward (CF) and
decode-forward (DF) are not good in certain regimes.

It is a standard approach to evaluate achievable rates of
Gaussian relay networks using conventional compress-forward
with Gaussian vector quantization (VQ) assuming joint Gaus-
sianity of the received signals at relays and destination in the
literature, including [10]–[13], [20], etc. What if we replace the
quantize-binning part in the two-round strategy proposed above
by the conventional compress-forward with Gaussian VQ, as in
[10], [11], and [28], where the two-round idea is also used?

Let us consider another symmetric channel with
and . From its corresponding

LDC in Fig. 5, one can see that the two received signals of the
Gaussian channel, , are not jointly Gaussian. The reason
is that, supposing they are jointly Gaussian, the conditional
distribution of given should be marginally Gaussian. As
Fig. 5 suggests, however, conditioning on receiver 1’s signal re-
sults in a hole at the third level of receiver 2’s signal, which was
occupied by . Therefore, transmitter 2’s common codebook
is not dense enough to make the conditional distribution of
given marginally Gaussian. The incorrect assumption results

Fig. 5. Another example channel. (a) Optimal scheme (one round). (b) Con-
ventional compress-forward in first round.

in larger quantization distortions, as depicted in Fig. 5(b) 1. The
information sent from receiver 1 to receiver 2, , is redundant
and cannot help mitigate interference . Hence, the achievable
sum rate is 7 bits (4 bits for user 1 and 3 bit for user 2), while the
one-round scheme in Fig. 5(a) achieves 8 bits. Recall that 1 bit
in the LDC corresponds to in the Gaussian channel,
therefore the performance loss is unbounded as .
The main reason why conventional compress-forward does
not work well is that the scheme does not well utilize the
dependency between the two received signals.

Another standard approach is to use decode-forward for the
two receivers to cooperate. Let us go back to the first example
and consider the channel in Fig. 3. Note that there is no gain if
we require both common messages to be decoded at one of the
receivers at the first stage without cooperation. By symmetry we
can assume that, without loss of generality, each receiver first
decodes its own common message and then bin-and-forwards
the decoded information to the other receiver. At the second
stage, it then decodes the other user’s common message with
the help from cooperation and decodes its own private message.
In the corresponding LDC, the common bit cannot be de-
coded at the first stage and hence the total throughput using this
strategy is at most 4 bits, which is again the same as that without

1If we view the received signals as vectors of bits rather than binary expan-
sions of Gaussian signals, we are not restricted to send the MSB � to receiver 2
and � can be sent instead. However, this kind of scheme cannot be implemented
in the Gaussian scenario using conventional compress-forward with Gaussian
VQ.
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cooperation. The reason why decode-forward is not good for the
two receivers to cooperate is that, it is too costly to decode users’
own common message at the first stage without the help from
cooperation.

IV. A TWO-ROUND STRATEGY

In this section we describe the two-round strategy and derive
its achievable rate region. The strategy consists of two parts: 1)
the transmission scheme and 2) the cooperative protocol.

A. Transmission Scheme

We use a simple superposition coding scheme with Gaussian
random codebooks. For each transmitter, it splits its own mes-
sage into common and private (sub-)messages. Each common
message is aimed at both receivers, while each private one is
aimed at its own receiver. Each message is encoded into a code-
word drawn from a Gaussian random codebook with a certain
power. For transmitter , the power for its private and common
codes are and respectively, for . As
[3] points out, since the private signal is undesired at the unin-
tended receiver, a reasonable configuration is to make the private
interference at or below the noise level so that it does not cause
much damage and can still convey additional information in the
direct link if it is stronger than the cross link. When the inter-
ference is stronger than the desired signal, simply set the whole
message to be common. In a word, for or ,

if and otherwise.

B. Cooperative Protocol

The cooperative protocol is two-round. We briefly describe
it as follows: for or , at the first round,
receiver quantizes its received signal and sends out the bin
index (the procedure is described in detail below). At the second
round, receiver receives this side information, decodes its de-
sired messages (both users’ common messages and its own pri-
vate message) with the decoder described in detail below, ran-
domly bins the decoded common messages and sends the bin in-
dices to receiver . Finally receiver decodes with the help from
the receiver-cooperative link. We call this a two-round strategy
STG , meaning that the processing order is: receiver

quantize-and-bins, receiver decode-and-bins and receiver
decodes. Its achievable rate region is denoted by .
By time-sharing, we can obtain achievable rate region

, convex hull of the union
of two rate regions.

Remark 4.1 (Engineering Interpretation): There is a simple
way to understand the strategy from an engineering perspective.
To achieve for some nonneg-
ative , the processing configuration can be easily de-
termined: strategy STG should be used, where

and . In a word, the
receiver which decodes last is the one we favor most. This is the
high-level intuition we obtained from the discussion in the LDC
in Section III-A.

In the following, we describe each component in detail,
including quantize-binning, decode-binning, and their cor-
responding decoders. For simplicity, we consider strategy
STG .

Quantize-Binning (Receiver 2): Upon receiving its signal
from the transmitter-receiver link, receiver 2 does not decode
messages immediately. Instead, serving as a relay, it first
quantizes its signal by a pregenerated Gaussian quantization
codebook with certain distortion and then sends out a bin index
determined by a pregenerated binning function. How should
we set the distortion? As discussed in the previous section,
note that both its own (user 2’s) private signal and the noise it
encounters are not of interest to receiver 1. Therefore, a natural
configuration is to set the distortion level equal to the aggregate
power level of the noise and user 2’s private signal.

Decoder at Receiver 1: After retrieving the receiver-coop-
erative side information, that is, the bin index, receiver 1 de-
codes two common messages and its own private message, by
searching in transmitters’ codebooks for a codeword triple (in-
dexed by user 1 and user 2’s common messages and user 1’s own
private message) that is jointly typical with its received signal
and some quantization point (codeword) in the given bin. If there
is no such unique codeword triple, it declares an error.

Decode-Binning (Receiver 1): After receiver 1 decodes, it
uses two pregenerated binning functions to bin the two common
messages and sends out these two bin indices to receiver 2.

