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Geometry of Injection Regions of Power Networks

Baosen Zhang, Student Member, IEEE, and David Tse, Fellow, IEEE

Abstract—We investigate the constraints on power flow in net-
works and its implications to the optimal power flow problem. The
constraints are described by the injection region of a network; this
is the set of all vectors of power injections, one at each bus, that
can be achieved while satisfying the network and operation con-
straints. If there are no operation constraints, we show the injec-
tion region of a network is the set of all injections satisfying the
conservation of energy. If the network has a tree topology, e.g., a
distribution network, we show that under voltage magnitude, line
loss constraints, line flow constraints and certain bus real and re-
active power constraints, the injection region and its convex hull
have the same Pareto-front. The Pareto-front is of interest since
these are the optimal solutions to the minimization of increasing
functions over the injection region. For non-tree networks, we ob-
tain a weaker result by characterizing the convex hull of the voltage
constraint injection region for lossless cycles and certain combina-
tions of cycles and trees.

Index Terms—Optimal power flow, power distribution system,
power system control.

I. INTRODUCTION

PTIMAL power flow is a classic problem in power en-

gineering. It is usually given as a static subproblem of
the security constraint unit commitment problem, in the sense
that all the network dynamics such as transients and generator
behaviors are abstracted away [1]. The objective of the optimal
power flow problem is to minimize the cost of power genera-
tion in a electrical network while satisfying a set of operation
constraints. The cost functions are generally taken to be convex
and increasing. This problem has received considerable atten-
tion since the late 1960s [2], and many different algorithms have
been developed for it. For a comprehensive review, the reader
can consult [3] and the references within. Despite all the efforts,
the optimal power flow problem still remains difficult [4].

The optimal power flow problem is difficult for two reasons.
Firstly, the optimization problem is nonlinear since the power
injected at each of the buses in the network depends quadrati-
cally on the voltages at the buses. Secondly, there is typically a
large number of different types of constraints. For example, each
bus might have voltage magnitude together with real and reac-
tive power limits, and each transmission line might have thermal
constraints and line flow constraints. Due to these two reasons,
the optimal power flow problem is a non-convex optimization
problem with many constraints, and is therefore challenging to
solve. The traditional approach is to tackle the problem using
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various heuristics and approximations. One widely used method
is to use the so-called DC flow approximation where all the lines
are assumed to be lossless, all voltage magnitude are assumed to
be fixed, and all angle differences are assumed to be small [5].
To contrast with the DC flow approximation, the original op-
timal power flow problem is sometimes called the AC problem.
As pointed out in [5], the DC approximation performs badly if
it is not used in conjunction with a full AC solution (so-called
hot start DC) or if the resistance to inductance (R/X) ratio of the
lines are high. To solve the full AC problem, many global op-
timization heuristics like genetic algorithms are used, and their
effectiveness is generally gauged by simulations. But these al-
gorithms do not offer any guarantees about performance and do
not offer intuition into the structure of the optimization problem.

A new approach to the traditional optimization methods was
taken by the authors in [6]. They made the surprising empir-
ical observation that in many of the IEEE benchmark networks,
the optimal power flow problem has the same optimal value as
its convex dual. The main theoretical result is that for a purely
resistive network and quadratic cost functions with positive co-
efficients, this convex relaxation is tight. In addition, the result
still holds if the purely resistive network is perturbed by adding
a small reactive part. From this and their observations about the
IEEE benchmarks, [6] conjectured that the convex relaxation of
the optimal power flow problem is always tight for general net-
works. Unfortunately this conjecture is not true since there exist
many counter examples [7], [8]. A natural question arises: if the
relaxation is not tight in general, is it tight for some specific class
of networks? The results [6] showed that for “almost” purely re-
sistive networks the problem is convex, but these networks are
somewhat unrealistic since practical power networks are mostly
reactive instead of resistive. An impetus for this paper is to look
for some more realistic classes of networks for which the op-
timal power flow problem is convexified.

One increasingly important class of networks is the distribu-
tion network. The electricity network is made up of two layers:
the transmission network and the distribution network. The
transmission network consists of high voltage lines that connect
big generators to cities and towns. The distribution network
usually consists of a feeder connected to the transmission net-
work, and low voltage lines that connect to the end consumers.
In addition to the line voltages, the two types of networks
have different topologies. The transmission network is sparse,
but irregular, whereas the distribution network is configured
to be a free at any one time of operation. Traditionally, the
optimal power flow problem is only solved in the transmission
network, since the demands in the distribution network are
fixed and there is very little generation, so there is nothing to
optimize. But this is expected to change significantly under the
new “smart grid” operating paradigm, where demand response
and distributed renewable energy will play a predominant
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role. In the widely discussed demand response mechanism,
the demands in the distribution network are decision variables
(subjected to some constraints) [9], [10]. Also, due to increased
renewable penetration at the demand level (e.g., rooftop solar)
and increased distributed generation, solving the optimal power
flow in the distribution network is a legitimate problem and
could contribute to various pricing and control operations.
For example, we show that the voltage control problem [11]
can be formulated into such a framework. Since the resistance
to inductance (R/X) ratio is much higher in the distribution
network compared to the transmission network, DC approxi-
mations would perform poorly. Therefore, the full AC optimal
power flow on the distribution network needs to be solved and
we show the tree topology of the distribution network simplifies
the problem significantly and allows the full AC problem to be
efficiently solved in many situations.

