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We consider the problem faced by a procurement agency that runs a mechanism for constructing an

assortment of differentiated products with posted prices, from which heterogeneous consumers buy their most

preferred alternative. Procurement mechanisms used by large organizations, including framework agreements

(FAs), which are widely used in the public sector, often take this form. When choosing the assortment, the

procurement agency must optimize the tradeoff between offering a richer menu of products for consumers and

offering less variety, hoping to engage the suppliers in more aggressive price competition. We formulate the

problem faced by the procurement agency as a mechanism design problem, and we progressively incorporate

more complex and often more realistic implementation constraints, including that the allocations should be

decentralized (that is, consumers choose what to buy) and that payments must be implemented through linear

pricing (in particular, no up-front payments are allowed). We characterize the optimal buying mechanisms

that highlight the importance of restricting the entry of close-substitute products to the assortment as a

way to increase price competition without much damage to variety. Motivated by the implementation of

the Chilean FAs, which are being used to acquire around US$3 billion in goods and services per year,

we leverage our characterization of the optimal mechanism to study the design of first-price-auction-type

mechanisms that are commonly used in public settings. Our results shed light on simple ways to improve

their performance.

1 Introduction

Procurement mechanisms in which individual consumers affiliated to an organization (such as a

government or a private company) must make their purchases through assortments previously

chosen by their organization are widely used in the public and private sectors. For example,

private firms and universities typically use assortments of selected suppliers and products from

which their workers or units can buy computers and other supplies.1 Health plans maintain drug

formularies, lists of prescription drugs available to enrollees for free or at a minimum co-pay, to help
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manage drug costs.2 Governments worldwide use framework agreements (FAs), in which the central

government procurement agency first selects an assortment of products through competitive bidding

in an auction mechanism, and then public organizations buy from this assortment as needed. FAs

are now recognized as a fundamental tool in public procurement: the European Union awarded

e80 billion using FAs in 2010, which accounts for 17% of the total value of all public procurement

(European Commision 2012); similarly, the Chilean government procurement agency (Dirección

ChileCompra), purchased goods for US$3 billion though FAs in 2018, 22% of the value of all public

procurement in Chile (Área de Estudios e Inteligencia de Negocios, Dirección ChileCompra 2019).

Deciding assortments centrally is useful even in settings where, in principle, each consumer could

be in charge of his own purchases; by aggregating individual purchases through the assortment, the

organization may be able to exploit the purchasing power of a large buyer. However, at the same

time, these assortments must contain adequate variety to satisfy the possibly heterogeneous needs

of consumers, which is an important concern in the settings previously described. For example,

while some public organizations or individuals may need to buy laptops with attractive graphics

features, others may need laptops with high processing power. Similarly, consumers buying from

a food assortment may have specific dietary constraints, such as those arising in hospitals or in

environments with kids. Therefore, the procurement agency faces the following tradeoff. On the one

hand, consumers have heterogeneous preferences; hence, increasing product variety may increase

consumer welfare. On the other hand, reducing the number of products in the assortment may

increase suppliers’ incentives to aggressively compete in prices, so that their products have a better

chance of being part of the small selection of items. The main objective of this paper is to provide

insights into how to achieve (some) variety to satisfy consumers’ heterogeneous preferences in a

cost-efficient way.

This paper is among the first to provide a formal analysis of procurement mechanisms for con-

structing assortments of products. Our main contributions are to introduce a model of the problem

faced by the procurement agency, to characterize the optimal mechanisms under progressively more

complex implementation constraints, and to study the design of simpler first-price auction mech-

anisms that are commonly used in public procurement. We describe these contributions in more

detail next.

We propose a model in which suppliers offer differentiated products within a certain category

(e.g., computers) and have a private cost for producing a unit of product. Consumers have hetero-

geneous preferences for specific products within the category (e.g., for different computer models),

2For example, Aetna, Blue Shield of California, United Healthcare.
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Figure 1: Achievable expected consumer surplus (represented by the dashed lines) for
the different classes of mechanisms considered in the paper. The centralized mechanism
achieves highest consumer surplus and losses occur as we impose more complex implemen-
tation constraints. This figure also illustrates the roadmap for the paper.

and their aggregate preferences are summarized through a demand model. The procurement agency

must design a mechanism for selecting an assortment of products and their unit prices. Then, con-

sumers buy their most preferred alternative in the assortment as prescribed by the demand model.

The objective of the procurement agency is to maximize the expected consumer surplus, which

depends on the aggregate value derived from the consumption of products in the assortment and

the total procurement cost, crucially incorporating both variety and cost considerations.

In the above setting, suppliers face two sources of competition: (1) the competition to be part

of the assortment, which we refer to as competition for the market ; and, once in the assortment, (2)

the competition in the market against the other suppliers in the assortment for consumer demand.

Both sources of competition directly impact the consumer surplus as they determine the assortment

of products (and thus the offered variety) and also their prices. Therefore, they must be carefully

balanced by the mechanism designer when optimizing the tradeoff between variety and prices.

To better understand this tradeoff, we study the design of optimal mechanisms under increas-

ingly more complex (and often more realistic) implementation constraints (see Figure 1). We start

with the centralized mechanism, in which the auctioneer acts as a central planner in the sense that

she determines the fraction of the aggregate demand to be satisfied by each of the suppliers and

their appropriate monetary compensations. Centralized mechanisms are used in some contexts.

For instance, Cenabast is a procurement organization within the Chilean goverment in charge of

making large health-related purchases to be distributed among different organizations; Cenabast

runs centralized auctions which take into account variety considerations.

The characterization of the optimal centralized mechanism allows us to understand the optimal
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tradeoff between variety and price competition, which crucially depends on the level of substitution

across products. If products are close substitutes, demand is exclusively allocated to suppliers with

the lowest virtual costs. By restricting entry to the assortment in this way, the auctioneer can

provide incentives to low (virtual) cost suppliers by awarding them higher quantities, thus reducing

the expected payments. Moreover, as products are close substitutes, restricting entry in this way is

not very damaging to consumers in terms of variety. By contrast, when substitution across products

is low, the demand is typically split between suppliers; in this case, the upside of providing more

variety prevails over the decrease in expected payments that can be achieved by restricting entry.

When products are also vertically differentiated, the quality advantage is factored in by allowing

higher-quality suppliers to be in the assortment even if their virtual costs are higher.

Motivated by the important applications discussed earlier, we then study a decentralized setting,

in which the auctioneer chooses the assortment of suppliers with their unit prices but, in contrast to

the centralized setting, she cannot directly choose allocations: these are determined by the choices

of the consumers. As illustrated in Figure 1, we show that when the auctioneer can compensate

suppliers using two-part tariffs, the same expected consumer surplus as in the centralized setting

can be achieved by using the same market structure (thus producing the same insights).

By contrast, when payments to suppliers must be implemented through linear pricing (i.e.,

payments are equal to the unit prices paid by consumers times the quantity demanded), which is

the payment structure broadly used in practice, the consumer surplus in the centralized setting is

not necessarily achieved. However, when the demand is represented by an affine model and the

total demand is inelastic, we provide mild sufficient conditions on the cost distributions for which

there is no performance loss associated with decentralizing the allocations and imposing linear

pricing (see Figure 1). Moreover, we show that this can be done by preserving the assortment and

induced demand in the centralized setting, thus preserving the market structure. We complement

these theory results with numerical analyses under more general demand assumptions and under

additional constraints, which suggest that the insights from the centralized mechanism also hold in

many relevant decentralized settings.

Finally, we study how the consumer surplus is affected when the menu must be decided through

first-price-auction-type (or pay-as-bid) mechanisms, which are prevalent in public procurement

and constitute the standard implementation of FAs, one of our leading applications. In these

mechanisms, the auctioneer designs the rules to determine the assortment based on bids submitted

by suppliers and, possibly, on the characteristics of the products and the demand. Importantly, if

a supplier is added to the menu, his bid is taken as the posted price. As illustrated in Figure 1, we
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show that, in general, imposing the first-price-auction constraint leads to a performance loss, even

with respect to the decentralized mechanisms with linear pricing. This is because, in contrast to

the optimal mechanism design setting, now the auctioneer can directly control only the competition

for the market; competition in the market is determined by the suppliers’ bids and the demand

system.

We show that, when substitution across products is either high or low, a mechanism that

does not impose competition for the market and always includes all suppliers in the menu (which

closely resembles the way FAs are awarded in Chile) performs reasonably well. If products are

close substitutes, consumers are highly price sensitive and the competition in the market provides

sufficient incentives for suppliers to bid aggressively. In turn, when substitution across products is

low, restricting entry is not profitable anyway because consumers derive a high value from variety.

By contrast, when substitution across products is intermediate, we find that emulating the optimal

mechanism in order to introduce competition for the market can lead to substantial improvements

in consumer surplus. We show that by using simple rules to restrict the entry to the assortment,

the auctioneer can achieve a decrease in suppliers’ bids that outweighs the loss of reducing variety.

Overall, our results allow us to formalize and understand the tradeoff between increasing va-

riety and inducing price competition when constructing assortments for heterogeneous consumers

under progressively more complex practical constraints. Motivated by the implementation of such

mechanisms in public settings, and in particular in the Chilean setting, we further show how intro-

ducing competition in first-price auctions through simple rules can result in a significant increase

in expected consumer surplus. The analytical insights obtained in this paper played a crucial role

in the redesign of the Chilean Framework Agreement for food in 2017.

Related literature. Our work is related to several streams of literature in economics and opera-

tions. First, our work extends classic work in mechanism design in the tradition of Myerson (1981)

by considering an endogenous demand system; this difference poses significant challenges when

solving for the optimal mechanism under linear pricing in the decentralized setting. Furthermore,

in our problem the designer maximizes consumer surplus (as opposed to just minimizing payments

to suppliers), which also depends on the underlying preferences of consumers.

Our work is closely related to some previous papers in procurement and regulation economics.

Dana and Spier (1994) study how to allocate production rights to firms that have private cost

information. An important insight of theirs is that the optimal market structure may depend on

the firms’ bids, which is similar to our result that the optimal allocation depends on suppliers’
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cost declarations. However, their auction determines the market structure and lump-sum fees

only, while an exogenous competition model determines the unit prices paid by consumers. By

contrast, our decentralized model captures two realistic features of FAs: linear pricing and the fact

that these unit prices are endogenously determined by the mechanism. As it will become clear in

Section 4, incorporating these features poses significant challenges when characterizing the optimal

mechanism, as we now have one instrument (unit prices) influencing both the demand (allocation)

and the payments to suppliers.

Similarly, Anton and Gertler (2004) and McGuire and Riordan (1995) study the optimal mech-

anism with an endogenous market structure in a Hotelling model. However, unit prices are not

part of the mechanism, and allocations are determined by the designer and not endogenously as

in our decentralized setting. Closer to our work, Wolinsky (1997) studies a spatial duopoly model

where firms compete in both prices and quality. While it considers endogenous demands, it restricts

analysis to solutions in which both firms have positive demands. By contrast, we are particularly

interested in solutions in which some firms may be left out of the assortment to induce more

competition. In fact, in our model, the optimal assortment typically does not contain all suppliers.

Another stream of related work on endogenous market structures is that of split-award auctions

or dual sourcing (Chaturvedi et al. 2014, Li and Debo 2009, Elmaghraby 2000, Riordan and Sap-

pington 1989, Anton and Yao 1989). However, purchases are decided by the auctioneer (closer to

our centralized setting) and do not consider an underlying set of heterogeneous consumers.

Our work is also related to the operations literature on assortment planning decisions (see, e.g.,

Kök et al. (2009)). In these settings, decisions are made by one retailer that carries all products,

and has full information on their unit costs. By contrast, we construct an assortment using a

mechanism that elicits private cost information from many different suppliers.

Our analysis in Section 5 is closely related to Demsetz auctions (Demsetz 1968), which introduce

competition for the market; Engel et al. (2002) also study a similar problem in a stylized model.

This also relates to papers in group buying showing that committing to a single seller can be

convenient for the group even if the members have heterogeneous preferences, as this can reduce

buying prices (Dana 2012, Chen and Li 2013). However, these papers study complete information

models; we extend their analysis to an auction setting with asymmetric cost information.

Finally, to the best of our knowledge, FAs are directly studied by only two prior mathematical

modeling papers. Albano and Sparro (2008) consider a complete-information Hotelling model with

equidistant firms, where only the subset of suppliers with lowest bids is added to the assortment.

By contrast, we consider an incomplete information setting with a richer set of rules in which the
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assortment can depend on product characteristics. Gur et al. (2017) consider a model of FAs that

studies the cost uncertainty faced by a supplier over the FA time horizon when selling a single item,

but does not consider multiple differentiated products nor heterogeneous consumers.

Overall, to the best of our knowledge, our work is the first to study optimal buying mechanisms

in an asymmetric information setting, with an endogenous market structure, an endogenous demand

for differentiated products, and in which unit prices are determined by the mechanism.

2 Model

We introduce a model of procurement mechanisms for differentiated products. In our setting, the

auctioneer runs a mechanism for satisfying the demand of consumers with diverse preferences for

the suppliers’ heterogeneous products. Therefore, the actors in our model are (i) an auctioneer (or

designer), (ii) suppliers (or agents), and (iii) consumers. We describe each of these next.

Suppliers. There is an exogenous set N of n potential suppliers indexed by i. Suppliers offer

differentiated products that are imperfect substitutes for each other. The number of suppliers and

the characteristics of their products are fixed and common knowledge. We assume that suppliers

are risk-neutral and seek to maximize expected profits. To simplify the exposition, we assume that

each supplier offers exactly one product, so that firms and products share the same indices. In a

separate electronic companion we discuss the extension to the multi-product setting, and show that

our main results on optimal mechanism design hold under this extension.

Following the tradition in the auction literature (see, e.g., Krishna (2009)), we assume that

suppliers have production costs drawn independently from common-knowledge distributions, whose

realizations are the private information of each supplier. Formally, supplier i has a private cost

θi ∈ Θi to produce one unit mass of his product, where Θi is a finite set of strictly positive real

numbers. We index the elements of Θi such that θji < θki whenever j < k, for all θji , θ
k
i ∈ Θi. We

say that supplier i is of type θi if his cost is θi. Let fi be a probability mass function over Θi,

where fi(θi) represents the probability that supplier i is of type θi. Let Fi(θ
j
i ) =

∑
k≤j fi(θ

k
i ) be

the cumulative probability distribution. Let Θ = ΠiΘi denote the type space. We use discrete

distributions for technical convenience, as explained in Section 4. Because suppliers’ types are

independent, the joint probability of θ = (θ1, . . . , θn) is equal to f(θ) = Πn
i=1fi(θi). We denote the

probability that all suppliers other than i have type θ−i by f−i(θ−i). We use boldface to denote

vectors and matrices throughout the paper.
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We assume that suppliers have constant marginal costs of production and do not face capacity

constraints.3 Therefore, the products included in the assortment are always available and their

production costs do not depend on the quantity demanded. These assumptions are reasonable for

many of the settings we have in mind; for example, usually the quantities that suppliers sell through

FAs represent only a small fraction of their total overall sales (Gur et al. 2017).

Consumers. Recall that the auctioneer wants to provide adequate variety to satisfy the (possibly

heterogeneous) needs of the consumers while managing costs. As argued in the Introduction, we as-

sume that the auctioneer maximizes consumer surplus when solving for the optimal mechanism. In

order to define consumer surplus, we start by specifying how consumers’ purchasing decisions trans-

late into aggregate demands for the goods. These demands reveal consumers’ preferences; hence,

they will be directly related to consumer surplus. Consumer demand will also play an important

role in Sections 4 and 5, when we discuss the implementation of decentralized mechanisms.

In the tradition of the assortment planning literature (see Kök et al. (2009) for a comprehensive

survey) and in oligopoly pricing literature (e.g., Tirole (1988)), we assume that aggregate demand

functions are common knowledge and are an input to our model. This assumption also seems

reasonable in the contexts discussed in the Introduction, as a demand system can typically be

estimated using available historical data or consumer surveys (Ackerberg et al. (2006)).

Let p = (pi)i∈N be the vector of unit prices associated with the set of potential suppliers.

Suppose that, from the set of potential suppliersN , a subsetQ ⊆ N of suppliers is in the assortment.

Then, for every such subset Q and vector of prices p, the vector of demand functions is given

by d(Q,p) = (di(Q,p))i∈N , where di(Q,p) denotes the expected demand for product i under

assortment Q and prices p. Note that the demand functions can naturally change with the set of

available products in the assortment.

Given a vector of prices p = (pi)i∈N and a suppliers’ set Q, let pQ = (pi)i∈Q be the subvector

of prices of the suppliers in Q. We introduce the following assumption, which we keep throughout:

Assumption 2.1 (Demand system). We assume that (i) di(Q,p) = di(Q,p
′) for every p′ such

that p′Q = pQ, that is, demand is determined by the prices of products in the assortment; and (ii)

di(Q,pQ) = 0 for i /∈ Q, that is, products that are not in the assortment cannot be purchased.

The assumption is natural and as we illustrate later in this section, is satisfied by many com-

monly used demand models, including those studied in this paper.