Decoder at Receiver 2: After receiving these two bin indices,
receiver 2 decodes two common messages and its own private
message, by searching in the corresponding bins (containing
common messages) and user 2’s private codebook for a code-
word triple that is jointly typical with its received signal.

Remark 4.2 (Difference From the Conventional CF): The
action of receiver 2 as a relay is very similar to that of the relay
in the conventional compress-forward with Gaussian vector
quantization. Note that the main difference from the conven-
tional compress-forward with Gaussian vector quantization
lies in the decoding procedure (at receiver 1) and the chosen
distortion. In the conventional Gaussian compress-forward, the
decoder first searches in the bin for one quantization codeword
that is jointly typical with its received signal from its own
transmitter only, assuming that the two received signals are
jointly Gaussian. This may not be true since a single user
may not transmit at the capacity in its own link, which results
in “holes” in signal space. As a consequence, this scheme
may not utilize the dependency of two received signals well
and cause larger distortions. Our scheme, on the other hand,
utilizes the dependency in a better way by jointly deciding the
quantization codeword and the message triple, consequently
allows smaller distortions and is able to reveal the beneficial
side information to the other receiver. Quantize-binning and its
corresponding decoding part of our scheme is very similar to
extended hash-and-forward proposed in [22], in which it was
pointed out that the scheme has no advantage over conventional
compress-forward in a single-source single-relay setting. In
the Gaussian single-relay channel (with orthogonal noise-free
relay-destination link), the received signal at the relay and the
destination are indeed jointly Gaussian when communicating
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at the quantize-map-and-forward achievable rate and hence
the performances of the two schemes are the same. Due to the
above mentioned issues, however, we recognize in our problem
where the channel consists of two source-destination pairs
and two relays, the scheme has an unbounded advantage over
the conventional compress-forward in certain regimes. Such
phenomena are also observed in single-source single-destina-
tion Gaussian relay networks [25], [29] and interference-relay
channels [17], [29].

C. Achievable Rates

The following theorem establishes the achievable rates of
strategy STG . Let and denote the rates for
user ’s common message and private message respectively, for

.

Theorem 4.3 (Achievable Rate Region for STG ):
The rate tuple satisfying the following
constraints is achievable:

Constraints at receiver 1: At the bottom of the page, where

For , is the common codebook gen-
erating random variable. is the superposition
codebook generating variable, where is in-

dependent of . is the quantization codebook
generating random variable and , independent
of everything else. is the quantization distortion at receiver
2.

Constraints at receiver 2:

where is the superposition codebook generating
variable and is independent of .

Proof: For details, see Appendix A. Here we give some
high-level comments on these rate constraints. First, unlike in-
terference channels without cooperation, here receiver 1 is re-
quired to decode correctly so that it can help receiver 2. This
additional requirement gives the rate constraint (2) on .

Second, in the set of constraints at receiver 1, on the right-
hand side they are all minimum of two terms. The second term
corresponds to the case when the receiver-cooperative link is
strong enough to convey the quantized correctly. The first
term corresponds to the case when receiver 1 can only figure
out a set of candidates of quantized . Regarding the “rate
loss” term , in Section III we see that in the LDC as long
as the quantization level is chosen such that no private signals
pollute the cooperative information, there is no such penalty. In
fact, corresponds to the number
of private bits polluting the cooperative linear combinations in
the LDC if one chooses the quantization distortion to be too
small. In the Gaussian channel, however, due to the carry-over of
real additions, the private part will always “leak” into the levels
above the quantization level and hence there is always at least a
bounded rate loss even if we choose the quantization distortion
properly.

Finally, in the set of constraints at receiver 2, since receiver 1
only helps receiver 2 decode and , there is no enhance-
ment in .

We shall use the following shorthand notations throughout
the rest of the paper: for ,

Next, we quantify the “rate loss” term in the set of rate
constraints at receiver 1, in terms of distortions :

(14)

Below we shall see why the intuition of quantizing at the
private signal level works. By choosing ,
the “rate loss” is upper bounded by 1. In particular, when

, we have and hence . On the
other hand, note that for receiver 1 the unwanted signal power

(1)

(2)

(3)
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level in is exactly and receiver 1 treats the un-
wanted signals as noise anyway. Hence, replacing by only
increases the rate by a bounded gain.

Remark 4.4: The above configuration of the distortion may
not be optimal. The achievable rates can be further improved
if we optimize over all possible distortions. For example, if the
cooperative link capacity is large, one could lower the distortion
level to yield a finer description of received signals. With the
above simple configuration, however, we are able to show that
it achieves the capacity region to within a bounded gap. Also
note that in this paper, we generate the quantization codebook
in a slightly different way than that in conventional lossy source
coding, where instead a “test channel” is used.
With this choice the rate loss can be made smaller, while the
calculations become more complicated.

V. CHARACTERIZATION OF THE CAPACITY REGION

TO WITHIN 2 BITS

The main result in this section is the characterization of the
capacity region to within 2 bits per user universally, regardless
of channel parameters. To prove it, first we provide outer bounds
of the capacity region. Ideas about how to prove them are out-
lined and details are left in appendices. Then we make use of
Theorem 4.3 to evaluate the achievable rate region and show
that it is within 2 bits per user to the proposed outer bounds.

A. Outer Bounds

To prove the outer bounds, the main idea is the following:
first, upper bound the rates by mutual informations via Fano’s
inequality and data processing inequality; second, decompose
them into two parts: 1) terms which are similar to those in
Gaussian interference channels without cooperation and 2)
terms which correspond to the enhancement from cooperation.
We use the genie-aided techniques in [3] to upper bound the
first part and obtain namely the Z-channel bound (where the
genie gives interfering symbols to receiver , ) and
ETW-bound (where the genie gives the interference term
caused by user at receiver , to receiver ).
For the second part, we make use of the fact that and are
both functions of and other straightforward bounding
techniques. The results are summarized in the following lemma.

Lemma 5.1: , where consists of nonnegative
rate tuples satisfying the inequalities (4)–(13) at the
bottom of the page.

Proof: Details are left in Appendix B. Below we give a
short outline and intuitions. First of all, bounds (4), (5), and (9)
are straightforward cut-set upper bounds of individual rates and
sum rate respectively.

