IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 5, MAY 2011

2913

Interference Mitigation Through Limited
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Abstract—Interference is a major issue limiting the perfor-
mance in wireless networks. Cooperation among receivers can
help mitigate interference by forming distributed MIMO systems.
The rate at which receivers cooperate, however, is limited in most
scenarios. How much interference can one bit of receiver coop-
eration mitigate? In this paper, we study the two-user Gaussian
interference channel with conferencing decoders to answer this
question in a simple setting. We identify two regions regarding the
gain from receiver cooperation: linear and saturation regions. In
the linear region, receiver cooperation is efficient and provides a
degrees-of-freedom gain, which is either one cooperation bit buys
one over-the-air bit or two cooperation bits buy one over-the-air
bit. In the saturation region, receiver cooperation is inefficient
and provides a power gain, which is bounded regardless of the
rate at which receivers cooperate. The conclusion is drawn from
the characterization of capacity region to within two bits/s/Hz,
regardless of channel parameters. The proposed strategy consists
of two parts: 1) the transmission scheme, where superposition
encoding with a simple power split is employed and 2) the cooper-
ative protocol, where one receiver quantize-bin-and-forwards its
received signal and the other after receiving the side information
decode-bin-and-forwards its received signal.

Index Terms—Capacity to within a bounded gap, distributed
MIMO system, interference management, receiver cooperation.

1. INTRODUCTION

N MODERN communication systems, interference is one
I of the fundamental factors that limit performance. The sim-
plest information theoretic model for studying this issue is the
two-user interference channel. Characterizing its capacity re-
gion is a long-standing open problem, except for several spe-
cial cases (e.g., the strong interference regime [1]). The largest
achievable region to date is reported by Han and Kobayashi [2]
and the core of the scheme is a superposition coding strategy.
Recent progress has been made on both inner bounds and outer
bounds: Etkin, Tse, and Wang characterized the capacity region
of the two-user Gaussian interference channel to within one
bit [3] by using a superposition coding scheme with a simple
power-split configuration and by providing new upper bounds.
The bounded gap-to-optimality result [3] leads to an uniform ap-
proximation of the capacity region and provides a strong guar-
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antee on the performance of the proposed scheme. Later, Mota-
hari and Khandani [4], Shang, Kramer, and Chen [5], and An-
napureddy and Veeravalli [6] independently improve the outer
bounds and characterize the sum capacity in a very weak inter-
ference regime and a mixed interference regime.

In the above interference channel setup, transmitters or re-
ceivers are not allowed to communicate with one another and
each user has to combat interference on its own. In various
scenarios, however, nodes are not isolated and transmitters/re-
ceivers can exchange certain amount of information. Coopera-
tion among transmitters/receivers can help mitigate interference
by forming distributed MIMO systems which provide two kinds
of gains: degrees-of-freedom gain and power gain. The rate at
which they cooperate, however, is limited, due to physical con-
straints. Therefore, one of the fundamental questions is, how
much interference can limited transmitter/receiver cooperation
mitigate? How much gain can it provide?

In this paper, we consider a two-user Gaussian interference
channel with conferencing decoders to answer this question
regarding receiver cooperation. Transmitter cooperation is
addressed in [32]. Conferencing among encoders/decoders has
been studied in [7]-[12]. Our model is similar to those in [11]
and [12] but in an interference channel setup. The work in [11]
characterizes the capacity region of the compound multiple ac-
cess channel (MAC) with unidirectional conferencing between
decoders. For general setup (i.e., bidirectional conferencing),
it provides achievable rates and finds the maximum achievable
individual rate to within a bounded gap, but is not able to es-
tablish an uniform approximation result on the capacity region.
The work in [12] considers one-sided Gaussian interference
channels with unidirectional conferencing between decoders
and characterizes the capacity region in strong interference
regimes and the asymptotic sum capacity at high SNR. For
general receiver cooperation, works including [13] and [14],
investigate cooperation in interference channels with a setup
where the cooperative links are in the same band as the links
in the interference channel. In particular, [14] characterizes
the sum capacity of Gaussian interference channels with
symmetric in-band receiver cooperation to within a bounded
gap. Our work, on the other hand, is focused on the Gaussian
interference channel with out-of-band (orthogonal) receiver
cooperation and studies its entire capacity region. Works on
interference channels with additional relays [15]-[17] and
two-hop interference-relay networks [18] are also related to our
problem, since the receivers also serve as relays in our setup.

We propose a strategy achieving the capacity region uni-
versally to within 2 bits/s/Hz per user, regardless of channel
parameters. The two-bit gap is the worst case gap which can
be loose in some regimes, and it is vanishingly small at high
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Fig. 1. The gain from limited receiver cooperation.

SNR when compared to the capacity. The strategy consists of
two parts: 1) the transmission scheme, describing how trans-
mitters encode their messages and 2) the cooperative protocol,
describing how receivers exchange information and decode
messages. For transmission, both transmitters use superposition
coding [2] with the same common-private power split as in the
case without cooperation [3]. For the cooperative protocol, it
is appealing to apply the decode-forward or compress-forward
schemes, originally proposed in [19] for the relay channel,
like most works dealing with more complicated networks,
including [10]-[13], [20], etc. It turns out neither conventional
compress-forward nor decode-forward achieves capacity to
within a bounded gap for the problem at hand. On the other
hand, [21]-[25] observe that the conventional compress-for-
ward scheme [19] may be improved by the destination directly
decoding the sender’s message instead of requiring to first
decode the quantized signal of the relay. We use such an
improved compress-forward scheme as part of our cooperative
protocol. One of the receivers quantizes its received signal at
an appropriate distortion, bins the quantization codeword and
sends the bin index to the other receiver. The other receiver then
decodes its own information based on its own received signal
and the received bin index. After decoding, it bin-and-forwards
the decoded common messages back to the former receiver
and helps it decode. Note that although an arbitrary number of
rounds is allowed in the conferencing formulation, it turns out
that two rounds are sufficient to achieve within 2 bits of the
capacity.

We identify two regions regarding the gain from receiver co-
operation: linear and saturation regions, as illustrated through
a numerical example in Fig. 1. In the plot we fix the signal-to-
noise ratios (SNR) and interference-to-noise ratios (INR) to be
20 dB and 15 dB respectively and we plot the user data rate
versus the cooperation rate. In the linear region, receiver coop-
eration is efficient, in the sense that the growth of each user’s
“over-the-air” data rate is roughly linear with respect to the
capacity of receiver-cooperative links. The gain in this region
is the degrees-of-freedom gain that distributed MIMO systems
provide. On the other hand, in the saturation region, receiver co-
operation is inefficient in the sense that the growth of each user’s
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over-the-air data rate becomes saturated as one increases the rate
in receiver-cooperative links. The gain is the power gain which
is bounded regardless of the cooperation rate. We will focus on
the system performance in the linear region, because not only
that in most scenarios the rate at which receivers can cooperate
is limited, but also that the gain from cooperation is more sig-
nificant.

With the bounded gap-to-optimality result, we find that the
fundamental gain from cooperation in the linear region as fol-
lows: either one cooperation bit buys one over-the-air bit or two
cooperation bits buy one over-the-air bit until saturation, de-
pending on channel parameters. In the symmetric setup, at high
SNR, when INR is below 50% of SNR in dB scale, one-bit coop-
eration per direction buys roughly one-bit gain per user until full
receiver cooperation performance is reached, while when INR is
between 67% and 200% of SNR in dB scale, one-bit cooperation
per direction buys roughly half-bit gain per user. (The example
in Fig. 1 falls in the latter case, and as can be seen, the slope of
the linear region is about 0.5.) In the weak interference regime,
for a given pair of (SNR, INR), when the receiver-cooperative
link capacity CB > log INR, cooperation between receivers can
get a close-to-interference-free (that is, within a bounded gap)
performance. In the strong interference regime, in contrast to
that without cooperation, system performance can be boost be-
yond interference-free performance, by utilizing receiver-coop-
erative links not only for interference mitigation but also for for-
warding desired information, since the cross link is stronger than
the direct link.

The rest of this paper is organized as follows. In Section II,
we introduce the channel model and formulate the problem. In
Section III, we provide intuitive discussions about achievability
and motivate our two-round strategy. Then we give examples to
illustrate why it is not a good idea to use cooperative protocols
based on conventional compress-forward or decode-forward. In
Section IV, we describe the strategy concretely and derive its
achievable rates and in Section V we show that the achievable
rate region is within 2 bits per user to the outer bounds we
provide. In addition, we characterize the capacity region of the
compound MAC with conferencing decoders to within 1 bit, as
a by-product. In Section VII, focusing on the symmetric setup,
we illustrate the fundamental gain from receiver cooperation by
deriving the optimal number of generalized degrees of freedom
(g.d.o.f.) and compare it with the achievable ones of suboptimal
schemes.

II. PROBLEM FORMULATION

A. Channel Model

The two-user Gaussian interference channel with confer-
encing decoders is depicted in Fig. 2.

Transmitter-Receiver Links: The transmitter-receiver links
are modeled as the normalized Gaussian interference channel

y1 =hnws + hiawe + 21
Y2 =ho1T1 + hooTa + 22,
where the additive noise processes {z;[n]}, (i = 1,2), are in-

dependent CA/(0, 1), i.i.d. over time. In this paper, we use [.] to
denote time indices. Transmitter ¢ intends to convey message m;
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Fig. 2. Channel model.

N

to receiver 4 by encoding it into a block codeword {z;[n]},_;,

with transmit power constraints
1 & 2
n=1

for arbitrary block length N. Note that the outcome of each
encoder depends solely on its own message. Messages mq, mo
are independent. Define channel parameters

SNR; := |hii|%, INR; == |hj|%, 4,5 = 1,2, i # j.

Receiver-Cooperative Links: For (i,7) = (1,2),(2,1), the
receiver-cooperative links are noiseless with capacity CiBj from
receiver ¢ to 7. Encoding must satisfy causality constraints: for
any time index n = 1,2,..., N, the cooperation signal from
receiver 2 to 1, ugq [n], is only a function of {y>[1],...,ya2[n —
1], u12[1], ..., u12[n — 1]} and the cooperation signal from re-
ceiver 1 to 2, uyz[n], is only a function of {y[1],...,y1[n —
1],’[1,21[1]7 . ,uzl[n — 1]}

In the rest of this paper, we use v™ to denote the sequence

(ol .- uln]}.
B. Strategies, Rates, and Capacity Region

We give the basic definitions for the coding strategies, achiev-
able rates of the strategy, and the capacity region of the channel.

Definition 2.1 (Strategy and Average Probability of Error):
An (My, My, N)-strategy consists of the following: for i,j =
L,2,i # j,

1) message set M; := «él, 2,...,M;} for user i;
2) encoding function e MMy —=CN, omy - ¥ at
transmitter ;

i

3) set of relay functions {r{™} _, such that u;;[n]
Tgn)(yg‘_l,u?i_l) € {1,2,...,2C?f}7 Vn =
1,2,..., N atreceiver 7;

4) decoding  function d{™) cY x

(1,2, 29 s My, (g, ul) = g at
receiver ¢.
The average probability of error

Pe(N) =
1 d(N)( N uN);ém or .
Z Pr{ 1(N)y17 21 1 1y 2}'
M M, miEM; ds ' (yY,ud) #ma  are sent
moEMo

Definition 2.2 (Achievable Rates and Capacity Region): A
rate tuple (R1, R2) is achievable if for any ¢ > 0 and for all
sufficiently large N, there exists an (M7, Ma, N) strategy with

2915

M; > 2NEi fori = 1,2, such that PE(N) < e. The capacity
region ¢ is the collections of all achievable (R1, R2).

C. Notations

We summarize below the notations used in the rest of this
paper.

¢ For a real number a, (a)* := max(a, 0) denotes its posi-
tive part.

» Forsets A, B C R* in an k-dimensional space, A @ B :=
{a+b:a € Ab e B} denotes the direct sum of A and
B. conv{A} denotes the convex hull of the set A.

» Withalittle abuse of notations, for z,y € F,, z®y denotes
the modulo-¢ sum of x and y.

* Unless specified, all the logarithms log(.) are of base 2.

III. MOTIVATION OF STRATEGIES

Before introducing our main result, we first provide intu-
itive discussions about achievability and motivate our two-round
strategy (to be described in detail in Section IV) from a high-
level perspective. Then we give examples to illustrate why co-
operative protocols based on conventional compress-forward or
decode-forward may not be good for cooperation between re-
ceivers to mitigate interference. Throughout the discussion in
this section, we will make use of the linear deterministic model
proposed in [25], [26].

The linear deterministic model is a tool for studying Gaussian
networks so that an uniform approximation of the capacity can
be found. It is also used for the two-user interference channel
[27]. The model captures the signal interaction in the original
Gaussian scenario to some extent and is useful for illustrating
some subtle facts which are not easy to be uncovered in the
Gaussian scenario. Throughout this paper, all discussions in-
volving the linear deterministic model are either aimed to eluci-
date a certain phenomenon that arises in the Gaussian scenario,
or to provide an intuitive argument for a certain claim without
rigorously proving it.

A. Optimal Strategy in the Linear Deterministic Channel

First, consider the following symmetric channel: SNR; =
SNR, = SNR, INR; = INRy = INR and C§, = C5, = CB. Set
INR to be 2/3 of SNR in dB scale, that is, log INR = % log SNR.
Set CB = %log SNR. The corresponding linear deterministic
channel (LDC) is depicted in Fig. 3. The bits at the levels of
transmitters/receivers can be thought of as chunks of binary ex-
pansions of the transmitted/received signals. Note that in this
example, one bit in the LDC corresponds to % log SNR bits in
the Gaussian channel. Because INR < SNR, the least signifi-
cant bit (LSB) of each transmitter appears below noise level at
the other receiver and is invisible.

In the discussions below, bit a; € F5 denotes the bit sent at
the kth level from the most significant bit (MSB) at transmitter
1 and similarly b;, € F5 denotes the bit sent at the kth level at
transmitter 2.