To find out if the optimal power flow problem is convex for
a network, we focus on the feasible injection region of a power
network since it allows one to think about power flow in a more
abstract way and is quite useful in understanding the structure
of the problem. The feasible injection region is simply the fea-
sibility region of the optimal power flow problem, i.e., the set
of all vectors of feasible real power injections (both generations
and withdraws) at the various buses that satisfy the given net-
work and operation constraints (including reactive power con-
straints). For notational convenience, we drop the word feasible
and refer to the region as the injection region. Since the opti-
mization problem is solved over the injection region, it is useful
to understand the geometry of the region. We model the reactive
powers in the network as constraints at the buses. Therefore the
injection region is in terms of the real powers, while possibly
satisfying some bus reactive power constraints.

Unfortunately, the injection region is not convex in general
[12]. Even though the region is not convex, it still has some de-
sirable properties for optimization. A subset of the injection re-
gion of particular interest is the Pareto-front.! When minimizing
an increasing function over a set, the optimal solutions are on
the Pareto-front. Therefore, even though the injection region is
not convex, if its Pareto-front is the same as that of its convex
hull, the optimization problem is still easy.

The use of injection region is also useful since it decouples
the optimization problem from the physics of power flow, thus
allowing us to have a higher level view that is often beneficial
for other problems in optimization, control and pricing in power
systems. For example, [ 13] showed there is revenue adequacy in
the financial transmission rights markets if the injection region
has a convex Pareto-front. A similar observation is made by [14]
in the context of economic dispatch. This result then can be used
if the DC flow assumption is made or if the network is such that
the AC injection region where the above condition is true. This
is similarly the case for many of the recently proposed demand
response algorithms.

As a starting point, we look at the injection region of a net-
work with no constraints. In this case, we show the injection
region is simply the upper half space that satisfies the law of

A pointin a set s called Pareto-optimal if any coordinate cannot be decreased
further without increasing at least one other coordinate; the Pareto front of a set
is simply the set of all Pareto-optimal points.
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conservation of energy. Therefore, the difficult and interesting
part is to quantify how the injection region changes once the op-
eration constraints are added.

There are typically four types of operation constraints in a
power network: voltage magnitude, thermal loss in transmis-
sion lines, line flow limits in a transmission line and bus real
and reactive power limits. If the network is a free, we show that
under voltage magnitude, line loss constraints, line flow con-
straints and certain bus power constraints, the injection region
and its convex hull have the same Pareto-front. Precisely, the
condition on the bus power constraints is: each bus is allowed to
have real and reactive power upper bounds, but two connected
buses cannot both simultaneously have real power lower bounds
and there are no reactive power lower bounds. Through simu-
lations with practical distribution networks, we show that these
requirements are not stringent in actual operations. Independent
works [15], [16] considered the OPF problem for a tree network,
although the authors there used the notion of load over-satisfac-
tion and did not consider thermal loss constraints.

The paper is organized as follows. In Section II we estab-
lish the notations, Section III contains the result about the net-
work with no operation constraints, Section IV contains theo-
retical and simulations results concerning trees, and Section V
concludes the paper. The Appendices contain the results about
non-tree networks and some of the proofs.

The Appendices address network with cycles. In some distri-
bution systems, the network consists of a ring (cycle) feeder and
tree networks hanging off the ring; therefore it is useful to un-
derstand the injection region of cycles. Ideally, one would like to
state an analogous result as in the tree network case. However,
we could not yet prove such a strong result. Instead, we char-
acterize the convex hull of the voltage magnitude constrained
injection region if the network is a cycle with lossless links and
certain combinations of these networks with trees.

II. MODEL AND NOTATIONS

We consider the AC power flow model so in general all vari-
ables are complex. Following the convention in power engi-
neering, scalars representing voltage, current and power are de-
noted with capital letters. We use x to denote vectors, and X
to denote matrices. x ®» ¥ denote the element-wise product be-
tween x and y. Given two real vectors x and y of the same
dimension, the notation x < y denotes component-wise in-
equality and x < y denotes component-wise inequality with
strict inequality in at least one component. We denote Hermi-
tian transpose by (-)# and complex conjugation by conj(-). We
write X = 0 to mean X positive semidefinite. Given a set
A C R™, convhull(A) denote the convex hull of A, i.e., the
smallest convex set containing .A.

Consider an electric network with n buses. Throughout we
assume the network is connected. We write ¢ ~ k& if bus ¢ is
connected to &k, and ¢ 7% k if they are not connected. Let z;;. de-
note the complex impedance of the transmission line between
bus ¢ and bus k, and y;r = 1/zi = gir + jbiz. We have
git. > 0, and we assume that the lines are inductive (as in the
Pi model) so b;; < 0. Note that z;; = 2z and v = Ygi.
Let z;; (::) denote the shunt impedance (admittance) of bus #
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to ground. These shunt impedances can come from the capac-
itance to ground in the Pi model of the transmission line, the
capacitor banks installed for reactive power injection, or mod-
eling constant impedance loads.

The bus admittance matrix is denoted by Y and defined as

Soivatya ifi=k
Yie = ik ifi~k (1)
0 if i o k.