Bound (6) corresponds to the ETW-bound in Gaussian
interference channels without cooperation. In the genie-aided

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)
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channel, we upper bound the gain from receiver cooperation by
, that is, in both directions each bit is useful.

Bounds (7) and (8) correspond to the Z-channel bounds. In the
genie-aided channel, since the genie gives interfering symbols

to receiver , , there is no interference at receiver .
Intuitively, the cooperation from receiver to is now providing
only the power gain and the genie can provide to receiver
to upper bound this power gain. The gain from the cooperation
from receiver to is upper bounded by .

Bounds (10) and (11) on are derived by giving side
information to receiver and side information and
to one of the receiver ’s. In the genie-aided channel there is
an underlying Z-channel structure and hence the gain from one
direction of the cooperation is absorbed into a power gain. The
rest is upper bounded by .

Bounds (12) and (13) on are derived by giving side
information and , where
and independent of everything else, to receiver and side infor-
mation to one of the receiver ’s. In the genie-aided channel,
there is an underlying point-to-point MIMO channel and hence
the gain from both directions of cooperation is absorbed into the
MIMO system. The rest is upper bounded by .

Note that the derivation of all bounds works for all ’s and
’s.

We make the following observations:

Remark 5.2 (Dependence on Phases): The sum-rate cut-set
bound (9) not only depends on ’s and ’s but also on the
phasesofchannelcoefficients,duetotheterm .
In particular, when the receiver-cooperative link capacities ’s
are large, the two receivers become near-fully cooperated and the
systemperformanceisconstrainedbythatof theSIMOMAC;that
is, it enters the saturation region. Therefore, this bound becomes
active and the outer bound depends on phases.

Remark 5.3 (Strong Interference Regime): When
and , unlike the Gaussian interference

channel of which the capacity region is equal to that of a
compound MAC in the strong interference regime [1], here we
cannot apply Sato’s argument. Recall that when there is no
cooperation, once user ’s own message is decoded successfully
at receiver , it can produce which has the same distribution
as . Since the error probability for decoding user ’s mes-
sage at receiver only depends on the marginal distribution
of , it can be concluded that at receiver one can achieve
the same performance for decoding user ’s message by using
the same decoder as that in receiver and hence receiver can
decode user ’s message successfully as well. When there is
cooperation, however, the error probability for decoding user
’s message at receiver depends on the joint distribution of

. Note that the additive noise terms in and
have different correlations with the noise term and
can be highly correlated with . As a consequence, the joint
distributions of and are not guaranteed to
be the same and receiver may not be able to achieve the same
performance for decoding user ’s message by using the same
decoder as that in receiver . Therefore, we cannot claim that
the capacity region under strong interference condition is the

same as that of compound MAC with conferencing decoders
(CMAC-CD). Instead, we take the Z-channel bounds (7) and
(8), which are within 1 bit to the sum rate cut-set bound of
CMAC-CD in strong interference regimes. This will be dis-
cussed in the last part of this section.

B. Capacity Region to Within 2 Bits

Subsequently we investigate three qualitatively different
cases, namely, weak interference, mixed interference, and
strong interference,2 in the rest of this section. We summarize
the main achievability result in the following theorem (recall
that is the outer bound region defined in Lemma 5.1):

Theorem 5.4 (Within Two-Bit Gap to Capacity Region):

Proof: Proved by Lemma 5.5, 5.8, and 5.11 in the rest of
this section.

C. Weak Interference

In the case and , the configura-
tion of superposition coding is to split message into and

, for both users . We first consider STG :
referring to Theorem 4.3, we obtain the set of achievable rates

. The term bit, due to (14) in
Section IV-C and the chosen distortion .

To simplify calculations, note that the right-hand-side of
(1)–(3) are at most a bounded gap from their lower bounds

, and respec-
tively. Therefore, we replace these three constraints by

in the following calculations. Next, rewriting
for , applying Fourier-Motzkin algorithm to eliminate

and and removing redundant terms (details omitted
here), we obtain an achievable , which consists of
nonnegative satisfying

(15)

(16)

(17)

(18)

(19)

2The definitions of these cases are the following: (1) weak interference,
where � and � ; (2) mixed interference,
where � and � ; (3) strong interference, where

� and � .
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Fig. 6. Time-sharing to achieve approximate capacity region. (a) Taking union
is required, while time-sharing is not. (b) Time-sharing is required.

(20)

(21)

We will show that except (21), all bounds are within a
bounded gap from the corresponding outer bounds in Lemma
5.1. By symmetry, however, one can write down
and see that the troublesome constraint (21) can be compensated
by time-sharing with rate points in . Therefore,
the resulting is
within a bounded gap from the outer bounds in Lemma 5.1. An
illustration is provided in Fig. 6.

We give the following lemma.

Lemma 5.5 (Rate Region in the Weak Interference Regime):

in the weak interference regime.

Fig. 7. Situations in �� �� . (a)� ��� bound is active. (b)� ���

bound is not active.

Proof: We need the following claims:

Claim: In , whenever the bound (21)
is active,

a) if bounds are active, the corner point where
bound and bound intersect can be

achieved;
b) if bounds are not active, the corner point where

bound and bound intersect can be achieved.
Above two situations are illustrated in Fig. 7.

Proof: In both situations, we will argue that the value of
at the intersection of the dashed lines are always greater

than the value of at the desired corner point. Details
are left in Appendix C.

Therefore, the bound (21) and, by symmetry, its
corresponding bound in do not show up
in and is within 2
bits per user to the outer bounds in Lemma 5.1. To show this,
we first look at the bounds in except (21). We claim
that

Claim 5.7: The bounds in except (21) satisfy:
• bound is within 2 bits to outer bounds;
• bound is within 2 bits to outer bounds;
• bound is within 3 bits to outer bounds;
• bound is within 4 bits to outer bounds;
• bound is within 5 bits to outer bounds.
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Proof: See Appendix C.

By symmetry, we obtain similar results for and
hence conclude that the bounds in satisfies (1) both and

bounds are within 2 bits; (2) bound is within 3 bits;
(3) both and bound are within 5 bits to their
corresponding outer bounds. This completes the proof.

