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REGRESSION QUANTILES' 

A simple minimization problem yielding the ordinary sample quantiles in the location 
model is shown to generalize naturally to the linear model generating a new class of 
statistics we term "regression quantiles." The estimator which minimizes the sum of 
absolute residuals is an important special case. Some equivariance properties and the joint 
asymptotic distribution of regression quantiles are established. These results permit a 
natural generalization to the linear model of certain well-known robust estimators of 
location. 

Estimators are suggested, which have comparable efficiency to least squares for 
Gaussian linear models while substantially out-performing the least-squares estimator 
over a wide class of non-Gaussian error distributions. 

1. INTRODUCTION 

IN STATISTICAL PARLANCE the term robustness has come to connote a certain 
resilience of statistical procedures to deviations from the assumptions of 
hypothetical models. The paradigm may be briefly stated as follows.* The process 
generating observed data is thought to be approximately described by an element 
of some parametric class of models. The investigator seeks statistics, i.e., a 
mapping from the sample space to a parameter space, whose distribution will be as 
concentrated as possible near the true parameters-if the hypothesized model is 
correct. If however, as seems almost certain, the parametric model is not quite 
true, one would like to use estimators whose distributions were altered only 
slightly if the distribution of the observations were close, in some reasonable 
sense, to that of some member of the parametric class. In important special cases 
this modest robustness requirement is not met by estimators in common usee3 

We consider the familiar problem of estimating a vector of unknown (regres- 
sion) parameters, p, from a sample of independent observations on random 
variables Yl, Y2, . . . ,YT,distributed according to 

( t=  1,.. . , T), 

where x,:  t = 1,.. . ,T, denote rows of a known ( T x K )design matrix and the 
shape of F is not precisely known.4 If F is known precisely then it is frequently 

An early version of this paper [5] was presented at the Winter, 1974 meeting of the Econometric 
Society in San Francisco. 

* A rigorous statement of this point of view on the robustness problem may be found in the work of 
Ha3moel [16,17,18]. 

We need only mention the sample mean, an estimator nonpareil of location if the sample 
observations are generated by an independent and identically distributed Gaussian process. However, 
in any open neighborhood of a Gaussian distribution there exists distribution functions which would 
take the distribution of the sample mean arbitrarily far away from its d~stribution in the Gaussian case; 
~ f . ~ H a m p e l[16]. 

This formulation restricts attention to what may be called the "robustness to distributional 
assumptions" problem, and leaves aside problems involving possible dependence among observations, 
non-linearities of functional form, etc. 
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possible to show that the maximum likelihood estimator or some one-step (M) 
approximant to it is efficient in the Crambr-Rao sense. In particular, when F is 
known to be Gaussian (normal), Rao has shown that the least squares estimator, 
6, is minimum variance in the class of unbiased estimators. Unfortunately the 
extreme sensitivity of the least squares estimator to modest amounts of outlier 
contamination makes it a very poor estimator in many non-Gaussian, especially 
long-tailed, situations. This paper introduces new classes of robust alternatives to 
the least squares estimator for t!e linear model. Estimators are suggested which 
have comparable efficiency to P for Gaussian models while substantially out- 
performing the least squares estimator over a wide class of non-Gaussian error 
distributions. The proposed estimators are analogues to linear combinations of 
sample quantiles in the location model.5 

2. BACKGROUND AND MOTIVATION 

The aphorism made famous by PoincarC and quoted by CramCr [12]that, 
"everyone believes in the [Gaussian] law of errors, the experimenters because 
they think it is a mathematical theorem, the mathematicians because they think it 
is an experimental fact," is still all too apt. This "dogma of normality" as Huber 
has called it, seems largely attributable to a kind of wishful thinking. As Box and 
Tiao put it, 

Classical statistical arguments lead us to treat assumptions as if they were in some way 
axiomatic and yet consideration will show that, in fact, they are conjectures which in 
practice may be expected to be more or less true. . . . If we assume normality, we can 
proceed with an 'objective' classical analysis . . .however . . . as seems to be inevitably the 
case in other problems as well as this one, our 'objectivity' is gained by pretending to 
knowledge we do not have. .  . [ll,p. 4191. 

Following Haavelmo's [I51classic paper it is sometimes argued that the errors 
encountered in econometric models are known to be the sum of a large number of 
small and independent elementary errors, and therefore will be approximately 
Gaussian due to central limit theorem considerations. However, it is rather 
puzzling that investigators, who are generally loathe to adopt informative priors 
about the systematic structure of their models about which theoretical considera- 
tions and past empirical experience should provide substantive evidence, should 
feel themselves so well informed about the unobservable constituents of their 
model's unobservable errors to argue that they satisfy a Lindeberg condition! A 
few gross errors occurring with low probability can cause serious deviations from 
normality: to dismiss the possibility of these occurrences almost invariably 
requires a leap of Gaussian faith into the realm of pure speculation. 