Y is symmetric. If the entries of Y are real, we say the net-
work is purely resistive and if the entries are imaginary, we
say the network is lossless. Lines in the transmission network
are mainly inductive so it is sometimes assumed that the net-
work is lossless. Let v = (V1, Vs, ..., V,,) € C” be the vector
of bus voltages and i = (I1,15,...,1,) € C™ be the vector
of currents, where I; is the total current flowing out of bus ¢
to the rest of the network. By Ohm’s law and Kirchoff’s Cur-
rent Law, i = Yv. The complex power injected at bus ¢ is
S; = P+ jQ; = V;.I where P; is the real power and @, is
the reactive power. A positive P; means bus ¢ is generating real
power and a negative P; means bus ¢ is consuming real power;
similarly for ;. Let p = (P1, Pa. ..., P,) be the vector of real
powers and q = ((1,Qa,...,Q.,) be the vector of reactive
powers.

The real power vector p = Re(v ® conj(i)) = Re(v ©
(YHvH)) =Re(diag(vv#Y#)) where diag(M) is the vector
of diagonal elements of a matrix M. Similarly, the reactive
power vector g = Im(diag(vv# Y#)). The resistive loss on a
transmission line between buses i and bus k is given by L, =
\V; — Vi|?gix.. The powers flowing from bus 7 to bus & is denoted
P;;. and Q;, and defined as P +7Qx = V; |Vl —Vi |*,7/,2kk. Note
Ly, = Pig + Pri.

A. OPF Problem

In power networks, we are often interested in solving the fol-
lowing OPF problem:

minimize f(Py, Pa,..., B,) (2a)
subject to V, < |V;| < V; (2b)
Lip <l (2¢)
Py < Py (2d)
P, <P <P (2e)
Q <Qi<Q (20
P+ jq = Re(vv7Y") (2g)

where f(Py, Ps,...,P,) is the cost function (not necessarily
quadratic) defined on the real powers; (2b), (2¢), (2d), (2¢)
and (2f) are the constraints corresponding to bus voltage, line
thermal loss, line power flow and bus real and reactive power,
respectively; and (2g) is the physical law coupling voltage
to power. The thermal loss constraints in (2c) are calculated
from current rating of transmission lines and are usually the
dominant constraints in distribution networks [17]. Typically
the data sheet of a line would have a maximum current rating
Tinax of the line, and this gives 1;;, = Ifna IR, the maximum

X
loss that can be tolerated across a line. In practice, f is usually
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an increasing function of the power injections. For example,
if f(Py,....P,) = P1+ - -+ P,, then we are minimizing
the loss in the network; or if f is quadratic with positive
coefficients, then we are minimizing the cost of generation.

In the rest of the paper we look at the feasible injection region,
‘P, defined as
P:{p € R"” : p=Re ((ﬁag(vaYH)) VLV <V Vi,

L <ljp Vi~ k, P, <Py, Vi~ k, P, < P, <P,Vi,
Q,<Qi<Q.}. 3)

Therefore P is the feasibility region of (2). Note the reactive
powers are represented as a constraint of the injection region.
This is because in most practical settings, the objective function
of the optimization problem is in terms of real powers only. For
example, the cost curve for an generator only includes the real
power output; also, the consumers are only charged based on
the amount of real power they consume (watt-hours). Since the
objective function is in terms of real powers only, the injection
region is the set of all real injections.

III. NETWORK WITH NO OPERATION CONSTRAINTS

To warm up, let us first consider a network with no operation
constraints. Since there are no constraints, the injection region
is defined as

P = {p € R" : p = Re (diag(vv" Y")). 4)

The reactive powers are ignored since we model reactive power
as constraints in (2). In this case, the injection region has a
simple characterization.

Theorem 1. If the network is lossy,? then P is given by

P:{peR"':ZP,:>O}U{0}. )

=1

Therefore P is the union of the open upper half space of R™ and
the origin 0. Note this region is connected and convex. If the
network is lossless, then P is given by

P:{pERn:ZPi:U}- (6)

i=1

Therefore P is a hyperplane through the origin.

This result is intuitive pleasing since it says if there are no
constraints in the network then the injection region is only lim-
ited by the law of conservation of energy. Conservation of en-
ergy gives the bound Y ., P; > 0, and if the network is not
lossless then >, P; > 0 except when all voltages are equal.
In this case, all injections are 0 so p = 0. Theorem 1 states this
is the only constraint on the injection region. The authors in [13]
and [18] conjectured that the unconstrained injection region is
convex, and (5) shows this is indeed the case. To proof this the-
orem, it is necessary to show that for every vector p € P, there
exists a voltage v that achieves p. The details are given in the
Appendix.

2Every line has non-zero resistance.
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Fig. 2. Voltage constrained and loss constrained injection regions. The param-
eters are [V |1 = |V]|2 = 1,9 = 1,b = 3, all per unit. (a) Voltage constrained.
(b) Voltage and loss constrained.

In practice, some of the constraints in (2) would be binding.
For example, the voltages magnitudes at each bus are bounded.
Fig. 2(a) shows the injection region of a two-bus network with
fixed voltage magnitudes. The region is an ellipse (without the
interior). Even in this simple case, we see that the injection re-
gion is no longer convex. The next section is devoted to the
study of the effect of constraints on the injection regions of tree
networks and their implications to optimization problems.