D. Mixed Interference

In the case and , the configu-
ration of superposition coding is to split message into
and , while making the whole common. We first con-
sider STG : by Theorem 4.3, rates satisfying those at
the bottom of the page, and the following are achievable:

where since .
Again to simplify calculations, note that the right-hand-side

of (22)–(24) are at most a bounded gap from their lower bounds
, and respectively.

Therefore, we replace these three constraints by

in the following calculations. Next, rewriting ,
applying Fourier-Motzkin algorithm to eliminate and re-
moving redundant terms (details omitted here), we obtain an
achievable , consists of nonnegative sat-
isfying

Comparing with the outer bounds in Lemma 5.1,
one can easily conclude that:

Lemma 5.8 (Mixed Interference Rate Region):

in the mixed interference regime. Besides, .
Proof: We investigate the bounds in and claim

that:

Claim 5.9: The bounds in satisfy
• bound is within 1 bit to outer bounds;
• bound is within 1 bit to outer bounds;
• bound is within 3 bits to outer bounds;
• bound is within 3 bits to outer bounds.

Proof: See Appendix C

This completes the proof.

E. Strong Interference

In the case and , it turns out
that a one-round strategy STG described below suf-
fices to achieve capacity to within a bounded gap. The trans-
mission scheme is the same as that described in Section IV-A.
The difference is that, both receivers quantize-and-bins their re-
ceived signals and decode with the help from the side informa-
tion, as described in Section IV-B. It is called one-round since
both receivers decode after one-round exchange of informaion.
Below is the coding theorem for this strategy:

Theorem 5.10: The rate tuple
satisfying the following constraints are achievable for
STG :

Constraints at receiver 1: See equation at the bottom of the
next page.

Constraints at receiver 2: Above constraints with index “1”
and “2” exchanged.

Proof: The proof follows the same line as the proof of The-
orem 4.3. There is no rate constraint for at receiver for

or , since decoding incorrectly at re-
ceiver does not account for an error.

(22)

(23)

(24)
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Now, in the strong interference regime, the configuration of
superposition coding is to make the whole message common
for both users ; in a word, there is no superposition
eventually. One-round strategy STG yields achievable
rate region , which consists of nonnegative
satisfying

(25)

where , for both .
Comparing with the outer bounds in Lemma 5.1,

one can easily conclude that

Lemma 5.11 (Strong Interference Rate Region):

in the strong interference regime. Besides, .
Proof: We investigate the bounds in and claim

that:

Claim 5.12: The bounds in satisfy:
• bound is within 1 bit to outer bounds;
• bound is within 1 bit to outer bounds;
• bound is within 2 bits to outer bounds.

Proof: See Appendix C.

This completes the proof.

F. Approximate Capacity of Compound MAC With
Conferencing Decoders

As a side product of this work, we characterize the capacity
region of the compound multiple access channel with confer-
encing decoders (CMAC-CD) to within 1 bit. The channel is
defined as follows.

Definition 5.13: A compound multiple access channel with
conferencing decoders (CMAC-CD), is a channel with the same

setup as depicted in Fig. 2, while both receivers aim to decode
both and .

We give straightforward cut-set upper bounds as follows:

Lemma 5.14: If is achievable, it must satisfy the
following constraints:

Proof: These are straightforward cut-set bounds. We omit
the details here.

For achievability, we adapt the one-round scheme proposed
above with no superposition coding at transmitters. Therefore,
the rate region is exactly the same as (25). Hence, we conclude
that:

Theorem 5.15 (Within 1 Bit to CMAC-CD Capacity Region):
The scheme achieves the capacity of compound MAC with con-
ferencing decoders to within 1 bit.

Proof: Following the same line in the proof of Lemma
5.11, we can conclude that the bounds in satisfy:

• bound is within 1 bit to outer bounds;
• bound is within 1 bit to outer bounds;
• bound is within 1 bit to outer bounds.
This completes the proof.

This result implies that for the Gaussian compound MAC
with conferencing decoders, a simple one-round strategy suf-
fices to achieve the capacity region to within 1 bit universally,
regardless of channel parameters.

VI. ONE-ROUND STRATEGY VERSUS TWO-ROUND STRATEGY

In Section V we show that for the two-user Gaussian inter-
ference channel with conferencing decoders, the two-round
strategy proposed in Section IV along with time-sharing
achieves the capacity region to within 2 bits universally. One
of the drawbacks of the two-round strategy, however, is the de-
coding latency. The quantize-binning receiver cannot proceed
to decoding until the other receiver decodes and forwards the



WANG AND TSE: INTERFERENCE MITIGATION THROUGH LIMITED RECEIVER COOPERATION 2925

bin indices back. The latency is two times the block length,
which can be large. To avoid such large delay, fortunately in
some cases, the one-round strategy STG described in
Section V-E suffices. One of such cases is the strong interfer-
ence regime. This can be easily justified in the corresponding
linear deterministic channel (LDC). At strong interference,
all transmitted signals in the LDC are common. There is no
useful information lies below the noise level since the signal is
corrupted by the noise. Hence, quantize-binning at the noise
level is sufficient to convey the useful information.

Another such cases is the symmetric setup, where
, and .

For the symmetric setup, a natural performance measure is
the symmetric capacity, defined as follows:

Definition 6.1 (Symmetric Capacity):

It turns out that the one-round strategy suffices to achieve
to within a bounded gap.

Theorem 6.2 (Bounded Gap to the Symmetric Capacity): The
one-round strategy STG can achieve the symmtric ca-
pacity to within 3 bits.

Proof: See Appendix D.

The justification in the corresponding LDC is again simple.
Since the performance measure in which we are interested is the
symmetric capacity, we can without loss of generality assume
that both transmitters are transmitting at full private rate, that is,
the entropy of each user’s private signals is equal to the number
of levels below the private signal level. Therefore, at each re-
ceiver, there is no useful information below the private signal
level and quantize-binning at the private signal level suffices to
convey the useful information.

VII. GENERALIZED DEGREES OF

FREEDOM CHARACTERIZATION

With the characterization of the capacity region to within a
bounded gap, we attempt to answer the original fundamental
question: how much interference can one bit of receiver cooper-
ation mitigate? For simplicity, we consider the symmetric setup.