We begin with the baseline where two receivers are not al-
lowed to cooperate. The transmitted signals are naturally broken
down into two parts: 1) the common levels, which appear at both
receivers and 2) the private levels, which only appear at its own
receiver. Each transmitter splits its message into common and
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Fig. 3. An example channel. (a) Without cooperation. (b) With cooperation.

private parts, which are linearly modulated onto the common
and private levels of the signal respectively. Each receiver then
decodes both user’s common messages and its own private mes-
sage by solving the linear equations it received. This is shown
to be optimal in the two-user interference channel [27]. In this
example [Fig. 3(a)], bits a; and b; are common, while a3 and
bs are private. The sum capacity without cooperation is 4 bits.
One cannot turn on the bit as (or by) since the number of vari-
ables (bits) to be solved at the receiver 1, that is, {a1, a3, b1},
has already met the maximum number of equations it has.
With receiver cooperation, the natural split of transmitted sig-
nals does not change. This suggests that the encoding proce-
dure and the aim of each decoder remain the same. Each re-
ceiver with the help from the other receiver, however, is able to
decode more information because it has additional linear equa-
tions. Since each user’s private message is not of interest to the
other receiver, a natural scheme for receiver cooperation is to
exchange linear combinations formed by the signals above the
private signal level so that the undesired signal does not pol-
lute the cooperative information. In this example, as illustrated
in Fig. 3(b), with one-bit cooperation in each direction in the
LDC, the optimal sum rate is 5 bits, achieved by turning on one
over-the-air bit as. This causes collisions at the second level at
receiver 1 and at the third level at receiver 2, but they can be re-
solved with cooperation: receiver 1 sends by @ a» to receiver 2
and receiver 2 sends b; to receiver 1. Now receiver 1 can solve
(a1, az,as,by) and receiver 2 can solve (b1, b3, a1, as). In fact,
the exchanged linear combinations are not unique. For example,
receiver 1 can send (b; @ as)®a; and receiver 2 can send by Ba;
and this again achieves the same rates. As long as receiver 1
does not send a linear combination containing the private bit a3
and the sent linear combination is linearly independent of the
signals at receiver 2 (and vice versa for the linear combination
sent from receiver 2 to receiver 1), the scheme is optimal for this
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example channel. The above discussion regarding the scheme in
the LDC naturally leads to an implementable one-round scheme
in the Gaussian channel, where both receivers quantize and bin
their received signals at their own private signal level.

In the above example, it is optimal that each receiver sends
to each other linear combinations formed by its received sig-
nals above its private signal level. Is this optimal in general?
The answer is no. Consider the following asymmetric example:
SNRy = INRg, SNR;y is 2/3 of SNR; in dB and INR; is 1/3 of
SNR, in dB. C§, = %logSNRQ and C5, = %logSNRg. The
corresponding LDC is depicted in Fig. 4, where one bit in the
LDC corresponds to % log SNR3 in the Gaussian channel. First
consider the same scheme as that in the previous exmaple. Note
that if receiver 2 just forwards signals above its private signal
level, it can only forward a; to receiver 1 and achieves R; up to
2 bits. On the other hand, if receiver 2 forwards a3 to receiver 1,
which is below user 2’s private signal level, it achieves R; = 3
bits. From this example, we see that once there is “useful” in-
formation (which should not be polluted by the receiver’s own
private bits) which lies at or below the private signal level (in
this example, the bit a3), the one-round scheme described in the
previous example is suboptimal. To extract the useful informa-
tion at or below the private signal level, one of the receivers (in
this example, receiver 2) can first decode and then form linear
combinations using (decoded) common messages only.

It turns out that without loss of generality, the above situation
(where there is useful information for the other receiver lies at
or below the private signal level) only happens at most at one
receiver. In other words, there exists a receiver where no useful
information (for the other receiver) lies at or below the private
signal level. The reason is the following:

1) It is straightforward to see that the capacity re-

gion is convex and hence if a scheme can achieve
max {p1 Ry + paRo} for all py,pue > 0, it

. (R1,R2)€%
is optimal.
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2) If u1 > po, we weigh user 1’°s rate more. Since the pri-
vate bits are cheaper to support in the sense that they do
not cause interference at receiver 2, user 1 should be trans-
mitting at its full private rate, which is equal to the number
of levels at or below the private signal level at receiver 1.
Therefore, all levels at or below the private signal level are
occupied by user 1’s private bits and there is no useful in-
formation at receiver 1 for receiver 2.

3) Similarly if p; < pg, there is no useful information at
receiver 2 for receiver 1 at or below the private signal level.

Hence, the following two-round strategy turns out to be optimal
in the LDC (the proof is omitted here): if ;3 > po, receiver 1
forms a certain number (no more than the cooperative link ca-
pacity) of linear combinations composed of the signals above its
private signal level and sends them to receiver 2. After receiver 2
decodes, it forms a certain number of linear combinations com-
posed of the decoded common bits and sends them to receiver 1.
If 1 < po,theroles of receiver 1 and 2 are exchanged. Note that
depending on the operating point in the capacity region, we use
different configurations, implying that time-sharing is needed to
achieve the full capacity region.

From the above discussion, a natural and implementable two-
round strategy for Gaussian channels emerges. For the transmis-
sion, we use a superposition Gaussian random coding scheme
with a simple power-split configuration, as described in [3]. For
the cooperative protocol, one of the receivers quantize-and-bins
its received signal at its private signal level and forwards the bin
index; after the other receiver decodes with the helping side in-
formation, it bin-and-forwards the decoded common messages
back to the first receiver and helps it decode. In Section V, we
shall prove that this strategy achieves the capacity region uni-
versally to within 2 bits per user.

B. Conventional Compress-Forward and Decode-Forward

We have motivated the two-round strategy to be proposed for-
mally in the next section from a high level perspective. Below
we shall illustrate why conventional compress-forward (CF) and
decode-forward (DF) are not good in certain regimes.

It is a standard approach to evaluate achievable rates of
Gaussian relay networks using conventional compress-forward
with Gaussian vector quantization (VQ) assuming joint Gaus-
sianity of the received signals at relays and destination in the
literature, including [10]-[13], [20], etc. What if we replace the
quantize-binning part in the two-round strategy proposed above
by the conventional compress-forward with Gaussian VQ, as in
[10], [11], and [28], where the two-round idea is also used?

Let us consider another symmetric channel with log INR =
21ogSNR and C® = llogSNR. From its corresponding
LDC in Fig. 5, one can see that the two received signals of the
Gaussian channel, (y1, y2), are not jointly Gaussian. The reason
is that, supposing they are jointly Gaussian, the conditional
distribution of y5 given y; should be marginally Gaussian. As
Fig. 5 suggests, however, conditioning on receiver 1’s signal re-
sults in a hole at the third level of receiver 2’s signal, which was
occupied by aq. Therefore, transmitter 2’s common codebook
is not dense enough to make the conditional distribution of y»
given y; marginally Gaussian. The incorrect assumption results
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Fig. 5. Another example channel. (a) Optimal scheme (one round). (b) Con-
ventional compress-forward in first round.

in larger quantization distortions, as depicted in Fig. 5(b) 1. The
information sent from receiver 1 to receiver 2, ay, is redundant
and cannot help mitigate interference a2. Hence, the achievable
sum rate is 7 bits (4 bits for user 1 and 3 bit for user 2), while the
one-round scheme in Fig. 5(a) achieves 8 bits. Recall that 1 bit
in the LDC corresponds to % log SNR in the Gaussian channel,
therefore the performance loss is unbounded as SNR — oo.
The main reason why conventional compress-forward does
not work well is that the scheme does not well utilize the
dependency between the two received signals.

Another standard approach is to use decode-forward for the
two receivers to cooperate. Let us go back to the first example
and consider the channel in Fig. 3. Note that there is no gain if
we require both common messages to be decoded at one of the
receivers at the first stage without cooperation. By symmetry we
can assume that, without loss of generality, each receiver first
decodes its own common message and then bin-and-forwards
the decoded information to the other receiver. At the second
stage, it then decodes the other user’s common message with
the help from cooperation and decodes its own private message.
In the corresponding LDC, the common bit ay cannot be de-
coded at the first stage and hence the total throughput using this
strategy is at most 4 bits, which is again the same as that without

ITf we view the received signals as vectors of bits rather than binary expan-
sions of Gaussian signals, we are not restricted to send the MSB « to receiver 2
and a- can be sent instead. However, this kind of scheme cannot be implemented
in the Gaussian scenario using conventional compress-forward with Gaussian

VQ.
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cooperation. The reason why decode-forward is not good for the
two receivers to cooperate is that, it is too costly to decode users’
own common message at the first stage without the help from
cooperation.

IV. A TWO-ROUND STRATEGY

In this section we describe the two-round strategy and derive
its achievable rate region. The strategy consists of two parts: 1)
the transmission scheme and 2) the cooperative protocol.

A. Transmission Scheme

We use a simple superposition coding scheme with Gaussian
random codebooks. For each transmitter, it splits its own mes-
sage into common and private (sub-)messages. Each common
message is aimed at both receivers, while each private one is
aimed at its own receiver. Each message is encoded into a code-
word drawn from a Gaussian random codebook with a certain
power. For transmitter ¢, the power for its private and common
codes are Q;, and Q;. = 1 — Q;;, respectively, for ¢ = 1,2. As
[3] points out, since the private signal is undesired at the unin-
tended receiver, a reasonable configuration is to make the private
interference at or below the noise level so that it does not cause
much damage and can still convey additional information in the
direct link if it is stronger than the cross link. When the inter-
ference is stronger than the desired signal, simply set the whole
message to be common. In a word, for (4,7) = (1,2) or (2, 1),
Qip = min {ﬁ, 1} if SNR; > INR; and Q;;, = 0 otherwise.

B. Cooperative Protocol

The cooperative protocol is two-round. We briefly describe
it as follows: for (é,7) = (1,2) or (2,1), at the first round,
receiver j quantizes its received signal and sends out the bin
index (the procedure is described in detail below). At the second
round, receiver 7 receives this side information, decodes its de-
sired messages (both users’ common messages and its own pri-
vate message) with the decoder described in detail below, ran-
domly bins the decoded common messages and sends the bin in-
dices to receiver j. Finally receiver j decodes with the help from
the receiver-cooperative link. We call this a two-round strategy
STG; — ; — j, meaning that the processing order is: receiver
7 quantize-and-bins, receiver ¢ decode-and-bins and receiver j
decodes. Its achievable rate region is denoted by #; — ; — ;.
By time-sharing, we can obtain achievable rate region # :=
conv {5?2 1= UR o }, convex hull of the union
of two rate regions.

Remark 4.1 (Engineering Interpretation): There is a simple
way to understand the strategy from an engineering perspective.
To achieve max p p i, {1 Ry + pa Ry} for some nonneg-
ative (11, f12), the processing configuration can be easily de-
termined: strategy STG; — ; — ; should be used, where 7 =
argmin,_; o{u} and j = argmax;_; o{su}. In a word, the
receiver which decodes last is the one we favor most. This is the
high-level intuition we obtained from the discussion in the LDC
in Section III-A.
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In the following, we describe each component in detail,
including quantize-binning, decode-binning, and their cor-
responding decoders. For simplicity, we consider strategy
STG2 — 1 — 2.

Quantize-Binning (Receiver 2): Upon receiving its signal
from the transmitter-receiver link, receiver 2 does not decode
messages immediately. Instead, serving as a relay, it first
quantizes its signal by a pregenerated Gaussian quantization
codebook with certain distortion and then sends out a bin index
determined by a pregenerated binning function. How should
we set the distortion? As discussed in the previous section,
note that both its own (user 2’s) private signal and the noise it
encounters are not of interest to receiver 1. Therefore, a natural
configuration is to set the distortion level equal to the aggregate
power level of the noise and user 2’s private signal.

Decoder at Receiver 1: After retrieving the receiver-coop-
erative side information, that is, the bin index, receiver 1 de-
codes two common messages and its own private message, by
searching in transmitters’ codebooks for a codeword triple (in-
dexed by user 1 and user 2’s common messages and user 1’s own
private message) that is jointly typical with its received signal
and some quantization point (codeword) in the given bin. If there
is no such unique codeword triple, it declares an error.

Decode-Binning (Receiver 1): After receiver 1 decodes, it
uses two pregenerated binning functions to bin the two common
messages and sends out these two bin indices to receiver 2.

Decoder at Receiver 2: After receiving these two bin indices,
receiver 2 decodes two common messages and its own private
message, by searching in the corresponding bins (containing
common messages) and user 2’s private codebook for a code-
word triple that is jointly typical with its received signal.

Remark 4.2 (Difference From the Conventional CF): The
action of receiver 2 as a relay is very similar to that of the relay
in the conventional compress-forward with Gaussian vector
quantization. Note that the main difference from the conven-
tional compress-forward with Gaussian vector quantization
lies in the decoding procedure (at receiver 1) and the chosen
distortion. In the conventional Gaussian compress-forward, the
decoder first searches in the bin for one quantization codeword
that is jointly typical with its received signal from its own
transmitter only, assuming that the two received signals are
jointly Gaussian. This may not be true since a single user
may not transmit at the capacity in its own link, which results
in “holes” in signal space. As a consequence, this scheme
may not utilize the dependency of two received signals well
and cause larger distortions. Our scheme, on the other hand,
utilizes the dependency in a better way by jointly deciding the
quantization codeword and the message triple, consequently
allows smaller distortions and is able to reveal the beneficial
side information to the other receiver. Quantize-binning and its
corresponding decoding part of our scheme is very similar to
extended hash-and-forward proposed in [22], in which it was
pointed out that the scheme has no advantage over conventional
compress-forward in a single-source single-relay setting. In
the Gaussian single-relay channel (with orthogonal noise-free
relay-destination link), the received signal at the relay and the
destination are indeed jointly Gaussian when communicating
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at the quantize-map-and-forward achievable rate and hence
the performances of the two schemes are the same. Due to the
above mentioned issues, however, we recognize in our problem
where the channel consists of two source-destination pairs
and two relays, the scheme has an unbounded advantage over
the conventional compress-forward in certain regimes. Such
phenomena are also observed in single-source single-destina-
tion Gaussian relay networks [25], [29] and interference-relay
channels [17], [29].

C. Achievable Rates

The following theorem establishes the achievable rates of
strategy STG2 — 1 — 2. Let R;. and IR;;, denote the rates for
user ¢’s common message and private message respectively, for
1 =1,2.

Theorem 4.3 (Achievable Rate Region for STGy — 1 —9):
The rate tuple (Ri., Rac, R1p, Rap) satisfying the following
constraints is achievable:

Constraints at receiver 1: At the bottom of the page, where

&= I(?)2§Z/2|$1C717171’26,?/1)-

Fori = 1,2, z;. ~ CN (0,Q;.) is the common codebook gen-
erating random variable. 1 = x1, + x1. is the superposition
codebook generating variable, where z1, ~ CN (0, Q1)) is in-

dependent of x1.. ¥ 4 Yo + Zo is the quantization codebook
generating random variable and 25 ~ CA (0, Az), independent
of everything else. As is the quantization distortion at receiver
2.

Constraints at receiver 2:

($27y2|$2c,$1c)
Ri.+ R2p < I($ , T2 Y2|T2.) + C5y
Roc + Rop < I (22;92|T1.) + 8,
Roc + Ric + Rop < I (22,2163 92) + Chy,

where 29 = x9, + x2. is the superposition codebook generating
variable and z2, ~ CN (0, Q2,) is independent of z..