The need for robust alternatives to the sample mean (the least squares estimator 
in the location model) has been apparent since the eighteenth century. The 
median, other trimmed means, and more complicated linear combinations of 
order statistics were in common use especially in astronomical calculations, in the 

For obvious reasons the term "location model" is used to describe (1.l)when x, = 1: t = 1, . . . ,T. 
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nineteenth century.6 By 1821 Gauss had shown that the sample mean provided 
the "most probable" estimate of the location parameter from a random sample 
with probability density proportional to e-x"2"2 ,but this result was explicitly an ex 
post rationalization for the use of the sample mean rather than a claim for the 
empirical validity of this particular error law.7 In fact, it was noted by a number of 
authors that error distributions with longer tails than that of the Gaussian 
distribution were commonly observed. In such cases it appeared desirable to 
choose estimators which modified the sample mean by putting reduced weight on 
extreme observations. 

There was a parallel early recognition of the need for robust alternatives to the 
least squares estimator for the linear model. Wild observations, or "outliers" as 
they came to be called, were more difficult to identify in such models and the 
fruitful notion from the location model of an ordering of sample observations had 
no simple analogue in the more complicated models. Many illustrious figures 
(Gauss, Laplace and Legendre, to name only three) suggested that the minimiza- 
tion of absolute deviations might be preferable to least squares when some sample 
observations are of dubious reliability.8 In 1818 Laplace proved that in the simple 
model of bivariate regression through the origin, this least absolute error (LAE) 
estimator had smaller asymptotic variance than the least squares estimator if the 
error law of the model had variance, a*,  and density at the median, f(O), satisfying 
[2f(0)]-'<a. This result paved the way for investigations of the large sample 
theory of statistics based on sample quantiles in the location model.9 

The elementary point that there may exist nonlinear, or for that matter-biased, 
estimators superior to least squares for the non-Gaussian linear model is a well kept 
secret in most of the econometrics literature. Statements of the Gauss-Markov 
theorem too often seem to imply that linearity in y and unbiasedness are added 
virtues of the least squares estimator instead of restrictions on the class of its 
potential competitors. Indeed one sometimes encounters the view that infinite 
variance of the errors constitutes the only possible rationale for seeking robust 
alternatives to least squares in the linear model. This is, emphatically, false. While 
least squares is obviously abysmal for distributions having infinite variance 
(having zero efficiency for the Cauchy for example) its gross inferiority to a variety 
of nonlinear estimators is by no means confined to distributions with infinite 
variance. 

The wave of current interest1' in the problem of robust estimation has focused 
primarily on the location model. While we cannot hope to do justice to the vast 
recent literature on this subject we briefly sketch the main lines of the develop- 
ments which are most relevant to our work on the linear model. 

See the excellent survey of Harter [19]and the fascinating paper by Stigler [38]. 
'This point is made emphatically by Huber [25]in his survey paper on robust estimation. 

Boscovitch is generally credited with first proposing estimators which minimize the sum of 
absoglute deviations. See Harter [19]. 

Our paper [6]generalizes this result to the general linear model. 
loTukey has written of robust estimation as the third wave of statistical theory (see Hampel [IS]); 

after parametric and non-parametric theory, a theory of "almost parametric models" is slowly 
emerging. See also the fundamental survey papers of Huber [25]and Hogg [21]. 
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Mosteller [32],in 1946, proposed the use of a variety of so-called "inefficient 
statistics" based on a few sample quantiles as "quick and dirty" substitutes for 
more conventional estimators. It was found that estimators of this type could be 
constructed which were almost as efficient as the maximum likelihood estimators 
for most conventional parametric models. This approach was further developed 
by Bennett [7] for strictly parametric models, while Gastwirth [14] and others 
established that some estimators of this type had good efficiency properties for a 
wide variety of distributions. For example, the weighted average of the 1/3,1/2, 
and 213 quantiles with weights .3, .4, .3 has asymptotic efficiency of nearly eighty 
per cent for the Gaussian, Laplace, logistic, and Cauchy distributions." In 
contrast, the sample mean has asymptotic efficiency of one in the Gaussian case, 
but is less than half as efficient as the median for the Laplace distribution and has 
zero efficiency for the Cauchy distribution. Thus, although these "quick and dirty7' 
estimators may be "inefficient statistics" for any particular parametric model, in 
practice they may actually be preferable to putatively "optimal" estimators, like 
the sample mean, if there is some uncertainty about the shape of the distribution 
generating the sample. Much recent work has been devoted to extending results of 
this type beyond a fixed number of quantiles to estimators which are linear 
combinations of order statistics. The asymptotic theory of such (L)estimators has 
achieved almost classical standing through the efforts of Bickel [a],Stigler [39] 
and others. The most common (L) estimator of location is the a-trimmed mean 
which is simply the mean of the sample after the proportion a of largest and 
smallest observation have been removed. This venerable12 estimator was revived 
by Tukey in the late forties and has played an important role in recent work on 
robust estimation of location. Huber's nqw classic paper [24]on robust estimation 
of location solves for the least favorable (minimal Fisher information) distribution 
in the class of Gaussian 'contaminants-distributions of the form F =  
(1-E)@+EH, where @ denotes the standard Gaussian cumulative, Hranges over 
all symmetric cumulative distribution functions, and 0S E <1is a fixed proportion 
of contamination: the least favorable distribution has exponential tails, and 
Gaussian center so the minimax estimator is quadratic in the center and linear in 
the tails. Asymptotically Huber's minimax estimator behaves like an E -trimmed 
mean. 