IV. TREE NETWORKS

A. Pareto-Front of Injection Region

In this section we consider the full problem in (2) for a tree
network. The relevant geometric objects are the Pareto-optimal
points of P defined as follows:

Definition 1: Let A C R™. A point x € A is said to be a
Pareto-optimal point if there does not exist another point X € .4
such that X < x. Denote the set of Pareto-optimal points of .A
as O(A) and is sometimes called the Pareto-front of 4.3

The Pareto-optimal points of P are of interest because only
they can be the optimal solutions to (2) when f is increasing.
Under many circumstances, the Pareto-front of the injection re-
gion P is the same as the Pareto-front of convhull(P). There-
fore, (2) is a convex optimization problem if f is convex and
increasing, since we may replace the non-convex region P by a
convex region convhull(P) and obtain the same solutions. Be-
fore stating the general result about the Pareto-front of P in The-
orem 2, it is instructive to use a two-bus example to see what are
the Pareto-optimal points and the effect of various kinds of con-
straints on them.

Consider the two-bus example in Fig. 1 where y is the line
admittance. First consider the case where there are only voltage
constraints. Suppose that |V;| = |V2| = 1 per unit. Then P
is an ellipse as shown in Fig. 2(a). The bold curve represents
the Pareto-front. Note convhull(P) is the filled ellipse. We can

3Here we actually consider only the non-degenerative Pareto-optimal points.
For a precise definition see [19]. In almost all applications, the set of degen-
erative Pareto-optimal points are of measure 0 and does not correspond to the
minima of strictly increasing functions.
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Fig. 3. Three possible cases of the bus power constrained injection region. (a)
Both buses have power upper bounds. (b) /% have both upper and lower bounds.
(c) Both are lower bounded.

see that the Pareto-fronts of the empty and the filled ellipses
are the same. Therefore, if we replace the non-convex empty
ellipse by the convex filled ellipse in an optimization problem
with increasing objective function, we would obtain the same
solution. Next, we consider both voltage constraints and the loss
constraint P15 + Py; = P; + P < [ for some [. This is pre-
sented by intersecting the ellipse by a half plane as in Fig. 2(b),
and the bold curve is the resulting Pareto-front, and we see that
it is again the same as the Pareto-front of convhull(P). Next,
consider both voltage and bus power constraints. In this case,
there are several possibilities, as represented in Fig. 3(a)—(c). In
Fig. 3(a), both bus have power upper bounds, and the Pareto-
front of P is the same as the Pareto-front of convhull(?). In
Fig. 3(b), P1 has upper bound, P> has both upper and lower
bounds, and the Pareto-front of P is the same as the Pareto-front
of convhull(?). In Fig. 3(c), both buses have lower bounds,
and we see that the Pareto-front of P is not the same as the
Pareto-front of convhull(P). Note that in the two-bus case, the
line flow constraints in (2d) correspond to Fig. 3(a).

Next let us consider the effect of reactive power bounds.
Fig. 4(b) shows the feasible reactive power that can be achieved
under the voltage constraint and the bold segment that satisfies
the reactive power constraint Q2 < @,. The bold segments
in Fig. 4(a) shows the corresponding injection region. As we
can see, the Pareto-front of P is the same as the Pareto-front
of convhull(P). Next, Fig. 4(d) shows the bold segments that
satisfies the constraint 92 < @ < @2. As we can see, the
Pareto-front of the Pareto-front of P is not the same as the
Pareto-front of convhull(?). Therefore, in general we cannot
extend the result to include reactive power lower bounds.

The intuition gained from the two-bus example carries
over for general trees, and the general statement is given in
Theorem 2.

Theorem 2: Consider a tree network with » buses. Let the
injection region P defined as in (3). Suppose two conditions are
satisfied:

1) If¢ ~ k, then either P; = —o0 or P, = —oc.

2) Q, = —oo forall «.
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Fig. 4. Impact of reactive power constraints. (a) Real injection region. (b) Re-
active injection region. (c) Real injection region. (d) Reactive injection region.

The Pareto-front of P is the same as the Pareto-front of
convhull(P).

The condition on the bus power lower bounds means that if
two buses are connected, then not both can have a tight bus real
power lower bound. Also, the theorem requires that all the reac-
tive lower bounds to be not tight. This can be seen as a general-
ization of the well known load over-satisfaction concept [20]. In
load over-satisfaction, all the lower bounds on real and reactive
power are removed. But Theorem 2 states it is not necessary to
remove all the lower bounds.

Proof: To prove the theorem, first we define an optimiza-
tion problem in term of the injection region. In this optimization
problem, we want to write every quantity as a quadratic form of
the complex voltages.

The resistive loss on the transmission line between buses
i and k can be written as L;z = v¥G,,v where G is a
matrix with the (4,4)th entry and the (k, k)th entry being g%,
and the (4, k)th entry and the (k,¢)th entry being —g;; and
all other entries being 0. The power flow from bus ¢ to bus
k can be written as P, = vF A;,v, where A, is a matrix
with (¢, é)th entry g;x, the (2, k)th entry (1/2)(—gix, — jbir.), the
(k,i)thentry (1/2)(—giz + jbix) and all the other entries 0. Let
A; = (1/2)(E,Y + YHE;) where E; is the diagonal matrix
with 1 at the (¢, ¢)th entry and 0 everywhere else. Similarly let
B: = (1/25)(Y”E; — E;Y). Then the powers injected at bus
iis givenby P, = v A;vand Q; = viB;v.