Proof: For details, see Appendix A. Here we give some
high-level comments on these rate constraints. First, unlike in-
terference channels without cooperation, here receiver 1 is re-
quired to decode m correctly so that it can help receiver 2. This
additional requirement gives the rate constraint (2) on Ra..
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Second, in the set of constraints at receiver 1, on the right-
hand side they are all minimum of two terms. The second term
corresponds to the case when the receiver-cooperative link is
strong enough to convey the quantized ¢ correctly. The first
term corresponds to the case when receiver 1 can only figure
out a set of candidates of quantized 2. Regarding the “rate
loss” term &7, in Section III we see that in the LDC as long
as the quantization level is chosen such that no private signals
pollute the cooperative information, there is no such penalty. In
fact, & = I (92; y2|T1c, 1, Z2e, Y1) corresponds to the number
of private bits polluting the cooperative linear combinations in
the LDC if one chooses the quantization distortion to be too
small. In the Gaussian channel, however, due to the carry-over of
real additions, the private part will always “leak” into the levels
above the quantization level and hence there is always at least a
bounded rate loss even if we choose the quantization distortion
properly.

Finally, in the set of constraints at receiver 2, since receiver 1
only helps receiver 2 decode m . and ., there is no enhance-
ment in Ry,. [ |

We shall use the following shorthand notations throughout
the rest of the paper: for (4, 5) = (1,2),(2,1),
lNRzp = |hij|2ij = |NRZ . ij.

Next, we quantify the “rate loss” term &; in the set of rate
constraints at receiver 1, in terms of distortions As:

& =1(92; y2|T1e, 21, T2e, Y1)

= h(?72|$1C7371795ZC7?J1) - h(g2|$107$17$267yl7y2)

=h (hoaap + 22 + Za|h1222p + 21) — h(22)
(1 +A, SNRs, )
= log
A; T (1+INRy,)A,

(14)

1+ A SNR
< log (%)
2

Below we shall see why the intuition of quantizing at the
private signal level works. By choosing Ay = 1 4 SNRy,,
the “rate loss” &7 is upper bounded by 1. In particular, when
SNR2 < INR;, we have SNRy, = 0 and hence & = 1. On the
other hand, note that for receiver 1 the unwanted signal power

Ry < min {1 @101 |o1e,220) + (CG =€), T (w1591, Galse, @) | (M
Rsc < min {I($2c,y1|df1 +(C5y — &)1 T (w2e3 w1, Ga2) } )
Rse + Ri1p < min {I(w sesynre) + (G5 — &), I (wae, w1391, alo1c) }
Ri.+ Ryp < min {I($1,U1|12c +(C8, — &) T (151, 2| w2e) } 3)
Ric+ Roe + Ry <m {1(371 Toc;y1) + (C3 — &), I (21, 20591, §2) },
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level in y5 is exactly 1 + SNRy, and receiver 1 treats the un-
wanted signals as noise anyway. Hence, replacing ¢, by 42 only
increases the rate by a bounded gain.

Remark 4.4: The above configuration of the distortion may
not be optimal. The achievable rates can be further improved
if we optimize over all possible distortions. For example, if the
cooperative link capacity is large, one could lower the distortion
level to yield a finer description of received signals. With the
above simple configuration, however, we are able to show that
it achieves the capacity region to within a bounded gap. Also
note that in this paper, we generate the quantization codebook
in a slightly different way than that in conventional lossy source
coding, where instead a “test channel” yo, = g5 + 22 is used.
With this choice the rate loss £; can be made smaller, while the
calculations become more complicated.

V. CHARACTERIZATION OF THE CAPACITY REGION
TO WITHIN 2 BITS

The main result in this section is the characterization of the
capacity region to within 2 bits per user universally, regardless
of channel parameters. To prove it, first we provide outer bounds
of the capacity region. Ideas about how to prove them are out-
lined and details are left in appendices. Then we make use of
Theorem 4.3 to evaluate the achievable rate region and show
that it is within 2 bits per user to the proposed outer bounds.
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A. Outer Bounds

To prove the outer bounds, the main idea is the following:
first, upper bound the rates by mutual informations via Fano’s
inequality and data processing inequality; second, decompose
them into two parts: 1) terms which are similar to those in
Gaussian interference channels without cooperation and 2)
terms which correspond to the enhancement from cooperation.
We use the genie-aided techniques in [3] to upper bound the
first part and obtain namely the Z-channel bound (where the
genie gives interfering symbols a:jv to receiver i, ¢« # j) and
ETW-bound (where the genie gives the interference term
caused by user i at receiver 7, sY 1= hjz) + zjv to receiver %).
For the second part, we make use of the fact that u2}, and ud} are
both functions of (y3¥, y2¥) and other straightforward bounding
techniques. The results are summarized in the following lemma.

Lemma 5.1: € C %, where € consists of nonnegative
rate tuples (R, Ro) satisfying the inequalities (4)—(13) at the
bottom of the page.

Proof: Details are left in Appendix B. Below we give a
short outline and intuitions. First of all, bounds (4), (5), and (9)
are straightforward cut-set upper bounds of individual rates and
sum rate respectively.

Bound (6) corresponds to the ETW-bound in Gaussian
interference channels without cooperation. In the genie-aided

. INR,
R; < log(1+ SNR;) 4+ min {Cgl,log <1 + m)} 4
. B INRy
Ry <log(1+ SNR3) 4+ minq C3,,log (1 4+ T SNR, 5)
SNRy SNR; B B
< lo )
Ri+ Ry < IOg <1 + INR; + —1 T |NR2> +10g (1 + INRs + I |NR1> + C21 + C12 (6)
SNRl B
R1+R2SlOg(l+SNR2+|NR2)+IOg 1+ ——— +C12 (7)
1+ INRy
SNR2 B
R1+R2SlOg(l+SNR1+|NR1)+IOg 1+ ———- +C21 (8)
1+ INRy
Ry + Ry <log (1 + SNR; + SNR3 + INR; + INRy + |}L11}L22 — }L12}L21|2) ©)]
SNRs SNR;
2R, 4+ Ry <log |1+ INRy + —— log |1+ ——
1+ 2_0g<+ 2+1+INR1>+Og<+1+INR2>
+log (1 4+ SNRy + INR;) + C5, + 5, (10)

SNR, SNR;
Ry +2Ry <log (14+INRy + ——— ) +log 1+ —"—
1+ 2_0g<+ 1+1+|NR2>+Og’(+1+INR1>
+log (1 + SNRy + INRy) + C5, + C5, (a1
SNR2 |NR1 |h11h22 - h12h21|2
2R; + Ry < log [ 1+ ———>— 4+ INRy + SNR
1+ 2_0g<+1+INR1+ 2+ >N TOINR, 1+INR;
+log (1 4+ SNRy + INR;) + C5, (12)
SNRl |NR2 |h11h22 - h12h21|2
Ry +2R; <log 1+ ———— +INR; + SNR
vt 2_0g<+1+INR2+ 1NN TTONR, 1+ INR,
+log (1 + SNRy + INRy) + C&, (13)
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channel, we upper bound the gain from receiver cooperation by
CB, + CB,, that is, in both directions each bit is useful.

Bounds (7) and (8) correspond to the Z-channel bounds. In the
genie-aided channel, since the genie gives interfering symbols
xé\’ to receiver i, 1 #Z j, there is no interference at receiver 3.
Intuitively, the cooperation from receiver j to ¢ is now providing
only the power gain and the genie can provide y]\ to receiver 4
to upper bound this power gain. The gain from the cooperation
from receiver 7 to j is upper bounded by C,'?]-.

Bounds (10) and (11) on R; 4 2R; are derived by giving side
information s to receiver i and 51de information z¥ and y¥
to one of the receiver j’s. In the genie-aided channel there is
an underlying Z-channel structure and hence the gain from one
direction of the cooperation is absorbed into a power gain. The
rest is upper bounded by CB, + C5,

Bounds (12) and (13) on R; 4 2R; are derived by giving side
information y} and 5 := hj;z}Y + z), where Z; ~ CN(0, 1)
and independent of everything else, to receiver 4 and side infor-
mation y¥ to one of the receiver 5’s. In the genie-aided channel,
there is an underlying point-to-point MIMO channel and hence
the gain from both directions of cooperation is absorbed into the
MIMO system. The rest is upper bounded by C?j.

Note that the derivation of all bounds works for all INR’s and
SNR’s. [ |

We make the following observations:

Remark 5.2 (Dependence on Phases): The sum-rate cut-set
bound (9) not only depends on SNR’s and INR’s but also on the
phasesof channel coefficients,duetotheterm |hy1 hos —hiahoy |2.
In particular, when the receiver-cooperative link capacities CB’s
are large, the two receivers become near-fully cooperated and the
system performanceis constrained by that of the SIMO MAC; that
is, it enters the saturation region. Therefore, this bound becomes
active and the outer bound depends on phases.

Remark 5.3 (Strong Interference Regime): When SNR; <
INRy and SNRy < INRj, unlike the Gaussian interference
channel of which the capacity region is equal to that of a
compound MAC in the strong interference regime [1], here we
cannot apply Sato’s argument. Recall that when there is no
cooperation, once user ¢’s own message is decoded successfully
at receiver ¢, it can produce gjv which has the same distribution
as y;-\’ . Since the error probability for decoding user j’s mes-
sage at receiver j only depends on the marginal distribution
of ij , it can be concluded that at receiver 7 one can achieve
the same performance for decoding user j’s message by using
the same decoder as that in receiver 5 and hence receiver ¢ can
decode user j’s message successfully as well. When there is
cooperation, however, the error probability for decoding user
7’s message at receiver 7 depends on the joint distribution of
(y] , ) Note that the additive noise terms in § and ij
have dlfferent correlations W1th the noise term zﬁr and u
can be highly correlated with zV. As a consequence, the ]omt
distributions of ( LU JT) and (y] ) f}f ) are not guaranteed to
be the same and recewer 7 may not be able to achieve the same
performance for decoding user j’s message by using the same
decoder as that in receiver j. Therefore, we cannot claim that
the capacity region under strong interference condition is the
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same as that of compound MAC with conferencing decoders
(CMAC-CD). Instead, we take the Z-channel bounds (7) and
(8), which are within 1 bit to the sum rate cut-set bound of
CMAC-CD in strong interference regimes. This will be dis-
cussed in the last part of this section.

B. Capacity Region to Within 2 Bits

Subsequently we investigate three qualitatively different
cases, namely, weak interference, mixed interference, and
strong interference,? in the rest of this section. We summarize
the main achievability result in the following theorem (recall

that & is the outer bound region defined in Lemma 5.1):

Theorem 5.4 (Within Two-Bit Gap to Capacity Region):

[0,2]),

Proof: Proved by Lemma 5.5, 5.8, and 5.11 in the rest of
this section. [ |

R CECECR @ (0,2 %

C. Weak Interference

In the case SNR; > INRs and SNR; > INRy, the configura-
tion of superposition coding is to split message m; into m;. and
My, for both users ¢ = 1, 2. We first consider STGg — 1 — 2:
referring to Theorem 4.3, we obtain the set of achievable rates
(Rln; Rs., Rlp, Rzp). The term 61 < 1 bit, due to (14) in
Section IV-C and the chosen distortion Ay = 1 4+ SNRy,,.

To simplify calculations, note that the right-hand-side of
(1)—(3) are at most a bounded gap from their lower bounds
I (z1;91|T10, T2c), I (T2c;y1lw1) and I (z1;591|22c) Tespec-
tively. Therefore, we replace these three constraints by

Ry, <I(z1;y1|Tie, 22c),
Roe <I(z2c;y1|T1),

Rlc + Rlp S 1 (wl; y1|$2c)

in the following calculations. Next, rewriting I2;, = R; — R;.
for : = 1,2, applying Fourier-Motzkin algorithm to eliminate
Ri. and Rs. and removing redundant terms (details omitted
here), we obtain an achievable %5 —, 1 —; o, which consists of
nonnegative (R, Ry) satisfying

min I(z1;01|220) , I (215 91]T16, T2e)
+1 (21,223 y2|w2e)  + Chy

min I (z2;92]210) + Chy,
I (zoc;y1|z1) + I (725 y2|T1c, T20r)

Ry

IN

R,

IN

(71, T2 + I (22;Y2|%1c, T2c
Rl—l—RzS{ 18“’1 (rasbafes 2)} (1)
+ (<5,
Ri+ Ry < x1,x2my1,y2) + I (z2; y2|T1c, T2c) (16)
I (%1, Z2e;y1|z1c) + CBy }
Ri+R (17)
! 2% {-i— I (z1¢,T2; y2|T2e) + (C21 - f1)+
I(zy, 220391, U2|21c)
R R < ? b ? 18
1t - {+ «T1mx27y2|x2r)+C12 ( )
Ry + Ry <T(z1;91|T10, 220) + T (16, 2;92) + CF5  (19)

2The definitions of these cases are the following: (1) weak interference,
where SNR1 > |NR2 and SNRQ > |NR1; (2) mixed interference,
where SNR, > INR, and SNR., < INR;; (3) strong interference, where
SNR, < INR, and SNR, < INR;.
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R,
(®)

Fig. 6. Time-sharing to achieve approximate capacity region. (a) Taking union

is required, while time-sharing is not. (b) Time-sharing is required.

I(z1;91]|T10, 22e) + I (@2c; y1]|21)
Ri+ Ry < ! ’ ’ 20
! 2= {‘i‘] (1c, w25 ya|wac) + CF, 0
I(xthca/yl) + I(xl;y1|xlc7m20)
2-Rl + R2 S +I (xlc7x2a y2|x20> (Cgl - 51)+
+C12
xla1326,y17y2)+1($17y1|$167w2c)
2R, + R 21
! 2= { +I xlcaan y2|x20) + C12 ( )
cy c I (&3] b C
Ry + 2Ry < { (71, Tac; y1]21e) + I (w10, T2; U2)+ }
+I (223 y2|T1c, m2c) + (C8) — 51)
I (z1,z205910210) + I (20 y1|z1)
Ry + 2R < +I xlc7x2a U2|x2c) + I(an U2|x1¢:7x2c)
+C12 (C8 - 51)
(1, Tac; Y1, Yol 1e) + I (T1c, w23 Y2)
Ri + 2R
! 2= { +1 (w23 y2|w1e, T2¢) + CF,
I (z1, 220591, 92lm1ce) + I (2265 31 ]21)
Ri + 2Ry <  +I (w1c, w23 yo|22e) + I (225 y2|71c, T2c)

+C&,

We will show that except (21), all bounds are within a
bounded gap from the corresponding outer bounds in Lemma
5.1. By symmetry, however, one can write down %1 — o1
and see that the troublesome constraint (21) can be compensated
by time-sharing with rate points in %1 — 5 — 1. Therefore,
the resulting # = conve%s—1—2UH1—2—1, 18
within a bounded gap from the outer bounds in Lemma 5.1. An
illustration is provided in Fig. 6.