3We explain how suppliers’ capacity constraints can be incorporated in the ‘Consumers’ subsection.
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Given a demand system, the study of the “integrability problem” provides conditions under

which the demand functions can be derived from the maximization of a single utility function

(see, e.g., Mas-Colell et al. (1995) and Anderson et al. (1992)); for the demand systems that we

consider in this paper, this utility function in fact corresponds to the consumer surplus function.

We formalize this in the following assumption, which we keep throughout the paper.

Let CS(x,p) be the consumer surplus given consumption quantities x = (xi)i∈N (where xi

represents the total consumption from supplier i) and prices p. Let X denote the set of feasible

consumption quantities. To simplify the exposition, we assume that X is a compact and convex

subset of the Euclidean space. For example, a natural choice would be x ≥ 0 and
∑

i∈N xi ≤ M ,

where M is the market size (i.e., the total mass of potential consumers). We could also incorporate

firm-specific capacity constraints, such as xi ≤ Ki for some Ki. An important setting that we focus

on is one with no outside option. In this case, normalizing the total population of consumers to be

1, we have that4 X = {x : x ≥ 0, 1′x = 1}. We assume that the set X is common knowledge.

Assumption 2.2 (Consumer surplus). There exists a function GCS(x) of the consumption quan-

tities x such that:

CS(x,p) = GCS(x)−
n∑
i=1

pixi , (1)

that is, consumer surplus is quasi-linear in prices.5 We refer to the function GCS(·) as the gross

consumer surplus. Moreover, the expression for consumer surplus must satisfy, for all p and Q,

d(Q,p) ∈ argmax
x∈X

CS(x,p) , (2)

s.t. xi = 0 ∀i /∈ Q ,

where X is a compact and convex subset of the Euclidean space.

The first part of the assumption requires consumer surplus to be quasi-linear in prices. Note

that, in this case, the function GCS(x) provides a measure of the value derived from the aggregate

consumption vector (x) that is independent of the prices, and thus the consumer surplus expression

transparently captures the tradeoff between variety and prices. The second part of the assump-

tion states that d(Q,p), the quantities demanded given assortment Q and prices p, maximize

consumer surplus given those prices and assuming that products not in the assortment get zero

4This case is a reasonable approximation for a variety of settings in public procurement where buying organizations
cannot easily adjust the total quantity purchased based on prices, e.g., when buying medicines and school meals.

5The latter assumption is useful for solving the optimal mechanism design problems.
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demand. (Note that the solution of this maximization problem may also set some of the demanded

quantities for products in the assortment equal to zero.) This implies that the demand function

is consistent with the consumer surplus function, in a way that one would naturally expect. A

common approach to guaranteeing this consistency is to micro-found the aggregate demand system

and the associated consumer surplus function through a discrete choice model describing individual

consumption decisions; see Anderson et al. (1992) for a detailed discussion.

We illustrate this approach using a simple example of a Hotelling demand model of horizontal

differentiation with two suppliers, linear transportation costs, no outside option, and no capacity

constraints.6

Example 2.1 (Hotelling model with two suppliers). Consider the unit interval as the product

space, with two potential suppliers located at the extremes of the interval. There is a continuum

of consumers uniformly distributed on the product space. Each consumer demands one unit of

good and incurs transportation costs that are linear in the distance between the consumer and the

supplier. Consumer j located at `j derives the following utilities from consuming from the set of

suppliers N = {1, 2}:

uj1(p1) = − (δ`j + p1) and uj2(p2) = − (δ(1− `j) + p2) ,

where supplier 1 (resp. 2) is assumed to be located at 0 (resp. 1) and δ is the transportation cost.

As consumers are uniformly distributed on the [0, 1] segment, the aggregate demands can be derived

from individual utilities as follows:

d1(N,p) = max

{
0,min

{
1,
p2 − p1 + δ

2δ

}}
and d2(N,p) = max

{
0,min

{
1,
p1 − p2 + δ

2δ

}}
.

As there is no outside option, when assortments consist of a unique supplier his demand equals one.

In addition, aggregating the individual utilities we can derive the expression for consumer surplus:

CS(x,p) = −
(
δ

2

(
x2

1 + x2
2

)
+ p1x1 + p2x2

)
,

where the first terms represent the transportation costs and the latter terms the monetary costs. In

this example, GCS(x) = − δ
2(x2

1 + x2
2), which is equal to the total transportation cost. It is simple

to verify that the Hotelling model satisfies Assumption 2.2.

6Similarly, the expected demands resulting from a multinomial logit model will also satisfy the above assumptions.
However, we decided not to use MNL because of its limited ability to capture substitution across products.
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Our second example is an affine demand system, which generalizes the Hotelling model by

allowing for vertical differentiation and more general substitution patterns across products. Tra-

ditionally, an affine demand function is one where the relation d(p) = α − Γp holds for all

p ∈ {p ∈ R : α − Γp ≥ 0}, where α ≥ 0 represents a quality component and Γ is a matrix

that captures substitution patterns across products. We assume that the products are substitutes,

hence Γij ≤ 0 for i 6= j, and that Γ is symmetric and positive definite. Since we are particularly

interested in solutions in which not necessarily all suppliers have positive demand, it is important

to consider the extension of the affine demand specification to price vectors under which some

products get zero demand; see Shubik and Levitan (1980) and Soon et al. (2009). We formal-

ize this extension by assuming that a single representative consumer maximizes consumer surplus

(see Farahat and Perakis (2010)) and that the demand function is defined as the solution to the

representative consumer’s maximization problem. (We could also micro-found this aggregate de-

mand system starting from a discrete choice model describing individual consumption decisions;

see Armstrong and Vickers (2014).)

Example 2.2 (Affine demand model). Let α ≥ 0 represent a quality component and let Γ be a

positive definite symmetric matrix with Γij ≤ 0 for i 6= j that captures substitution patterns across

products. Given a vector of prices p, suppose that a single representative consumer maximizes

consumer surplus, which is given by

GCS(x) = c′x− 1

2
x′Dx, and CS(x,p) = GCS(x)− p′x , (3)

where D = Γ−1 and c = Γ−1α have been renamed to ease notation.

Consistent with Assumption 2.2, the demand function is defined as the solution of the repre-

sentative consumer’s maximization problem. Hence, for any p ∈ Rn, let d(Q,p) be defined as the

solution to maxx∈X CS(x,p), s.t. xi = 0, ∀i /∈ Q. Clearly, this problem has a unique solution for

every p ∈ Rn (provided that X is a compact and convex set). Hence, the demand function d(Q,p)

is well defined for all Q ⊆ N and all p.7

Auctioneer. The role of the auctioneer is to design a mechanism to satisfy the purchasing needs

of the heterogeneous consumers. The auctioneer is risk-neutral and her objective is to maximize

7In the separate electronic companion, we show that whenever X = {x : x ≥ 0,
∑
i∈N xi = 1}, the positive

part of d(Q,p) is an affine function of only the prices of the set of suppliers in Q and, therefore, can be written as
d(Q,p) = a−GpQ for some a andG that depend only on the set Q. We also show that demand for a product is weakly
decreasing in its own price and increasing in others’ prices. Importantly, we note that cross-price elasticities change as
a function of the assortment. Analogous results were established by Farahat and Perakis (2010) for X = {x : x ≥ 0}.
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expected consumer surplus. This objective is appropriate for the applications described in the

Introduction as it incorporates both variety and cost considerations: the aggregate value derived by

consumers from variety is captured by the gross consumer surplus term, while the total procurement

cost is captured by the transfers to suppliers.

As we discussed in the Introduction, we consider two classes of procurement mechanisms that

we call centralized and decentralized, respectively. In both settings, the rules of the mechanism

are common knowledge. In a centralized setting, the auctioneer runs a mechanism for deciding the

fraction of the aggregate demand that will be satisfied by each of the suppliers and their appropriate

compensations. In this case, the auctioneer decides how to distribute the goods among the different

consumers, that is, the auctioneer acts as a central planner who can decide how to allocate goods.

While the auctioneer has the ability to allocate demand, she does not have access to suppliers’

private information and thus the mechanism is used for price discovery. The optimal centralized

mechanism is formulated and analyzed in Section 3, and allows us to derive useful insights into the

optimal market structure and hence into the tradeoff between variety and payments to suppliers.

By contrast, in a decentralized setting, the auction is run to construct the menu of products

based on suppliers’ bids. The menu consists of a subset of suppliers and prices for their products.

Once the menu is fixed, consumers choose which product in the menu to purchase. The main

difference from the centralized setting is that the auctioneer cannot directly determine the result-

ing allocations; allocations are determined by the choices of consumers. A decentralized setting

corresponds to the way big organizations or governments typically build assortments of products.

We will study three decentralized implementations. In Section 4, we study optimal decentralized

mechanisms when payments to suppliers can be implemented using two-part tariffs and when they

must be implemented using linear prices. In Section 5, we study decentralized first-price-auction

mechanisms, which brings us one step closer to the implementation of practical FAs.

3 Centralized Procurement

3.1 Mechanism Design Problem Formulation

We provide a mechanism design formulation for the centralized auctioneer’s problem, considering

Bayes-Nash implementation. By invoking the revelation principle, we restrict attention to direct-

revelation mechanisms without loss of optimality. Hence, for given cost declarations, the designer

selects an allocation of consumptions from each supplier, as well as their appropriate compensations.

Formally, a direct-revelation centralized mechanism can be specified by (a) the allocation functions
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xi : Θ→ [0,M ] (recall that M is the market size), where xi(θ) is the quantity allocated to supplier

i when cost declarations are θ; and (b) the price functions pi : Θ → R, where pi(θ) denotes the

unit price of supplier i when cost declarations are θ. Let x = (x1, . . . , xn) and p = (p1, . . . , pn).

In the optimal mechanism design problem, the designer maximizes her objective (in our case,

expected consumer surplus) subject to the usual constraints in mechanism design theory: incentive

compatibility (IC), individual rationality (IR), and feasibility of allocations (Feas). To express these

constraints, we define the interim expected utility for supplier i of type θi and report θ′i as follows:

Ui(θ
′
i|θi) =

∑
θ−i∈Θ−i

f−i(θ−i)
(
pi(θ

′
i,θ−i)− θi

)
xi(θ

′
i,θ−i) . (4)

The IC constraints can be expressed in terms of the interim expected utilities as Ui(θi|θi) ≥

Ui(θ
′
i|θi), for all i ∈ N and all θi, θ

′
i ∈ Θi, whereas the IR constraints are given by Ui(θi|θi) ≥ 0,

for all i ∈ N and all θi ∈ Θi. Note that, in all the IC and IR constraints, prices always appear

multiplied by the corresponding allocations, and these quantities represent the net transfers to the

suppliers. In addition, by Assumption 2.2, the same is true for the objective. Therefore, we can

formulate the centralized problem in terms of the allocations and the transfers to suppliers.

Formally, define the transfer functions ti : Θ→ R, as ti(θ) := xi(θ)pi(θ); that is, ti(θ) denotes

the payment to supplier i when cost declarations are θ. Let t = (t1, . . . , tn). Then, the auctioneer’s

optimal mechanism design problem can be formulated in terms of x and t as follows:

[Cent] max
x,t

Eθ

[
GCS(x(θ))−

n∑
i=1

ti(θ)

]
s.t. Ui(θi|θi) ≥ Ui(θ′i|θi) ∀i ∈ N, ∀θi, θ′i ∈ Θi (IC)

Ui(θi|θi) ≥ 0 ∀i ∈ N, ∀θi ∈ Θi (IR)

x(θ) ∈ X ∀θ ∈ Θ (Feas)

The above formulation differs from the classic mechanism design formulation in the objective func-

tion only: while in the latter expected transfers are minimized, Cent maximizes expected gross

consumer surplus minus transfers. Therefore, the optimal solution to Cent can be obtained by ex-

tending standard arguments based on the envelope theorem (Myerson 1981) adapted to the setting

of discrete distributions (Vohra 2011) to determine which IC constraints are binding.

Analogously to the setting of continuous cost distributions, we introduce the following definition

of the virtual cost function for cost distributions with discrete support (see Vohra (2011)).
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Definition 3.1. For θi ∈ Θi, let ρi(θi) = max{θ′ ∈ Θi : θ′ < θi}, that is, ρi(θi) is the predecessor

of θi in Θi. (If θi is the lowest cost in the support, we define ρi(θi) := θi.) Let vi(θi) := θi +

Fi(ρi(θi))
fi(θi)

(θi − ρi(θi)) be the virtual cost function of supplier i. Let v(θ) be defined as the vector of

virtual costs, i.e., v(θ) = (v1(θ1), . . . , vn(θn)).

We make the standard regularity assumption in mechanism design, which we keep throughout.

Assumption 3.1. The function vi(θi) is strictly increasing for all i ∈ N .

Finally, we also define the interim expected allocations and interim expected transfers as follows:

Xi(θi) :=
∑

θ−i∈Θ−i

f−i(θ−i)xi(θi,θ−i), Ti(θi) :=
∑

θ−i∈Θ−i

f−i(θ−i)ti(θi,θ−i). (5)

Then, the optimal solution to Problem Cent can be characterized as follows.

Proposition 3.1. Suppose that (x, t) satisfy the following conditions:

1. The allocation function satisfies, for all θ ∈ Θ,

x(θ) ∈ argmax
x′∈X

CS(x′,v(θ)), (6)

2. Interim expected allocations are monotonically decreasing for all i ∈ N , that is, Xi(θ) ≥ Xi(θ
′)

for all θ, θ′ ∈ Θi such that θ ≤ θ′.

3. Interim expected transfers satisfy, for all i ∈ N and θji ∈ Θi,

Ti(θ
j
i ) = θjiXi(θ

j
i ) +

|Θi|∑
k=j+1

(θki − θk−1
i )Xi(θ

k
i ) (7)

Then, (x, t) is an optimal mechanism for the centralized procurement problem Cent.

The proof of this and other main results can be found in the Appendix. Omitted proofs are

provided in the separate electronic companion. Condition 1 in Proposition 3.1 states that, for each

θ ∈ Θ, the optimal vector of allocations x(θ) coincides with the demand functions defined by (2)

when unit prices are equal to virtual costs and all products are included in the assortment, that is,

when8 Q = N . This follows from classic mechanism design arguments, i.e., the equilibrium ex-ante

expected payment that the auctioneer makes to a bidder is equal to the ex-ante expectation of the

virtual cost times the allocation. However, even though the method of analysis of the centralized

8Even if Q = N , the maximization problem may set the demand for some products equal to zero.
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mechanism is quite standard, we have not seen such a transparent characterization of the tradeoff

between variety and payment to suppliers in the literature before.

While the result holds for general demand models that satisfy Assumptions 2.1 and 2.2, to

clarify the intuition we next discuss the structure of the optimal centralized mechanism for the

demand models introduced in Section 2. Before proceeding, we show the following technical result.

Proposition 3.2. Consider the centralized problem when the consumer surplus is either that of the

Hotelling model or of the affine demand model introduced in Section 2. Then, there exists a feasible

solution (x, t) that:

1. Satisfies the optimality conditions stated in Proposition 3.1.

2. For all i ∈ N , θi ∈ Θi, and θ−i ∈ Θ−i, we have that ti(θi,θ−i) ≥ θixi(θi,θ−i) and ti(θi,θ−i) =

0 if xi(θi,θ−i) = 0.

Furthermore, let T i := (Ti(θ
j
i ))j=1,...,|Θi| be the vector of expected transfers to supplier i and let

T := (T i)i∈N . Then, for every feasible solution (x, t) satisfying the conditions stated in Proposi-

tion 3.1, we have that x and T are unique.

The result shows that, for the main models used in the paper, an optimal solution as charac-

terized in Proposition 3.1 indeed exists and, furthermore, (x,T ) is unique.

3.2 Examples of Optimal Centralized Mechanisms

3.2.1 Optimal Centralized Mechanism under the Hotelling Demand Model

Example 3.1. Consider the Hotelling model with the two suppliers introduced in Example 2.1 and

suppose that the suppliers have the same cost distribution. Let θ1 and θ2 be the cost realizations

of suppliers 1 and 2, respectively. By Proposition 3.1, for any cost realization θ, the optimal

allocations are given by the Hotelling demands when prices are equal to the vector of virtual costs

v(θ). In this case, the centralized problem yields an optimal allocation characterized as: (i) if

δ > |v(θ1)−v(θ2)|, the demand is split between the two suppliers with x1(θ) = (v(θ2)−v(θ1)+δ)/(2δ)

and x2(θ) = (v(θ1)− v(θ2) + δ)/(2δ); and (ii) if δ < |v(θ2)− v(θ1)|, all the demand is awarded to

the supplier with the lowest (virtual) cost.

As illustrated, an important feature of the optimal centralized solution is that the decision of

whether to split the demand depends on the cost realizations. If the transportation cost is small

relative to the differences in the virtual costs, then it is optimal to have a unique supplier, the one
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with the lowest virtual cost. In this case, it is worth paying the cost of having less variety in the

assortment with the upside of decreasing the expected payments to suppliers. By contrast, if the

transportation cost is high relative to the differences in the virtual costs, the demand is split between

both suppliers to increase variety. In this sense, the optimal solution to the centralized problem

optimizes the tradeoff between variety and payments to suppliers: by restricting the entry to the

assortment in some scenarios, the auctioneer can reduce expected payments while still providing

incentives for truthful cost revelation.