Consider the following optimization problem:

J = minimize Z P
i=1
subject to V., < |V;| <V, Vi
vIG v <l Vi~ k
vIA v <Py Vi~ k
P, <vPAv <P
Q, <Vv'Biv<Q,

p + jq = diag(vwYH). @)
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The ¢;’s can be interpreted as the costs of the power genera-
tion and (7) is an optimal power flow problem with a linear cost
function. To expose the potential non-convexity, we can equiv-
alently write it as

J = minimize Z c; P;

i=1
subject to Z? < Wi, < V?, Vi

Tr(GW) <l Vi~Ek
Tr(AixW) < Py Vi~ k
P, <Tr(A;W) < P,
Q, < Tr(B;W) < Q;
p + jq = diag(WY ")
W =0

=
rank(W) =1 ®)
where W = vv# and the non-convexity enters as the rank 1
constraint on W. Relaxing this rank 1 constraint and eliminating
p and g, we get

J1 = minimize Tr(MW)
subject to Lf < W, < V?, Vi

Tr(GuW) <l Vi~k
Tr(A;W) < Py Vi~ k
P, <Tr(A;W) < P,
Q, < TH(B:W) < T,
W =0 9

where M = (1/2)(CY + Y¥C) and C = diag(cy, .. .,¢n).

Note M is Hermitian.

Geometrically, the relaxation from (3)—(9) enlarges the fea-
sible injection region to a convex region given by

P = {p .p=Te (diag(WYH)> VI<W, < VoV,

Tl‘(G.ikW) S lik Vi ~ k‘, Tl‘(ALkW) S Fik Vi ~ ]ﬂ,

P, < TH(AW)<P;,Q <Tr(B;W) < Q;, W 0}.
(10)

We want to show that the two regions have the same Pareto-
front. That is, O(P) = O(P). Since P is convex, its Pareto-
front is easily explored. Note in general PD convhull(P) and
the inclusion can be strict. However, if P and P have the same
Pareto-front, then so does convhull(P).

The proof of the theorem follows from the following claim.

Claim 3: Suppose ¢; > 0 for all ¢. Then the optimal solution
to (9) is unique and has rank 1 if for every connected pair of
buses (i, k) in the network, one of them do not have tight bus
power lower bound, and all reactive power lower bounds are not
tight.

This claim is a stronger statement then saying J = Jy, it also
states that the optimal solution to the relaxed solution is unique.
Assuming for now the claim is true. Then since P is convex,
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we can explore its Pareto-front by linear functions with positive
costs [21]. More precisely, a point p € Pisa Pareto-optimal
if and only if it is an optimal solution to (9) for some positive
costs. From the claim, all the optimal solutions are achieved
by a W of rank 1, therefore they can be achieved by using a
voltage vector v. Therefore if p € Pisa Pareto-optimal, then
p e P.Since? D P, pisalsoa Pareto-optimal point of P.

So O(P) 2 O(P). To show the other direction, suppose there

exists a point p € O(P) but not in O(P). Then there is a point
p € O(P) such that p < p. But p € O(P), contradicting the

fact p is a Pareto-optimal point of 7. Therefore O(P) C O(P)
and thus O(P) = O(P). It remains to prove claim 3.
We are to show that the optimal solution to (9), W*, is rank

1. We do this through duality theory. The dual of (9) is

maximizc Z (AiK? - XV?) —Z Miklin
i=1

ik
n

- Z(Wkﬁzk +I/kiﬁki)+2(£{£i -5;P;—p;Q)

i i—1
subject to A+ Z ik G+ Z(Vik:Aik F ki Agg)
ik ik

+Z(Uz‘Ai+PiBi)+M =0

i=1

(11)

where ); and J; are the Lagrange multiplier associated with
the voltage upper and lower bounds and A; = X; — A, and
A =diag(A1, ..., \n), iix are the Lagrange multiplier associ-
ated with the thermal constraints, v;; and v, are the Lagrange
multipliers associated with the flow constraints, and #; and ¢,
are the Lagrange multiplier associated with the power upper and
lower bounds and ¢ = &; — g,. Since we assume that the re-
active power lower bounds constraints are not tight, p; is the
Lagrange multiplier associated with the reactive power upper
bounds. Note (11) is also the dual of (7) so the gap between J
and ./ is called the duality gap.

Let M = >, o(naGin) + 2 (vl +
Vk:iAki)""Z?:l((fiAi + pLBL) 4+ M. Let W* denote the
optimal solution of (9) and A* the optimal solution of (11), by
the complimentary slackness condition [21]

Tr ((A* + 1\7I)W*) —0. (12)
Since both W* and A"+ M are positive semidefinite, (12) im-
plies that (A" +M)W* = 0. Therefore W* is in the null space
of A* + M and rank(A" + M) + rank(W*) < n. So to show
rank(W*) = 1, it suffices to show rank(A*+M) > n—1. This
is done by considering the topology of the network and thus the
structure of M.