By Lemma 5.1 and Theorem 5.4, we have the characterization
of the symmetric capacity to within 2 bits:

Corollary 7.1 (Approximate Symmetric Capacity): Let
be the minimum of the below four terms:

Then, .

A. Generalized Degrees of Freedom

To study the behavior of the system performance in the linear
region, we use the notion of generalized degrees of freedom
(g.d.o.f.), which is originally proposed in [3]. A natural exten-
sion from the definition in [3] would be the following: let

and define the number of generalized degrees of freedom per
user as

(26)

if the limit exists. With fixed and , however, there are cer-
tain channel realizations under which (26) has different values
and hence the limit does not exist. This happens when ,
where the phases of the channel gains matter both in inner and
outer bounds. In particular, its value can depend on whether the
system MIMO matrix is well-conditioned or not.

From the above discussion we see that the limit does not
exist, since for different channel phases and different set-
tings the value of (26) may be different. The reason is that, the
original notion proposed in [3] cannot capture the impact of
phases in MIMO situations, while from Lemma 5.1 and The-
orem 5.4, or Corollary 7.1, we see that our results depend on
phases heavily, if the receiver-cooperative link capacity is
so large that MIMO sum-rate cut-set bound becomes active.
Therefore, instead of claiming that the limit (26) exists for all
channel realizations, we pose a reasonable distribution, namely,
i.i.d. uniform distribution, on the phases, show that the limit ex-
ists almost surely and define the limit to be the number of gen-
eralized degrees of freedom per user.

Lemma 7.2: Let

where ’s are deterministic and ’s are i.i.d. uniformly dis-
tributed over . Then the limit (26) exists almost surely and
is defined as the number of generalized degrees of freedom (per
user) in the system.

Proof: We leave the proof in Appendix E.

Now that the number of g.d.o.f. is well-defined, we can give
the following theorem:

Theorem 7.3 (Generalized Degrees of Freedom Per User):
We have a direct consequence from Corollary 7.1:

For ,

For ,

Numerical plots for g.d.o.f. are given in Fig. 8. We observe
that at different values of , the gain from cooperation varies. By
investigating the g.d.o.f., we conclude that at high , when

is below 50% of in dB scale, one-bit cooperation per
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Fig. 8. Generalized degrees of freedom.

direction buys roughly one-bit gain per user until full receiver
cooperation performance is reached, while when is between
67% and 200% of in dB scale, one-bit cooperation per
direction buys roughly half-bit gain per user until saturation.

B. Gain From Limited Receiver Cooperation

The fundamental behavior of the gain from receiver cooper-
ation is explained in the rest of this section, by looking at two
particular points: and . Furthermore, we use the
linear deterministic channel (LDC) for illustration.

At , the plot of versus is given in Fig. 9(a). The
slope is 1 until full receiver cooperation performance is reached,
implying that one-bit cooperation buys one over-the-air bit per
user. We look at a particular point and use its corre-
sponding LDC [Fig. 9(b)] to provide insights. Note that 1 bit
in the LDC corresponds to in the Gaussian channel
and since , in the corresponding LDC each re-
ceiver is able to sent one-bit information to the other. Without
cooperation, the optimal way is to turn on bits not causing in-
terference, that is, the private bits . We cannot turn
on more bits without cooperation since it causes collisions, for
example, at the fourth level of receiver 2 if we turn on bit.
Now with receiver cooperation, we want to support two more
bits . Note that prior to turning on , there are “holes”
left in receiver signal spaces and turning on each of these bits
only causes one collision at one receiver. Therefore, we need
1 bit in each direction to resolve the collision at each receiver.
We can achieve 3 bits per user in the corresponding LDC and

in the Gaussian channel. We cannot turn on more bits in
the LDC since it causes collisions while no cooperation capa-
bility is left.

At , the plot of versus is given in Fig. 9(c). The
slope is until full receiver cooperation performance is reached,
implying that two-bit cooperation buys one over-the-air bit
per user. We look at a particular point and use its
corresponding LDC (Fig. 9(d)) to provide insights. Note that
now 1 bit in the LDC corresponds to in the Gaussian
channel and since , in the corresponding
LDC each receiver is able to sent one-bit information to the
other. Without cooperation, the optimal way is to turn on bits

. We cannot turn on more bits without cooperation
since it causes collisions, for example, at the second level of
receiver 2 if we turn on bit. Now with receiver cooperation,

Fig. 9. Gain from cooperation.

we want to support one over-the-air bit . Note that prior to
turning on , there are no “holes” left in receiver signal spaces
and turning on causes collisions at both receivers. Therefore,
we need 2 bits in total to resolve collisions at both receivers. We
can achieve 5 bits in total in the corresponding LDC and
in the Gaussian channel. We cannot turn on more bits in the
LDC since it causes collision while no cooperation capability
is left.

From above examples and illustrations, we see that whether
one cooperation bit buys one more bit or two cooperation
bits buy one more bit depends on whether there are “holes”
in receiver signal spaces before increasing data rates. The
“holes” play a central role not only in why conventional com-
press-forward is suboptimal in certain regimes, as mentioned in
Section III-B, but also in the fundamental behavior of the gain
from receiver cooperation. We notice that in [14], there is a sim-
ilar behavior about the gain from in-band receiver cooperation
as discussed in Section III-B of [14]. We conjecture that the
behavior can be explained via the concept of “holes” as well.

C. Comparison With Suboptimal Strategies

Pointed out by the motivating examples in Section III-B,
conventional compress-forward and decode-forward are not
good for receiver cooperation to mitigate interference in certain
regimes, which are used in [11] and [12]. These suboptimal
schemes include:

1) One-round compress-forward (CF) strategy: the conven-
tional compress-forward is used for the two receivers to
first exchange information and then decode.

2) One-round decode-forward (DF) strategy: at the first
stage both receivers decode one of the common mes-
sages with stronger signal strength without help from
the receiver-cooperative links, by treating other signals
as noise. Both then bin-and-forward the decoded infor-
mation to each other. At the second stage, both receivers
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Fig. 10. Number of generalized degrees of freedom. (a) � � �. (b) � � ���. (c) � � ���. (d) � � ���.

make use of the bin index send over receiver-cooperative
links to decode and enhance the rate.