In order to provide some quantitative evidence on the performance of some 
alternative estimates of location we have abstracted a small subset of estimators 
and a small subset of distributions from those considered in the Princeton 
Robustness Study 131. Table I gives Monte-Carlo variances for six selected 
estimators and five selected distributions. We have purposely chosen simple 
estimators which are nonadaptive. The table clearly illustrates that estimators of 
location are available which, while making a small sacrifice of efficiency to the 
mean at the Gaussian distribution, are greatly superior to the mean for non- 
Gaussian distributions. Only an unshakable a priori faith in the Gaussian "law of 

11 

This estimator is due to Gastwirth [14]and bears his name in the Princeton Robustness Study 131. 

12 Stigler [38]and Harter 1191 both discuss the historical background of the trimmed mean. 
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TABLE I 
EMPIRICAL VARIANCES OF SOME ALTERNATIVE LOCATION ESTIMATORS~ 

(Sample Size 20) 

D~str~butlons 

Estimators Normal 10% 3cb  10% 1 0 2  Laplace Caucby 

Mean 1.00 1.88 11.54 2.10 12,548.0 
10% trimmed mean 1.06 1.31 1.46 1.60 7.3 
25O/0 trimmed mean 1.20 1.41 1.47 1.33 3.1 
Median 1.50 1.70 1.80 1.37 2.9 
~ a s t w i r t h ~  1.23 1.45 1.51 1.35 3.1 
Trimeane 1.15 1.37 1.48 1.43 3.9 

:Abstracted from Exhibit 5 in Andrews, et al. [3]. 
Gaussian Mixture: .90(1)+. 1@(3). 

'Gaussian Mixture: .90(1)+.1@(10). 
6=.38*(1/3)+.48*(1/2)+.38*(2/3), is the 0th sample quantile where @*(@I 

"8= 1/4@*(1/4)+ 1/2@*(1/2)+1/46*(3/4). 

errors" would seem to justify selecting the sample mean.13 In practice, of course, it 
is common to discard certain observations which seem to be deviant on the basis of 
a preliminary inspection of the data. This procedure obviously amounts to a rough 
and ready trimmed mean, but more formal procedures seem desirable. Such ad 
hoc empirical accommodations are even more problematic within the context of 
the linear model since deviant observations are more difficult to identify there. In 
Sections 4 through 6 below we propose new classes of robust alternatives to the 
least squares estimator for the linear model and show that members of these 
classes have, unlike the least squares estimator, high efficiency over a wide range 
of error distributions. 

Huber's work on the location model has been extended to other estimators of 
the (M) maximum likelihood type by Relles [35], Huber 1261, Andrews [2], Bickel 
[lo], and others for the linear model. Another line of inquiry, based on analogues 
of rank procedures in the location model, has been extended to the linear model 
by JureEkovi [29], Jaeckel[28], and others. Bickel[9] has suggested a third line of 
attack based on analogues of linear combinations of order statistics, (L) estimates, 
from the linear model. His estimates are one-step iterations from an ordering of 
observations based on some preliminary robust estimate of location like, for 
example, the LAE estimate.14 

Our approach, although substantially different from that taken by Bickel, may 
also be viewed as an attempt to extend to the linear model the notions of 
systematic statistics and linear combinations of order statistics which have proven 
so fruitful in dealing with the robust estimation problem in the location model. We 
begin by introducing a natural generalization to the linear model of the concept of 

13 Based on the full study of 65 different estimators and ten distributions, Hampel concludes that the 
sample mean is the "clear candidate for . . . worst estimator of the study." Andrews, et al., [3,p. 2391. 

l4 A number of more sophisticated robust (M) estimators use this (LAE) estimator as an initial 
robust estimate and make a one-step Newton iteration. See, e.g., Hill and Holland [20]. 

mailto:1/2@*(1/2)+1/46*(3/4)
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sample quantiles from the location model.15 The LAE estimator will be an 
important special case.16 

3. REGRESSION QUANTILES 

Our point of departure is an elementary definition of the sample quantiles 
which, by circumventing the usual reliance on an ordered set of sample observa- 
tions, is readily extended to the linear model. As above, let {yt: t = 1, . . . ,T}be a 
random sample on a random variable Y having distribution function F.Then the 
8th sample quantile, 0 < 8 < 1, may be defined as any solution to the minimization 
problem: 

min [ eIyl-bi+ 1 (l-8)lyt-bl]. 
b e R  te{ t :y , ab )  te{t:y,<b) 

The case of the median (8 = 112) is, of course, well known, but the general result 
has languished in the status of curiosum-appearing for example as an exercise in 
Ferguson [13]. 