This insight generalizes to the case with more than two suppliers. Consider a general Hotelling

demand model with n suppliers located at 0 ≤ `1 < . . . < `n ≤ 1; the location represents the

horizontal characteristic of the product offered by the supplier relative to the product space. The

closer two suppliers are in the product space, the closer substitutes their products are. A continuum

of consumers, all of whom buy one unit of product, are uniformly distributed on the product space.

The utility consumer j obtains from buying from i is given by uji(pi) = − (δ|`i − `j |+ pi), where δ

is the transportation cost and `j is the location of consumer j in the unit line. Using these utility

functions we can characterize the demand function and the optimal centralized solution.

Suppose that suppliers have fixed unit prices given by p. It is easy to see that supplier i

will have positive demand if and only if i is the preferred choice for the consumer located at

`i. Therefore, the set of suppliers with positive demand as a function of prices p is given by

Q(p) = {i ∈ N : pi ≤ mink 6=i {pk + δ|`k − `i|}}. In addition, two consecutive suppliers i, j ∈ Q(p)

split the segment between `i and `j proportionally to their prices: i obtains
pj−pi+δ|`j−`i|

2δ and j the

rest. (The demand equations can be easily derived by determining the location of an indifferent

consumer between two active neighboring suppliers.)

Then, by Proposition 3.1, for any cost realization θ, the optimal allocations are given by the

Hotelling demands when prices are equal to the vector of virtual costs v(θ). Therefore, for a given

θ ∈ Θ, the optimal assortment is given byQ(v(θ)) = {i ∈ N : vi(θi)− vj(θj) ≤ δ|`j − `i| ∀j ∈ N},

which corresponds to the above definition of Q(·) when prices are replaced by virtual costs. That

is, if two products are close substitutes, i.e., δ|`j − `i| is relatively small, the auctioneer will not

purchase the product with the highest virtual cost. On the other hand, when two products are not

close substitutes, i.e., δ|`j − `i| is relatively big, then the (virtual) cost of one product has less of

an effect in determining whether the other product is included or not in the assortment.
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3.2.2 Optimal Centralized Mechanism under General Affine Demand Models

We now turn our attention to the more general affine demand models introduced in Section 2,

which allow us to combine both vertical and horizontal sources of differentiation. Recall that for a

general affine demand model, the demand functions are obtained by solving Problem (2) with GCS

given by (3) when all products are considered in the assortment. To gain intuition, we discuss a

simple example with two suppliers.

Example 3.2. We consider a duopoly where α = (a1, a2) and Γ =
( r1 −γ
−γ r2

)
, with all the parameters

positive and with r1 + r2 ≥ 2γ. Under these parameters, we have that D = 1
r1r2−γ2

( r2 γ
γ r1

)
and

c = 1
r1r2−γ2

( r2a1+γa2
r1a2+γa1

)
. Suppose that X = {x : x ≥ 0,1′x = 1}, that is, there is no outside option.

For any given p, the demand functions d(N,p) are given by

di(N,p) = max

{
0, min

{
(rj − γ)ai − (ri − γ)aj + ri − γ − (rirj − γ2)(pi − pj)

ri + rj − 2γ
, 1

}}
, i, j ∈ {1, 2}.

Recall that, for a given cost realization θ, the optimal allocations in the centralized problem

equal the demand characterized above with prices equal to the vector of virtual costs v(θ). To

illustrate the tradoff, we start by discussing the structure of the optimal solution in Example 3.2,

focusing on supplier 1 and assuming that suppliers have the same own-substitution patterns (i.e.,

r1 = r2) but different qualities. In this case, for a given θ, we have that supplier 1 will be in the

assortment (x1(θ) > 0) only if9 v1(θ1)− v2(θ2) ≤ (a1−a2)+1
r+γ . From this expression one can see that

there is a natural bias towards the highest-quality supplier. For instance, if (a1 − a2) + 1 ≤ 0 or,

equivalently, a1 ≤ a2 − 1, then supplier 1 can be in the assortment only if he is the one with the

lowest virtual cost. Once (a1 − a2) + 1 > 0, supplier 1 can be part of the assortment even if his

virtual cost is greater than that of supplier 2; note that this is possible even if he is still lower

quality than supplier 2 (i.e., if a1 < a2). As the difference in qualitiy between suppliers 1 and

2 (a1 − a2) increases, the auctioneer becomes more tolerant to larger differences in (virtual) cost

between suppliers 1 and 2. In addition, as substitution across products (γ) increases, supplier 1’s

virtual cost is required to be closer to that of supplier 2 in order for supplier 1 to be part of the

assortment, which agrees with the intuition derived from the Hotelling model.

In the more general case, for a given θ, supplier 1 will be in the assortment only if (r1r2 −

γ2)(v1(θ1)− v2(θ2)) ≤ (r2− γ)a1− (r1− γ)a2 + r1− γ. Therefore, for him to be in the assortment,

the difference in virtual cost must be bounded by a quantity that is increasing in the normalized

difference in quality (r2 − γ)a1 − (r1 − γ)a2. Hence, the larger this difference in quality (e.g., if

9If we let a1 = a2 = 0, r1 = r2 = 1
δ
, and γ = 0, we obtain the same expression as in the Hotelling model.
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a1 grows), the larger is the difference in virtual cost that the auctioneer allows in order to keep

supplier 1 in the assortment.

Note that, again, the optimal centralized solution restricts the entry of a supplier to the as-

sortment to decrease expected payments. The structure of the optimal centralized allocation also

generalizes to the case of more products, but the discussions are omitted for the sake of brevity.

4 Decentralized Procurement

We now study the optimal mechanism problem in a decentralized setting. In this setting, for

given cost declarations, the auctioneer selects a menu that consists of an assortment of products

(or suppliers) and their unit prices. The auctioneer does not directly decide allocations; instead,

purchasing decisions are decentralized: based on the products and prices in the menu, consumers

decide which products to buy through the demand system.

Formally, we consider Bayes-Nash implementation and restrict attention to direct-revelation

mechanisms without loss of optimality. A decentralized direct-revelation mechanism can be specified

by (a) the assortment functions qi : Θ→ {0, 1} that are equal to 1 if and only if supplier i is included

in the assortment when cost declarations are θ; and (b) the price functions pi : Θ → R, where

pi(θ) is the unit price for the item offered by supplier i when cost declarations are θ. Note that

this formulation allows for multiple suppliers to be in the menu. We define q := (q1, ..., qn) and

p := (p1, ..., pn). For given cost declarations θ, the menu is given by (q(θ),p(θ)). Analogously to

the centralized setting, let xi : Θ→ [0,M ] denote the allocation functions, i.e., xi(θ) is the quantity

allocated to supplier i when cost declarations are θ. Let x := (x1, . . . , xn).

In the decentralized optimal mechanism design problem, the auctioneer chooses the assortment

and price functions to maximize expected consumer surplus subject to incentive compatibility

(IC), individual rationality (IR), feasibility of allocations (Feas), plus an extra set of constraints

that links the allocations to the demand system. In particular, for every vector of cost realizations

θ, the allocation to suppliers must be given by the consumer demand associated with the menu

(q(θ),p(θ)), as determined by the underlying demand system. We capture this by imposing the

following set of demand constraints on our decentralized problem:

x(θ) = d(q(θ),p(θ)) ∀θ ∈ Θ,

where we slightly abuse notation and denote by q(θ) the set of suppliers that are in the assortment
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given costs θ. In other words, the value of x is completely determined10 by q and p.

By imposing these additional constraints, the decentralized problem deviates from the central-

ized and the classic mechanism design settings, where the designer selects both the payment and the

allocation function. In our problem, the designer does not directly select the allocation function;

instead, he chooses an assortment and unit prices and, given these, allocations are endogenously

determined through the demand system. Thus, one can easily observe that the centralized problem

is a relaxation of the decentralized problem where the demand constraints are ignored.11

While the auctioneer determines the unit prices that will induce demand, the payments to the

suppliers need not be linear in prices (i.e., equal to unit price times quantity sold) as the she

may choose to implement a more general payment structure. In Section 4.1 we show that if the

auctioneer can compensate the suppliers using two-part tariffs, then the optimal mechanism can

be easily characterized and the market structure of the centralized mechanism continues to hold.

In Section 4.2 we study a setting where payments to the suppliers need to be linear in prices

and upfront fees are not allowed. This compensation structure closely resembles that used in real-

world FAs where the procurement agency essentially acts as a platform and does not provide direct

payments; see Chapter 6 in Albano and Nicholas (2016) for a summary of FA implementations in

different countries. Imposing that payments to suppliers must be linear in prices can result in a

loss with respect to the centralized setting, and it also introduces significant technical challenges

in characterizing the optimal mechanism. Despite this, we provide mild sufficient conditions under

which, for a broad class of models, there is no performance loss associated with linear pricing. We

complement these results with simulations illustrating that the performance loss associated with

linear prices, if any, appears to be small. This suggests that the centralized mechanism may be

used as a somewhat reliable upper bound when thinking about designing mechanisms in practice.

4.1 Two-part Tariffs

As mentioned above, one could consider general payment structures to compensate suppliers. Per-

haps a sensible structure is a two-part tariff, in which the auctioneer receives (or pays) a fixed

transfer from every firm participating in the assortment and, in addition, every firm receives a

linear transfer from consumers (equal to the unit prices set by the mechanism times the demands).

10As x is fully determined by q and p, one could formulate the decentralized problem without including x as a
decision variable. As will become clear later in this section, we decided to keep it as part of our formulation to be
able to obtain a cleaner comparison with the centralized mechanism.

11As demands are obtained by maximizing consumer surplus and the auctioneer seeks to maximize expected
consumer surplus, it may appear that the demand constraints are redundant. Later in this section, it will become
clear that this is not the case because of the presence of the IC constraints.
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This payment structure has been frequently used in the regulation literature (e.g., Dana and Spier

(1994)), where the regulators can choose lump-sum fees that firms must pay to participate in the

market.

Formally, define the upfront payment functions yi : Θ→ R, where yi(θ) is the upfront payment

received (or given to the platform, if negative) by supplier i when cost declarations are θ. Then,

suppliers’ interim utilities can be written as

Ui(θ
′
i|θi) =

∑
θ−i∈Θ−i

f−i(θ−i)
( (
pi(θ

′
i,θ−i)− θi

)
xi(θ

′
i,θ−i) + yi(θ

′
i,θ−i)

)
(8)

and the objective of the auctioneer can be rewritten as

Eθ

[
CS(x(θ),p(θ))−

∑
i∈N

yi(θ)

]
= Eθ

[
GCS(x(θ))−

∑
i∈N

(xi(θ)pi(θ) + yi(θ))

]
,

where the equality follows from Assumption 2.2. Then, the auctioneer’s problem is given by:

[DecTwoPart] max
q,y,p,x

Eθ

[
GCS(x(θ))−

∑
i∈N

(xi(θ)pi(θ) + yi(θ))

]

s.t. Ui(θi|θi) ≥ Ui(θ′i|θi) ∀i ∈ N, ∀θi, θ′i ∈ Θi (IC)

Ui(θi|θi) ≥ 0 ∀i ∈ N, ∀θi ∈ Θi (IR)

x(θ) ∈ X ∀θ ∈ Θ (Feas)

x(θ) = d(q(θ),p(θ)) ∀θ ∈ Θ, (Demand)

where the suppliers’ interim utilities are given by (8). The differences from the centralized problem

are that (i) we impose an additional set of constraints, the demand constraints, that essentially

require the allocations to be consistent with consumer choices, and (ii) we impose more structure

on the transfers to suppliers.

However, we show that this problem can still be easily solved by using the solution to the

centralized mechanism as follows.

Proposition 4.1. Let (x?, t?) be an optimal solution to the centralized problem defined in Section 3.

Then, there exists an optimal solution (q,y,p,x) to the decentralized problem with two-part tariffs,

DecTwoPart, where, for all θ ∈ Θ, we have that:

1. qi(θ) = 1 if x?i (θ) > 0 and qi(θ) = 0 otherwise, for all i ∈ N ,

2. x(θ) = x?(θ),
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3. p(θ) = v(θ), and,

4. yi(θ) = t?i (θ)− x?i (θ)pi(θ) for all i ∈ N .

Moreover, the objective value of (q,y,p,x) in DecTwoPart is equal to the objective value of (x?, t?);

thus, OPT(DecTwoPart) = OPT(Cent), where OPT (P ) denotes the optimal value in problem P .

The result in Proposition 4.1 establishes that the centralized mechanism can also be imple-

mented using a decentralized mechanism with a two-part tariff payment structure. (Note that the

result holds for any demand model satisfying Assumptions 2.1 and 2.2.) This result is perhaps

not very surprising as, even though more constraints are imposed on the payment structure, the

auctioneer still has two instruments (upfront fees and unit prices) to satisfy two sets of constraints

(the suppliers’ IC constraints and the demand constraints). In fact, one can see that the auctioneer

can use the unit prices to satisfy the demand constraints by setting p(θ) = v(θ) (Condition 3) and

then use the upfront fees to guarantee that the incentive constraints are satisfied (Condition 4).

4.2 Linear Pricing

We now focus on a setting where the auctioneer can only use linear pricing to compensate suppliers

and these prices must agree with those quoted to consumers. Linear pricing is a prevalent practice

in many of the environments we are trying to capture, and thus an important operational constraint

that deserves to be studied.

Using the linear-pricing assumption, the interim expected utility for supplier i of type θi and

report θ′i defined in Eq. (4) is given by Ui(θ
′
i|θi) =

∑
θ−i∈Θ−i

f−i(θ−i)
(

(pi(θ
′
i,θ−i)− θi)xi(θ′i,θ−i)

)
.

In addition, we must include constraints to ensure that the allocations are consistent with the

underlying demand system (Demand).

The auctioneer’s optimal mechanism design problem can now be formulated as follows:

[DecLin] max
q,p,x

Eθ[CS(x(θ),p(θ))]

s.t. Ui(θi|θi) ≥ Ui(θ′i|θi) ∀i ∈ N, ∀θi, θ′i ∈ Θi (IC)

Ui(θi|θi) ≥ 0 ∀i ∈ N, ∀θi ∈ Θi (IR)

x(θ) ∈ X ∀θ ∈ Θ (Feas)

x(θ) = d(q(θ),p(θ)) ∀θ ∈ Θ. (Demand)

Problem DecLin differs from DecTwoPart only in the way payments to suppliers are imple-

mented. In the latter, the auctioneer has two instruments (unit prices and upfront payments) to
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decentralize allocations and to satisfy the suppliers’ incentive constraints. However, in DecLin,

there is only one instrument available (unit prices) to satisfy both sets of constraints. This results

in a significant difference: while in DecTwoPart the auctioneer is always able to achieve the con-

sumer surplus generated in a centralized setting, this is not necessarily true when the auctioneer

can only rely on linear prices. (We briefly discuss an example later in this section.)

As DecLin requires choosing an assortment function q, it is a mixed integer program that takes

a demand model as an input.12 Moreover, the presence of the demand constraints prevents us from

directly applying the standard mechanism design arguments used in the centralized case; under

these additional constraints it is not possible to establish a priori which IC constraints are binding

in the optimal solution. Therefore, the auctioneer’s problem appears to be challenging to solve.

Our approach is to provide sufficient conditions under which we can characterize an optimal

solution to DecLin. To that end, we exploit the following result, which provides necessary and

sufficient conditions under which DecLin attains the optimal objective of Cent.

Corollary 4.1. Let (x,T ) be the unique optimal solution to the centralized problem Cent, where

T denotes the vector of interim expected transfers.13 Define

qi(θ) = 1 if and only if xi(θ) > 0, ∀i ∈ N, θ ∈ Θ. (9)

Suppose that for all θ ∈ Θ, there exist prices p(θ) such that

x(θ) = d(q(θ),p(θ)) ∀θ ∈ Θ, and (10)

Ti(θi) =
∑

θ−i∈Θ−i

pi(θi,θ−i)xi(θi,θ−i)f−i(θ−i), ∀i ∈ N, ∀θi ∈ Θi . (11)

Then, the optimal objective of DecLin is equal to the optimal objective of Cent. Moreover, an

optimal solution to DecLin is given by (q,p) (characterized by Eqs. (9), (10), and (11)), and the

corresponding optimal allocation x of Cent. Furthermore, the optimal objective of DecLin is equal

to the optimal objective of Cent if and only if such a (q,p) solution exists.

The corollary suggests the following approach to solving for the optimal decentralized mecha-

nism. First, solve the centralized problem, which can be viewed as a relaxation of the decentralized

12Even if relaxing the integrality of the variables q is possible (by adjusting the definition of demand accordingly),
the program is typically nonconvex because the demand constraints are often nonlinear, even in simple cases such as
the Hotelling model with two suppliers in Example 2.1.