Given an X n matrix A and a graph G with n nodes, we say
that A fits G if fori # k, A, = 0 if and only if (¢, k) is not an
edge in G. The values on the diagonal of A are unconstrained.
The next lemma from [22] relates the topology of a graph and
the rank of matrix that fits it.

Lemma 4 [22, Theorem 3.4]: Let G be a graph that is a con-
nected tree of n nodes. Suppose A is a n x n complex positive
semidefinite matrix that fits G. Then rank(A) > n — 1.
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We want to apply this lemma to the matrix A* +/@. Since A*
is diagonal, only M matters and its (4, k)th entry, M,;, is given
by

*% ({(cit+er+pin+vin+vii+oi+0r)gi— pibik
+i{ci—cp ik — piki 05 — ok )bk + pigir) i~k
0 ifi k.

Therefore Mik = 0 if bus 7 is not connected to bus k. For M to
fit the network, M;;, needs to be nonzero if i is connected to k.
If ¢ ~ k, for M;;, to be zero we need

(ci + cr + ik + Vik + Vi + 00 + 01)gik — pibir =0 (13)
(ci — ek + Vit — Vpi + 00 — 01)bi + pigin =0. (14)

Multiplying (13) by g;» and (14) by b;; and adding, we get

(ci + ¢k + ik + Vit + Vii + i + 08 g+
(¢; — ek + Vik — Vii + 07 — 03 )b, = 0.

We are to show that (¢; + ¢x + poir + Vin + i T 00+ or) =(¢; —
e+ Vip — Vi + 04 — o) = 0. If this not the case, then suppose
(citer+pint+vintrvni+oitor) < 0and (¢;— e +vig — Vg +
a; — o) > 0. But p; > 0 since it is a Lagrange multiplier and
gir > 0; this contradicts (14). Similarly, since b;;, < 0 (lines are
inductive), we cannot have (¢; +cp+pop +Vip +vpi 0+ o)) >
0 and (¢; — ¢ + g — Vi + 07 — 01) < 0. Therefore we get
the simultaneous equations in (15) and (16):

Ci +Cp+ pip + Vik + v + 0 + o =0

Ci —Cp + Vi — Vis +0; — o, =0.

s)
(16)

Note i1, v and vg; are always nonnegative since they are
the Lagrange multipliers associated with upper bounds. Suppose
the bus power lower bound is not tight for bus 7, then o; > 0.
Adding (15) with (16) gives 2¢; + pir + 2vi + 20; = 0; this
is not possible since ¢; > 0. On the other hand, suppose the
bus power lower bound is not tight for bus &, then o > 0.
Subtracting (16) from (15) gives 2c, + pix + 20k + 20, = 0,
which is not possible since ¢z, > 0. Therefore M fits a connected
tree. Now apply Lemma 4 to the matrix A*4M gives rank (A" +
M) > n — 1; therefore rank(W*) < 1. If the problem is
feasible, then rank(W™*) = 1. ]

The authors in [6] showed that there is no gap if the network
is purely resistive and all costs positive. Interpreting this in our
language, they showed that the Pareto-front of the injection re-
gion of the resistive network is the same as that of its convex
hull. In contrast, our results are based on the topology of the
network, and do not need to make assumption that the network
is purely resistive.

B. Simulation Results

In this section, we consider the voltage support problem in
distribution networks. Due to the emergence of renewable gen-
erations and the high /X ratio in distribution networks, this
is an interesting and non-trivial problem. Here we take the ob-
jective to be minimizing the total resistive loss in the network.
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So f(Pyi,...,P,) = Y1, Pi, and the relaxed optimization
problem in (9) becomes

J1 = minimize Tr(MW) (17a)

subject to W“ = Vv (17b)

LG W) < L Vi~ k(170

B.,-, <TH(AW) <P, (17d)

Q, < Tr(B;W) < Q; (17¢)

W =0 (17f)

where M = (1/2)(Y# + Y) and V; is the given voltage level
that we want to support. We obtain the test networks from the
distribution network database in [23]. In these test networks, the
transmission line data and a typical power consumption profile
is presented. From the transmission line data we obtain the Y
matrix, and the thermal limits in (17¢) can be obtained from
the maximum current ratings (line power flow rating was not
included in the datasheets). We take V; to be 1 p.u. for all buses.

To verify our result, we need to construct the lower and upper
bounds on F;’s and (J;’s. We assume the feeder acts like a
slack bus, so it does not have any real or reactive power con-
straints. We consider two ways to construct the constraints for
the other buses. One is that we assume a medium level pen-
etration of solar generation at each bus. Let P; be the typical
real power consumption reported in [23], we randomly generate
P, € [P;,1.2F;] and P, € [0.8P;, P;]. That is, we assume that
the solar penetration level is about 20% of the current power
consumption, and depending on the environmental conditions,
areal time P; and @, is realized. Let Q; be the typical reactive
power consumption of the network, we assume that ¢, = 0 and
Q, = 1.2Q;. Note these bounds are typically fixed since they
are provided by the power electronics on the solar cells and is
not dependent on the radiation levels. The newest power elec-
tronics available now have the ability to adjust its reactive power
output within some bounds. We choose the lower bounds to be
0 because all the power electronics can be adjusted to output 0
reactive power. If a test case is generated this way, we say it is a
nominal case since it came from a nominal operating point. If the
parameters are chosen this way, all nodes except the feeder are
withdrawing real power from the network. Rooting the tree at
the feeder, all real power flows in one direction: from the feeder
to the leaf buses.