We give the following lemma.

Lemma 5.5 (Rate Region in the Weak Interference Regime):
FCECECR @ (0,2 x[0,2]),

in the weak interference regime.
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R,

Corner point: always achievable

(@

Corner point: always achievable

0 R,
(b)

Fig.7. Situationsin. %> — 1 — 5. (a) Ry +2 R boundis active. (b) Ry +2R»
bound is not active.

Proof: We need the following claims:

Claim: In #9 — 1 — o, whenever the 2R + Rs bound (21)

is active,

a) if R; + 2R- bounds are active, the corner point where
R; + R5 bound and R; + 2R» bound intersect can be
achieved;

b) if Ry 4+ 2R> bounds are not active, the corner point where
R1 + R> bound and R> bound intersect can be achieved.
Above two situations are illustrated in Fig. 7.

Proof: In both situations, we will argue that the value of
R1+ R; at the intersection of the dashed lines are always greater
than the value of R; + R, at the desired corner point. Details
are left in Appendix C. [ ]

Therefore, the 2R, + Ry bound (21) and, by symmetry, its
corresponding Ry + 2R5 bound in %7 —, 2 —, 1 do not show up
inx = conv{%g_u_)g U%1_>2_>1} and & 1is within 2
bits per user to the outer bounds in Lemma 5.1. To show this,
we first look at the bounds in %5 —, 1 — 2 except (21). We claim
that

Claim 5.7: The bounds in % — 1 — 5 except (21) satisfy:
¢ R; bound is within 2 bits to outer bounds;

¢ Rs bound is within 2 bits to outer bounds;

e Ri+ R, bound is within 3 bits to outer bounds;

e 2R; + R> bound is within 4 bits to outer bounds;

e R+ 2Rs bound is within 5 bits to outer bounds.
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Proof: See Appendix C. ]

By symmetry, we obtain similar results for #; — 2 —, 1 and
hence conclude that the bounds in & satisfies (1) both R, and
R5 bounds are within 2 bits; (2) 21 + Rs bound is within 3 bits;
(3) both 2R + Rs and Ry + 2R- bound are within 5 bits to their
corresponding outer bounds. This completes the proof. ]

D. Mixed Interference

In the case SNR; > INRy and SNRy < INRy, the configu-
ration of superposition coding is to split message my into my.
and my,, while making the whole m, common. We first con-
sider STG2 — 1 — 2: by Theorem 4.3, rates satisfying those at
the bottom of the page, and the following are achievable:

Ric < I (190]w2) + CFy
Ry <I (m23y2|m1e) + CF,
Ry + Ri. <I(z3,m10592) + Chy,
where £; = 1 since SNRy < INR;.

Again to simplify calculations, note that the right-hand-side
of (22)—(24) are at most a bounded gap from their lower bounds
I (15911216, m2), I (z2;y1]|21) and I (21; y1|z2) respectively.
Therefore, we replace these three constraints by

Rlp Sl(xl;y1|xlc~,x2>7
Ry <1 (wo;91|m1)
Ry + Rip <I(z1;91]|22)

?

in the following calculations. Next, rewriting 12y, = Ry — R,
applying Fourier-Motzkin algorithm to eliminate R;. and re-
moving redundant terms (details omitted here), we obtain an
achievable %5 — 1 —; o, consists of nonnegative (R, R») sat-
isfying
. 1(1’1'1/1|$2) I(xl'U1|ﬂU1c-$2)
R; < min T ’ i ’
P { +1 (2165 yo|22) + CE,
Ry < min {I($2;y1|$1) A (z25y2|m10) + C|132}
+
Ry + Ry <I(z1,m23y1) + (C5) — &)
Ri+ Ry <I(z1,22;%1,72)
Ri+ Ry <I(z1;91|%10,%2) + I (T10, 25 92) + CLy
I (w1, m0591]m10) + I (2165 y2|72)
Ri+ Ry < { + ’
+Ch + (C8 - &)
Ry + Ry <I (w1, 30591, 2lw1e) + 1 (w105 y2]2) + CF
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Rl + 2R2 S {I($17$2;y1|$16) + I ($107$2; y2) }

+C5, + (Cgl - fl)+
Ry + 2Ry <1 (z1,m2;y1, §2|w1c) + I (w16, 225 92) + Cy.

Comparing #s — 1 — 2 with the outer bounds in Lemma 5.1,
one can easily conclude that:

Lemma 5.8 (Mixed Interference Rate Region):
%2-}1—)2 C & C & C 92-;1-;2 (&) ([0,15] X [0,15]),

in the mixed interference regime. Besides, #3 — 1 —2 C % .
Proof: We investigate the bounds in %5 — 1 — 5 and claim
that:

Claim 5.9: The bounds in %5 —, 1 —; o satisfy
¢ R; bound is within 1 bit to outer bounds;
* R5 bound is within 1 bit to outer bounds;
* R; + R bound is within 3 bits to outer bounds;
¢ R; + 2R5 bound is within 3 bits to outer bounds.
Proof: See Appendix C [ |

This completes the proof. ]

E. Strong Interference

In the case SNR; < INRs and SNRy < INRy, it turns out
that a one-round strategy STGoneround described below suf-
fices to achieve capacity to within a bounded gap. The trans-
mission scheme is the same as that described in Section IV-A.
The difference is that, both receivers quantize-and-bins their re-
ceived signals and decode with the help from the side informa-
tion, as described in Section IV-B. It is called one-round since
both receivers decode after one-round exchange of informaion.
Below is the coding theorem for this strategy:

Theorem 5.10: The rate tuple (Ric, Rac,Rip, Rop)
satisfying the following constraints are achievable for
STGOneRound:

Constraints at receiver 1: See equation at the bottom of the
next page.

Constraints at receiver 2: Above constraints with index “1”
and “2” exchanged.

Proof: The proof follows the same line as the proof of The-
orem 4.3. There is no rate constraint for 2. at receiver ¢ for
(4,7) = (1,2) or (2,1), since decoding m. incorrectly at re-
ceiver ¢ does not account for an error. [ |

Ry < min {I (z1391|10,22) + (C5) — &)1, 1 (w1391, G2l21e, 22) } (22)
Ry < min {I (zg;31]71) + (C5) — &) I (w2391, Glw1) } (23)
Ry + Ry < min {I (w2, m1351|21) + (C3) — &), I (w2, w1591, Gol210) }
Ric+ Rip < min {1 (z139n]a2) + (C5) — &)7, 1 (21591, Gol22) } (24)
Ric+ Ry + Ryp < min {1 (w1, m251) + (C5; — &)1, I (w1, 22191, 92) }
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Now, in the strong interference regime, the configuration of
superposition coding is to make the whole message m; common
for both users i = 1,2; in a word, there is no superposition
eventually. One-round strategy STGoneRound yields achievable
rate region % oneRound, Which consists of nonnegative (R, R2)
satisfying

R z23y1|71) + (C5; —fl)+7}
2 <

xz;y1»392|$1)

A

E.

=
—N
NN~
—~ o~

+
Ry < min $17U1|$2) C21
I($1,ylyy2|3€2
+
Ry + Ry < min I(x1,20501) + (C5 —
1(117552,@171/2
R, < min I (z1;y2]w) + (CBy — &2)F
A (xyiy2, 91|w2)
+
Ry < min I (z2;y2|w1) + (CF —
1(12,1/2 1/1|$1

I (22, 21592) + (C12

Ro+ Ry <
> l_mm{ 1(3?2,3717?/27%)

— &) } . 25)
where &; = 1, for both 7 = 1, 2.

Comparing ZoneRound With the outer bounds in Lemma 5.1,
one can easily conclude that

Lemma 5.11 (Strong Interference Rate Region):

ﬁOneRound c 4 c 4 c %OneRound @ ([07 1] X [07 1]),

in the strong interference regime. Besides, ZoneRound C % .
Proof: We investigate the bounds in ZopneRound and claim

that:

Claim 5.12: The bounds in ZoneRound Satisfy:
e 1 bound is within 1 bit to outer bounds;
* R5 bound is within 1 bit to outer bounds;
e R; + R bound is within 2 bits to outer bounds.
Proof: See Appendix C. [ |

This completes the proof. [ |

F. Approximate Capacity of Compound MAC With
Conferencing Decoders

As a side product of this work, we characterize the capacity
region of the compound multiple access channel with confer-
encing decoders (CMAC-CD) to within 1 bit. The channel is
defined as follows.

Definition 5.13: A compound multiple access channel with
conferencing decoders (CMAC-CD), is a channel with the same
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setup as depicted in Fig. 2, while both receivers aim to decode

both my and ms.

We give straightforward cut-set upper bounds as follows:

Lemma 5.14: 1f (R, Ry) is achievable, it must satisfy the
following constraints:

log(1+ SNRy) + C21

log(1 + INRy) + CB,,
log (1 + SNR; + INRy)

log(1 4 SNRy) + CB,,

R < min { log(1+ INRy) + CB,,
log (1 + SNR; + INR;)
Ry + Ry < log (14 SNRy + INRy) + C5,
Ry + Ry < log (14 SNRy + INRy) + C5,

1+ SNR; + INR; 4+ SNR3 + INR>
B+ By < log <+|h11h22 hisha |2 )

R; < min

Proof: These are straightforward cut-set bounds. We omit
the details here. ]

For achievability, we adapt the one-round scheme proposed
above with no superposition coding at transmitters. Therefore,
the rate region is exactly the same as (25). Hence, we conclude
that:

Theorem 5.15 (Within 1 Bit to CMAC-CD Capacity Region):
The scheme achieves the capacity of compound MAC with con-
ferencing decoders to within 1 bit.

Proof: Following the same line in the proof of Lemma
5.11, we can conclude that the bounds in ZoneRound Satisfy:

e R; bound is within 1 bit to outer bounds;

¢ R5 bound is within 1 bit to outer bounds;

e Ri+ R, bound is within 1 bit to outer bounds.

This completes the proof. |

This result implies that for the Gaussian compound MAC
with conferencing decoders, a simple one-round strategy suf-
fices to achieve the capacity region to within 1 bit universally,
regardless of channel parameters.

VI. ONE-ROUND STRATEGY VERSUS TWO-ROUND STRATEGY

In Section V we show that for the two-user Gaussian inter-
ference channel with conferencing decoders, the two-round
strategy proposed in Section IV along with time-sharing
achieves the capacity region to within 2 bits universally. One
of the drawbacks of the two-round strategy, however, is the de-
coding latency. The quantize-binning receiver cannot proceed
to decoding until the other receiver decodes and forwards the

Constraints at recetver 1:

Rye + Ry, < min {I
Rlc + Rlp
Rlc + R2c + Rlp

~ o~~~

$1;y1|ll71mil72c)
Toe, 15 Y1) T1e) + (CBy — &), T
z1; Y1 |r2e) +

$1,$2c;y1)

— &)1 I (21591, G2 |21e, T2c) }
(22, w1591, D2l210) }
(C8 — &)™ I (w1391, 9alm2e) }

+(C8 = &)t I (21, w251, 912) } -

+(C5,
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bin indices back. The latency is two times the block length,
which can be large. To avoid such large delay, fortunately in
some cases, the one-round strategy STGoneround described in
Section V-E suffices. One of such cases is the strong interfer-
ence regime. This can be easily justified in the corresponding
linear deterministic channel (LDC). At strong interference,
all transmitted signals in the LDC are common. There is no
useful information lies below the noise level since the signal is
corrupted by the noise. Hence, quantize-binning at the noise
level is sufficient to convey the useful information.

Another such cases is the symmetric setup, where SNR =
SNR; = SNRy, INR = INR; = INRy and C® = CB, = C§,.

For the symmetric setup, a natural performance measure is
the symmetric capacity, defined as follows:

Definition 6.1 (Symmetric Capacity):
Coym = sup {R :(R,R) € %} .

It turns out that the one-round strategy suffices to achieve
Csym to within a bounded gap.

Theorem 6.2 (Bounded Gap to the Symmetric Capacity): The
one-round strategy STGopneround €an achieve the symmitric ca-
pacity to within 3 bits.

Proof: See Appendix D. ]

The justification in the corresponding LDC is again simple.
Since the performance measure in which we are interested is the
symmetric capacity, we can without loss of generality assume
that both transmitters are transmitting at full private rate, that is,
the entropy of each user’s private signals is equal to the number
of levels below the private signal level. Therefore, at each re-
ceiver, there is no useful information below the private signal
level and quantize-binning at the private signal level suffices to
convey the useful information.

VII. GENERALIZED DEGREES OF
FREEDOM CHARACTERIZATION

With the characterization of the capacity region to within a
bounded gap, we attempt to answer the original fundamental
question: how much interference can one bit of receiver cooper-
ation mitigate? For simplicity, we consider the symmetric setup.

By Lemma 5.1 and Theorem 5.4, we have the characterization
of the symmetric capacity to within 2 bits:

Corollary 7.1 (Approximate Symmetric Capacity): Let C’Sym
be the minimum of the below four terms:

INR
- B _ Nk
log(1 4 SNR) +H1111{C ,log <1 +q +SNR)}’
SNR

log(1+INR+ —— B

0g< + +1+INR>+C/

1 1 SNR 1
—log(1+SNR+INR)+ =log [ 1 + ——— —CB
20g( + SNR + )+20g< +1+|NR>+2C,

1
5108 (1+2SNR + 2INR + |h11haz — hizha ) -

Then, és)rm - 2 S Csym S C_’S}/l‘ll'
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A. Generalized Degrees of Freedom

To study the behavior of the system performance in the linear
region, we use the notion of generalized degrees of freedom
(g.d.o.f.), which is originally proposed in [3]. A natural exten-
sion from the definition in [3] would be the following: let

ogINR _ ¢
SNR— o0 log SNR " SNR— 0o log SNR

and define the number of generalized degrees of freedom per
user as

sym

d:= log SNR’

i (26)
fix a,k
SNR — oo

if the limit exists. With fixed « and x, however, there are cer-
tain channel realizations under which (26) has different values
and hence the limit does not exist. This happens when o« = 1,
where the phases of the channel gains matter both in inner and
outer bounds. In particular, its value can depend on whether the
system MIMO matrix is well-conditioned or not.