13Problem Cent admits a unique optimal solution (x,T ) for all demand systems considered in the paper; see
Proposition 3.2. If Cent admits more than one solution, our arguments can be easily extended accordingly.
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one where the demand constraints are ignored. Then, find unit prices that allow us to decentral-

ize the optimal solution by: (i) making the aggregate demands under such prices agree with the

optimal centralized allocations, as specified by Eqs. (9) and (10); and (ii) satisfying the individual

rationality and incentive compatibility constraints for suppliers’ truthful revelation of information

through the interim expected transfers (Eqs. (11)). This is at the heart of the technical challenge

in solving for the optimal mechanism in this setting: under a linear pricing structure we only have

one instrument (unit prices) to accomplish these two tasks, and such prices may not exist. The

above discussion also highlights why, even though the demands functions maximize consumer sur-

plus and the auctioneer’s objective is to maximize consumer surplus, the demand constraints are

not redundant in the presence of the IC constraints under linear pricing.

4.2.1 Decentralized Mechanisms with Linear Prices under Affine Demand Systems

For the results in this section we will focus on affine demand systems, including the Hotelling model

and the affine demand models introduced earlier. In this case, Corollary 4.1 introduces a system

of linear equations (given by Eqs. (10) and (11)) that unit prices must satisfy for a solution to the

decentralized problem to achieve the optimal centralized objective. To see why, note that Eqs. (10)

require that prices induce the optimal allocations x of Cent, i.e., we must find unit prices such that

d(q(θ),v(θ)) = d(q(θ),p(θ)), for all θ ∈ Θ. As the demand function is assumed to be affine in

prices, these equations yield linear constraints in prices as they require us to find prices to generate a

given vector of demands for firms with strictly positive demand. Moreover, given an optimal solution

to Cent, (x,T ), Eqs. (11) are also linear in prices. By the above observations, verifying whether

OPT (DecLin) = OPT (Cent) for affine demand models is equivalent to establishing whether the

linear system of equations defined by Eqs. (10) and Eqs. (11) admits a solution.14

Unfortunately, such system of equations does not always admit a solution. Hence, the restriction

of implementing payments through linear pricing can result in a loss, as in the following example.15

Example 4.1. Consider the Hotelling model introduced in Example 2.1. Let δ = 1 be the trans-

portation cost. Define Θ1 = {1, 2.5} and Θ2 = {1, 2, 2.3}, probability functions f1 = {1/2, 1/2} and

14Assuming discrete types allows us to work with a finite-dimensional system of equations and to use finite-
dimensional linear algebra. In the continuous-type setting, we would have to deal with an infinite-dimensional space
for price variables, and the results would be technically more involved.

15Alternatively, one could think of a scheme where the unit prices posted to consumers differ from those used to
compensate suppliers, and “budget balance” is required (i.e., for all cost realizations, the sum of consumers’ prices
times quantities sold must be equal to the sum of suppliers’ prices times quantities sold). It is easy to see that
such a scheme is less restrictive than linear pricing. In fact, we can show that when demand is given by a Hotelling
model, it always achieves the centralized optimum. While this scheme somewhat resembles the current practice in
the ride-sharing industry, we are unaware of practical procurement mechanisms implemented in this way. Hence, we
focus on the commonly used linear-pricing setting where suppliers garner the unit prices paid by consumers.
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f2 = {1/2, 1/3, 1/6}, and let the virtual costs be v1 = {1, 4}, v2 = {1, 3.5, 3.8}. In this instance, we

can show that OPT (Cent) > OPT (DecLin), as there is not enough freedom to choose unit prices

that simultaneously implement both constraints. We defer a detailed discussion to Appendix E.

In the remainder of this section, we provide additional (mild) conditions under which one can

guarantee that the system of equations in Corollary 4.1 admits a solution and, therefore, that the

optimal mechanism can be characterized. Recall that this solution will have the same intuitive

interpretation as the centralized solution, as the assortment, allocations, and expected payments

agree. We start by providing these conditions for the Hotelling model.16

Theorem 4.1. Consider the general Hotelling model in which suppliers have arbitrary locations

and cost distributions. Let c∗ = min1≤i≤n−1(`i+1 − `i). Suppose that the following conditions are

simultaneously satisfied:

1. There is at least one profile θ ∈ Θ such that |vi+1(θi+1)−vi(θi)| ≤ δ(`i+1−`i)/4 for all i ∈ N .

2. For every i ∈ N , we have that |Θi| ≥ 3 and that vi(θ
j+1
i )−vi(θji ) ≤

δc∗

8 for every 1 ≤ j < |Θi|.

Then, OPT (DecLin) = OPT (Cent).

The proof of Theorem 4.1 can be found in Appendix F. To better understand the conditions in

the theorem, we briefly discuss the intuition behind them. The first condition implies the existence

of an “interior solution” in which all n agents are in the assortment of the optimal centralized

solution. This is automatically satisfied if there is a profile of costs for which the virtual costs of all

firms coincide, e.g., if all suppliers have the same cost distribution. The second condition essentially

requires the difference in the virtual cost between adjacent points in the support to be bounded

by a function of δ such that, the smaller δ is, the closer the virtual costs should be. In general, if

we think of the discrete distribution as an approximation of an underlying continuous distribution,

this condition is equivalent to requiring that the grid of points in the support be thin enough with

respect to17 δ. These conditions together imply the existence of enough interrelated price vectors,

to provide sufficient degrees of freedom to satisfy the demand constraints and the interim expected

transfer constraints simultaneously. As the conditions in Theorem 4.1 will be satisfied provided

16In the electronic companion we provide a different set of conditions. In particular, we consider a Hotelling model
with n suppliers such that supplier i is located at `i = (i−1)

(n−1)
(that is, suppliers are equidistant). Further, we assume

that the cost distributions are identical. Then, we have OPT (DecLin) = OPT (Cent).
17For example, if costs are uniformly distributed in [0,1], we can construct a grid consisting of k equidistant costs

such that the distance between adjacent costs is 1/(k − 1). Using the definition of virtual costs (Definition 3.1), it is
easy to see that the difference between adjacent virtual costs vi(θ

j+1
i ) − vi(θji ) is bounded by 2/(k − 1). Therefore,

for every δ, we can define k large enough so that Condition 2 is satisfied (e.g., k ≥ 16/δc∗).
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that for at least one cost realization firms have similar virtual costs, and that the cost distribution

grids are granular enough, they do not apper to be too restrictive.

We now turn our attention to the more general affine demand models, and again ask when does

the solution to the decentralized problem agree with the centralized solution.

Theorem 4.2. Consider the general setting with N ≥ 2 agents, general cost distributions, and Γ

is strictly diagonally dominant. Moreover, suppose that there are no outside option and no capacity

constraints, i.e., X = {x : x ≥ 0,
∑

i∈N xi = 1}. Suppose that the following conditions are

simultaneously satisfied:

1. There exists a profile θ ∈ Θ such that the set of active firms in the optimal centralized

solution is Q(θ) = N . In addition, there exists a d∗ ∈ R such that, for all θ′ ∈ Θ with

|vi(θ′i)− vi(θi)| ≤ d∗ for all i ∈ N , we have that Q(θ′) = N .

2. For every i ∈ N we have that |Θi| ≥ 3 and that vi(θ
j+1
i )−vi(θji ) ≤ d∗/2 for every 1 ≤ j < |Θi|.

Then, OPT (DecLin) = OPT (Cent).

Although here d∗ depends on the primitives of the problem, the intuition behind the conditions

is similar to that in the Hotelling model: the first condition implies the existence of a set of “interior

solutions” for which all firms are active, and the second controls the distance between the virtual

costs corresponding to adjacent costs. As discussed after Theorem 4.1, the latter condition can

always be satisfied by specifying a thin enough cost discretization, such that the larger the set

of interior solutions in (1) is, the coarser the discretization can be. The proof and the explicit

characterization of d∗ for some classes of instances are deferred to the electronic companion.

Ex-post IR constraints. One potential practical drawback of the decentralized mechanism with

linear pricing is that unit-optimal prices are not necessarily transparent and intuitive; in particular,

unit prices could even be below unit costs as IR constraints must be satisfied only at the interim

level. To address this concern, we study a model in which we require that a supplier’s price

weakly exceed his cost for every vector of cost realizations, which may be a desirable property

in practice. That is, we ask what happens if we require the IR constraints to be satisfied ex

post as opposed to ad interim. That is, in our original DecLin formulation, we require that

Ui(θi|θi) ≥ 0, ∀i ∈ N, ∀θi ∈ Θi. Now we impose that (pi(θ)− θi)xi(θ) ≥ 0, ∀i ∈ N, ∀θ ∈ Θ.

We first observe that an optimal solution to DecLin can violate ex-post IR; this is in contrast

to the centralized mechanism and two-part tariff decentralized mechanism, both of which admit
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optimal solutions that are ex-post individually rational (see Proposition 3.2 for the centralized

mechanism, and Propositions 3.2 and 4.1 for the two-part tariff case).

Proposition 4.2. The optimal decentralized mechanism with linear prices may violate ex-post IR.

In particular, in a Hotelling model with two suppliers as in Example 2.1, when both suppliers have

the same cost distribution and Θ = {θL, θH}, any optimal decentralized mechanism with linear

prices violates ex-post IR whenever δ > v(θH)− v(θL).

To better understand the loss incurred by imposing ex-post IR constraints, we numerically solve

for the optimal decentralized mechanism with linear prices and ex-post IR constraints and compare

it to the solution to the optimal solution to DecLin. Recall that, in general, finding the optimal

decentralized mechanism requires solving a nonlinear mixed-integer optimization problem, where

the number of variables is 2×N × |Θ|. Due to the computational complexity of finding an optimal

solution to such a problem, we limit our analysis to cases with 2 or 3 suppliers, with at most 4

types. For simplicity, we assume that all suppliers have the same cost distributions but we allow

them to be asymmetric in terms of the demand parameters.18

We find that, in general, the decrease in consumer surplus resulting from imposing the ex-post

IR constraints is typically negligible. In particular, we find that, for most of the instances, the

GAP is virtually nonexistent (the GAP at the 80th percentile was 0.1%) and in all cases the GAP

was at most 5%. This suggests that our decentralized mechanism with linear pricing provides a

reasonable benchmark for the one where ex-post IR constraints are also imposed.

Elastic Demand. In addition, we considered an extension to elastic demand by relaxing the

constraint that demand should add up to one.19 In this setting, in general, it is not possible

to find prices that simultaneously implement the optimal centralized allocations and satisfy the

constraints on interim expected transfers, a limitation resulting in a loss with respect to the optimal

centralized solution. To gain a better understanding of the loss, we numerically solve for the optimal

decentralized mechanism over a big set of instances with the general affine demand model. For each

instance, we compute and compare the solutions to the centralized and decentralized problem. We

18For a given number of suppliers and a given number of types, we create different instances by varying the
parameters of the cost distributions and the demand model primitives. Overall, we run thousands of instances
covering the parameter space with different cost structures, different levels of vertical differentiation that could vary
across firms, and different own and cross-price sensitivities. We use the nonlinear solver KNITRO to solve for the
optimal decentralized mechanism (Byrd et al. 2006) in each instance.

19When all consumers still buy one unit but we allow each product offered by a supplier to also be obtained in the
outside market at a fixed known price, all theorems extend almost straightforwardly. The main difference is that the
virtual costs of the products offered by suppliers are now compared to both the virtual costs of other suppliers and
the prices of the outside options. We omit the proofs due to lack of space.
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find that the average GAP between these problems is below 4.5% and, for the vast majority of

the instances, it does not exceed 10%. In almost all instances, the same assortments arise in both

problems for most realizations of θ; however, suppliers with lower costs charge higher prices (thus

serve less demand) in the decentralized problem than in the centralized one. These results suggest

that the centralized relaxation may provide an approximately optimal market structure that could

serve as an input to simplify the solution to the decentralized problem. Further understanding

optimal mechanisms under elastic demand is an interesting direction for future research.

5 First-Price Auction Implementation

We now study what happens when the menus must be decided through a first-price-auction-type

mechanism. In such a mechanism, suppliers submit bids representing the unit prices of their

products and, if a product is added to the menu, the bid is the posted price. The role of the

auctioneer is to design the rules to decide which products to include in the assortment based on

suppliers’ bids and, possibly, on characteristics of the products offered and of the demand system.

First-price-auction-type (FPA) mechanisms are prevalent in public procurement, and is how FAs

are implemented in practice (see Albano and Nicholas (2016)).

Recall that in the optimal decentralized mechanisms studied in the previous section, the auc-

tioneer chooses both the rules to decide who is in the assortment and the prices. By contrast, in a

FPA mechanism the auctioneer can choose only the rules to decide which products to include in the

assortment; prices are determined by the suppliers through their bids. In general, this constraint re-

sults in a loss of consumer surplus: the optimal decentralized mechanism with linear-pricing cannot

generally be implemented using a FPA mechanism, even for the simple demand systems considered

in this section. One can see this because the optimal mechanism is generally not ex-post IR (see

Proposition 4.2) and, in a FPA mechanism, a supplier never bids below his cost.

In the rest of this section, we rely on a combination of a simple theoretical model and numerical

simulations to understand how the rules of a FPA mechanism impact consumer surplus. The char-

acterization of the optimal decentralized mechanism with linear pricing is crucial for our purpose:

it serves as a benchmark of what is achievable and its structure provides insights into how to modify

the traditional first-price auctions to enhance performance. As we briefly discuss in Section 6, the

insights from the present section played a crucial role in the redesign of the Chilean FAs.

Competition for the Market and Competition in the Market. Following up on the discus-

sion presented in the Introduction, in general there are two different (but possibly complementary)
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types of incentives for the suppliers to aggressively compete in prices. First, suppliers compete at

the auction stage to become part of the assortment. Whether a supplier is included or not in the

assortment depends on the rules of the auction and the bids; by placing a lower bid, a supplier

typically increases his chances of being part of the assortment. We refer to the competition at the

auction stage as competition for the market. However, even if a supplier is added to the assortment,

he is not guaranteed any fixed amount of demand: once in the menu, there is competition between

imperfect substitute products. Naturally, one would expect that by placing a lower bid, a supplier

can (weakly) increase his market share. We refer to the competition for demand once in the menu

as competition in the market.

In an optimal decentralized mechanism, the auctioneer controls the level of competition for the

market by restricting the entry of some suppliers to the menu, and facilitates competition in the

market by choosing the prices. However, in a FPA mechanism, the auctioneer can directly control

only the competition for the market.

In the rest of the section, we study the effect these two types of competition have on bids and

consumer surplus under different simple FPA designs.

5.1 Analytical Evaluation of Different FPA Designs in a Simple Model

We assume that firms have private costs and that, given a mechanism, they play a pure strategy

Bayesian Nash equilibrium (BNE). Unfortunately, deriving the equilibrium bidding strategies ana-

lytically under general model primitives is challenging as profits are a function of all bids through

the demand system. Moreover, analytically characterizing bidding strategies in simple single-unit

FPAs when bidders are asymmetric20 is, except for a couple of special cases, analytically intractable.

Therefore, to derive analytical results we restrict our attention to the simple Hotelling model

with two suppliers introduced in Example 2.1. Suppliers have the same cost distribution with

two possible cost realizations θL, θH . As before, δ is the transportation cost. The analysis of

this simple model provides essential insights. Then, we test the robustness of these insights with

numerical experiments in more general models. All proofs and more details regarding the numerical

experiments corresponding to statements in this section can be found in the electronic companion.

No competition for the market (NC mechanism). Perhaps the simplest auction design is

one with no competition for the market: every supplier whose price does not exceed a reserve price

is added to the menu and bids are taken as posted prices. However, suppliers still compete in the

20Other than in simple settings like the one studied in this section, suppliers are typically asymmetric due to their
product characteristics.
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Value of δ
Optimal NC (ChileCompra)
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1
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(θH − θL),∞
)
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[
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]
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[
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]
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fL
2

(θH − θL),
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)
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1
2
(1+fH )2+fHfL
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2

(θH − θL)

]
θL + δ 1+fH

fL[
0,

fHfL(θH−θL)
1
2
(1+fH )2+fHfL

]
no PSBNE -

Table 1: Comparison of the expected prices for the low type in the optimal mechanism and
in the no-competition (NC) mechanism with reserve price θH . In all cases, the expected
price of an item of cost θH is θH .

market as the demand is split among the firms in the assortment according to their bids and the

demand model. This mechanism is equivalent to a pricing game with private costs and a reserve,

and is an interesting benchmark as it closely resembles the way FAs are awarded in Chile.21

We analytically calculated the BNE pricing strategies of this game when the reserve price is

equal to22 θH . Using the equilibrium prices, we computed the expected consumer surplus (i.e., the

negative of the expected purchasing cost plus the overall transportation cost) and compared it to

that of the optimal mechanism. Due to lack of space, we defer the characterization to the electronic

companion, but the results are summarized in Table 1. Generally, the gaps between the optimal

decentralized mechanism with linear pricing and the NC mechanism ranged between 2.5% and 18%

for different parameters of this model.23

In this simplified setting we say that the outcome of the mechanism is a single award if, whenever

agents have different types, the low-cost agent obtains all the demand; otherwise, we say that

the outcome of the mechanism is a split award. A key difference between NC and the optimal

mechanism is that split-award outcomes occur more frequently in the former. This difference is key

21To award the FAs in a given category (e.g., food), ChileCompra first announces the types of products needed
within the category (e.g., cereal and pasta). Then, suppliers submit a bid for each item they intend to offer; an item
stands for a completely specified product (e.g., a 15-oz. box of Kellogg’s Corn Flakes and 17-oz. one are two different
items). Bids are evaluated using a scoring rule that is dominated by price; all products whose scores are above a
threshold are offered in the menu at the price specified by the supplier in his bid. Scores are compared only across
identical items. As the item definitions are narrow (only identical products are directly compared), in most cases
there is a single supplier bidding for an item. In fact, in a recent FA for food products, a total of 8, 091 products
were offered by 116 suppliers. Out of those items, 4, 549 were offered by a unique supplier, and all such items were
added to the menu. Even for items with at least two bidders, the data suggests that the current rules fail to generate
competition for the market. In the food FA, there were over 23, 000 bids and only 5% of these were rejected because
bids (prices) were too high.