3) Two-round CF+DF strategy: at the first stage one of the
receivers, say, receiver 1, compresses its received signal
and forwards it to the other receiver. At the second stage,
receiver 2 decodes with the side information received at
the first round and then bin-and-forwards the decoded
information to receiver 1. Then at the third stage receiver
1 decodes with the help from receiver-cooperative links.

Comparisons of these strategies in terms of the number of
generalized degrees of freedom for different scaling exponents

of and of are depicted in Fig. 10. None of them
achieves the optimal g.d.o.f. universally. Note that although
the two-round CF+DF strategy outperforms one-round CF/DF
strategies, it cannot achieve the optimal number of g.d.o.f. for
all ’s and ’s. By Theorem 6.2, the one-round strategy based
on our cooperative protocol, on the other hand, is sufficient to
achieve the symmetric capacity to within 3 bits universally and
hence achieves the optimal number of g.d.o.f. for all ’s and

’s.

APPENDIX A
PROOF OF THEOREM 4.3

We will first describe the strategy in detail and analyze the
error probability rigorously.

A) Description of the Strategy: In the following, consider
all and .

Codebook Generation: Transmitter splits its mes-
sage . Consider block length- en-
coding. First we generate common codewords

, , according to distribution
with for all

. Then for each common codeword serving as a

cloud center, we generate codewords ,
, according to conditional distribution

such that for all ,
, where and

independent of everything else. The power split configuration
is such that , if

and no such split if . Hence,

if and otherwise.
For receiver 2 serving as relay, it generates a quantization

codebook , of size , randomly according to
marginal distribution , marginalized over joint distribu-
tion , where

The conditional distribution is such that for all ,
, where , independent

of everything else. Parameters and are to be spec-

ified later. For each element in codebook , map it into
through a uniformly generated random map-

ping (binning).
For receiver 1 serving as relay, it generates two binning func-

tions and independently according to uniform distri-
butions, such that the message set is parti-
tioned into bins, for , where ,

and
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The superscript notation “ ” denotes which message set is
partitioned into bins, while the subscript “1” denotes the binning
procedure is at receiver 1.

Encoding: Transmitter sends out signals according to its
message and the codebook. Receiver 2, serving as relay, chooses
the quantization codeword which is jointly typical with (if
there is more than one, it chooses the one with the smallest
index) and then sends out the bin index for the quantiza-
tion codeword. After decoding (to be specified

below), receiver 1 sends out bin indices according

to binning functions .
Decoding At Receiver 1: To draw comparison with the

decoding procedure in the conventional compress-forward, the
above decoding can be interpreted as a two-stage procedure as
follows. It first constructs a list of message triples (both users’
common messages and its own private message), each element
of which indices a codeword triple that is jointly typical with
its received signal from the transmitter-receiver link. Then, for
each message triple in this list, it constructs an ambiguity set of
quantization codewords, each element of which is jointly typ-
ical with the codeword triple and the received signal. Finally, it
searches through all ambiguity sets and finds one that contains
a quantization codeword with the same bin index it received. If
there is no such unique ambiguity set, it declares an error. The
two-stage interpretation is illustrated in Fig. 11.

To be specific, upon receiving signal and receiver-cooper-
ative side information , receiver constructs a list of candi-
dates , defined at the bottom of this page, where
denotes the set of jointly -typical -sequences [30].

For each element , construct an ambiguity set of
quantization codewords , defined as shown in the equation
at the bottom of the page. Declare the transmitted message is

if there exists an unique such that with
. Otherwise, declare an error.

Decoding at Receiver 2: After receiving bin
indices , receiver 2 searches for an

unique message triple such that
and

, for . If there is no such unique
triple, it declares an error.

B) Analysis:
Error Probability Analysis at Receiver 1: Without loss of

generality, assume that all transmitted messages are 1’s. For
simplicity, we first focus on the case where receiver 1 aims to
decode while receiver 2 serves as a relay to help it decode.

At receiver 1, due to law of large numbers, the probability
that the truly transmitted

Fig. 11. Decoding at receiver 1 and error events. (a) Error event (1). (b) Error
event (2).

goes to zero as . Besides, the probability
that does not contain the truly selected is also negli-
gible when is sufficiently large. Consider the following error
events:

First, there is no quantization codeword jointly typical with
received signals. This probability goes to zero as if

, which is a known result in the source coding
literature.

Second, there exists such that both of them are in
the candidate list and the ambiguity set contains
some quantization codeword with bin index .
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This event can further be distinguished into two cases: First, this
is not the actual selected quantization codeword

[illustrated in Fig. 11(a)]; second, this is indeed
the selected quantization codeword [illustrated in Fig. 11(b)].
In the following we analyze the error probability of these two
typical error events.

Again, refer to Fig. 11. for illustration. Define error events as
follows: for any nonempty ,

the event that there exists some , (where
and ), such that

and contains some , with
. Note: this is not the truly selected

quantization codeword .
the event that there exists some , (where

and ), such that
and contains .

Probability of : Consider the probability of the error
event : it can be upper bounded by (27) at the bottom of the
page, as where (a) is due to the independent uniform binning.

For notational convenience we use to denote the
vector of codewords corresponding to message , that is,

.

Note that for , is independent of .
We then make use of [30, Th. 15.2.2], which upper bounds
the volume of conditional joint -typical set

given that , to further upper bound

by (28) at the
bottom of the page, where (b) is due to in [30, Th. 15.2.2].
Besides, according to the results in [31],

where . Note that unlike in the interference channel
without cooperation as in [31], here we require receiver 1 to

(27)

(28)



2930 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 5, MAY 2011

decode correctly. Hence, the event when does
cause an error. Therefore, the probability of the first kind of error
event vanishes as if

where .
On the other hand, since we can alternatively upper bound

by (29) at the bottom of the page, the probability of
the first kind of error event vanishes as if

Finally, plug in and by Markov relation:
, we get the rate loss term

Probability of : Consider the probability of the error
event :

where . Note that the event when does cause
an error. Hence, the probability of the second kind of error event
vanishes as if

Error Probability Analysis at Receiver 2: After receiving
the two bin indices, receiver 2 can decode ,
with effectively smaller candidate message sets, (namely, the
bins,) for and . Following the same line as [31], it
can be shown that (we omit the detailed analysis here), for all

and , the following region is
achievable:

Note that the performance of decoding the private message
does not gain from cooperation, since receiver 1 does not decode
the private message .