Another way to generate the upper lower bounds is to ran-
domly draw them such that —2F;, < P, < P, < ‘)R and
—20Q, < Q <Q, < 2Q;. Note the problem parameter chosen
this way may not correspond to any practical operation condi-
tions. There could be multiply nodes with positive power in-
jections into the network, resulting in real power flows that are
bidirectional. We call this case the random case.

During the simulations we solve the relaxed convex problem
in (17). We are interested in when the relaxed problem is
tight; that is, when the optimal solution W* to (17) is rank
1. We consider 3 networks, the 8-bus, 13-bus, and the 34-bus
networks. For the each of the networks, we run 1000 instances
of the nominal and random generated cases. Table I shows the
number of times that W™ is rank 1 out of 1000 times. As shown
in Table I, the relaxation is tight for all nominal situations. We
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TABLE I
NUMBER OF TIMES THE RELAXED PROBLEM IS TIGHT OUT OF 1000 INSTANCES
8-bus | 13-bus | 34-bus
Nominal 1000 1000 1000
Random 968 925 932

offer some intuitive explanations for why this is the case. First
consider the real power upper and lower bounds. Theorem 2
requires that when two buses are connected, not both have tight
real power lower bounds. In the optimization problem we are
minimizing the total system losses, so the feeder would try to
meet the minimum power that is needed by the other nodes,
since supplying more power will increase the total loss in the
system. Therefore we expect that most of the buses to have
Pr = P,. This is indeed the case in the simulations. Now
consider the reactive power bounds. Theorem 2 requires that
the lower reactive power bounds are not tight for the buses.
In contrast to the real power, which flows downstream from
the feeder to the end users, the reactive power flows up the
tree from the end users to the feeder. This is because when
the voltage is held constant, the users injected reactive power
to support this voltage [11]. Therefore for most of the nodes
Q7 > 0 in the simulation instances, so the lower bounds are
not tight. In the random cases, since real power can flow up
the tree, (J; could be positive or negative at bus .

V. CONCLUSION

We studied the effects of constraints on power flow in a net-
work and considered the implication to the optimal power flow
problem. We focused on the injection region and showed how
it can be used to understand the optimal power flow problem.
When there are no operation constraints, we showed that the in-
jection region is the entire upper half space. For tree networks,
we showed that the injection region and its convex hull have the
same Pareto-front when there is voltage magnitude constraints,
line loss constraints, line flow constraints, and some subset of
bus power constraints.

APPENDIX A
NON-TREE NETWORKS

Ideally, one would like to generalize the results for trees to
networks with cycles. However, this is difficult. We state some
partial results in this section, and they will be different than the
result stated in Theorem 2 in three aspects.

* We focus on lossless networks.

* Only voltage constraints are considered.

* We look at the convex hull instead of the Pareto-front.
Therefore the results in this section are of a weaker flavor than
Theorem 2 since we need to assume that the networks are loss-
less and we only consider voltage constraints. The results here
are useful since in practice some distribution networks consists
of aring feeder and trees hanging of the feeder nodes as in Fig. 5.
In this case, the objective functions are often to minimize the
loss at the feeders. Also, the feeder nodes are generally consid-
ered as slack buses, so they only have a voltage constraint. Since
minimizing a linear function over A and convhull(.A) has the
same objective values, characterizing the convex hull of the in-
jection region is useful.
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Fig. 5. Distribution network with a ring feeder.

The voltage constraint injection region is defined as

P = {p :p=Re (diag(vaYH)) V<V < 77} .
(18)

We can again define a enlarged convex region P as

P= {p :p=Re (diag(WYH)) VESW, <V, W= 0} :
(19)

We have the following theorem.

Theorem 5: Given a network with » buses represented by its
bus admittance matrix Y, let P and P be defined as in (18) and
(19), respectively. Then if the network is a lossless cycle or a
lossless cycle with one chord, then convhull(P) = P.

The next theorem states that joining the basic types of net-
works in a certain way preserves the characterization result.
Given two networks GG and H, the network K is said to be a
1-connection of G and H if it is possible to decompose K into
two components K7 and K> such that they have only one node
in common and no edges between them, where K is equal to
(G and K is equal to H. Note by equal we mean that the ad-
mittance matrices are identical. In particular, if a line in G or
H is lossless, then its corresponding line in K is also lossless.
We say K is obtained by 1-connecting G and H. Fig. 5 gives
an example of a network obtained by 1-connecting a cycle and
a number of trees.

Theorem 6: Given a network on » nodes with voltage con-
straints, then convhull® = P if the network is a result of re-
peatedly 1-connecting a lossless cycle and a tree.

Itis simple to check if a network has the topology that satisfies
the conditions in Theorem 6. Given a network, first decompose
it into its one connected parts which can be done in linear time.
Then one simply checks each of the parts to see if they are a tree
or a lossless cycle.

The proofs of the results in this section are somewhat tech-

nical, and the interested reader can consult the long version in
[24].

APPENDIX B
PROOF OF THEOREM 1

The following basic lemma from linear algebra is useful.