From the above discussion we see that the limit does not
exist, since for different channel phases and different INR set-
tings the value of (26) may be different. The reason is that, the
original notion proposed in [3] cannot capture the impact of
phases in MIMO situations, while from Lemma 5.1 and The-
orem 5.4, or Corollary 7.1, we see that our results depend on
phases heavily, if the receiver-cooperative link capacity C® is
so large that MIMO sum-rate cut-set bound becomes active.
Therefore, instead of claiming that the limit (26) exists for all
channel realizations, we pose a reasonable distribution, namely,
i.i.d. uniform distribution, on the phases, show that the limit ex-
ists almost surely and define the limit to be the number of gen-
eralized degrees of freedom per user.

Lemma 7.2: Let
|hij| = 9ij, Lhij = ©4j, Vi, j € {1,2},

where g;;’s are deterministic and ©;;’s are i.i.d. uniformly dis-
tributed over [0, 27]. Then the limit (26) exists almost surely and
is defined as the number of generalized degrees of freedom (per
user) in the system.

Proof: We leave the proof in Appendix E. [ |

Now that the number of g.d.o.f. is well-defined, we can give
the following theorem:

Theorem 7.3 (Generalized Degrees of Freedom Per User):
We have a direct consequence from Corollary 7.1:
For0 < a <1,

. a K
d:mln{l, max («, 1 — a) + &, 1—54-5}_

Fora > 1,
a K
d= { 1 , = —}.
min g «, —|—/<;,2+2

Numerical plots for g.d.o.f. are given in Fig. 8. We observe
that at different values of «, the gain from cooperation varies. By
investigating the g.d.o.f., we conclude that at high SNR, when
INR is below 50% of SNR in dB scale, one-bit cooperation per
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d (k)

Fig. 8. Generalized degrees of freedom.

direction buys roughly one-bit gain per user until full receiver
cooperation performance is reached, while when INR is between
67% and 200% of SNR in dB scale, one-bit cooperation per
direction buys roughly half-bit gain per user until saturation.

B. Gain From Limited Receiver Cooperation

The fundamental behavior of the gain from receiver cooper-
ation is explained in the rest of this section, by looking at two
particular points: « = 3 and o = . Furthermore, we use the
linear deterministic channel (LDC) for illustration.

Ata = %, the plot of d versus & is given in Fig. 9(a). The
slope is 1 until full receiver cooperation performance is reached,
implying that one-bit cooperation buys one over-the-air bit per
user. We look at a particular point Kk = % and use its corre-
sponding LDC [Fig. 9(b)] to provide insights. Note that 1 bit
in the LDC corresponds to % log SNR in the Gaussian channel
and since CB ~ i log SNR, in the corresponding LDC each re-
ceiver is able to sent one-bit information to the other. Without
cooperation, the optimal way is to turn on bits not causing in-
terference, that is, the private bits a3, a4, b3, by. We cannot turn
on more bits without cooperation since it causes collisions, for
example, at the fourth level of receiver 2 if we turn on as bit.
Now with receiver cooperation, we want to support two more
bits az, bs. Note that prior to turning on as, bo, there are “holes”
left in receiver signal spaces and turning on each of these bits
only causes one collision at one receiver. Therefore, we need
1 bit in each direction to resolve the collision at each receiver.
We can achieve 3 bits per user in the corresponding LDC and
d= % in the Gaussian channel. We cannot turn on more bits in
the LDC since it causes collisions while no cooperation capa-
bility is left.

Ata = %, the plot of d versus & is given in Fig. 9(c). The
slope is % until full receiver cooperation performance is reached,
implying that two-bit cooperation buys one over-the-air bit
per user. We look at a particular point K = % and use its
corresponding LDC (Fig. 9(d)) to provide insights. Note that
now 1 bit in the LDC corresponds to % log SNR in the Gaussian
channel and since C® =~ % log SNR, in the corresponding
LDC each receiver is able to sent one-bit information to the
other. Without cooperation, the optimal way is to turn on bits
a1,as, b1, bs. We cannot turn on more bits without cooperation
since it causes collisions, for example, at the second level of
receiver 2 if we turn on ag bit. Now with receiver cooperation,
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Fig. 9. Gain from cooperation.

we want to support one over-the-air bit a. Note that prior to
turning on as, there are no “holes” left in receiver signal spaces
and turning on a9 causes collisions at both receivers. Therefore,
we need 2 bits in total to resolve collisions at both receivers. We
can achieve 5 bits in total in the corresponding LDC and d = %
in the Gaussian channel. We cannot turn on more bits in the
LDC since it causes collision while no cooperation capability
is left.

From above examples and illustrations, we see that whether
one cooperation bit buys one more bit or two cooperation
bits buy one more bit depends on whether there are “holes”
in receiver signal spaces before increasing data rates. The
“holes” play a central role not only in why conventional com-
press-forward is suboptimal in certain regimes, as mentioned in
Section III-B, but also in the fundamental behavior of the gain
from receiver cooperation. We notice that in [14], there is a sim-
ilar behavior about the gain from in-band receiver cooperation
as discussed in Section III-B of [14]. We conjecture that the
behavior can be explained via the concept of “holes” as well.

C. Comparison With Suboptimal Strategies

Pointed out by the motivating examples in Section III-B,
conventional compress-forward and decode-forward are not
good for receiver cooperation to mitigate interference in certain
regimes, which are used in [11] and [12]. These suboptimal
schemes include:

1) One-round compress-forward (CF) strategy: the conven-
tional compress-forward is used for the two receivers to
first exchange information and then decode.

2) One-round decode-forward (DF) strategy: at the first
stage both receivers decode one of the common mes-
sages with stronger signal strength without help from
the receiver-cooperative links, by treating other signals
as noise. Both then bin-and-forward the decoded infor-
mation to each other. At the second stage, both receivers
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Fig. 10. Number of generalized degrees of freedom. (a) x = 0. (b) k = 0.2.(¢c) x = 0.5. (d) x = 0.8.

make use of the bin index send over receiver-cooperative
links to decode and enhance the rate.

3) Two-round CF+DF strategy: at the first stage one of the
receivers, say, receiver 1, compresses its received signal
and forwards it to the other receiver. At the second stage,
receiver 2 decodes with the side information received at
the first round and then bin-and-forwards the decoded
information to receiver 1. Then at the third stage receiver
1 decodes with the help from receiver-cooperative links.

Comparisons of these strategies in terms of the number of
generalized degrees of freedom for different scaling exponents
« of log INR and  of CB are depicted in Fig. 10. None of them
achieves the optimal g.d.o.f. universally. Note that although
the two-round CF+DF strategy outperforms one-round CF/DF
strategies, it cannot achieve the optimal number of g.d.o.f. for
all &’s and ’s. By Theorem 6.2, the one-round strategy based
on our cooperative protocol, on the other hand, is sufficient to
achieve the symmetric capacity to within 3 bits universally and
hence achieves the optimal number of g.d.o.f. for all o’s and
K’s.

APPENDIX A
PROOF OF THEOREM 4.3

We will first describe the strategy in detail and analyze the
error probability rigorously.
A) Description of the Strategy: In the following, consider
alli,j € {1,2} and i # j.
Codebook Generation: Transmitter ¢ splits its mes-
sage m; —(mjc, msp). Consider block length-N  en-
coding. First we generate 2VFic common codewords
{aN(mic), 1 < my. < 2N} according to distribution
p (=) = nyzlp(:vw[n]) with z;.[n] ~ CN(0,Q;.) for all
n. Then for each common codeword x1\(m;.) serving as a

cloud center, we generate 2™V i codewords {zN (e, miy),
1 < my, < 2V} according to conditional distribution
p (z)]zl) 12, p(zi[n]|2i.[n]) such that for all n,
zi[n] = zi[n] + zip[n], where z;,[n] ~ CN(0,Q;p) and
independent of everything else. The power split configuration
is such that Q;, + Qi = 1, INR;, Qip|hji|2 < 1if
SNR; > INR; and no such split if SNR; < INR;. Hence,

Qip = min {17 = } if SNR; > INR; and Q;;, = 0 otherwise.
For receiver 2 serving as relay, it generates a quantization

codebook %%, of size z’Z//J = 2N Ry

marginal distribution p(¢5' ), marginalized over joint distribu-

tion p (432 o2 p(Y [y a2 o), where

, randomly according to

(2 12" w1e, 77 w3c)
N

=TT p(d:l|yeln). 21cln], 21 [0], wcln])-
n=1

The conditional distribution is such that for all n, g2[n] =
y2[n] + Z2[n], where Za[n] ~ CN(0,A2), independent
of everything else. Parameters Ry and A, are to be spec-
ified later. For each element in codebook %5, map it into
{1,...,2% C21} through a uniformly generated random map-
ping by : % —{1,.. .,2NC21}7y2 — loq (binning).

For receiver 1 serving as relay, it generates two binning func-
tions bglc) and bgzc) independently according to uniform distri-
butions, such that the message set {1 < m;, < 2Vfic} is parti-

'NC%: bins, for i = = 1,2, where 0 < /\(w) <1,
= 1and

tioned into 2>‘
1le 2(‘
A AP

2A<1”)Nc?2}

bl {1,. .. 2NRey (1,

Mie b—>l(w) e{L,...

?
2)‘(”)NC12}
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The superscript notation “(ic)” denotes which message set is
partitioned into bins, while the subscript “1” denotes the binning
procedure is at receiver 1.

Encoding: Transmitter 7 sends out signals according to its
message and the codebook. Receiver 2, serving as relay, chooses
the quantization codeword which is jointly typical with y3' (if
there is more than one, it chooses the one with the smallest
index) and then sends out the bin index [5; for the quantiza-
tion codeword. After decoding (1., m1p, mac) (to be specified

below), receiver 1 sends out bin indices (151;), lf‘;)) according

.. . le 2c
to binning functions (bg ),bg ).

Decoding At Receiver 1: To draw comparison with the
decoding procedure in the conventional compress-forward, the
above decoding can be interpreted as a two-stage procedure as
follows. It first constructs a list of message triples (both users’
common messages and its own private message), each element
of which indices a codeword triple that is jointly typical with
its received signal from the transmitter-receiver link. Then, for
each message triple in this list, it constructs an ambiguity set of
quantization codewords, each element of which is jointly typ-
ical with the codeword triple and the received signal. Finally, it
searches through all ambiguity sets and finds one that contains
a quantization codeword with the same bin index it received. If
there is no such unique ambiguity set, it declares an error. The
two-stage interpretation is illustrated in Fig. 11.

To be specific, upon receiving signal ; and receiver-cooper-
ative side information [l»1, receiver ¢ constructs a list of candi-
dates Lz(yfV ), defined at the bottom of this page, where AEN)
denotes the set of jointly e-typical N-sequences [30].

For each element m € L(y{"), construct an ambiguity set of
quantization codewords B(m ), defined as shown in the equation
at the bottom of the page. Declare the transmitted message is
1h if there exists an unique 7 such that 3 3 € B(1m) with
ba(95) = lo1. Otherwise, declare an error.

Decoding at Receiver 2:  After
indices (l (1) %c)), receiver 2 searches for an
message  triple  (mgc,map, m1.) such  that
(J’jé\é(m%)v xé\] (m207 m2p), w{\;(mlc)7 yé\f) € AEN) and
bgw) (mie) = l%c), for ¢+ = 1,2. If there is no such unique
triple, it declares an error.

B) Analysis:

Error Probability Analysis at Receiver 1: Without loss of
generality, assume that all transmitted messages are 1’s. For
simplicity, we first focus on the case where receiver 1 aims to
decode while receiver 2 serves as a relay to help it decode.

At receiver 1, due to law of large numbers, the probability
that the truly transmitted 1 := (mi. = 1,ma. = 1,mq, =

receiving bin

unique
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Fig. 11. Decoding at receiver 1 and error events. (a) Error event (1). (b) Error
event (2).

1) ¢ L(yY) goes to zero as N — oco. Besides, the probability
that B(1) does not contain the truly selected ¢ is also negli-
gible when NV is sufficiently large. Consider the following error
events:

First, there is no quantization codeword jointly typical with
received signals. This probability goes to zero as N — oo if
Ry > I(ij2; y2), which is a known result in the source coding
literature.

Second, there exists m # 1 such that both of them are in
the candidate list L(y}') and the ambiguity set B(m) contains
some quantization codeword $2¥ with bin index bo(92") = l21.

L(yy)

{m = (m107m1p7m20)| (‘Tﬁ(mlc)vw{\r(mlmmlp)vxévc(mZC)vyiV) € AEN)} ’

B(m) = {3 € 2 | (5 wdlmae), o (mae, may), e (mac), yl¥) € A}
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This event can further be distinguished into two cases: First, this
93" € B(m) is not the actual selected quantization codeword
[illustrated in Fig. 11(a)]; second, this 3 € B(m) is indeed
the selected quantization codeword [illustrated in Fig. 11(b)].
In the following we analyze the error probability of these two
typical error events.

Again, refer to Fig. 11. for illustration. Define error events as
follows: for any nonempty S C {1¢, 1p, 2¢},

Eg) := the event that there exists some m #* 1, (where
ms # 1,Vs € Sand m, = 1,Vs ¢ S), such that ;o € L(yd)
and B(m) contains some ¢ (k), k € {1,2,...,2N} with
bo(9Y (k)) = la1. Note: this 72" (k) is not the truly selected
quantization codeword 92" (1).

Eg) := the event that there exists some m #* 1, (where
ms # 1,Vs € Sand ms = 1,Vs ¢ S), such that m € L(yY)
and B(m) contains 92" (1).

Probability of E'él): Consider the probability of the error
event Eél): it can be upper bounded by (27) at the bottom of the
page, as where (a) is due to the independent uniform binning.