Taking convex hull over all possible . Note that
the bounds for and remain unchanged.
Project the three-dimensional rate region to a two-dimensional

(29)
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space for any fixed , we see that the convexifying
procedure results in the following region:

Hence the following rate region is achievable for receiver 2
to decode successfully:

APPENDIX B
PROOF OF LEMMA 5.1

Bounds (4) on and (5) on :
Proof: One can directly use cut-set bounds. As an alterna-

tive, we give the following proof in which the decomposition of
mutual informations is made clear.

We have the following bounds by Fano’s inequality, data-pro-
cessing inequality, and chain rule: if is achievable,

where as . (a) is due to Fano’s inequality and
data processing inequality. (b) is due to the genie giving side
information to receiver 1, ie., conditioning reduces entropy.
(c) is due to the fact that and are independent. (d) is due
to chain rule. (e) is due to the fact that i.i.d. Gaussian distribution
maximizes differential entropy under covariance constraints.

To upper bound , which corresponds to
the enhancement from cooperation, we make use of the fact that

is a function of

(a) is due to the fact that conditioning reduces entropy. (b) is due
to the fact that is a function of .

Besides, it is trivial to see that
. Hence, (and similarly for ), we have

shown bounds (4) and (5).

Bound (6) on :
Proof: Define

where are i.i.d. ’s, independent of everything
else. Note that and have the same marginal distribution,
for .

A genie gives side information to receiver (refer to
Fig. 12.) Making use of Fano’s inequality, data processing
inequality, and the fact that Gaussian distribution maximizes
conditional entropy subject to conditional variance constraints,
we have: if is achievable,

where as . (a) follows from Fano’s inequality
and data processing inequality. (b) is due to chain rule. (c) is
due to the genie giving side information to receiver ,

and . (d) is due to the fact that
. (e) is due to chain rule. (f) is due to the fact that

i.i.d. Gaussian distribution maximizes conditional entropy sub-
ject to conditional variance constraints. Note that alternatively
the genie can give side informations to receiver , as in [3].

Hence, we have shown bound (6).

Bounds (7) and (8) on :
Proof: A genie gives side information and to re-

ceiver 1 (refer to Fig. 13.) Making use of Fano’s inequality, data
processing inequality, the fact that is a function of
and the fact that Gaussian distribution maximizes conditional
entropy subject to conditional variance constraints, we have: if

is achievable,
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Fig. 12. Side information structure for bound (6).

Fig. 13. Side information structure for bound (7).

where as . (a) is due to chain rule and the genie
giving side information and to receiver 1. (b) is due to
the fact that and are independent and

. (c) is due to the fact that is a function of .
Hence, (and similarly if we gives side information to re-

ceiver 2), we have shown bounds (7) and (8).
Bound (9) on :
Proof: This is straightforward cut-set upper bound: if

is achievable,

where as .
Hence, we have shown bound (9).

Bounds (10) on and (11) on :
Proof: A genie gives side information and to one of

the two receiver 1’s and side information to receiver 2 (refer
to Fig. 14). Making use of Fano’s inequality, data processing
inequality, the fact that is a function of , and the
fact that Gaussian distribution maximizes conditional entropy

Fig. 14. Side information structure for bound (10).

subject to conditional variance constraints, we have: if
is achievable,

where as . (a) follows from Fano’s inequality
and data processing inequality. (b) is due to chain rule and the
genie giving side information and to one of the receiver
1’s and side information to receiver 2. (c) is due to the fact
that are independent and . (d)
is due to the fact that is a function of . Hence, (and
similarly for ), we have shown bounds (10) and (11).

Bounds (12) on and (13) on :
Proof: A genie gives side information to receiver

1 and side information to one of the receiver 2’s (refer to
Fig. 15). Making use of Fano’s inequality, data processing in-
equality, the fact that are functions of , and the
fact that Gaussian distribution maximizes conditional entropy
subject to conditional variance constraints, we have: if
is achievable,
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Fig. 15. Side information structure for bound (13).

where as . (a) is due to the genie giving side
information , to receiver 1 and side information to
one of the receiver 2’s. (b) is due to chain rule and the fact that

. (c) is due to the fact that and
are both functions of and that .

(d) is due to the fact that conditioning reduces entropy and that
and are independent. (e) is due to the fact that

Gaussian distribution maximizes conditional entropy subject to
conditional variance constraints.

Hence, (and similarly for ), we have shown bounds
(13) and (12).

APPENDIX C
PROOF OF CLAIM 5.6, CLAIM 5.7, CLAIM 5.9, AND CLAIM 5.12

A) Proof of Claim 5.6:
Proof: To show (a), since we have four possible

bounds, we distinguish into 4 cases:
1) If the bound

is active, note that the point where the
bound and the bound (21) intersect, sat-

isfies

which is greater than three times the active sum rate
bound.

2) If the bound

is active, note that the point where the
bound and the bound (21) intersect, sat-

isfies

which is greater than three times the active sum rate
bound.

3) If the bound

is active, note that the point where the
bound and the bound (21) intersect, sat-

isfies

which is greater than three times the active sum rate
bound.

4) If the bound
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is active, note that the point where the
bound and the bound (21) intersect, sat-

isfies

which is greater than three times the active sum rate
bound.

Hence, we conclude that in case (a), the corner point where
bound and bound intersect can be achieved.

To show (b), since we have two possible bounds, we dis-
tinguish into 2 cases:

1) If the bound

is active, note that the point where the
bound and the bound (21) intersect, satisfies

which is greater than two times the active sum rate
bound. is due to

since and are independent.
2) If the bound

is active, note that the point where the
bound and the bound (21) intersect, satisfies

which is greater than two times the active sum rate
bound.

Hence, we conclude that in case (b), the corner point where
bound and bound intersect can be achieved.