Huber's [26]observation that outliers are difficult to identify in the regression 
context underlines the essential ambiguity involved in extending to the linear 
model the ordinary notions of sample quantiles based on an ordering of sample 
observations. A direct generalization of the minimization problem posed above 
resolves this ambiguity. Letting {x,:t = 1, . . . , T} denote a sequence of (row) 
K-vectors of a known design matrix, suppose {y,: t = 1, . . ., T }is a random sample 
on the regression process u, = y, -x,p having distribution function F. The 8th 
regression quantile, 0 < 8 < 1, is defined as any solution to the minimization 
problem: 

In the location model (K = 1, x, = 1, for all t) the two minimization problems 
coincide. The least absolute error estimator is the regression median, i.e., the 
regression quantile for 8 = 112. 

We now introduce some crucial notation and state some fundamental proper- 
ties of elements, ~ * ( 8 ) ,  of the solution sets B*(8) of the regression quantile 
minimization problem. 

Let .T={l, 2, . . . , T }  and X denote the set of K-element subsets of Y, 
Elements h E X have relative complement, i=.T- h, and both serve to partition 

IS Professor Hogg [22,23]has recently proposed an alternative method of estimating "percentile 
hyperplanes" for the linear model which revives and generalizes the median regression methods of 
Mood and Brown. While the details of his method differ greatly from ours, the approaches are quite 
similar in spirit. 

l6The large sample theory of LAE is discussed in [6];see also Taylor [41]for a recent survey, and 
Bassett [4]. Examples of empirical applications where LAE has performed extremely well in 
comparison with least squares in forecasting tests may be found in Meyer and Glauber [31]and 
Overson [33]. 
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y and X. Thus, for example y (h) denotes the (K)-vector with elements {y,: t E h)  
while ~ ( 6 )denotes a ( T - K ) x K  matrix with rows {x,: t ~ a .  The (K)-
dimensional vector of ones will be denoted by LK. Finally, let, 

H={h E %/rank X(h) =K).  

THEOREM 3.1 :IfXhas rank K then the set of regression quantiles, B*(O), has a t  
least one element of the form, 

~ " ( 0 )=x(h)- 'y (h) 

for some h E H.Moreover, B*(O), is the convex hull of all solutions having this form. 

PROOF: This result follows immediately from the linear programming formula- 
tion of the defining minimization problem; see Appendix 1and the recent paper 
by Abdelmalek [I]  for details. 

REMARK: Sample quantiles in the location model are either identified with a 
single order statistic from the observed sample, or, for example in the case of the 
median from an even sample, they are identified with a closed interval between 
two adjacent order statistics. Theorem 1 generalizes this feature to regression 
quantiles where normals to hyperplanes defined by subsets of K observations play 
the role of order statistics. 

THEOREM 3.2: IfP"(8, y, X )  E B"(8, y, X )  then the following are elements of the 
solution of the specified transformed problems : 

(9 P*(O, AY, X )  =Ap*(e, Y, X), A E [O, a ) ,  

(ii) p * ( l - e , A y , X ) = ~ p * ( e , y , X ) ,  A€( -a ,O] ,  

(iii) p*@, Y +XY, x)= p*(8, Y, x)+'Y, 'YE [ w ~ ,  

(iv) p"(8, y, X A )  =~ - ' p * ( 8 ,  y, X), AKxK nonsingular. 

PROOF: Let 

T 


= C [e -  1 /2+1/2  sgn (yt-xtb)l[yt-x,bl 
t = l  

where sgn (u) takes values 1, 0, --I as u S 0. Now, note that 

(i) w b ;  8, Y, X) = + ( ~ b ;e, AY, x), A E LO, a ) ,  

(ii) -A$(b;8 ,y ,x )=$(Ab; l -8 ,Ay ,X) ,  A€(-oo,O], 

(iv) $(b; y, X )  =$ ( ~ - ' b ;  y, XA), IAKXKI# 0. 
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REMARK: Theorem 3.2 collects a number of equivariance properties of regres- 
sion quantiles. Note that (i) and (ii) imply P*(1/2) is scale equivariant, (iii) states 
/3*(8) is location (or "shift" or "regression") equivariant, and (iv) states that P*(8) 
is equivariant to reparameterization of design. 

THEOREM 3.3: IfFis continuous then with probability one : P* = x(h)- ly (h) is a 
unique solution to Problem (P)if and only if, 

PROOF: Consider the directional derivative of +(b) in direction w, 

T 


(3.2) +'(b; w)= C 1112- 112 sgn* (yt-x,b; -x,w)-8]x,w 
1=1 

where 

sgn u if u #O, 
sgn* (u ; z ) = 

sgnz if z = 0 .  