22Alternatively, one could calculate these prices using an arbitrary reserve price; however, one can show that the
optimal reserve is indeed θH as the equilibrium prices are increasing in the reserve prices.

23To obtain the reported results, we considered a wide range of model parameters by varying θL in [10, 19], θH in
[10.5, 20], the probability of having low cost in [0.05, 0.95], δ in [0.5, 15], and the own-price elasticities in [−8,−0.5].
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to understanding the optimality gaps: higher gaps are observed for the values of δ for which NC

splits awards and the optimal mechanism does not.

Intuitively, when δ is close to zero, both mechanisms have a single-award outcome and the

optimality gap is small: because consumers are highly price sensitive, competition in the market

provides sufficient incentives for suppliers to bid aggressively. By contrast, for large values of δ, both

mechanisms have a split-award outcome: restricting entry is not profitable as consumers’ value is

mostly derived from variety. Finally, for intermediate values of δ, NC splits awards and the optimal

mechanism does not (see Table 1 and Figure 2), and the highest optimality gaps are observed. In

this regime, NC fails to obtain competitive bids from the low type (relative to the optimum), which

increases the purchasing costs and thus deteriorates the performance. This suggests that, in this

regime, introducing competition for the market might lead to improvements.

Introducing Competition for the Market. We now show how simple changes to the rules

of the NC setting can improve performance. The new auction rules generate competition for the

market by restricting the entry of inefficient suppliers in order to obtain lower bids, thus making the

single-award outcome more likely. This emulates the findings from the optimal mechanism, which

restricts the entry of suppliers in order to reduce expected payments. However, while introducing

competition for the market might reduce prices, it might also increase transportation costs (reduce

variety) and, therefore, restricting entry does not necessarily translate to higher consumer surplus.

This tradeoff is analyzed in detail in the electronic companion; we discuss the main takeaways next.

We consider two possible changes to the rules of the auction: restricting entry ex ante (before

observing the bids) and restricting it ex post (as a function of the observed bids). First, suppose

that we decide to restrict entry ex-ante. If one can optimize over the assortment size, the ex-ante

mechanism will always outperform the NC mechanism, as the latter is an ex-ante mechanism in

which all suppliers are added to the assortment. Therefore, in our simple model, we must understand

when, in choosing a single winner using, the FPA mechanism outperforms the NC mechanism. We

compare these analytically in the electronic companion. We find that restricting entry ex ante

is more beneficial when the low-cost outcome is more likely to occur and δ is intermediate: the

optimality gaps can be decreased by up to 30%. The main drawback of the ex-ante mechanism,

however, is that it always chooses one supplier (or a fixed number of them) even when all have

similar (or identical) bids. If two suppliers have similar bids, by adding both to the menu we obtain

more variety at a similar purchasing cost, thus improving consumer surplus.

To understand the limitation of this lack of flexibility, we next study a class of mechanisms that
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restrict entry ex post, that is, for which the decision on whom to include in the menu is contingent

on the bids submitted. This emulates the optimal mechanism, in which the assortment is decided

based on the reported costs. Using the intuition from the optimal mechanism, we propose the

following parametric restricted-entry (RE) first-price mechanism. There is a reserve price R (which

we assume equal to θH) and a split parameter C. If bids satisfy |b1 − b2| < C, then both suppliers

are added to the menu; otherwise, only the supplier with the lowest bid is included in the menu

(provided the bid is smaller than R). If both suppliers are in the menu, they still compete in the

market as before. Hence, the only difference with the NC mechanism is that we restrict the entry

to the menu, and the split parameter C quantifies how restrictive the entry to the market is.24

We define the best restricted-entry mechanism (BRE) by optimizing over the split parameter

C to maximize expected consumer surplus. As C = δ is always a possibility, the BRE cannot do

worse than NC. In fact, whenever BRE outperforms NC it must be by restricting entry. Consistent

with our intuition, the regime in which the performance of BRE is superior to that of NC is for

intermediate values of δ. This is illustrated in Figure 2, where the BRE mechanism restricts the

entry whenever δ ≤ 4.67. By doing so, it obtains assortments similar to those obtained by the

optimal mechanism, and the expected purchasing cost and the consumer surplus are closer to the

optimal ones. When δ exceeds 4.67, the savings obtained from the purchases cannot compensate

for the increase in transportation costs and, therefore, BRE and NC coincide beyond that point.

The optimality gaps in the instances we analyzed were reduced by at least 20% (and usually more

than 50%) for those combinations of parameters in which the optimal mechanism restricted entry

and ChileCompra did not. The largest optimality gap was reduced from 20% to 7%.

Overall, our analysis highlights the importance of incorporating competition for the market, in

particular in settings where substitution across products is neither too high nor too low.

Robustness Results and More General Settings. To extend our analysis and test the ro-

bustness of our insights, we numerically solved for the equilibria for the NC, the ex-ante, and the

BRE mechanisms in more involved models, and compared their expected consumer surplus with

that of the optimal mechanism. We replicated this simulation exercise for a wide range of envi-

ronments. The most important common finding is that, as suggested by the theory, restricting

entry is highly beneficial in the cases in which the optimal mechanism restricts entry but the NC

mechanism does not. Due to lack of space, we provide only a summary of the main findings.

We considered more general cost distributions, and found that the performance of the NC mech-

24In the electronic companion, we analytically characterize the equilibrium bids of these auctions.

31



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
11

12

13

Differentiation cost

E
x
p

ec
te

d
to

ta
l

co
st OPT

NC

BRE

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

11

11.5

12

12.5

Differentiation cost

E
x
p

ec
te

d
p

u
rc

h
a
si

n
g

co
st

OPT

NC

BRE

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Differentiation cost

Optimal single split

NC
single split

BRE
single split

Figure 2: (Top) Expected total costs (purchasing plus transportation) or (minus) consumer
surplus for the optimal, NC, and BRE mechanisms as a function of the differentiation
(transportation) cost δ. The parameters are θL = 10, θH = 12 with equal probability.
(Center) Expected purchasing costs. (Bottom) Single-award vs. split-award outcomes in
the optimal, NC, and BRE mechanisms.

anism is worse when the distribution is left-skewed or normal-like, with optimality gaps typically

above 10%, and as high as 25%; using the BRE, optimality gaps typically decrease by at least

40% in the regime of interest. Also, we find that the gap between the optimal mechanism and NC

increases with the number of suppliers and restricting entry performs closer to the optimum than

in the two-agent case; this gap was rarely more than 5%, and decreased as the number of suppliers

increased.

Finally, we considered a general affine demand model and we varied the vertical qualities of

the products and the own and cross-price elasticities. In this setting, introducing competition for

the market also improved performance, but the benefits were smaller when the quality difference

among products was higher: we obtained an average improvement of 7% in the optimality gap in

the cases where the difference between the highest and lowest qualities was more than 20%; when
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products were of similar quality, the average improvement was 15%. This was to be expected:

both the simple ex-ante and BRE mechanisms ignore quality advantages and, therefore, tend to

be naturally biased towards the low-cost low-quality suppliers. However, it is still remarkable that

such simple mechanisms can achieve significant improvements even under vertical differentiation.

Summary of main insights. To conclude, we summarize the main insights gained from this

section. First, there are two main sources of competition in these markets: competition in the mar-

ket (which naturally arises when substitute products compete in the menu) and competition for the

market (which must be enforced through the rules of the auction). When products are very close

substitutes, there is no need to introduce competition for the market, as the competition in the

market to increase demand ensures low prices. Similarly, when products are very far substitutes,

introducing competition for the market is not beneficial as, even though it lowers prices, it damages

variety. In the in-between cases, we find that emulating the optimal mechanism with simple FPA

mechanisms that introduce competition for the market is highly beneficial. Finally, while introduc-

ing competition using simple and anonymous rules in settings with pure horizontal differentiation

leads to large improvements, these benefits tend to decrease when there is also vertical differenti-

ation as anonymous rules tend to introduce a bias towards low-quality suppliers. Studying more

complex FPA mechanisms for these settings is an interesting avenue for future research.

6 Conclusions and Extensions

We presented a model to study procurement mechanisms for differentiated products. We progres-

sively characterized the optimal mechanisms under an increasing number of practical constraints,

and used these results to understand how to better design first-price FA auctions in practice.

When we think more broadly about online two-sided markets, an available design lever is the

search algorithm selecting the products shown to consumers. Similar to our assortment decision,

Dinerstein et al. (2018) show with a stylized model and through an empirical analysis using eBay

data, that lever can be used to find the right balance between variety considerations and price

competition. Hence, our optimal mechanism and analysis could serve as a useful benchmark for

this setting as well, and it may be worthwhile to further explore this connection.

Moreover, the insights derived in this paper have had a direct practical impact as they have

led to concrete changes in the implementation of the Chilean government’s FAs. More specifically,

we collaborated with the Chilean government to redesign the rules of the new 2017 food FA to

introduce more competition at the auction stage. Preliminary analysis suggests that these changes
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reduced purchasing prices significantly without damaging variety. This implementation together

with an empirical analysis will be described in a paper that is currently work in progress.
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Main Appendix

A Proof of Proposition 3.1

Proof of Proposition 3.1. This proof uses the standard arguments from mechanism design theory

introduced in Myerson’s seminal paper (Myerson 1981). Since the supports of our cost distributions

are discrete, we follow the version of these arguments presented by Vohra (2011).

Let mi denote the number of costs in the support of agent i, that is, mi = |Θi|. We first restate

the IC and IR constraints in Cent in terms of the expected allocations and transfers:

max
x,t

Eθ [GCS(x(θ))− t(θ)]

s.t. Ti(θi)−Xi(θi)θi ≥ Ti(θ′i)−Xi(θ
′
i)θi ∀i, ∀θi, θ′i ∈ Θi

Ti(θi)−Xi(θi)θi ≥ 0 ∀i, ∀θi ∈ Θi

x(θ) ∈ X ∀ θ ∈ Θ.

Recall that Θi = {θ1
i , ..., θ

mi
i }. If we add a dummy type per agent θmi+1

i such that Xi(θ
mi+1
i ) = 0

and Ti(θ
mi+1
i ) = 0, then we can fold the IR constraints into the IC constraints: Ti(θ

j
i )−Xi(θ

j
i )θ

j
i ≥

Ti(θ
k
i ) − Xi(θ

k
i )θji , for all j ∈ {1, ...,mi} and all k ∈ {1, ...,mi+1}. Applying Theorem 6.2.1 in

Vohra (2011) for our procurement setting we obtain that an allocation x is implementable in a

Bayes-Nash equilibrium if and only if Xi(·) is monotonically decreasing for all25 i = 1, ..., n. (The

results cited in Vohra are for i.i.d. bidders, but the extension to bidders with different distributions

is straightforward.) Further, by Theorem 6.2.2 in Vohra (2011), all IC constraints are implied by

the following local IC constraints:{
Ti(θ

j
i )−Xi(θ

j
i )θ

j
i ≥ Ti(θ

j+1
i )−Xi(θ

j+1
i )θji (BNICdi,θ)

Ti(θ
j
i )−Xi(θ

j
i )θ

j
i ≥ Ti(θ

j−1
i )−Xi(θ

j−1
i )θji (BNICui,θ).

Then, we can rewrite the problem as

max
x,t

Eθ [GCS(x(θ))]−
n∑
i=1

mi∑
j=1

fi(θ
j
i )Ti(θ

j
i ) (obj)

s.t. Ti(θ
j
i )−Xi(θ

j
i )θ

j
i ≥ Ti(θ

j+1
i )−Xi(θ

j+1
i )θji ∀i ∈ N, ∀j ∈ {1, ...,mi} (BNICdi,j)

Ti(θ
j
i )−Xi(θ

j
i )θ

j
i ≥ Ti(θ

j−1
i )−Xi(θ

j−1
i )θji ∀i ∈ N, ∀j ∈ {2, ...,mi} (BNICui,j)

0 ≤ Xi(θ
mi) ≤ . . . ≤ Xi(θ

1), ∀i ∈ N (M)

x(θ) ∈ X ∀ θ ∈ Θ.

Using standard arguments, we can show that all downward constraints (BNICdi,j) are binding

in the optimal solution. (A formal proof can be obtained by trivially adapting the Lemma 6.2.4 in

25For this result to hold, use that X is a subset of the Euclidean space. (The result also holds under alternative
conditions such as X having a lattice structure; however, the proof is slightly different and more cumbersome.)
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Vohra to the procurement case.) Hence, Ti(θ
j
i )−Xi(θ

j
i )θ

j
i = Ti(θ

j+1
i )−Xi(θ

j+1
i )θji ∀i ∈ N, ∀j ∈

{1, ...,mi}. Furthermore, it is simple to show that, in this case, the upward constraints (BNICui,j)

are satisfied. Applying the previous equation recursively we obtain:

Ti(θ
j
i ) = θjiXi(θ

j
i ) +

mi∑
k=j+1

(θk − θk−1)Xi(θ
k
i ) . (12)

Then, we can rexpress the objective as

obj = Eθ [GCS(x(θ))]−
n∑
i=1

mi∑
j=1

fi(θ
j
i )Ti(θ

j
i )

= Eθ [GCS(x(θ))]−
n∑
i=1

mi∑
j=1

fi(θ
j
i )

θjiXi(θ
j
i ) +

mi∑
k=j+1

(θki − θk−1
i )Xi(θ

k
i )


= Eθ [GCS(x(θ))]−

n∑
i=1

mi∑
j=1

fi(θ
j
i )
(
θjXi(θ

j
i )
)
−

n∑
i=1

mi∑
j=1

mi−1∑
k=0

fi(θ
j
i )
(
I{k ≥ j}(θk+1

i − θki )Xi(θ
k+1
i )

)
= Eθ [GCS(x(θ))]−

n∑
i=1

mi∑
j=1

fi(θ
j
i )
(
θjXi(θ

j
i )
)
−

n∑
i=1

mi∑
k=1

Fi(θ
k−1
i )(θki − θk−1

i )Xi(θ
k
i )

=
∑
θ∈Θ

f(θ)GCS(x(θ))−
n∑
i=1

mi∑
j=1

fi(θ
j
i )

((
θj +

Fi(θ
j−1
i )

fi(θ
j
i )

(θji − θ
j−1
i )

)
Xi(θ

j
i )

)

=
∑
θ∈Θ

f(θ)GCS(x(θ))−
n∑
i=1

∑
θi∈Θi

fi(θi)vi(θi)Xi(θi)

=
∑
θ∈Θ

f(θ)

(
GCS(x(θ))−

n∑
i=1

vi(θi)xi(θ)

)
.

The fourth equality follows from changing the order of summations, and the rest from simple

algebra. Hence, if we find an allocation such that for all θ ∈ Θ, x(θ) ∈ argmax GCS(x(θ)) −∑n
i=1 xi(θ)vi(θi) subject to x(θ) ∈ X , and such that the interim expected allocations are monotonic

for all i ∈ N (i.e., Xi(θ) ≥ Xi(θ
′) for all θ ≤ θ′ ∈ Θi), and such that the interim expected transfers

satisfy Eqs. (12), for all i ∈ N and θ ∈ Θi, then we have found an optimal solution.

Finally, note that GCS(x(θ))−
∑n

i=1 xi(θ)vi(θi) is equal to CS(x(θ),v(θ)), that is, it is equal

to consumer surplus when prices are equal to virtual costs (see Eq. (3)). Therefore, we must have

that allocations are a solution to Problem (2) when prices are equal to virtual costs and Q = N ,

which concludes the proof.

B Proof of Proposition 3.2

Proof of Proposition 3.2. Consider the demand models and the associated consumer surplus func-

tions defined in Examples 2.1 and 2.2. We show that a solution (x?, t?) satisfying the conditions

stated in Proposition 3.1 exists by construction.

First, note that the consumer surplus functions of the models in Examples 2.1 and 2.2 are both
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quadratic and strictly concave. By our assumptions on X (i.e., X it is defined by linear constraints

on x) and the fact that all other constraints are linear, we have that the auctioneer’s problem is a

quadratic optimization problem with linear constraints. Therefore, we know that for each θ ∈ Θ,

there exists a unique solution x(θ) ∈ argmax
x′∈X

CS(x′,v(θ)). Define x?(θ) := argmax
x∈X

CS(x,v(θ)).