B) Proof of Claim 5.7:
Proof: (Keep in mind and

)
1) bound: We have two bounds. First,

, which is within 2 bits to the upper

bound . Second,

Hence, if the second bound is active, it is within 2 bits
to the upper bound .

2) bound: We have two bounds. First,

. If the first bound
is active, it is within 1 bit to the upper bound

. Second,

Hence, the second bound is within 2 bits to the upper
bound .

3) bound: We have six bounds for , in-
vestigated as follows:
• First,

which is within bits to the upper bound (8).
• Second,
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where (a) is due to
since

and . (b) is due to
. This lower bound is within 3 bits

to the upper bound (9).
• Third,

which is within bits to the upper bound (6).
• Fourth,

which is within 3 bits to the upper bound (7). Note
that (a) is due to

(b) is due to

• Fifth,

which is within 2 bits to the upper bound (7).
• Sixth,

which is within 3 bits to the upper bound (7).
4) bound: The bound

which is within bits to the upper bound (10).
5) bound: We have six bounds for ,

investigated as follows:
• First,

which is within bits to the upper bound
(11).

• Second,

which is within bits to the upper bound
(11).
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• Third,

which is within bits to the upper bound
(13).

• Fourth,

which is within bits to the upper bound
(13).

Therefore, we see that the bounds in except (21)
satisfies:

• bound is within 2 bits to outer bounds;
• bound is within 2 bits to outer bounds;
• bound is within 3 bits to outer bounds;
• bound is within 4 bits to outer bounds;
• bound is within 5 bits to outer bounds.

C) Proof of Claim 5.9:
Proof: (Keep in mind and )

(1) bound: We have two bounds. First,
, which is within 1 bit to the upper bound

. Second,

Hence, if the second bound is active, it is within 1 bit to
the upper bound .

(2) bound: We have two bounds. First,
, which is within 1 bit to the upper

bound . Second,

,
which is within 1 bit to the upper bound

.
(3) bound: We have five bounds, investigated as

follows:
• First,

which is within bits to the upper bound
(8).

• Second,

which is within 1 bit to the upper bound (9).
• Third,

which is within 1 bit to the upper bound (7).
• Fourth,

which is within bits to the upper bound
(6).

• Fifth,
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Hence, if this bound is active, it is within
bits to the upper bound (9).

(4) bound: We have two bounds. First,

which is within bits to the upper bound (11)
Second,

which is within 2 bits to the upper bound (13).
Therefore, we see that the bounds in satisfies:
• bound is within 1 bit to outer bounds;
• bound is within 1 bit to outer bounds;
• bound is within 3 bits to outer bounds;
• bound is within 3 bits to outer bounds.

D) Proof of Claim 5.12:
Proof: (Keep in mind that )

(1) bound: We have four bounds. First,

which is within bit to the upper bound
. Second,

Hence if this bound is active, it is within 1 bit to the upper
bound . Finally,

which are both within 1 bit to the upper bound
.

(2) bound: By symmetry we have the same gap result as
(1).

(3) bound: We have four bounds. First,

which is within bits to the upper bound (8).
Second,

which is within bits to the upper bound (7).
Finally,

which are both within 1 bit to the upper bound (9).
Therefore, we see that the bounds in satisfies:
• bound is within 1 bit to outer bounds;
• bound is within 1 bit to outer bounds;
• bound is within 2 bits to outer bounds.

APPENDIX D
PROOF OF THEOREM 6.2

From Section V-E, we have shown that when ,

Hence we focus on the case in the rest of the
proof.

By symmetry and by Theorem 5.10, if
satisfies the following, it is achievable:

Note that since
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a sufficient condition for achievable is

(1) :

and its gap to the outer bound

:

(2) :

where (a) is due to .
Therefore, the gap to the outer bound

:

since and .
(3) :

and its gap to the outer bound :

(4) :

and its gap to the outer bound

:

(5) :

Therefore, the gap to the outer bound
:

From (1)–(5), we conclude that when ,

This completes the proof.

APPENDIX E
PROOF OF LEMMA 7.2

Proof: From Corollary 7.1 we see that except the term
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all terms scaled by converges everywhere as
with fixed. Note that

where . Obviously is
uniformly distributed over . Now, consider the limit

We have the following upper and lower bounds for due
to the fact that

:

Hence, when , taking limits at both sides yields
and implies . Similarly, when ,

taking limits at both sides yields and implies
. When , note that

and therefore if . Since the event
is of zero measure, the limit exists almost surely.

REFERENCES

[1] H. Sato, “The capacity of the Gaussian interference channel under
strong interference,” IEEE Trans. Inf. Theory, vol. IT-27, pp. 786–788,
Nov. 1981.

[2] T. S. Han and K. Kobayashi, “A new achievable rate region for the
interference channel,” IEEE Trans. Inf. Theory, vol. IT-27, pp. 49–60,
Jan. 1981.

[3] R. Etkin, D. N. C. Tse, and H. Wang, “Gaussian interference channel
capacity to within one bit,” IEEE Trans. Inf. Theory, vol. 54, no. 12,
pp. 5534–5562, Dec. 2008.

[4] A. S. Motahari and A. K. Khandani, “Capacity bounds for the Gaussian
interference channel,” IEEE Trans. Inf. Theory, vol. 55, pp. 620–643,
Feb. 2009.

[5] X. Shang, G. Kramer, and B. Chen, “A new outer bound and the
noisy-interference sum-rate capacity for Gaussian interference chan-
nels,” IEEE Trans. Inf. Theory, vol. 55, pp. 689–699, Feb. 2009.

[6] V. S. Annapureddy and V. V. Veeravalli, “Gaussian interference net-
works: Sum capacity in the low interference regime and new outer
bounds on the capacity region,” IEEE Trans. Inf. Theory, vol. 55, pp.
3032–3050, Jul. 2009.

[7] F. M. J. Willems, “The discrete memoryless multiple access channel
with partially cooperating encoders,” IEEE Trans. Inf. Theory, vol.
IT-29, pp. 441–445, May 1983.

[8] S. I. Bross, A. Lapidoth, and M. A. Wigger, “The Gaussian MAC
with conferencing encoders,” in Proc. IEEE Int. Symp. Inf. Theory, Jul.
2008.
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