Since +(b )is convex, it attains a unique minimum at p *  if and only if JI1(P*; w)> 0 
for all w # 0. At p *  = x(h)-ly(h),  

+ C 1112- 112 sgn* (y,-xtp*; -x,w)- O]X,W. 
I€ l; 

Letting v = X(h)w, we have that +'(P*; w)>O for all w # 0, if and only if, 

+ C [1/2- 112 sgn* (yt -*x,P*; x ,~(h) - 'v ) -  elxtx(h)-'v 
166 

for all v # 0. But this is equivalent to 

for all v # 0. Finally F continuous implies that the events [y, -x,x(h)-ly(h) = 
0, t E h]  have probability measure zero since they require M> K observations to 
lie exactly on hyperplanes of dimension K -  1.Thus (3.5) simplifies to (3.1). 

REMARK: It is perhaps instructive to pause to consider the ordinary sample 
quantiles in the light of Theorem 3.3. If x, = 1, t = 1 , .  . . , T,so H =  .T and F is 
continuous, then Theorem 3.3 asserts that /3*(8)= y(h) is a unique 8th sample 
quantile if and only if, 
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The expression in brackets takes the values of -8 if yt >y ( h )and 1-O if y,  <y (h ) ,  
so (3.6)reduces to the requirement that the number of y,'s less that y ( h )be strictly 
between T8- 1 and TO. This in turn demands that TO be nonintegral. The 
continuity of Fremoves the tiresome problem of "ties" in the location model and 
accomplishes the same task in the general linear model. It may be noted that in the 
absence of this degeneracy phenomena the condition for uniqueness is purely a 
design condition, reducing in the location model to the requirement that TO be 
non-integral. This suggests that for any sequence { X T )of designs one should be 
able to extract a subsequence, or at worst some "perturbed" subsequence whose 
elements have unique solutions. An alternative approach which is frequently 
employed in the location model is to adopt some arbitrary rule to choose a single 
element from sets of quantiles when they occur. Either approach suffices to obtain 
the sequence of unique solutions considered in the next section dealing with the 
large sample distribution of regression quantiles. 

THEOREM 3.4: Let p(u8(8)) ,  N(u*(o)) ,  and Z(u"(8) )  denote the number of 
positive, negative, and zero elements in the vector u*(O) = y -Xp*(8).  Then if X 
contains a column of ones, 

for every p"(8) E B"(8). If p* is unique, i.e., p* =B*,  then the inequalities hold 
strictly. 

PROOF: Partition the design so that X = [ L .  I 21.By the argument used to obtain 
Theorem 3.3, p* E B* if and only if 

(3.8) $'(P*; w)= C [1 /2 -  112 sgn* (y,-xrp*; -x[w)- O]x,w 3 0 ,  
r = l  

for all w # 0. So in particular (3.8) must hold for wC= (1 ,0 ,. . . , 0 )  and w-= 
(-1,O, . . .,0 ) in FtK.Since x,w+= 1 and x,w- = -1 for all x ,  (3.8) implies 

(3.9) i * [ 1 / 2 -  112 sgn* (yr -xrp*;T I ) - O ] > O  
t=l 

which is equivalent to the two conditions 

which in turn are equivalent to (3.7). If /3*(8) is unique then all inequalities are 
strict. 

REMARK: Note that if F is continuous then Z ( u * )=K with probability one, so 
there are at least TO observations below the 8th regression quantile hyperplane 
and at most TO +K observations above it. 

THEOREM 3.5: I f p * ( 8 ) ~B*(8, y, X ) ,  t h e n p " ( 8 ) ~  B*(8, Xp* +Du*, X )  where 
u* = y -Xp* and D is any T x T diagonal matrix with nonnegative elements. 
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PROOF:P* E B*(8, y,  X )  implies 

for all w # 0. Note that 

[1 /2 -  112 sgn* (x,P* + d t ( y t - x t ~ * ) - x r ~ * ;  -x,w) -O ] X ~ W  

= (112- 8)x,w - - x , ~ * ) ;  -x,w)x,w 112 sgn* ( d , ( ~ ,  

3 (112-8)x,w -112 sgn* ( y ,  -x,P*; -x,w)x,w 

for d, 30 and the result follows. 

REMARK:This result has a simple geometric interpretation. Imagine a scatter of 
sample observations in R with the 8th regression quantile line slicing through the 
scatter. Now consider the effect (on the position of the 8th RQ line) of moving 
observations up or down in the scatter. The result states that as long as these 
movements leave observations on the same side of the original line its position is 
unaffected. This property is obvious in the location model, sample quantile 
context, but its generalization is perhaps somewhat less obvious. 

We conclude this section with an illustration in Table I1 of the regression 
quantiles for all 8 E (0,1)in a simple bivariate model with five observations. Note 
that for 8 ~ ( 7 1 2 2 ,  112,314) the problem admits multiple solutions. 