Thus, by definition, x?(θ) satisfies Condition 1 for all θ ∈ Θ.

Second, fix i ∈ N and also fix θ−i ∈ Θi. We show that x?i (θi,θ−i) ≥ x?i (θ
′
i,θ−i) for every

θi, θ
′
i ∈ Θi with θi ≤ θ′i. First, note that by Assumption 3.1, we have that vi(θ

′
i) > vi(θi). As the

objective in both cases is quadratic and the virtual costs appear as a constant in the linear term, we

have that the linear term associated to xi in the consumer surplus maximization problem associated

with (θi,θ−i) is greater than the one accompanying (θ′i,θ−i). By using standard techniques in the

perturbation analysis in quadratic optimization problems (see, e.g., Bonnans and Shapiro (2013))

we thus obtain that x?i (θi,θ−i) ≥ x?i (θ′i,θ−i), as desired. As this holds for every θ−i ∈ Θi, we have

that X?
i (θ) ≥ X?

i (θ′), where X?
i (θ) is defined as in Eq. (5), as desired.

Third, for all i ∈ N , θji ∈ Θi and θ−i ∈ Θ−i define

t?i (θ
j
i ,θ−i) := θjix

?
i (θ

j
i ,θ−i) +

|Θi|∑
k=j+1

(θki − θk−1
i )x?i (θ

k
i ,θ−i).

By the definition of the interim allocations and transfers in Eq. (5), we then have that T ?i (θji )

satisfies the third condition, i.e., T ?i (θji ) satisfies Eq. (7) for every i ∈ N and θji ∈ Θi, as desired.

To establish the second part of the claim, note that the monotonicity of x? implies that if

x?i (θ
j
i ,θ−i) = 0 then x?i (θ

k
i ,θ−i) = 0 for all k > j and thus, by definition, t?i (θ

j
i ,θ−i) = 0. Moreover,

we have that

t?i (θ
j
i ,θ−i) ≥ θ

j
ix
?
i (θ

j
i ,θ−i).

To conclude, note that every optimal solution must have the same x?(θ) for the first condition

to be satisfied. Therefore, all optimal solutions must have the same X?
i (θji ) for every i ∈ N and

θji ∈ Θi. This implies that, by Eq. (7), the expected transfers T ?i (θji ) in every optimal solution

must also agree, which completes our proof.

C Proof of Proposition 4.1

Proof of Proposition 4.1. First, note that problem Cent is a relaxation of DecTwoPart, where we

(i) relax the demand constraints and (ii) define ti(θ) := xi(θ)pi(θ) + yi(θ) (hence, the definition of

the objective and that of the interim utilities agree with those of the centralized problem defined

in Section 3). Therefore, the value of the objective associated with (x?, t?) is an upper bound on

that of DecTwoPart.

Let (q,y,p,x) be as defined in statement of the proposition. We now argue that this is a

feasible solution to DecTwoPart and, because its objective value in DecTwoPart agrees with that

of Cent under (x?, t?), that would imply that it is also optimal.
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Fix θ ∈ Θ. As x(θ) = x?(θ), by Proposition 3.1 we know that x(θ) ∈ argmax
x∈X

CS(x,v(θ)). By

Assumptions 2.1 and 2.2 and the definition of q, we have that x(θ) = d(1, v(θ)) = d(q(θ),v(θ)),

where 1 is the vector of 1’s. By the definition of p(θ) we therefore have that x(θ) = d(q(θ),p(θ)).

As the above holds for any θ ∈ Θ, the demand constraints are satisfied. All other constraints are

satisfied by the feasibility of (x?, t?) in Cent, which completes the proof.

D Proof of Proposition 4.2

Proof of Proposition 4.2. Consider a Hotelling model with two suppliers as in Example 2.1. Sup-

pose that both suppliers have the same cost distribution, and let Θ1 = Θ2 = {θL, θH}. Fix f(θL)

and f(θH), and suppose that δ > v(θH)− v(θL).

Let (q,p,x) be an optimal solution to DecLin. By Theorem H.1 (it is stated and proved in the

electronic companion), we know that the optima of the centralized and the decentralized mechanism

with linear pricing agree. Therefore, (q,p,x) must satisfy the conditions in Corollary 4.1. In

particular, we must have that x(θ) = d(N, v(θ)). Thus, by our assumption on δ, we have that

q(θ) = {1, 2} for all θ ∈ Θ, that is, both suppliers are in the optimal assortment, regardless of their

cost realizations. Suppose, towards a contradiction, that (q,p,x) satisfies ex-post IR, that is, for

i = 1, 2 we have that pi(θi, θj) ≥ θi for all θi ∈ Θ and all θj ∈ Θ. By Corollary 4.1, we have that

T1(θH) = p1(θH , θL)x1(θH , θL)f(θL) + p1(θH , θH)x1(θH , θH)f(θH)

and, by Proposition 3.1, we have that Ti(θH) = θHXi(θH). Thus, the only way in which both

these contraints are simultaneously satisfied while satisfying ex-post IR is if p1(θH , θL) = θH and

p1(θH , θH) = θH .

However, by Corollary 4.1, we know that x1(θH , θL) = v(θL)−v(θH)+δ
2δ and, by the Hoteling

demand model, we need x1(θH , θL) = p2(θH ,θL)−p1(θH ,θL)+δ
2δ . Thus we must have that p2(θH , θL) −

p1(θH , θL) = v(θL)− v(θH) or, equivalently,

p2(θH , θL) = θH − v(θH) + θL = θL −
f(θL)

f(θH)
(θH − θL) < θL,

where the first equality uses the fact that p1(θH , θL) = θH and v(θL) = θL and the second equality

uses the definition of virtual cost, i.e., v(θH) = θH + f(θL)
f(θH)(θH − θL). Therefore, we have reached a

contradiction to the fact that (q,p,x) satisfies ex-post IR. As we have shown this for any arbitrary

optimal solution (q,p,x), the claim follows.

E Example of Suboptimality of Linear Pricing

Example E.1. Consider the Hotelling model introduced in Example 2.1. Let δ = 1 be the trans-

portation cost. Let Θ1 = {1, 2.5} and Θ2 = {1, 2, 2.3}. The probability functions f1, f2, and the

virtual costs v1, v2 are summarized in the following tables:
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Θ1 1 2.5

f1 1/2 1/2

v1 1 4

(a)

Θ2 1 2 2.3

f2 1/2 1/3 1/6

v2 1 3.5 3.8

(b)

To show that a gap exists between Cent and DecLin, we show that it is not possible to find

prices satisfying the conditions in Corollary 4.1. To that end, note that the set of possible cost

realizations is Θ = {(1, 1), (1, 2), (1, 2.3), (2.5, 1), (2.5, 2), (2.5, 2.3)}. Whenever θ1 = 1 or θ2 = 1

(but not both), only the agent with cost equal to 1 is in the optimal assortment as the difference

between virtual costs exceeds δ. Therefore, whenever agent 2 has cost θ2 = 2 he is inthe assortment

only in profile (2.5, 2). By Eq. (11), the price p2(2.5, 2) is completely determined, and then Eq. (10)

fixes p1(2.5, 2). Similarly, when agent 2 has cost θ2 = 2.3 he is in the assortment only in profile

(2.5, 2.3). Using the same arguments as before, Eq. (11) pins down p2(2.5, 2.3) and hence Eq. (10)

fixes price p1(2.5, 2.3). However, once the values of p1(2.5, 2) and p1(2.5, 2.3) are fixed as explained

above, the expected transfer constraint for T1(2.5) fails to hold and a gap between both problems

must exist. In this case, the optimal objective value of Cent and DecLin are −2.0638 and −2.0645,

respectively.26

F Proof of Theorem 4.1

In this section we prove Theorem 4.1. Recall that the idea of the proof is to show that the system

of linear equations defined by Eqs. (10) and (11) is consistent (see Corollary 4.1). We start by

describing these equations for the Hotelling model. Naturally, we use several basic definitions and

concepts from linear algebra throughout this section. We refer the reader to Strang (1988).

F.1 System of Linear Equations for the Hotelling Demand Model

Recall that, by Proposition 3.1, the optimal allocations in the centralized problem are equal to the

Hotelling demands when prices are equal to the vector of virtual costs. For a given vector of costs θ,

the optimal centralized assortment is given byQ(θ) = {i ∈ N : vi(θi)− vj(θj) ≤ δ|`j − `i|, ∀j ∈ N}.
Given θ, we say that a supplier is active if he is in Q(θ). Let k = |Q(θ)| be the number of suppliers

in the centralized-optimal assortment, and let 1(θ), 2(θ), . . . , k(θ) be the set of active suppliers,

where 1(θ) and k(θ) denote the leftmost and rightmost suppliers, respectively. When clear from

the context, we drop the θ from the notation and refer to the suppliers as (1), (2), . . . , (k).

Recall that, in the Hotelling model, active suppliers split the market with their immediate

active neighbors through a linear demand system. In particular, recall that if i is the leftmost

active supplier, he obtains all the demand in the [0, `i] segment; similarly, if he is the rightmost

active supplier, he obtains all the demand in [`i, 1]. Therefore, the demand for the leftmost active

26It is easy to verify that Condition 2 in Theorem 4.1 is violated in Example E.1. In particular, |Θ1| = 2 and,
furthermore, the difference between consecutive virtual costs in general exceeds δc∗

8
= 1

8
.
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supplier (1) is `(1)+
p(2)−p(1)+δ|`(2)−`(1)|

2δ . Similarly, the demand for supplier (2) is
p(1)−p(2)+δ|`(2)−`(1)|

2δ +
p(3)−p(2)+δ|`(3)−`(2)|

2δ , and so on.

By Corollary 4.1, Eqs. (10) require that the unit prices in the optimal solution decentralize

the centralized-optimal demands (where unit prices correspond to virtual costs). Because of the

structure of the Hotelling demands as described, the constraints corresponding to Eqs. (10) are

given by

p(2)(θ)− p(1)(θ) = v(2)(θ(2))− v(1)(θ(1))

p(i−1)(θ)− 2p(i)(θ) + p(i+1)(θ) = v(i−1)(θ(i−1))− 2vi(θi) + v(i+1)(θ(i+1)) for 2 ≤ i < k = |Q(θ)|
p(k−1)(θ)− p(k)(θ) = v(k−1)(θ(k−1))− v(k)(θ(k)).

(Mi(θ))

We refer to the constraint associated with the cost vector θ and supplier i ∈ Q(θ) as Mi(θ).

Note that, for a vector of costs θ, the above equations can be represented in matrix form as

A(θ)p(θ) = A(θ)v(θ), where the matrix A(θ) is a Rk×k matrix defined as

A(θ) =


−1 1 0 · · · 0 0

1 −2 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −1

 (13)

For each θ, these equations impose |Q(θ)| constraints on the prices p(θ) corresponding to firms

with strictly positive demands. (Recall that only prices associated with active suppliers appear in

the demand equations.) However, as the allocations must add up to one, one of these constraints

is redundant: the demands for |Q(θ)| − 1 suppliers determine the demand for the remaining active

supplier. Therefore, Eqs. (10) impose |Q(θ)| − 1 constraints on prices p(θ). The redundancy of

one constraint plays an important role because it induces degrees of freedom that can be used to

satisfy the constraints on interim expected transfers.

In addition, by Corollary 4.1, we also need to guarantee that the interim expected transfers

coincide with the optimal ones from Cent (Eqs. (11)). We abuse notation and refer to the equality

constraint on the expected transfers corresponding to supplier i and cost θji ∈ Θi by Ti(θ
j
i ). Recall

that this constraint can be expressed as∑
θ−i∈Θ−i

f−i(θ−i)xi(θ
j
i ,θ−i)pi(θ

j
i ,θ−i) = Ti(θ

j
i ) ∀i ∈ N, ∀θji ∈ Θi. (Ti(θ

j
i ))

Note that, if in the optimal solution we have that xi(θ
j
i ,θ−i) = 0 for all θ−i ∈ Θ−i, then, by

Conditions 2 and 3 in Proposition 3.1, it must be that Ti(θ
j
i ) = 0. Hence, the previous equations

impose
∑

i∈N
∑

θi∈Θi
I[∃ θ−i : i ∈ Q(θi,θ−i)] ≡ K constraints (I[·] denotes the indicator function);

prices of inactive suppliers can be discarded, as all the coefficients of such columns are zero.

Abusing notation, let M and m be the coefficient matrix and the corresponding RHS respec-

tively defined by the linear equations in (Mi(θ)) and (Ti(θ
j
i )), where each column is associated
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with a price pi(θ) with i ∈ Q(θ). The goal of the proof is to show that the system of linear

equations given by (M ,m) has a solution. By the previous discussion, the resulting matrix M has∑
θ∈Θ |Q(θ)| columns and

∑
θ |Q(θ)| − |Θ| + K rows. It is easy to verify that K ≤ |Θ|. By the

Rouché–Frobenius theorem, a system of linear equations Mp = m is consistent (has a solution)

if and only if the rank of its coefficient matrix M is equal to the rank of its augmented matrix

[M |m]. To show that the system of equations has a solution, we use an equivalent definition of

consistency.

Lemma F.1 (Consistency of a system of linear equations). Consider the system of linear equations

Mp = m. Let M i,∗ denote the ith row of M . Then, the system is consistent (has a solution) if

and only if for every vector y such that
∑

i yiM i,∗ = 0, we have that
∑

i yimi = 0.

To apply the above lemma, we define the following coefficients. For each row Mi(θ), let aiθ
denote its associated coefficient. Similarly, we denote by bi

θji
the coefficient associated with row

Ti(θ
j
i ). Let (a, b) be the vector of coefficients we just described. Now, rephrasing Lemma F.1 for

our setting, for a system to be consistent we must have that for every vector (a, b) such that∑
θ∈Θ

∑
i∈Q(θ)

aiθMi(θ) +
∑
i∈N

∑
θji∈Θi

bi
θji
Ti(θ

j
i ) = 0 , (14)

the linear combination of the right-hand side also equals zero, that is,

∑
θ∈Θ

∑
i∈Q(θ)

a
(i)
θ Ai,∗(θ)v(θ) +

∑
i∈N

∑
θji∈Θi

bi
θji

θjiXi(θ
j
i ) +

|Θi|∑
k=j+1

(θki − θk−1
i )Xi(θ

k
i )

 = 0, (15)

where Ai,∗(θ) represents the ith row of the matrix A(θ) as defined in Eq. (13).

F.2 Preliminary Lemmas

In this section we prove important lemmas that will be useful for proving the main result. We start

with some definitions. Let θi and θi denote the lowest and highest values in Θi, respectively. For

each j ∈ N , let θuj be the maximum θj ∈ Θj under which there exists a profile θ = (θj ,θ−j) such

that j ∈ Q(θ). We may assume that θj ≤ θuj for all agents j ∈ N , as otherwise we can consider

(w.l.o.g.) the reduced problem in which all agents for which the condition is violated are removed.

In addition, note that, for agent j, all constraints and coefficients associated with θj > θuj do not

play a role in our analysis, because agent j is inactive in all profiles with θj > θuj .

The conditions of Theorem 4.1 imply two properties that will be useful for proving the result,

as stated by the following lemma.

Lemma F.2. Under the conditions of Theorem 4.1, the following two properties must be satisfied:

1. There exists a subset of profiles Θ̃ = Πi∈N Θ̃i ⊆ Θ such that Q(θ) = N for every θ ∈ Θ̃,

|Θ̃i| ≥ 3 for every i ∈ N , and, for every θi ∈ Θi, such that min Θ̃i ≤ θi ≤ max Θ̃i, we must

have that θi ∈ Θ̃i. That is, each Θ̃i must be a (discrete) interval.
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2. Let θi ∈ Θi with max Θ̃i ≤ θi ≤ θui , and let θ = (θi,θ−i) be a profile such that i ∈ Q(θ).

Then, there exists a sequence of profiles {θ0 = θ′,θ1, . . . ,θK = θ} such that θ0 ∈ Θ̃, Q(θk) ⊆
Q(θk−1) for all 1 ≤ k ≤ K, and such that the subprofiles (θk−1)Q(θk) and (θk)Q(θk) differ in

at most one component; that is, at most one agent among those active in θk has a different

cost in both profiles.

Intuitively, Property 1 states that there exists a set of profiles in which all agents are active.

Property 2 states that for every θi and θ = (θi,θ−i) such that i ∈ Q(θ), there exists a sequence

of profiles that can take us from θ′ to θ, where we move from one profile to the next by changing

the cost of at most one active supplier at a time. Both these properties will be useful for showing

that the corresponding system of linear equations admits a solution and therefore the solutions of

the centralized and the linear-pricing decentralized problems coincide. We defer the proof of the

lemma to the electronic companion due to lack of space.

We now state and prove the following lemma, which plays a key role in the proof of the main

theorem.