For notational convenience we use z¥(m) to denote the
vector of codewords corresponding to message m, that is,

(2. (mac), 27 (mac, map), 25 (ma)).
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Note that for k # 1, 93 (k) is independent of (z (m),y1 ).
We then make use of [30, Th. 15.2.2], which upper bounds
the volume of conditional joint e-typical set A (2|2, y1)
given that (zV,y) € A to further upper bound
S Pr{ (38 (h). 2V (m), o) € A} by (28) at the
bottom of the page, where (b) is due to in [30, Th. 15.2.2].
Besides, according to the results in [31],

Pr{m € L(y{")}

(9= N(I(isyi|ere,zec)—¢') g _ {1p}
27N(1($1;y1|12c)*€/) S = {IC}
2—N(I(1’2r;y1|zl)_f/) S = {26}

<{ 9 N{I(2eziyilzic)—¢') g _ {1p,2¢}
2—N(I(l’1;y1 IZQ‘")_E/) S = {117, 10}
9= N(I(z1.22051)—¢") S ={2¢, 1c}

\ 9= N(I(w1,22051)—¢") S ={1p,2¢,1c}

where ¢/ = 4e. Note that unlike in the interference channel

without cooperation as in [31], here we require receiver 1 to

Pe{E®}l < 3 S Pr{me L) 53 (k) € Blm), b33 (k) = I }

m:ms#1, k#1
VseS

= X P {8 )2 (m).u) € AN ba(a (R) = Do |

m:mg#1, k#1
VseS

(;)2_NC51 Z ZPr{(

m:m#1, k#1
VseS

<oV (Xes Re)g-net 3 Pr{(gév(k),gN(mLy{V) € AEN)} :

k#£1

3 (), (m), y') € A}

27

SoPe{ (38 (), 2" (m), ') € A}

< N /(AN } N)GA(N)p(?)év)p(ﬁN,y{V)d@édeNdy{V
93 zN ]

< oNR: p(z™,yl)da™ dyy
(aVyl)eat™ y

- /(zNay{V)GAEN)
(®)

— 2NR2 9= NI (§2;T1c,w1,T20,y1) = 3€) /

p(a?, y{V)dszyiV/

2 ON(h(ga|ere e waey1)+26) | 9= N(h(ga)—c) . gNRa /

(zNy

~N N
p(¥2 )dy
yé"eA((N)(Qz|£N,y{V) ( 2) ?

9= N(h(52)=0) gy N

N
zN,y] )

s ea™ (s

) o Pl ) e dyl
J(zV Yy )ede

p(z™,yy ) da™ dyp’

Jear™

— Pr {m c L(U{V)} . 2NR2 9= NI (J2;x10,@1,22¢0,y1) —3€)

(28)
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decode may, correctly. Hence, the event when S = {2c¢} does
cause an error. Therefore, the probability of the first kind of error
event vanishes as N — oo if

< I (@1591]%10, Tac) +
ch < I($2c; y1lr) + ¢
Roe + Rip <I(22e,%1531|210) + ¢
Ric+ Rip <I(21591]72:) + 0
Ric+ Roc + Rip <1 (z1,T20591) + @,

where ¢ = C8 — Ry + I(§2; 10, 21, T20, Y1)

On the other hand, since we can alternatively upper bound
Pr {E ) by (29) at the bottom of the page, the probability of
the first kind of error event vanishes as N — oo if

I(z1;01 710, m20) + @7
RQr S I($2c;y1|$1) + ot
Roc + Rip <I(2ac,21;91]210) + 7
Ric+ Ry <I(z1391|720) + 0T
Ric + Rae + Ry <I(z1,72:591) + ¢

Finally, plug in Ry, = I(ij2;y2) and by Markov relation:
(Z1e, T1,%2e, Y1) — Y2 — Yo, We get the rate loss term

&1 := Ry — I(jj2; T 10, %1, Toc, Y1)
21(372;,1/2) - I(?)z;xmil?hxzc;m)
=1(2; y2|Z1c, T1, T2, Y1 )-

Probability of Egz).‘ Consider the probability of the error
event Eg):

pr{Ed}
S

m:m#1,Vs€S

:nu S Pr{

mim,#1 Vs€S

Pr {3 (1) € B(m),m € L(y}")}

(55 (1), 2N (m),y7) € A§N>}
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. 2—N(I(11;ylyﬂz |21c,w2e)—€") ,

S = {1p}

.9~ (I(wlvyl P2 |woc)—

2 <ses ) S = {lc}
N R;
9 <§s ) Z_N(I(m2c;y17?}2‘zl)_fl)’ S = {2¢}
() -
- 2 ses . 2—N(I(125,$1;?/1,yz\xlc)—e ), S — {1]77 26}
N< RS)
9 \ses _2*1\’(1(901;111,@2Imzc)fe’)7 S = {1p,1¢}
N< R5>
9 \ics /.o=N(I(z1,w20:91,92)~ ) S = {2¢,1c}

N<Z RS> X ,
L 2 ses i Z—N(I(LEhZQc;yl ) —e€ )’ S = {1]3, 207 1@}

where ¢/ = 4e. Note that the event when .S = {2¢} does cause
an error. Hence, the probability of the second kind of error event
vanishes as N — oo if

(5171 yl,y2|$1p,$2c)
R2c <I(1172c,y1 Jo|21)
Rye + Rip <1 (226,215 Y1, Y2|71c)
Ric+ Rip <I (1591, 92|@2c)
(

Rlc + RZc + Rlp < 1 T1,T2c;5 y17y2)

Error Probability Analysis at Receiver 2: After receiving
the two bin indices, receiver 2 can decode (m1.,ma., map),
with effectively smaller candidate message sets, (namely, the
bins,) for mj. and msy.. Following the same line as [31], it
can be shown that (we omit the detailed analysis here), for all
0 < )\(“) < 1 and )\(1") + )\(2") 1, the following region is
achlevable

I (25 y2|z2e, T16)
Ri.+ R2p <I(®1c, T2 y2|®ae) + A§1C)C§2

Roc + Ray <1 (w23 30]m10) + A7 Chy
Roc+ Ric + Rop <1I(z2,%10592) + cB,.

Note that the performance of decoding the private message ma,
does not gain from cooperation, since receiver 1 does not decode
the private message map.

Taking convex hull over all possible /\§1"') € [0,1]. Note that
the bounds for Ry, and Ry, + Ri. + Ry, remain unchanged.
Project the three-dimensional rate region to a two-dimensional

mims#1

Pr{E{’} <
VseS

< 2N(ZseSRS) Pr {m € Ly

{\T)} ’

S pr{me L)} Pr{3k4£1,5)

(K) € Blm), ba(35' (k) = In|m € L(y)}

(29)
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space for any fixed Ry, = 72, we see that the convexifying
procedure results in the following region:

Ry, + T2p <I (ZE’lc,QJZ; y2|$20) + C?Z
Roc + 19y <I(z2590|71.) + CF)
RQC + Rlc + T2p <I (3?2,3?1@7 y2) + C12

Hence the following rate region is achievable for receiver 2
to decode successfully:

Ry, <1

RIC+R21) <I
Ry + Ryp <1
Roc+ Ric+ Rpp <1T

25 Y2|T2e, T1c)

T1e, T23 Y2|Tace) + CTo
T3 y2|T1c) + CPy

Ta, 7163 Y2) + CTy

~ N N

APPENDIX B
PROOF OF LEMMA 5.1

Bounds (4) on Ry and (5) on Rs:

Proof: One can directly use cut-set bounds. As an alterna-
tive, we give the following proof in which the decomposition of
mutual informations is made clear.

‘We have the following bounds by Fano’s inequality, data-pro-
cessing inequality, and chain rule: if R; is achievable,

Ny = ex) € 1647 )
2 Il w2
(:)I(% Y1 7“21|$ )
Q@ ¥ 1ol + 1@ a2
=h(hpzY +2) — h(z])
+ I(xy s udy |y 23)

(e)
< Nlog(1+ SNRy) + I(z) ud) lyr , 23),

where ey — 0 as NV — o0. (a) is due to Fano’s inequality and
data processing inequality. (b) is due to the genie giving side
information z to recelver 1,ie., condmonmg reduces entropy.
(c) is due to the fact that x1 and a:2 are independent. (d) is due
to chainrule. (e) is due to the fact that i.i.d. Gaussian distribution
maximizes differential entropy under covariance constraints.
To upper bound I(z;ud |y, zY), which corresponds to
the enhancement from cooperation, we make use of the fact that

ud} is a function of (yi¥, yd")

I(x{V;u%y{V,gi)

( |y1 »372) h(x N)

N, N . N
1 |“217y1 y Lo
(a)
<h

( |y1 y Lo ) ($N|ué\;’y{\77xé\77yé\7)
(b)h(

N|y1 »372) h( |yN wévvyév)
=1I(z ;5 lyr 2y

= h(y3 |y17$2) h(y2 |y
= h(horxd + 2N |hy1ad + 22V) — (=)

INR;
< 3 — = |-
< Nlog <1+ 1+SNR1>

N N N
, Ty ,T7)
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(a) is due to the fact that conditioning reduces entropy. (b) is due
to the fact that ud} is a function of (y{¥, yV).

Besides, it is trivial to see that I(z;ud|yl,zd) <
H(ud)) < NCB . Hence, (and similarly for Rs), we have
shown bounds (4) and (5). [ ]

Bound (6) on Ry + Ra:
Proof: Define

51 :=ho171 + 22, 82 := h1awo + 21,

51 = ho1%1 + Z2, 82 := h1owa + 21,

where Z1, Zo are i.i.d. CN(0,1)’s, independent of everything
else. Note that s; and §; have the same marginal distribution,
fors = 1,2.

A genie gives side information 5 to receiver i (refer to
Fig. 12.) Making use of Fano’s inequality, data processing
inequality, and the fact that Gaussian distribution maximizes
conditional entropy subject to conditional variance constraints,
we have: if (R1, R2) is achievable,

N(R1+R2—€N)

a)
<I(zYsyr u) + I(x) 1y ury)

() r
(371 ' )+I(f’7évvyé\)+l(x1 ,u21|y )

+ I(z) s ugslys’)
()
<TI(z5yr . 87) + I(wy 1y .85 ) + H(upy) + H(ugy)

@ o
<h(yy',57) -

h(sév7 éé\f) + h(yév7 ‘§2 ) h(sl 721 )
+ NCB + NCB,
Dh(yN 3Y) + h(3Y) = h(sY) = h(zD) + by |5Y)

+ h(N) = h(sN) = h(zN) + NCB, + NCE,
=Ry 157) — h(Z5 ) + h(y3'55) — h(Z)
+ N(C5, +C3,)

f
(g)N{RHs of (6)},

where ey — 0 as N — o00. (a) follows from Fano’s inequality
and data processing inequality. (b) is due to chain rule. (c) is
due to the genie giving side information 5 to receiver i, i =
1,2 and I(z); ufllyY) < H(u}). (d) is due to the fact that
H(ué\:) < NCJB-i. (e)is due to chaln rule. (f) is due to the fact that
i.i.d. Gaussian distribution maximizes conditional entropy sub-
ject to conditional variance constraints. Note that alternatively
the genie can give side informations s to receiver i, as in [3].

Hence, we have shown bound (6). |

Bounds (7) and (8) on R1 + Ro:

Proof: A genie gives side information 2 and y2' to re-
ceiver 1 (refer to Fig. 13.) Making use of Fano’s inequality, data
processing inequality, the fact that u2} is a function of (y{, y2")
and the fact that Gaussian distribution maximizes conditional
entropy subject to conditional variance constraints, we have: if
(Ry, Ry) is achievable,

N(R1 +R2—6N)
= I(a7 501, udy) + 1235y, ut)
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)
h11 v yN 1
x] (+) il | DEC1 3o
ha?
N
U3 Uy2
hiz

Fig. 13. Side information structure for bound (7).

(a)
<I(zy5y1 udy, up 28 ) + 1@y 590" ) + I (@) s ulhlys))

(b)
<T (259N udi, ud [23) + b (y) — b (D) + H (ud})

QI (xl YY1 7yiv|4172 ) +h (yév) —h (Siv) +H(uf§)

=h (hnxl + 27, N) —h (z{v7zév) +h (yév) —h (sjlv)
+H (u12)
=h (huay +21 sy ) —h (21

< N{RIS of (7)},

.25 )+h (2 )+ H (u1))

where ey — 0 as N — o0. (a) is due to chain rule and the genie
giving side information o) and Y to receiver 1. (b) is due to
the fact that 27 and x3 are independent and I(z} ;ul |yl ) <
H(udY). (c) is due to the fact that ud} is a function of (y1 L yd).
Hence, (and similarly if we gives side information z¥ to re-
ceiver 2), we have shown bounds (7) and (8). [ ]
Bound (9) on R1 + Rs:
Proof: This is straightforward cut-set upper bound: if
(R1, R2) is achievable,

N(R1 + Ry — en) §1($iva$iv;yiv7yiv)
=h(yy) —h(z,2)

< N{RHS of (9)},

where ey — 0 as N — o0.
Hence, we have shown bound (9). |

Bounds (10) on 2R, + Ry and (11) on Rl + 2R2

Proof: A genie gives side information x2 and y2¥ to one of
the two receiver 1’s and side information s to receiver 2 (refer
to Fig. 14). Making use of Fano’s inequality, data processing
inequality, the fact that u2] is a function of (y1",y2"), and the
fact that Gaussian distribution maximizes conditional entropy
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Fig. 14. Side information structure for bound (10).

subject to conditional variance constraints, we have: if (R;, Ro)
is achievable,

(2R1 + Ry — EN)

(a)
<I(@s5u1 ud) + L@ syt upy) + 1(ad sy, ugy)
(b)

<I(.Z‘1 7yiv ué\fl’yé\f’xé\f)_'_](xl Y )

+ I(Ié\rayé\f Sév) + I(xi\r?ué\i Y1 ) + I(IZ ,’lL12 yé\f)

© ,
<I(zy sy udl, yo o)) + Ty sy ) + Iy s 3, s3)

+ H (u21) + H (Uiz)

(d)
=1y sy s o) + L (s ) + 1) sy, s5)

+ H (u%) + H (u12)

=h (}L11:E]1V+Z{V7Siv) _h( v N) +h(y ) — h(s3 )

+h(y3' 55 ) = h(sy, 21 ) + H (udy) + H (uf})
=h(huzy + 21 |s7) —h (21,29 ) + h(yD)
+h(ys [s3') = h(=1) + H (u3q) + H (ug))

< N{RHS of (10)},

where ey — 0 as N — oo. (a) follows from Fano’s inequality
and data processing inequality. (b) is due to chain rule and the
genie giving side information o) and ¥ to one of the receiver
1’s and side information s to receiver 2. (c) is due to the fact
that 23V, z¥ are 1ndependent and I(z}; N Ny ) < H(u}). (d)
is due to the fact that ud} is a function of (yi¥, y2"). Hence (and
similarly for R; 4+ 2R5), we have shown bounds (10) and (11).
|

Bounds (12) on 2R, + Rs and (13) on Ry + 2R5:

Proof: A genie gives side information 3, y¥ to receiver
1 and side information " to one of the receiver 2’s (refer to
Fig. 15). Making use of Fano’s inequality, data processing in-
equality, the fact that ufY,, udY, are functions of (y{¥, »2"), and the
fact that Gaussian distribution maximizes conditional entropy
subject to conditional variance constraints, we have: if (R, R2)
is achievable,

N(R1 + 2Ry — EN)

< Iz syr,udy) + 1@yl ufl) + (@3 syl ulp)

(@)
<I(zys597  udy,va 87 ) + I(

+ 123 3 y9 ) + (23 sutslys)

N, N N ,N
T Yy Upes Y1)
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Fig. 15. Side information structure for bound (13).

b) .
<I($1 7?/1 7u217y2 |Siv>+l(x1lqasiv)
N N | N

+ I(wy sy s uny, yr ) + Iy 1y ) + H(ulh)
() J ~N
<T(asun  yp 1Y) + Iy son  ye ) + h(3)) — h(22)
+h(ys ) — h(s?) + NCF,

N N)

(<)I(a:1 N ayév|31 )+I(372 N 7yN|x 51

+ h(yy) — h(22 )+ NC§,

= I(x7 25597 95 137) + h(yz') — h(z') + NCF,

= h(yy 92 157) + h(y3") = h(z1', 25 ) — h(z3") + NCE,

)
<N{RHS of (13)},

where ey — 0 as N — o0. (a) is due to the genie giving side
information 3{', 45 to receiver 1 and side information yi¥ to
one of the receiver 2’s. (b) is due to chain rule and the fact that
Iy ;udl|yd) < H(ud,). (c) is due to the fact that u2] and
ud%, are both functions of (yi¥, y2') and that H(u},) < NC&,
(d) is due to the fact that conditioning reduces entropy and that
oY and (2, 5)) are independent. (e) is due to the fact that
Gaussian distribution maximizes conditional entropy subject to
conditional variance constraints.