TABLE I1 

4. THE ASYMPTOTIC DISTRIBUTION THEORY OF REGRESSION QUANTILES 

The following well known result concerning sample quantiles in the location 
model is due to Mosteller [32]. 

THEOREM with 0 <el <82 < . . . <8~ <1, denote a 4.1 :Let {@(81), . . . ,t;(eM)} 
sequence of unique sample quantiles from random samples of size T from a 
population with inverse distribution function t ( e )= If F is continuous and ~ ' ( 0 ) .  
has contir:uous and positive density, f, at t(Oi), i = I, . . . ,M, then, 

converges in distribution to an (M)-variate Gaussian random vector with mean, 0 ,  
and covariance matrix 0 ( e 1 ,. . . ,eM;F )  with typical element, 
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This theorem provides the foundation for a large-sample theory of so-called 
"systematic statistics9-estimators which are linear combinations of a few sample 
quantiles. The median is the most important special case having asymptotic 
variance [2f([(1/2))]-*. As we have noted above, this value will be less than 
the variance of the mean for a large class of long-tailed distributions. The 
asymptotic variance of the Gastwirth or trimean estimator of Table I can be easily 
calculated in a similar manner from Theorem 4.1 for arbitrary distributions. We 
merely require the evaluation of the density function of the distribution F at 
specified quantiles. 

The analogy between sample quantiles in the location model and regression 
quantiles in the linear model is considerably strengthened by the striking 
resemblance in their asymptotic behavior. This is made explicit in the following 
theorem which plays a central role in the theory developed in the remainder of the 
paper. 

THEOREM 4.2: Let {@%el), /3%02), . . . ,PROM)} with 0 <O1 <O2 < . . . <OM < 
1 denote a sequence of unique regression quantizes from model (1.1). Let .$(6)= 
F-'(O), &(@) (((O), 0, . . . ,0)E W and &(O) = 	 I ~ =~ $ ( 8 ) - @ .  Assume: 

(i 	 F is continuous and has continuous and positive density, f, a t  [(Oi), 
i = l ,  . . . ,M , a n d  

(ii) 	 XI, = 1: t = 1,2 ,  . . . and limT,, T-'X'X = Q, a positive definite matrix. 

Then, 

converges in distribution to an (MK)-variate Gaussian random vector with mean 0 
and covariance matrix f2(01, . . . ,OM; F) @Q-l, where f2 is the covariance matrix 
of the corresponding M ordinary sample quantizes from random samples from 
distribution F. 

PROOF: The proof for M= 1is a trivial modification of the proof given in [6]for 
the special case P*(1/2). The case M= 2 is treated below explicitly, but the 
generalization to arbitrary M is obvious, albeit somewhat tedious. Consider the 
probability element, 

We demonstrate that the joint density function gT(al, 82) converges to a specified 
Gaussian density and ScheffC's theorem on convergence of densities completes 
the proof. 

By Theorem 3.2, 

where u =y -XP is a vector of T independent realizations from F. So, by 

mailto:~$(8)-@
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Theorem 3.1 and the uniqueness of {PRO1),~ 2 6 ~ ) )there must exist index sets 
h l ,  h2 such that 

and 

(4.4) (ei-1 ) ~ k <C [1 /2-112 sgn ( u ,-x,x(hi)-lu(hi))-e i ]x t~ (h i ) - '
1€6 

Since the first column of X is the unit vector, the events of (4.3)may be written as 

(4.5) utE (5(8i)+T ~ / ~ x B ~ ~  +d&))5(ei)+ 

for t E hi, i = 1,2 . By hypothesis ( (e l )<5(e2)SO (4.5)implies that for sufficiently 
large T, the solution index sets must be disjoint. Thus proceeding as in [6],we may 
write, 

(4.6) gT(Sl,S2) dale dS2 = C C pr [si<JT(x (h i ) - lu  (hi) 
h16H h 2 , ~ H  

where 

zti =[1 /2- 112 sgn ( u ,-r(ei)- T ~ / ~ X & )-e i ] x t ~ ( h i ) - ' .  

But since hl n h2= 0 and the u's are i.i.d., 

Now note that the random variables, 

{ -eixtx(hi)-l 1-F([ (e i )+T ' / ~ X $ ~ ) ,
(4.8) zti = with probability 

(1-ei)x,x(hi)-l F( S(ei)+ ~ " ~ x t s i ) ,  

for t E h;n h;.And by (4 .9 ,  

~ t l =(1-e l ) ~ ~ ~ ( h l ) - l ,t E h2, 

212= -e2xIx(h2)-l, t E hl ,  

for sufficiently large T. 
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A bit of calculation reveals that the stabilized sums 

converge to a (2K)-variate Gaussian random vector with mean 
( f (((e1))8 ;  QX1(h1)-', f ( ( ( e 2 ) )  S;QX1(h2)-')and covariance matrix 