Lemma F.3. Suppose that the coefficients (a, b) are such that Eq. (14) holds. For each i ∈ N and

each θi ∈ Θi, let gi(θi) be defined as gi(θi) =
biθi
fi(θi)

. Then for each θ ∈ Θ, we must have that

∑
i∈Q(θ)

gi(θi)xi(θ) = 0. (16)

Proof. Fix θ ∈ Θ. As Eq. (14) holds, for each j ∈ Q(θ) we must have that

bjθjf−j(θ−j)xj(θ)− a(1)
θ + a

(2)
θ = 0 if j = (1)

bjθjf−j(θ−j)xj(θ)− 2a
(i)
θ + a

(i+1)
θ + a

(i−1)
θ = 0 if j = (i), 2 ≤ i < k = |Q(θ)|

bjθjf−j(θ−j)xj(θ)− a(k)
θ + a

(k−1)
θ = 0 if j = (k).

Adding up all the above equations for j = (1), . . . , (k) and noting that the coefficients of each row

M(θ)(i) add up to zero, we then have
∑

j∈Q(θ) b
j
θj
f−j(θ−j)xj(θ) = 0. To complete the proof, note

that
∑

j∈Q(θ) b
j
θj
f−j(θ−j)xj(θ) = f(θ)

(∑
j∈Q(θ) gj(θj)xj(θ)

)
= 0. Hence,

∑
j∈Q(θ) gj(θj)xj(θ) =

0, as desired.

F.3 Proof of Theorem 4.1

We can now prove Theorem 4.1.

Proof of Theorem 4.1. To show that OPT (Cent) = OPT (DecLin), we show that the system of

equations is consistent. Let (a, b) be a vector of coefficients satisfying Eq. (14). Let gi(θi) be as

defined in the statement of Lemma F.3. The idea of the proof is as follows. First, we show that

under the assumptions of Theorem 4.1, all gi(θi) must be zero. Then, we show that if gi(θi) = 0,

for all θi ∈ Θi and all i ∈ N , the system is consistent as desired. Consequently, the proof is divided

into the following steps:
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Step 1: Show that if (a, b) satisfies Eq. (14), all gi(θi) must be zero. Let Θ̃ ⊆ Θ be as in the

statement of Lemma F.2. Step 1 is subdivided into the following two steps:

(a) Step 1.a: Show that gi(θi) = 0 for all θi ∈ Θ̃i and all i ∈ N .

(b) Step 1.b: Show that gi(θi) = 0 for all θi /∈ Θ̃i and all i ∈ N .

Step 2: Show that gi(θi) = 0, for all θi ∈ Θi and all i ∈ N , implies consistency of the system

of linear equations.

Step 1.a : Show that gi(θi) = 0, for all θi ∈ Θ̃i and all i ∈ N . By the definition of

Θ̃, for every θ ∈ Θ̃ we must have that Q(θ) = N . Consider two profiles θ = (θi,θ−i) and

θ′ = (θ′i,θ−i) that differ only in agent i’s cost and such that θ,θ′ ∈ Θ̃. By the definition of Θ̃, such

a pair of profiles exists. By Eq. (16), we must have that gi(θi)xi(θ) +
∑

j 6=i gj(θj)xj(θ) = 0 and

gi(θ
′
i)xi(θ

′) +
∑

j 6=i gj(θj)xj(θ
′) = 0. Hence, by subtracting the second equality from the first one

we obtain

gi(θi)xi(θ)− gi(θ′i)xi(θ′) =
∑
j 6=i

gj(θj)
[
xj(θ

′)− xj(θ)
]
.

Recall that, in the Hotelling model, when all agents are active, a change in agent i’s cost affects

only the demand of agents i− 1, i, i+ 1. Therefore, for agent i = 1, we have that

g1(θ1)x1(θ)− g1(θ′1)x1(θ′) =
v1(θ′1)− v1(θ1)

2δ
g2(θ2). (17)

Let θ2 be the cost of agent 2 in both θ and θ′, where the cost profiles are as defined above.

Let θ′2 ∈ Θ2 be such that θ′2 6= θ2 and θ′2 ∈ Θ̃2 (by Lemma F.2, such a θ′2 exists). Define θ̃ =

(θ1, θ
′
2,θ−1,2) and θ̃

′
= (θ′1, θ

′
2,θ−1,2). The only assumption on θ2 was θ2 ∈ Θ̃2. Therefore, the above

equality must also hold for any θ2
′ ∈ Θ̃2. That is, g1(θ1)x1(θ̃)− g1(θ′1)x1(θ̃′) =

v1(θ′1)−v1(θ1)
2δ g2(θ′2).

By subtracting the inequality when agent 2 has cost θ2 from the one when his cost is θ′2, we get
g1(θ1)(x1(θ̃)−x1(θ))−g1(θ′1)

(
x1(θ̃′)−x1(θ′)

)
v1(θ′1)−v1(θ1)

= 1
2δ (g2(θ′2)− g2(θ2)) .Note that x1(θ̃)−x1(θ) =

v2(θ′2)−v2(θ2)
2δ .

Therefore,

g1(θ1)− g1(θ′1)

v1(θ′1)− v1(θ1)
=
g2(θ′2)− g2(θ2)

v2(θ′2)− v2(θ2)
∀θ1, θ

′
1 ∈ Θ̃1,∀θ2, θ

′
2 ∈ Θ̃1. (18)

We now show that an inductive version of Eq. (17) holds. Consider two profiles profiles θ =

(θi,θ−i) and θ′ = (θ′i,θ−i), which only differ in terms of agent i’s cost. Note that only the demands

of agents i− 1, i, i+ 1 change in θ′ when compared to θ. Repeating a similar argument to the one

for Eq. (17), we have that

gi(θi)xi(θ)− gi(θ′i)xi(θ′) =
vi(θ

′
i)− vi(θi)

2δ
(gi−1(θi−1) + gi+1(θi+1)) ∀2 ≤ i ≤ n− 1. (19)

To complete the proof that gi(θi) = 0 for all θi ∈ Θ̃i, we are going to consider two options: either

g1(θ1)− g1(θ′1) = 0 for at least one pair of g1(θ1), g1(θ′1), or g1(θ1)− g1(θ′1) 6= 0 for all θ1, θ
′
1 ∈ Θ̃1.
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We explore both options next.

Case g1(θ1) − g1(θ′1) = 0 for some θ1, θ
′
1 ∈ Θ̃1. Let k = g1(θ1) for θ1 ∈ Θ̃1. By Eq. (18),

we must have that k = g1(θ′1) for every θ′1 ∈ Θ̃1. Next, note that when gi(θi) = gi(θ
′
i), we

have that gi(θi)xi(θ) − gi(θ
′
i)xi(θ

′) = gi(θi) (vi(θ
′
i)− vi(θi)) /(2δ). Then, by Eq. (17), we must

have that g2(θ2) = k for every θ2 ∈ Θ̃2. Inductively, using gj(θj) = k for every j < i, by

Eq. (19) we must have that k = gi(θi) for all i ∈ N . Using Lemma F.3, for θ ∈ Θ̃ we have that

0 =
∑

i∈N gi(θ)xi(θ) = k
(∑

i∈N xi(θ)
)

= k, and thus gi(θi) = 0 for all i ∈ N with θi ∈ Θ̃i, as

desired. /

Case g1(θ1)−g1(θ′1) 6= 0 for all θ1, θ
′
1 ∈ Θ̃1. Let the pair g1(θ1), g1(θ′1) be such that

g1(θ1)−g1(θ′1)
v1(θ′1)−v1(θ1)

=

k 6= 0, and rewrite g1(θ1) = g1(θ′1) + k[v1(θ′1)− v1(θ1)]. Let θ1, θ
′
1, θ
′′
1 ∈ Θ̃1 (these three distinct θ1’s

exist, as stated in Lemma F.2), and let θ−1 ∈ Θ̃−1. Then, using Eq. (17), we have that

(v1(θ′1)− v1(θ1))g2(θ2)/(2δ) = g1(θ′1)(v1(θ′1)− v1(θ1))/(2δ) + k(v1(θ′1)− v1(θ1))x1(θ).

By dividing on both sides by (v1(θ′1) − v1(θ))/(2δ) we obtain g2(θ2) = g1(θ′1) + 2δkx1(θ). Since

θ′′1 ∈ Θ̃1, by Eq. (18) we have that
g1(θ′′1 )−g1(θ′1)
v1(θ′1)−v1(θ′′1 )

= k. Thus, by repeating the above steps, we have

that g2(θ2) = g1(θ′1) + 2δkx1(θ′′), which is a contradiction: the virtual costs are strictly increasing

and hence x1(θ) 6= x1(θ′′). /

Therefore, we have shown that (i) in the first case we must have that gi(θi) = 0 for all θi ∈ Θ̃i

and all i ∈ N , and that (ii) the second case cannot arise as it will result in a contradiction. This

completes the proof of Step 1.a: we have established that gi(θi) = 0, for all θi ∈ Θ̃i and all i ∈ N .

C

Step 1.b: gi(θi) = 0 for all θi /∈ Θ̃i and all i ∈ N . Next, we show that gj(θj) = 0 whenever

θj < min Θ̃j or θj > max Θ̃j . For θj < min Θ̃j consider a profile θ = (θj ,θ−j) such that θi ∈ Θ̃i

for all i 6= j. (Note that this implies that gi(θi) = 0 ∀i 6= j.) By the definition of Θ̃j and the

monotonicity of the Hotelling demand—it is easy to see that, if we decrease the cost of an agent

while keeping all other costs constant, his demand can only (weakly) increase—we must have that

xj(θ) > 0. By Lemma F.3 and Step 1.a we have that 0 =
∑

i∈Q(θ) gi(θi)xi(θ) = gj(θj)xj(θ) and,

therefore, gj(θj) = 0 for all θj < min Θ̃j and all j ∈ N .

Let θj > max Θ̃j and θj ≤ θuj , as defined at the beginning of this section. By Property 2 in

Lemma F.2, there exists a profile θ = (θj , θ−j) and a profile θ′ ∈ Θ̃ such that there exists a sequence

of profiles {θ0 = θ′, . . . ,θK = θ} satisfying that two consecutive profiles differ in at most one cost.

Given that θ′ ∈ Θ̃, we must have that gi(θ
′
i) = 0 for all i ∈ N . We will inductively show that

gi((θk)i) = 0 for every k = 1, . . . ,K and every i ∈ Q(θk). As j ∈ Q(θK), this will establish the

result. Let k be the component in which θ0 and θ1 differ, and k ∈ Q(θ1). (If no such k exists, then

all active agents share the same cost and thus the claim follows from the base case.) By Lemma F.3
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we have that
∑

i∈Q(θ1) gi((θ1)i)xi(θ1) = 0. As θ0 and θ1 differ only in the kth component, θ0 ∈ Θ̃,

and k ∈ Q(θ1), we must have that gk((θ1)k) = 0. We can inductively repeat this argument to show

that all the g’s corresponding to a profile in the path between θ′ and θ must be zero, which implies

that gj(θj) = 0. C

We have shown that both the statements described in Steps 1.a and 1.b hold. Hence, if (a, b)

satisfies Eq. (14), then gi(θj) = 0 for all i ∈ N and all θi ∈ Θi, completing the proof of Step 1. ♦

Step 2: gi(θi) = 0 for all i ∈ N and all θi ∈ Θi implies that the system is consistent. So

far we have shown that gi(θi) = 0 for all i ∈ N and all θi ∈ Θi. By the definition of gi, this implies

biθi = 0 for all i ∈ N and all θi ∈ Θi. To conclude the proof, we show that biθi = 0 for all i ∈ N and

all θi ∈ Θi implies that the system is consistent. To that end, consider a vector (a,0) satisfying

Eq. (14). Let A(θ) be the coefficient matrix associated with the vector of prices p(θ) as defined in

Eq. (13). Then,

|Q(θ)|∑
i=1

aiθ

 ∑
j∈Q(θ)

Aij(θ)vj(θj)

 =
∑

j∈Q(θ)

vj(θj)

|Q(θ)|∑
i=1

aiθAij(θ)

 = 0,

as (a,0) satisfying Eq. (14) implies that
∑|Q(θ)|

i=1 aiθAij(θ) = 0. Hence, we have shown that (a,0)

also satisfies Eq. (15). Therefore, the system is consistent and OPT (Cent) = OPT (DecLin), as

desired.
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Daniela Saban27 and Gabriel Y. Weintraub28

G Proof of Main Theorems

In this section we prove our main theorems. In particular, we prove a more general theorem

(Theorem G.1), which generalizes the statements of Theorem 4.1 (for the Hotelling model) and

Theorem 4.2 (for general affine demands).

The rest of the section is organized as follows. Recall that the idea of the proof is to show

that the system of linear equations defined by Eqs. (10) and (11) is consistent (see Corollary 4.1).

Therefore, in Section G.1 we start by describing the coefficient matrix of the associated system of

equations, and deriving some properties of the matrix that will be useful to prove the theorem. In

Section G.2, we state some definitions needed for our proof. In Section G.3, we state and prove

a preliminary lemma that plays an important role in our proof. Finally, in Section G.4, we state

and prove the main theorem. Naturally, we use several basic definitions and concepts from linear

algebra throughout this section. We refer the reader to Strang (1988).

G.1 The Coefficient Matrix and the System of Equations

Given θ ∈ Θ and i ∈ N , let Aij(θ) denote the coefficient of vj(θj) corresponding to the left hand

side of Eqs. (10); that is, the coefficient of vj(θj) in di(N, v(θ)). Recall that Q(θ) is the set of

active firms (i.e., those with positive demand) in the centralized-optimal solution under profile θ.

Also, recall that in all demand models considered in the paper, Aij(θ) = 0 for every i ∈ Q(θ) and

j /∈ Q(θ) (i.e. if a supplier has zero demand, then its price does not play a role in the demand

equations of competitors).

For a given θ and a given i ∈ Q(θ), the constraints imposed by Eqs. (10) can be expressed as:∑
j∈Q(θ)

Aij(θ)pj(θ) =
∑

j∈Q(θ)

Aij(θ)vj(θ) (Mi(θ))

We refer to the constraint associated with the cost vector θ and supplier i ∈ Q(θ) as Mi(θ). Any

set of prices p(θ) (for all θ ∈ Θ) satisfying all these constraints implement the centralized-optimal

allocations.

In addition, by Corollary 4.1, we must also guarantee that the expected interim transfers coincide

with the optimal ones from Cent. We abuse notation and refer to the equality constraint on the

expected transfers corresponding to supplier i and cost θji ∈ Θi by Ti(θ
j
i ). Recall that this constraint

27Graduate School of Business, Stanford University, Email: dsaban@stanford.edu
28Graduate School of Business, Stanford University, Email: gweintra@stanford.edu
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can be expressed as:∑
θ−i∈Θ−i

f−i(θ−i)xi(θ
j
i ,θ−i)pi(θ

j
i ,θ−i) = Ti(θ

j
i ) ∀i ∈ N, ∀θji ∈ Θi, (Ti(θ

j
i ))

where xi(θi,θ−i) is a constant equal to the corresponding centralized-optimal allocation.

Abusing notation, let M and m be the coefficient matrix and the corresponding RHS respec-

tively defined by linear equations in (Mi(θ)), for every θ ∈ Θ and every i ∈ Q(θ), and (Ti(θ
j
i )), for

every i ∈ N and every θji ∈ Θi, where each column is associated with a price pi(θ) with i ∈ Q(θ).29

The goal of the proof is to show that the system of linear equations given by (M ,m) has a solution.

Recall from Section F that the number of columns in M is greater than or equal to the number of

rows. By the Rouché-Frobenius theorem, a system of linear equations Mp = m is consistent (has

a solution) if and only if the rank of its coefficient matrix M is equal to the rank of its augmented

matrix [M |m]. To show whether the system of equations has a solution, we use an equivalent

definition of consistency.

Lemma G.1 (Consistency of a system of linear equations). Consider the system of linear equations

Mp = m. Let M i,∗ denote the ith row of M . Then, the system is consistent (has a solution) if

and only if for every vector y such that
∑

i yiM i,∗ = 0, we have
∑

i yimi = 0.

To apply the above lemma, we define the associated coefficients as follows:

Definition G.1 (Associated Coefficients). For each row Mi(θ), let aiθ denote the associated coef-

ficient. Similarly, we denote by bi
θji

the coefficient associated to row Ti(θ
j
i ). Let (a, b) be the vector

of coefficients we just described.

Rephrasing Lemma G.1 for our setting, for a system to be consistent we must have that for

every vector (a, b) such that:∑
θ∈Θ

∑
i∈Q(θ)
i 6=ι(Q(θ))

aiθMi(θ) +
∑
i∈N

∑
θji∈Θi

bi
θji
Ti(θ

j
i ) = 0 (20)

then the linear combination of the right hand side also equals zero, that is,

∑
θ∈Θ

∑
i∈Q(θ)
i 6=ι(Q(θ))

aiθ

 ∑
j∈Q(θ)

Aij(θ)vj(θj)

+
∑
i∈N

∑
θji∈Θi

bi
θji

θjiXi(θ
j
i ) +

|Θi|∑
k=j+1

(θki − θk−1
i )Xi(θ

k
i )

 = 0.