Hence, (and similarly for 2121 4+ R»), we have shown bounds
(13) and (12). [ |

APPENDIX C
PROOF OF CLAIM 5.6, CLAIM 5.7, CLAIM 5.9, AND CLAIM 5.12

A) Proof of Claim 5.6:

Proof: To show (a), since we have four possible R; + 2R,
bounds, we distinguish into 4 cases:

1) If the bound

Ry 4+ 2Ry < I (21, %203 y1|T1c) + I (T1c, 25 Y2)

+
+1 (22;y2|T1e, T2c) + C?z + (C% - 51)

is active, note that the point (R}, R3) where the Ry +
2R5 bound and the 2R, + Rs bound (21) intersect, sat-
isfies
3R} + 3R}
— I(I17x26;y17g2)+I($1;y1|xlcax2c)
+1 (w10, w23 y2|w2e) + CF,
{I($1>$2r’y1|$1r)+I(Cl71m«’l72ay2) }
+1 (225 y2|T1e, T20) + CE, + ( 51)
= {I(z1,%2:;91,92) + I (x2;y2|T16, T2c) }
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+{I(z1;y1|10,T20) + I (10,25 92) + CTo }
I(zy, 2203 y1]210) + 1 (T1e, T2;5 y2|T2c)

{+C?g +(Ch-&)" }

= (16) + (19) +

which is greater than three times the active sum rate
bound.
2) If the bound

Ry + 2Ry <1 (21,2205 91|710) + I (w203 y1]21)
+ 1 (210, 25 Y2|w2e) + 1 (w25 y2| w10, T2c)
+
+C5h+ (C% - &)

is active, note that the point (R}, R3) where the Ry +
2R5 bound and the 2R1 + Rs bound (21) intersect, sat-
isfies
3R} + 3R}
_ I (z1, 226591, 92) + T (215 91]%1e, T2c)
B { +1 (1, T2 Y2|T2c) + CF, }
I (w1, 2005 y11216) + I (w205 91]71)
+ & H (10, w23 y2|w2c) + I (w23 y2|T10, T2c)
+CP + (C5, — fl)+
T1, %26 Y1, 92) + I (225 y2]T1e, Tac) }

-G :
+} (13 y1|T1e, Toc) + ($207y1|$1)}

(17),

+I xlmx% y2|x2r) + C12
(21, wzc,y1|$1c) + I (210, 123 Yo2|w2c) + CB, }

(16) +

which is greater than three times the active sum rate
bound.
3) If the bound

Ry + 2Ry < I (21, %2591, 92|%1c) + I (T1c, T2; Y2)
+1 (2; Y2 |1, T20) + C5y

(17)

is active, note that the point (R}, R3) where the Ry +
2R5 bound and the 2R, + Rs bound (21) intersect, sat-
isfies
3R} + 3R}
— I(th?C;ylagZ)+I($1;y1|mlc7$20)
+1 (w10, w23 y2|w2e) + CF,
n I(z1, 29091, 92|71c) + I (T1c, w23 Y2)
+1 (225 y2|@1c, T2c) + C?z
= {I (IlaxZC;yth) + I(an y2|$lcax2c)}
+{I(@1;91|T10, T20) + I (T10, 25 y2) + CPy }
+ {I (T1,T2¢3 Y1, Y2|w1c) + 1 (T1c, T2; Y2|T2c) + Cl132}
= (16) + (19) + (18),

which is greater than three times the active sum rate
bound.
4) If the bound

Ry + 2Ry < I (21,2031, 92|w10) + I (woe; y1]w1)

+1 (10, 323 Y2 |m2c) + I (25 y2|10, m20) + CFy
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is active, note that the point (R7, R3) where the Ry +
2R5 bound and the 2R, + R5 bound (21) intersect, sat-

isfies
+1 (41716,392; y2|x20) + C?z }
n I(zy, waci91, 02|01e) + I (2203 y1]|21)
+I (x107x2; y2|x20) + I(xZa y2|ﬂ71c7$20) + C?Q
= {I (w1, 22¢5 91, 02) + I (22; y2|71c, T2c) }

+ {l($1;y1|$1m$2c) + I (z20391]21) }

3R} + 3R}
_ {I($17$2c;y17332) + I (z1;y1|21c, T2c)

|

+1 (16, T2 Y2|m2c) + C5y
+ {I (z1, 220,91, 92|w1e) + I (210, 025 y2|w2c) + C?z}
= (16) + (20) + (18),

which is greater than three times the active sum rate
bound.
Hence, we conclude that in case (a), the corner point where
R1+ R> bound and R + 2R> bound intersect can be achieved.
To show (b), since we have two possible Rs bounds, we dis-
tinguish into 2 cases:
1) If the bound

Ry < I (w2;92]71.) + C,

is active, note that the point (R}, R3) where the R
bound and the 2R, + R5 bound (21) intersect, satisfies
+ {1 (w23 y2la1c) + CPo }

=1 (71,7291, 92) + I (725 y2|71c, T2c)

+ I (2151|210, T20) + 1 (T10, 225 2) + C,

+ (225 y2|v1e) + 1 (105 Y2 w2c) — I (T1c, 25 Y2) +25CTy
(16) + (19) + [I (w165 plw2e) = T (1c312) + C5o)

2)
2R} + 2R}

I (x17$2d yl?@?) + I($1;y1|$1c,l’26)
+1 (371(‘7372; y2|$2(’,) + C?z

(%)

> (16) + (19),

o . . 3)
which is greater than two times the active sum rate
bound. (xx) is due to

I(z1c;y2]2oc) =1 (2105 Y2, Tac)

=1(Z1c; Y2, T2c)

(Ilc; ':1720)

i
> I(x10592),

since x1. and x9. are independent.
2) If the bound

Ry < I(zaciyil|ze) + I (z2;y2|Tic, Tac)

is active, note that the point (R}, R5) where the R»
bound and the 2R, + R> bound (21) intersect, satisfies
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n {I(Il;y1|$1c7x2c) + I($20;y1|x1)
+1 (210, 123 Y2|w2c) + CB,
—(16) + (20).

|

which is greater than two times the active sum rate
bound.

Hence, we conclude that in case (b), the corner point where
R; + R> bound and R bound intersect can be achieved.

B) Proof of Claim 5.7:

Proof: (Keep in mind Ay
1,i=12)

1) R; bound: We have two bounds. First, I (x1;y1|T2.)

1+ SNRQP and INRzp S

log (1 + 14S-'|\INRF51,, ), which is within 2 bits to the upper

bound log (1 + SNR; + INR3). Second,

I (2131|010, Toc) + T (€10, 325 y2| w20 ) + CB,
SNR
= IOg (1 + 1p )

1+ INRy,
14+ SNRs, + INRy B
I P C
+ °g< 1+ INRs, >+ 12
1+ SNR; + INRy
> log -
1+ INRy,
Hence, if the second bound is active, it is within 2 bits
to the upper bound log (1 + SNR; + INR3).

R» bound: We have two bounds. First, I (z2; ya2|z1.) +
CB, = log (1 + 1-|S-'|\ITRF§)) + CB,. If the first bound

is active, it is within 1 bit to the upper bound
log (1 4+ SNRy) + C&,. Second,

I(zac;yn|z1) + I (22: 92|21, T2c)

14 INRy

Clog (A F R L
°g<1+|NR1,,> + °g<

210g<1+SNR2+|NR1> B

1+ INRg,
Hence, the second bound is within 2 bits to the upper
bound log (1 + SNRy + INRy).
R1 + R bound: We have six bounds for R; + R, in-
vestigated as follows:
e First,

1+ SNRy, + INRy,
1+ INRy,

+
I (21,2005 91) + I (22592710, w2.) + (C5; — &)

14SNR, +INR;
log ( I+INRy,

SNR.,
ER ket
+ (Cgl - fl)+

which is within 2 + 1 = 3 bits to the upper bound (8).
¢ Second,

)+1og(1+

I(z1,m20591, U2) + 1 (225 y2|T1c, T20)

(1+25)(14SNRy +INRy )

. . I(x17$2c§y17'g2) +I(1171§y1|371c;172c> —1o +SNR2+INR2+|h11h22—h12h21|2
2+ 28 = {+I(a:1c,x2;y2|a:2c)+c?2 "\ (#2201 +INRy,) + SRy,
+{T (wac; ya|w1) + T (w25 y2|T1e, T2c)} g (14 _SNRe
= {1 (21,22¢;91,92) + I (225 y2|T16, T2e) } 8 1+ INRg,
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> log

14+SNR; +INR; +SNR>+INR2
hithoz—hishay|?
< +|h1i1hao—hizhoi| ) +10g(1+SNR2p) _

4A5

1+SNR; +INR; +SNR2+INR: 1+ SNR

zlog < + 1+ 1+ 2+ 2> + log <u> _3
-l-|h11h22—’112h21|2 Ag

(;)10 <1+SNR1+INR1+SNR2+INR2)_3
=108 ~I—|h11h22—h12h21|2 '

where (a) is due to (1 + Az)(1 +INRy,) + SNRy, <
(1 + A2)2 SNRg, = 4 + 3SNRy, < 4A; since
Ay = 1+ SNRy, and INR;, < 1. (b) is due to
Ay = 14 SNRy,. This lower bound is within 3 bits
to the upper bound (9).
¢ Third,
+
I (w1, @ae; y1|1e) + 1 (T1e, 223 y2|m2e) + Coy + (C5) — &)
1+ SNRy, + INR; B
=1 P C
o ( 1+ INRy, 12
1+ SNR INR
+ 1 g + 2p + 2
1+ INRy,

) + (Cgl - fl)+7

which is within 2 + 1 = 3 bits to the upper bound (6).
¢ Fourth,

I (w1, m2c; 91, Gola1e) + I (w1c, w2; y2lwae) + Cho
= I (z2c; 91, U2|m1c) + 1 (w1591, 2| P10, Tac)
+ I (@10, T2; y2|@2e) + 8,
> I (wac; Yolwic) + 1 (213 y1]21e, Tac)
+ I (216, 2; y2|w20) + CTy

(a)
ZI(IQC;y2|1}1C) -1+ I($1;y1|$lcvw2c)
+ I (T10, T2; Y| T2.) + C5y

(b)

>T (2191 |T1e, Toe) + I (210, 203 92) + CB, — 1
SNRi, 14-5NR2+INR,

{log (1 + THINR,, ) + log ( T+INRy, ) }

+CPs —
which is within 3 bits to the upper bound (7). Note
that (a) is due to

1 (xZC; g2|xlc)
~og (L A2 £ INRy, + SNR,
o 1+ Az + INRy, + SNRs,

14 INRgy, 4+ SNR;
> log
14 (14 SNRgp) + INRg, + SNRg,
o1 1+ INRg, + SNRy
1+ INRy, + SNRy,
= I (z2c;y2]w1e) — 1.

(b) is due to

I (z2c;y2|®1e) + T (Z1c, 23 y2|22c)
= I(@ac; Y2, T1c) + I (T1c, T2 Y2 |T2c)
> I (zoc;y2) + I (T1c, T2;Y2|T2c)

= I($1C7$2,$2c§y2) = I($1C7I2;y2) .

 Fifth,

2935

I(z1;91]T16, T2c) + I (210, 23 92) + Chy
SNR;,
log (1 + TR )
g (HI ) 4,

which is within 2 bits to the upper bound (7).
e Sixth,

I(zi5y1|mie, 22c) + I (220 y1]21)
+ I (xlm 23 y2|m20) + C?2
SNR 14INR
log (1 + 1+IN|1?p ) + log <1+INR11p)
14+SNR2, +INR:
+ log ( 1+|i\|pR2p _2) +CB,
SNR;,
log (1 + 1+INI1?1 )
14+SNRy +INR;

+log (R ) + Ch

which is within 3 bits to the upper bound (7).
4) 2R; 4+ Rs bound: The bound

I(z1,200;501) + I (21511216, T2c)

+ I (210, 23 y2|m2e) + CPy + (C5) — fl)+
log (LSRR ) 1oy (14 e ) 4 B,
+log (HEFRE) + (¢ - &) |

which is within 3 + 1 = 4 bits to the upper bound (10).
5) R1 + 2R, bound: We have six bounds for Ry + 2R»,

investigated as follows:

e First,

I(z1,22c;01|216) + I (@10, 225 Y2)
+
(C5 —&)

14SNRy, +INR; 14+SNR, +INR,
log ( T+INRy, ) + log( T+INRz,

+ I (z2; y2|Z1c, Tae) + C?g +

SNR: + (
+ log (1 + TrmRe, ) +C8 + (C - &)
which is within 3 + 1 = 4 bits to the upper bound
(11).
e Second,

I'(z1, w205 y1]21e) + T (2c; y1|21) + 1 (w10, T2; Y2 T2c)
+ I (225 y2|T1c, T2c) + CB + (C8) — 51)+
log (71+Si'\ﬁh”aleRl) +log (fﬁ'N”RFT )
= | +log (SRR ) + log (1+ s )
+C% + (C5; - fl)+
o (“435 ) + o (iR )
+1og (1+ e ) + Co + (G — &)
which is within 4 4 1
(11).