& ( I -  6i)X1(h,)-'Qx(hl)-' el(1- 62)~ ' (h l ) - 'Q~(h2) - '  
81 (1 -8 2 ) ~ ' ( h z ) - ' Q ~ ( h i ) - ~  82)x1(h2)-'Qx(h2)-'I
& ( I - ' 

This can be verified by expanding F around the population quantiles ( ( d i ) :  
i = 1,2, noting that T 1C,,I;,~E, x:xt+Q, and 

T1"max lxktl=o(1); 
k,I<T 

see Malinvaud [30, 226-271. It then follows that 

(4.9) 	 T ~ ~ ~ [ - T ' / ~ ( ~ ~ - I ) L ; ( < Z ~ ~ < T ' ' ~ ~ ~ L ; C , ~ = ~ , ~ ]  

= (27r)-KI@I-K~21~'(hl)-1~~(hl)-1~/2~'(h2)-1~~(h2)-1~-1~2 

exp { - 3 6 ' [ ~ - ' @  Q ] S )  +o ( l ) ,  

where 0=R ( & , e2;F), S = (81,S2)1, and 

The continuity of the density at ( (e l )and ( (e2)implies 

Substituting (4.10)and (4.9)into (4.6),we have 

exp {-3S1[R-'@ Q]S)+ o(1) C 1T2KI~(h l )121~(h2)12 .  
hl h2 

But, 

(4.12) TZK 	 = = / T 1 x ' x 1 211l ~ ( h 1 ) 1 ~ 1 x ( h 2 ) / ~T ~ ~ I x ' x ~ ~  

converges to IQI2;see Rao [34,p. 321. So simplifying (4.11),we have 

gT(S)-, ( 2 ~ ) - ~ ( 0 - ' @  ~ 1 ' " exp {-;S1[0-' Q Q ] ~ ) .  

And finally, Scheffe's [37]theorem on convergence of densities yields the desired 
conclusion. 
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REMARK: An extremely important special case is the regression median, or 
least absolute error estimator, p*(1/2). Without loss of generality P may be 
located so that F(0)= 112, so ,3112) = 0. Then the asymptotic distribution of the 
random variable d?T(p*(l/2)-p) is K-variate Gaussian with mean zero and 
covariance matrix [ 2 f ( 0 ) ] - ~ ~ - ' .See our detailed treatment of this special case in 
[6].Thus, the regression median is seen to be more eficient than the least squares 
estimator in the linear model for any distribution for which the median is more 
e.ficient than the mean in the location model. While such a result has been the 
subject of conjecture among a number of authors we believe ours to be its first 
formal statement." 

The remarkable parallelism between the asymptotic behavior of ordinary 
sample quantiles in the location model and regression quantiles in the linear 
model suggests a straightforward extension of the large sample theory of so-called 
systematic statistics from the location model to the linear model. This is made 
explicit in the following result. 

THEOREM4.3: Let ~ ( 8 )  = (T (&) ,. . . ,~ ( 8 ~ ) ) 'be a discrete, symmetric proba- 
bility measure on (0,  1)  concentrating mass on {Oi : i = 1, . . . ,MI0 < 81 < 82 < . . . < 
8, < 1). Suppose F(0) = 112, so 5(1/2)  = =~ ' ( 1 1 2 )0 ,  and conditions ( i )  and (ii) 
of Theorem 4.2 hold. Then 

is invariant to location, scale and reparameterization of design in the sense of 
Theorem 3.2, and rqP T ( T ) - P )  converges in distribution to a (K)-variate 
Gaussian random vector with mean zero and covariance matrix IT'OT. Q-'. 

PROOF: Immediate from Theorems 3.2 and 4.2. 

REMARK: Obvious examples of weight functions ~ ( 8 ) ,in addition to the 
regression median example (7r(1/2)= 1) already discussed, are the Gastwirth: 
( ~ ( 1 / 3 ) ,~ ( 1 / 2 ) ,~ ( 2 1 3 ) )(.3, .4, .3)and the trimean: (?r(1/4), 7r(1/2), 74314)) = = 

(1 /4 ,1 /2 ,1 /4 ) .When F is non-Gaussian, weight functions ~ ( 8 )are readily found 
which make .rr10.rrsmaller than the variance of F, i.e., yielding estimators D(T)  
having superior asymptotic efficiency to the least squares estimator. Further- 
more, as we have noted above, many estimators of the form D ( T )  like 
Gastwirth's and the trimean, have high efficiency over a large class of dis- 
tributions. The efficiency of the mean and its least squares analogue, 6, in the 

17 
In finite samples the form of the design matrix obviously has some impact on the sampling 
distribution of the estimates, and is likely therefore to affect the sample size required to achieve a given 
degree of convergence to the asymptotic distribution. Thus there is no contradiction between our 
general result and the finding of Rosenberg and Carlson [36] that different designs have somewhat 
different sampling distributions in small sample Monte-Carlo experiments. Rosenberg and Carlson's 
results do seem to suggest the kurtosis of the explanatory variables produces a slower convergence. 
These problems of robustness of design are only now beginning to receive some much deserved 
attention. See, e.g., the pioneering work of Huber [27] on minimax designs. 
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linear model, on the contrary, deteriorates rapidly as the error distribution tends 
away from the Gaussian toward longer tailed distributions. 