Lemma 7 (Rank Nullity Theorem): Let A be an x n real sym-
metric matrix. Let image(A4) and ker(A) denote the image and
kernel of A, respectively. Then dim image(A)+dimker(A) =
n and image(A) & ker(A) = R™, where & is the direct sum.

First consider the case where the network is lossless. Then
any feasible injection vector must be on the conservation of
energy plane. We need to show that any point on the plane
can be achieved. Since the network is lossless Y = jIm(Y)
where Tm(Y) is a n x n real symmetric matrix and each
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row of Im(Y) sums to 0 by (1). Therefore Im(Y) is a gen-
eralized graph Laplacian matrix where the admittances can
be interpreted as weights on the edges. By a standard re-
sult in graph theory, dim ker(Im(Y)) = 1 and ker(Im(Y)) is
spanned by the all one’s vector 1. By Lemma 7, image(Im(Y))
is the linear subspace in R™ orthogonal to 1. Let p® be an in-
jection vector on the conservation of energy plane, that is
>t PP = 0. Since 17p" = 0, there is a unique vector v"
such that Yv" = p® and 17v® = 0. Choose the voltage vector
v = (=v” 4 j1), then

Re (diag <(—v° 4 1) (—v0 + jl)HYH)) (20)
= Re (diag ((V”lT + 1(VO)T) Im(Y))
+jdiag ((VO(VO)T + 11T) Im(Y)))
< p @
where (a) follows from the choice of v and Im(Y) being sym-

metric. This finishes the proof for a lossless network.

Next consider the case where the network is lossy. The proof
proceeds in two parts: first we show that the conservation of
energy boundary > -, P; = 0 can be arbitrarily closely from
above, and then we show the injection region is convex. Since
the network is lossy, Re(Y') is a n x n real positive semidefinite
Laplacian matrix. By conservation of energy, any power injec-
tion vector achieved must satisfy >, P; > 0ifp # 0. Let p*
be a vector on the conservation of energy plane. We show there
is a voltage vector v that achieves a point arbitrarily close to p°.
Since 17p® = 0, by Lemma 7 there is a unique vector v° such
that Re(Y)v? = p¥ and 17v® = 0. Let v = (a1 + (1/a)v?)
for some v > 0 and the corresponding injection vector p is

p=Re (diag(vv'Y))

1 1
=Rec (diag ( (al + —v()) <a1—|— —v
o o

x(Re(Y)-O—jIm(Y)))

:diag((cxlllT-l—v 174+1(v9)" + vOv?) ) e(Y ))
@ Jiag (1(v0)TRe( ) —dlag (vo ))

@ diag (l(pO)T) —dlag( (pO)T)
=+ —ydiag (+'(p")") (22)

where (a) follows from 1 € ker(Re(Y)) and Re(Y) is sym-
metrical, (b) follows from the choice of v?. We can increase
« to make p arbitrarily close to p”. For example, if we want
Ilp — P°|loc < ¢, then choose

0> ) POl vl
- F M

The next lemma states that P is convex.
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Lemma 8: The injection region P as defined in (5) is a convex
set.

Theorem 1 follows from Lemma 8. Since the injection region
is convex, and the boundary }_; , P, = 0 can be approached
arbitrarily closely from above, it includes the open half upper
space. In addition the origin can be achieved using the all zeros
voltage vector. It remains to prove the lemma.

Proof: For a given network with n buses represented by
Y, define P as

P = {p €R":p=Re (diag(vaYH)) vl < V}
(23)
where vl = (301, \V|?)1/2. '+ approaches the uncon-
strained injection region as V' tends to infinity. P57 cannot have
holes since if p € Py, then ap € Py for a € [0, 1]. Therefore
to prove the convexity of Ps, it suffices to prove it has convex
boundary. Consider the optimization problem

subject to ||v]s <V
p=Re ((’1iag(vaYH)) . (24)
Relaxing and eliminating p, we get

J1 = minimize Tr(MW)
subject to Z Wi < VQ

i=1
W = 0. (25)
By changing the costs, we are exploring the boundaries of the
two regions with linear functions. We want to show that all the
point on the boundary of the larger region is in fact in the smaller
region.

First we show that for all M, there is an optimal W* for
(25), which is rank 1. To solve (25), expand W in terms of its
eigenvectors, so W = wywiwil + .. w, w, wH where w; is
unit norm and Y, w; < V7’ Then (25) can be written as

n

minimizc E 'w,;Wf{Mw.,;
i=1
k3

subject to Z w; < v’

i=1

W = Z (w,-wiwf{) = 0. (26)
i=1

By the well-known result about Rayleigh quotients [25], to
minimize any of the terms WiH Mw;, the optimal w} = my,
where m; is the eigenvector corresponding to the smallest
eigenvector of M. Therefore the optimal solution to (25) is
W=3%" wmmf = VlemfI and is rank 1.

If m, is not unique, since eigenvectors are not continuous
in the entries of the matrix, we can perturb Y by an arbitrarily
small amount to obtain a M that has a unique eigenvector cor-
responding to the smallest value. Note the power vector p is
continuous in the entries of ¥. From uniqueness of m; and the
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fact there is no gap between (24) and (25), the two regions have
the same boundary. Taking V' to infinity finishes the proof. =
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