Vv

= 5 bits to the upper bound
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e Third, R; <log(1+ SNR; + INR2). Second,
I(Qil,l‘zc;yl,gﬂwlc) + I(Qilc,l‘g;yz) I(‘Tl’ y1|$1c,$2) + I(mlc;y2|x2) + C?2
+ I (225 2|10, 20) + CFy =log (14 SNRy,) + log <w> +C8,
¢ (14+A5)(1+SNRy, +INR; )+SNR2 +INRs,, 1+ INRy,
+|hi1hoo—hi2h21|?Q1, 1+ SNR; + INRy

log (1+A2)(1+|NR1P)+SNR2P Z log < 1 + INRQP + C?2'
+log (%) + log (1 + li_'\llTRfé) Hence, if the second bound is active, it is within 1 bit to
+CB, i the upper bound log (1 + SNR; + INRy).

\

) (2) R, bound: We have two bounds. First, I (z1;y1|z1) =
1+iT:;f;; IZNf;/j;igTTQBTRZP log (14 INRy), which is within 1 bit to the upper
log 1A, - bound Ry < log(1+SNRy + INRy). Second,

S 14+SNR, +INR I (z5y2|21c) + CB, = log (%) + CB,,
+10g( 1+"$‘R2p 2) +log (1 + SNRyp) which is within 1 bit to the upper bound R, <
(+CP -1 log (1 + SNRy) + CB,.
14SNRy1,-+INR; +-SNRo +INR; (3) Ri + Ry bound: We have five bounds, investigated as
> I ( +\h11ph227h12h21|2Q1p P) follows:

+log (1+SNR2+INR2) +CB 3 ) * First,

T+INRz,, .
I (x1,x9; + (CB, —
which is within 1 + 3 = 4 bits to the upper bound (@1, 22;3) ( 2t 61) 5 n
13). :10g(1+SNR1+INR1)+(C21—£1) ,

¢ Fourth, e .
which is within 1 4+ &; = 2 bits to the upper bound
I(z1, 720591, 92|71c) + I (2265 y1]71) ®).
¢ Second,

+ I (w10, y2|w20) + I (2592|710, 720) + CFy 9(1+SNR1 +INR1)+SNR»

( (14A5)(14SNRy » +INR; )+SNRy +INR2,, . N +INR2+|h11haz —hiohay |
| i o —hyahon Q1 I(z1,22;y1,92) = log 9
0g (1+22)(1+INRy,,)+SNRy,,
= 14INR 1+SNRs, +INR: which is within 1 bit to the upper bound (9).
+log (1+|NR11p) + log ( 1+I?\|R2p 2) + Third,
SNR2 B
+log (1 + RS ) + CTy
) e I(z1;91]T10, 32) + I (210, T252) + CFy
( 1+SNR;, +INR; +SNRo +INRy SNRs+INR.
1 +|h11Ph22—h12h21\2Q1p ’ = log(l + SNRlP) + log (%) + C?Z
0g aA,
> which is within 1 bit to the upper bound (7).
1+SNR,+INR .
+ log (m) Fourth,
[ +log (1 +SNRy,) +C8, —1

+
I (21, w05 91|m1e) + I (w105 y2|w2) + C + (CB — &)
14-SNR1, +INR; +SNR2+INR>,,
log ( +|h11h22—h12h21|2Q1p ) _ { log(l + SNRlP + INRl) + log (llj]ll\'l\lgzzp) }
+log (—1+SNR2+'NR2 )) +C8 -3 +C8+(CB &))"

(1+INR1,) (1+INRz,
which is within 2 4+ &; = 3 bits to the upper bound

which is within 2 4+ 3 = 5 bits to the upper bound ©)
(13). e
Therefore, we see that the bounds in %5 —, 1 — 2 except (21) Fifth,
satisfies: N B
I(z1,22;91,Y2|T1c) + I (2165 y2|z2) + C
e R; bound is within 2 bits to outer bounds; ( _1 231 y2|A te) (w1c3 92| 2A) 12
* R, bound is within 2 bits to outer bounds; = I (w291, 92]a1c) + é(xl’ Y1, G2|T1c, 22)
e R; 4+ Rs bound is within 3 bits to outer bounds; + I (2105 y2|72) + CF,
* 2R + R, bound is within 4 bits to outer bounds; > I (z2; 91, 92|T10) + I (215 91|71, T2)
e Rqi 4+ 2R5 bound is within 5 bits to outer bounds. + T (2103 y2|22) + cB
cy 12
2(14+SNRy, +INR; )+SNR2 +INR2,
C) ProofofClaim 5.9: lo +‘h11h22_h12h’21|2Q1p
Proof: (Keep in mind Ay = 1 and INRy, < 1) _ ) 2(1+SNR1, )+INR,
(1) Ry bound: We have two bounds. First, I (x1;y1]z2) = LLINR .
log (1 + SNR; ), which is within 1 bit to the upper bound +log (14 SNRy;) + log (l—i-—l—lNR:p) + Coy
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145NR; , +INR; +SNR,+INR,,
+|h11h22 —h12kh21°Q1p

log

S 3(175NRL,)
+log (1 + SNRy,) + log (fj,',;“g;p) +CB,
1+SNR; +INR; +SNR2+INR2
> log ( +|h11hoy—hioho1]? )

+ log (m) +CB, —1log3

Hence, if this bound is active, it is within 1 + log 3 =
log 6 bits to the upper bound (9).
4) Ri+ 2R> bound: We have two bounds. First,

+
I (w1, w2591 |210) + 1 (10, 223 92) + Cy + (C5; — &)
~ {1og(1+st1p+|NR1)+1og (Hf_'\;'fT;”\'R)}
+CP, + (C5; — fl)+ /
which is within 2 4+ &; = 3 bits to the upper bound (11)

Second,

~ B
I(z1, 2591, 92|716) + I (216, 725 y2) + CFy
2(14SNRy p +INR; ) +SNRo +INRs,,
+|hithoo—hi2h21]?Q1p
2

log
SNRy+INRs
+log (_1+1+|ﬁ§|—2p ‘) +Ch,

which is within 2 bits to the upper bound (13).
Therefore, we see that the bounds in %5 —, 1 —; o satisfies:
e R; bound is within 1 bit to outer bounds;
¢ Rs bound is within 1 bit to outer bounds;
e Ri + R, bound is within 3 bits to outer bounds;
e Ri + 2R, bound is within 3 bits to outer bounds.

D) Proof of Claim 5.12:
Proof: (Keep in mind that Ay = Ay = 1)
(1) R1 bound: We have four bounds. First,

I (z1;y|we) 4+ (C5 — &) =log (1 + SNRy) + (C3 — &) T

which is within & = 1 bit to the upper bound
log (1 + SNR;) + C5;. Second,

I (z1592]w2) + (CFy — &) = log (1 + INRy) + (CF, — &) T
> log (1 + SNR; + INRy) — 1.

Hence if this bound is active, it is within 1 bit to the upper
bound log (1 + SNR; + INR2). Finally,

2+ 2SNR; + INR2>

2
2+ SNRy +2|NR2>
2 ?

I(z1;y1,92|@2) = log <

I(z1;y2,91|x2) = log <

which are both within 1 bit to the upper bound
log (1 + SNR; + INRy).
(2) R bound: By symmetry we have the same gap result as

(D).
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(3) R1 + Rs bound: We have four bounds. First,

I(z1,0301) + (C5 — &)7F
=log (1 4+ SNRy + INRy) + (C5, — &)™,

which is within 1 + &; = 2 bits to the upper bound (8).
Second,

I(z2,215y2) + (C|132 - fz)+
=log (1 + SNRy + INRy) + (C, — &)™,

which is within 1 + & = 2 bits to the upper bound (7).
Finally,
2(14SNR; +INR; ) +SNR5 +INR;

+|h11ho2 —hiohat|?

2

I(z1,225y1,92) = log

2(14SNR2 +INR2)+SNR; +INR;
+|h11hoo—hiohay|?
2 ?

I(z2,215y2,91) = log

which are both within 1 bit to the upper bound (9).
Therefore, we see that the bounds in ZoneRound Satisfies:
¢ R; bound is within 1 bit to outer bounds;
¢ Rs bound is within 1 bit to outer bounds;

e R1 + R, bound is within 2 bits to outer bounds.

APPENDIX D
PROOF OF THEOREM 6.2

From Section V-E, we have shown that when SNR < INR,

Rsym,OncRound S C’sym S C’sym S Rsym,OnoRound + 1.

Hence we focus on the case SNR > INR in the rest of the
proof.

By symmetry and by Theorem 5.10, if Rqym OneRound > 0
satisfies the following, it is achievable:

Rsym,OneRound

S min I(LIZ267$1; :‘/1|$1Ac) + (Cgl - £I)+ 7

A (720, 71591, 2| 1c)

Rsym,OneRound

< mi . B + . ~

<min {7 (z1;91|20) + (C31 — &)F, T (21391, D2]72c) |
2-Rsym,OnoRound

< min {1 (21, 22::1) + (C5y — &)1, T (w1, w2031, 92) }

+ min I($1;y1|i171f,372(z) + (CB — &)t .
7I($1§y17y2|$1m$2c)

Note that since

I(ml;y1|$lc7$20) S I(:El, y17:()2|(1:167x2c)
< I (z1; 491|716, T2c) + constant,
I (z1;y1lzae) < T (21591, 92|20)
<I(x1;y1]|22.) + constant,
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a sufficient condition for achievable Rsym OneRound 18

Rsym,OneRound
< min I($2cyﬂf1;y1|ﬂ71f) +(Ch — &)t
A (w20, 21591, P2l71e) » L (215 91| 72c)
Rsym,OneRound
1 {I($1,$2c§y1)+(cg1—§1)+}

< — min N
-2 7](1131,11326;:(/1,:[/2)

[a—y

+ I (z1;591| %10, 720)

[N}

(D) I (w2, w13 91]|210) + (C§ — &)

I(woc, z1391]210) + (Cgl — &)t

. [1+SNR, +INR -
_10g< 1+ INR, )+(C &

and its gap to the outer bound log (1 + INR + 1-S|-'\IIER) +
CEB:

gap <log(1+INR,)+¢&<1+1=2.

(2) I (xQCva;l; y17y2|$1c):

I (z2¢, 71591, Y2|71c)
= I (w2c; 91, G2lw1c) + I (1391, G2 |w2c, T1c)
> I (zae; O2|1e) + I (215 y1]220, T10)
. g< 1—|—A—|—SNR+INRP>
1+ A +SNR, + INR,

1+ SNR, + INR
1 y4 P
+ °g< 11 INR, )

(a) 1+ SNR
> log
2 4+ 2SNR, + 2INR,

'+ log (1L SNR, +INR,
1+INR,

_ 1+ SNR )
~ T INR,
where (a) is due to A = 1 + SNR,,.

Therefore, the gap to the
log (1 + SNR + INR):

outer bound

1+ SNR+INR
1+ SNR

2 + 2SNR
ST S log(141) =
1+SNR>+Og(+) 3

gapSl—Hog( >+log(1+|NRp)
Sl-l-log(
since SNR > INR and INR,, < 1.

(3) I (z1;91lz20):

I (z1;91]72.) = log (1 + SNR + INR,,) — log (1 + INR,) ,
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and its gap to the outer bound log (1 + SNR + INR):

14 SNR + INR
<log [ 2NN TR e (14 INR
gap = 0g’<1+SNR+INRp>+Og( +INR,)

2+ 25NR
_log<1+SNR)+log(l+1) 2

@) 31 (21, m20:51)+ 5(C8 — &) T+ 31 (z1; 91 ]w1c, T20):
1 L e o, 1
51(:171,:172c;y1) + §(C21 &)+ il(xl;yﬂxlcaxh)
1 1
= 5 log (1+SNR +INR) + 5(cB -7

1
+ 5 log (14 SNR, + INR;) — log (1 + INR, ),

and its gap to the outer bound  log (1 + SNR + INR) +
110o SNR 1¢B.
Llog (14 4% ) + 4C®:

1
gap < 55 +log (1+INR,) < 1.5.

(5) %I (1717£C2c;y17z)2) + %I(xl;yl|xlc7x2c):

1 . 1
51 (IlaxZC;ylvyZ) + 51 (Il;y1|xlc7x26)

1 L <A(1+SNR+INR)+1+2$NR+2INR+|h11h22—hlzhgl|2)
— ~log

T2 A(1+INR,) + 1+ SNR, + INR,
1 1+ SNR, + INR
] P P
t3 Og( 1+INR, )
1 1+ 2SNR + 2INR + |h11hoy — higha|?
> - log
2 4A

~|—110 L
2 ®\T+INR,
1
= 5 log (1 + 2SNR + 2INR + |h11h22 — h12h21|2)
1
—Elog(l—l—lNRp)—l.

Therefore, the gap to the outer bound

11og (14 2SNR + 2INR + |hy1hos — highor |?):
gap < %log(l +INR,) +1 < 1.5.
From (1)—(5), we conclude that when SNR > INR,
Reym,0neRound < Csym < Csym < Roym,OneRound + 3.

This completes the proof.

APPENDIX E
PROOF OF LEMMA 7.2

Proof: From Corollary 7.1 we see that except the term

1
V.= 5 log (1 + 2SNR + 2INR + |}L11}L22 — }L12}L21|2) R
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all terms scaled by log SNR converges everywhere as SNR — oo
with «a, x fixed. Note that

|}L11h22 — }L12}L21 |2

= [g116791 9226797 — 197912 167921 |2

2
[911922 cos (O11 + O22) — g12g21 cos (O12 + O21) ]

2
+ [911922 sin (©11 + O22) — g12921 5in (O12 + @21)}
= 951932 + 912951
— 2911922912921 COS (911 + 02 — 013 — 621)
= SNR? 4 INR? — 2(cos ©)SNRINR,

where ©® = 017 + OG22 — O15 — O21 mod 2. Obviously © is
uniformly distributed over [0, 27]. Now, consider the limit

_ 1%
Lo k)= Jim log SNR”
SNR — oo

We have the following upper and lower bounds for V' due
to the fact that ||h11||h22| — |h12||h21|| < |h11h22 - h12h21|
< |haallhaz| + [hiz||h21]:

V> %10g(1 +2SNR + 2INR + (SNR — INR)?) ;

V< %log(l + 2SNR + 2INR + (SNR + INR)?) .

Hence, when @ < 1, taking limits at both sides yields 1 <
L(a,k) <1 and implies L(«a, k) = 1. Similarly, when o > 1,
taking limits at both sides yields a < L(a, k) < « and implies
L(a, k) = a. When « = 1, note that

1 . <1+25NR+2INR+SNR2+ INRZ)

V=218 { 51005 ©)SNRINR

?

1 0
= log <(1 + SNR + INR)? — 4 cos? ESNRINR>

and therefore L(a, k) = 1if © # 0, 27. Since the event {© =
0, 27} is of zero measure, the limit L(«, k) exists almost surely.
|
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