The contrast between the ordinary least squares estimator and linear combina- 
tion of regression quantiles, ,6(.rr)-type, estimators for the linear model is high- 
lighted by writing the former in the partitioning notation of Section 3 as 

P = C  w(h)P(h), 

where w (h) = Ix(h)12/2 Ix(h)I2, summations are over h E %', and p(h)  satisfies the 
normal equations, 

~ ( h ) P ( h ) =  ~ ( h ) .  

This remarkable formulation of the least squares estimate as a weighted average 
of all possible coefficient vectors defined by subsamples of K observations was 
apparently first noted by M. Subrahmanyan [40]. Least squares places positive 
weight on all b(h)  with nonzero design determinant; the B(T)estimators place 
positive weight on only a few select b(h)  vectors. The simple connection between 
the sample mean and the sample quantiles in the location model thus generalizes 
in a somewhat more sophisticated form to the connection between the least 
squares estimator 6 and the class of B(T)estimators for the linear model. 

In a very stimulating critique of least squares estimation procedures, Tukey [42] 
suggests that efforts should be made to find estimators which modify the least 
squares method, reducing its notorious sensitivity to outlying observations, but 
preserving its essentially good qualities. In this spirit we discuss a simple modifica- 
tion of least squares which employs regression quantiles. 

An obvious analogue to the trimmed mean of the location model is suggested by 
regression quantiles. Let a be the desired trimming proportion. Calculate @*(a) 
and P*(1 - a )  for the sample. By Theorem 3.4 there will be approximately Ta 
observations below the former and above the latter. These observations are set 
aside, and the remaining observations are subjected to a least squares fit. Since the 
p *  vectors are consistent estimators of the a and (1 - a )  population quantile 
hyperplanes, least squares on the "censored" sample is (asymptotically) like 
sampling from the distribution F truncated at ~ ' ( a )  and ~ ' ( 1  This-a) .  
estimator, say Pa, is location and scale invariant, and will be asymptotically 
K-variate Gaussian with covariance matrix c2(a,  F)Q-' where a2(a,  F)denotes 
the asymptotic variance of the corresponding a-trimmed mean from a population 
with distribution F. This class offers promising robustness properties and should 
behave similarly to Huber's (M) estimates. Computation of these trimmed least 
squares estimates merely requires the solutions of two simple linear programming 
problems in addition to the usual least squares computation. The choice of the 
trimming proportion a will depend, obviously, on one's confidence in the quality 
of available data. With data of very dubious reliability one may want to use the 
ultimate trimmed least squares estimator with a = 1/2, the regression median or 
LAE estimator. For somewhat better data, a trimming proportion of five to ten 
per cent is probably preferable. 
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5 .  CONCLUSION 

We argue that the conventional least squares estimator may be seriously 
deficient in linear models with non-Gaussian errors. In the absence of a well- 
specified prior on the set of plausible distribution functions it is useful, following 
Huber [25]and others, to view the problem of estimation in terms of insurance. It 
seems reasonable to pay a small premium in the form of sacrificed efficiency "at 
the Gaussian distribution" (if that is the hypothesized parametric model), in order 
to achieve a substantial improvement over least squares in the event of a 
non-Gaussian situation. 

We introduce a new class of statistics for the linear model which we have called 
"regression quantiles" since they appear to have analogous properties to the 
ordinary sample quantiles of the location model. Natural generalizations based on 
regression quantiles of linear combinations of sample quantiles and trimmed 
means which appear to have promising robustness properties are then proposed 
for the general linear model. 
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APPENDIX 

The regression quantile minimization problem posed above in Section 3 is equivalent to the linear 
program 

(PI min [&'rC+ ( 1  - @ ) L I T - ]  

subject to 

=Xb+r'-r-,  

(b, r+, r - )E R~ x I W : ~ ,  

where L' = ( 1 , 1 ,  . . .,I ) ,  a T vector of ones. The dual to (P)is the bounded variables problem, 

(Dl max [y 'd]  

subject to 

X'd =0,  

~ E [ Q - I ,elT, 
where [ 8 - 1 ,  8IT denotes the T-fold Cartesian product of the closed interval [ Q - 1 ,  81. It proves 
convenient to make one more minor adjustment. Translate the dual variables setting A =d + 1 -8, so 
we have 

(D') max [y'A] 

l RFor further details on the important special case, Q = 112, see [I,431 
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subject to 

X'A = (1-@)X'L, 

AE [0, 1IT. 

This translated dual formulation proves to be extremely convenient for computational purposes. 
Standard linear programming algorithms provide quite efficient algorithms for such bounded variables 
problems. So-called "parametric variation of the right-hand-side" of (D') permits economical solution 
for many, or indeed all, 0 E [O, 11. 
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