(21)

Note that whenever the rows of M are linearly independent, the only vector of coefficients

satisfying Eq. (20) is (a, b) = 0 and, therefore, the system is trivially consistent.

29Prices pi(θ) with i /∈ Q(θ) can safely be discarded, as all the coefficients of such columns are zero.
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G.1.1 Further Properties of the Coefficient Matrix

Through the rest of the section, we consider the general affine demand model. Given a matrix A,

we denote the ith row of A by Ai,∗. Similarly, the jth column is denoted by A∗,j . For a subset of

indices Q ⊂ N , AQ denotes the principal submatrix of A obtained by selecting only the rows and

columns in Q. Similarly, cQ denotes the vector obtained by selecting only the components in Q

and 1Q denotes the vector of ones of dimension |Q|. We have the following result that characterizes

an affine demand function for the set of active suppliers.

Lemma G.2. Given a price vector p and the associated demand d(N,p), we denote by Q = Q(p) =

{i ∈ N : di(N,p) > 0}. Then, demand dQ(p) = d(Q,p) can be expressed as:

dQ(pQ) = dQ(pQ) = (DQ)−1

(
cQ − pQ +

(
1− 1′Q(DQ)−1

(
cQ − pQ

)
1′Q(DQ)−11Q

)
1Q

)
. (22)

Proof. We start by stating the KKT conditions for problem in Example 2.2:

c−Dx− p+ λ1 + q = 0 (23)

1′x = 1

x ≥ 0

x′q = 0

q ≥ 0,

where λ is the multiplier associated to the equality constraint and q is the vector of multipliers

associated to the non-negativity constraints. Define v = c−Dx−p+λ1. By the KKT conditions

we must have that vi = ci −Di,∗x− pi + λ = 0, for all i ∈ Q. Therefore,

0 = vQ = cQ −DQxQ − pQ + λ1Q.

As D is positive definite and DQ is a principal submatrix of D we have that (DQ)−1 exists and,

furthermore,

xQ = (DQ)−1
(
cQ − pQ + λ1Q

)
In addition, by the feasibility constraint, we must have 1′QxQ = 1 and hence,

1 = 1′QxQ = 1′Q(DQ)−1
(
cQ − pQ + λ1Q

)
which implies

λ =
1− 1′Q(DQ)−1

(
cQ − pQ

)
1′Q(DQ)−11Q

.
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Therefore,

xQ = (DQ)−1

(
cQ − pQ +

(
1− 1′Q(DQ)−1

(
cQ − pQ

)
1′Q(DQ)−11Q

)
1Q

)
,

as desired.

The above demand specification exhibits a natural regularity property: if there is no demand

for a particular product, the price of that product does not affect the demand for other products. In

addition, it is simple to observe that any increase in price of a product with zero demand will not

have an impact on the demand function either.

From Eq. (22), it should be clear that whenever two vector of prices pQ and p̂Q satisfy

(DQ)−1

(
pQ −

1′Q(DQ)−1pQ

1′Q(DQ)−11Q
1Q

)
= (DQ)−1

(
p̂Q −

1′Q(DQ)−1p̂Q

1′Q(DQ)−11Q
1Q

)
, (24)

we must have that dQ(pQ) = dQ(p̂Q). This observation is useful: it states that demands only

depend on price differences. This freedom in setting unit prices is essential to our proof technique,

as we will find unit prices that satisfy the same differences induced by the virtual costs and that

simultaneously satisfy the expected interim transfer constraints.

By the previous observation, for θ ∈ Θ and each i ∈ Q(θ), the coefficient matrix M will consist

of at most Q(θ) non-zero rows: Q(θ)− 1 correspond to the demand equations30 and the remaining

one corresponding to the expected transfer constraint. Note that for given θ ∈ Θ, the demand

equations are given by Eq. (24) where we replace Q by Q(θ) and pQ by pQ(θ)(θ) in the left hand

side. In the right hand side we replace prices p̂Q by virtual costs vQ(θ)(θ).

We now define the the demand submatrix associated to cost θ ∈ Θ as follows.

Definition G.2 (Demand submatrix of cost vector θ). For a given θ ∈ Θ, we denote by A(θ) the

submatrix of M that contains the demand constraints for θ, that is, A(θ) equals the left hand side

of (Mi(θ))i∈Q(θ).

The following corollary of Lemma G.2 characterizes the matrix A(θ) for the general affine de-

mand models. We include all demand equations in this matrix, even though as previously discussed,

one of them is redundant.

Corollary G.1. Let F = F (θ) = (DQ(θ))
−1. Then, for every j ∈ Q(θ) and every i such that

1 ≤ i ≤ Q(θ), the coefficient for pj(θ) in equation i is given by:

A(θ)ij = −F ij +
(1′Q(θ) · F ∗,j)(F i,∗ · 1Q(θ))

1′Q(θ)F1Q(θ)
. (25)

30Note that if we can find prices pQ satisfying the constraints imposed by x1, . . . , x|Q|−1, then the last constraint

will also be satisfied as xQ = 1−
∑|Q|−1
j=1 xj .
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We now show that the associated demand vectors satisfy the original properties we wanted: the

demand for a product is (weakly) decreasing in its own-price and (weakly) increasing in others’

prices.

Lemma G.3 (Monotonicity). For every θ ∈ Θ and every i ∈ Q(θ) we have A(θ)ii < 0 and

A(θ)ij ≥ 0 for every j ∈ Q(θ) with j 6= i.

Proof. We start by noting that, given the conditions imposed to matrix Γ in Section 2, we have that

such matrix is a symmetric, non-singular, strictly-diagonally dominant M-matrix. In particular,

an M-matrix with such properties has strictly positive diagonal elements, and non-positive off-

diagonal elements. This proof uses several properties of M-matrices; the reader is referred to Horn

and Johnson (1991) for the details.

Fix an arbitrary θ ∈ Θ. By Corollary G.1, we have that

A(θ)ij = −F ij +
(1′Q(θ) · F ∗,j)(F i,∗ · 1Q(θ))

1′Q(θ)F1Q(θ)
,

where F = F (θ) = (DQ(θ))
−1. The proof will consist of two steps. First, we argue that, if F is

a symmetric, strictly diagonally dominant M-matrix, we have A(θ)ii < 0 and A(θ)ij ≥ 0 for every

i, j ∈ Q(θ) with j 6= i as desired. Second, we show that F is indeed a symmetric, strictly diagonally

dominant M-matrix.

To that end, suppose F is a symmetric, strictly diagonally dominant M-matrix. Then, F ii > 0

and F ij ≤ 0 and we must have that, for every row, the sum of the elements in a row must be

strictly positive. By symmetry, this is true also for the sum of the elements in a column. In turn,

this implies that the sum of all elements in the matrix is strictly positive and hence,

A(θ)ij = −F ij +
(1′Q(θ) · F ∗,j)(F i,∗ · 1Q(θ))

1′Q(θ)F1Q(θ)
< −F ij + F i,∗ · 1Q(θ) (26)

Then, we have A(θ)ii < −F ii + F i,∗ · 1Q(θ) ≤ 0, where the last inequality follows because Fij ≤
0, ∀i 6= j. Hence A(θ)ii < 0 as desired. Similarly, A(θ)ij ≥ 0 follows from the fact that both terms

in the summation are non-negative. Therefore, we have shown that if F is a symmetric, strictly

diagonally dominant M-matrix, the result follows.

To complete the proof, we show that F satisfies the stated properties. As usual, for the given

θ ∈ Θ, let Q = Q(θ) = {k ∈ N : xk(θ) > 0} and Q = Q(θ) = {k ∈ N : xk(θ) = 0}. From now

on, we omit the dependence on θ to simplify notation. By the KKT conditions (Eq. (23)), we have

that x = D−1(c− p+ λ1 + q). (Recall that D−1 = Γ.) By definition, we have that

0 = xQ = ΓQ,∗(c− p+ λ1 + q) = ΓQ,Q(cQ − pQ + λ1Q + qQ) + ΓQ,Q(cQ − pQ + λ1Q),

where we used qQ = 0 by the KKT conditions. Note that ΓQ,Q is a principal submatrix of a
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non-singular M-matrix. Thus, (ΓQ,Q)−1 exists and:

(cQ − pQ + λ1Q + qQ) = −(ΓQ,Q)−1ΓQ,Q(cQ − pQ + λ1Q) (27)

In addition, we have

xQ = ΓQ,∗(c− p+ λ1 + q)

= ΓQ,Q(cQ − pQ + λ1Q) + ΓQ,Q(cQ − pQ + λ1Q + qQ)

= ΓQ,Q(cQ − pQ + λ1Q)− ΓQ,Q(ΓQ,Q)−1ΓQ,Q(cQ − pQ + λ1Q)

=
(
ΓQ,Q − ΓQ,Q(ΓQ,Q)−1ΓQ,Q

)
(cQ − pQ + λ1Q),

where the second to last equality follows from Eq. (27). By the definition ofDQ, we have (DQ)−1 =(
ΓQ,Q − ΓQ,Q(ΓQ,Q)−1ΓQ,Q

)
. In turn, this implies that (DQ)−1 is the Schur complement of ΓQ,Q

in Γ. In particular, we have that the Schur complement of a M-matrix is also a M-matrix, and

non-singularity, symmetry and strict diagonal dominance are preserved in Schur complementation

(Carlson and Markham 1979, Horn and Johnson 1991). Therefore, the matrix F satisfies the desired

properties, which completes the proof.

Next, we establish two useful properties on the demand submatrices associated to cost profiles

θ such that all agents are active in θ.

Lemma G.4. Let A = A(θ) for any θ ∈ Θ such that Q(θ) = N be as defined by Corollary G.1.

Then, A is symmetric and has rank n− 1.

Proof. Note that, whenever Q(θ) = N , we have F = D−1 where F is as defined in Claim G.1. By

assumption, D−1 is symmetric and positive definite. Therefore, A is also symmetric by definition.

To show that A has rank n − 1, let I denote the identity matrix of size n. Note that A =

D−1
(
−I + 1 1′D−1

1′D−11

)
. Therefore,

rank(A) ≥ rank(D−1) + rank

(
−I + 1

1′D−1

1′D−11

)
− n = rank

(
−I + 1

1′D−1

1′D−11

)
,

as D−1 has full rank. In addition, we have31

rank

(
−I + 1

1′D−1

1′D−11

)
≥
∣∣∣n− rank(1

1′D−1

1′D−11

) ∣∣∣ ≥ n− 1,

as the matrix 1 1′D−1

1′D−11
has rank exactly one. The converse follows just from the definition of A, as

we know that one row must be redundant as all demands must some up to one.

In order to show that the system of equations is consistent, we want to find prices p such that

x(p) = x(v(θ)), where v(θ) = (v1(θ), . . . , vn(θ)) is defined as the vector of virtual costs. That is,

31Matrix property: rank(A−B) ≥ |rank(A)− rank(B)|
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we must have Ap = Av(θ). Therefore, Lemma G.4 states that for θ ∈ Θ such that Q(θ) = N , the

dimension of prices satisfying those demand constraints is exactly one, as A has rank n− 1.

G.1.2 Coefficient Matrix for Hotelling Model

We provide a brief note on the Hotelling model. While all the material in this section is presented

with the general affine demand model in mind to avoid cumbersome notation, we now show that

all the properties of matrix A(θ) shown above (that we use to prove our main result) also hold for

the Hotelling Model.

Remark G.1. Given θ, let Q(θ) be the set of active agents ordered from leftmost to rightmost.

Then,

A(θ) =
1

2δ



−1 1 0 0 . . . 0 0 0

1 −2 1 0 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . 1 −2 1

0 0 0 0 . . . 0 1 −1


This follows from the fact that, in the Hotelling model, suppliers split the market with their

immediate active neighbors; in particular, i obtains
pj−pi+δ|`j−`i|

2δ units from the segment [`i, `j ]

and j the rest. If i is the leftmost active supplier, he obtains all the demand in the [0, `i] segment;

similarly, if he is the rightmost active supplier, he obtains all the demand in [`i, 1]. Renaming the

suppliers in Q(θ) as 1, 2, . . ., with numbers increasing from left to right suppliers, we have that the

demand for the leftmost active supplier 1 is `1 + p2−p1+δ|`2−`1|
2δ . Note that the coefficient of the

prices in this equation are represented by the first row of the matrix. Similarly, the demand for

supplier 2 is p1−p2+δ|`2−`1|
2δ + p3−p2+δ|`3−`2|

2δ ; this is summarized by the second row, and so on.

It is immediate to see that, under the Hotelling model, Lemmas G.3 and G.4 hold. Similarly,

for a fixed set Q, the demands only depend on price differences and not on actual prices.

G.2 Definitions and Notation

We now state some definitions that we will use to prove the main theorem. Let θi and θi denote

the lowest and highest values in Θi. For each j ∈ N , let θuj be the maximum θj ∈ Θj under which

there exists a profile θ = (θj ,θ−j) such that j ∈ Q(θ). We may assume that θj ≤ θuj for all agents

j ∈ N , as otherwise we can consider (w.l.o.g.) the reduced problem in which all agents for which the

condition is violated are removed. In addition, note that for agent j all constraints and coefficients

associated to θj > θuj will not play a role in our analysis, because agent j is inactive for all profiles

with θj > θuj .

Two profiles θ,θ′ ∈ Θ are defined to be adjacent if and only if θ and θ′ only differ in one

component and Q(θ) = Q(θ′), where Q(θ) is the set of active firms in the relaxed optimal solution

under profile θ. Given two profiles θ,θ′, we define θ to be reachable from θ′ if there exists a

sequence of profile {θ0 = θ′,θ1, . . . ,θK = θ} such that Q(θk) ⊆ Q(θk−1) for all 1 ≤ k ≤ K, and
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the sub-profiles (θk−1)Q(θk) and (θk)Q(θk) differ in at most one component; that is, at most one

agent among those active in θk has a different cost in both profiles.

Definition G.3 (Acceptable set). A subset of profiles Θ̃ ⊆ Θ is an acceptable set if the following

conditions are simultaneously satisfied:

1. Q(θ) = N for every θ ∈ Θ̃.

2. For each agent i, let Θ̃i = {θi ∈ Θi : ∃θ−i such that (θi,θ−i) ∈ Θ̃}. Then, for every θi ∈ Θi

such that min Θ̃i ≤ θi ≤ max Θ̃i we must have θi ∈ Θ̃i. That is, each Θ̃i must be a (discrete)

interval.

3. For every profile θ such that θi ∈ Θ̃i for all i ∈ N , we must have θ ∈ Θ̃.

We abuse notation to denote min Θ̃i = min{θi : θi ∈ Θ̃i} and max Θ̃i = max{θi : θi ∈ Θ̃i}. The

above definition of acceptable set will help us characterize sufficient conditions under which the

optima of the Cent and DecLin problems agree. In particular, let a market be defined by the set

of suppliers, their product characteristics and cost distributions, as well as the demand model. We

define a relaxation-is-optimal market (RIOM) as follows.

Definition G.4 (RIOM). A market is relaxation-is-optimal market (RIOM) if there exists an

acceptable set Θ̃ under which the following (additional) conditions are satisfied:

4. For every i ∈ N we have |Θ̃i| ≥ 3.

5. For all i ∈ N and θi such that max Θ̃i ≤ θi ≤ θui , there exists a profile θ = (θi, θ−i) with

i ∈ Q(θ) and a profile θ′ ∈ Θ̃ such that profile θ is reachable from θ′.

Intuitively, a market will be RIOM if (1) there exists a solution in which all agents are active,

and (2) the difference in virtual costs between adjacent points in the support is “small enough”. If

the difference between adjacent virtual costs is small, then by changing a cost by the following (or

preceding) one, we do not expect the allocation (and hence the set of active suppliers) to change

much. Therefore, Conditions (2) and (3) will be satisfied. Similarly, if there exists a cost profile θ

for which all agents are active, one would expect that this will also be true for the cost profiles close

to θ provided adjacent virtual costs are close enough. Therefore, Condition (4) will be satisfied.

Finally, a small difference between adjacent virtual costs also implies Condition (5); we can change

one cost at a time by an adjacent one while having some control over the set of active suppliers,

and therefore we can construct a path of profiles that can take us from θ′ to θ.

Our main theorem will state that, if the market is RIOM, then we have that the optima of the

DecLin and Cent agree and thus we can characterize the optimal decentralized mechanism under

linear pricing. Therefore, we now show that the conditions of Theorem 4.1 for the Hotelling model

and Theorem 4.2 for the general affine model imply that the markets are RIOM.

Lemma G.5. Any market satisfying the conditions of Theorem 4.1 is RIOM.
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Proof. Recall that all firms are active in the centralized-optimal solution under profile θ, if |vj(θj)−
vi(θi)| ≤ δ|`j−`i|, for all i, j ∈ N . Hence, by Condition (1) in the statement of the theorem, a profile

θ in which Q(θ) = N must exist. Furthermore, |vi+1(θi) − vi(θi)| ≤ δ(`i+1 − `i)/4 for all i ∈ N .

Condition (2) in the statement of the theorem states that vi(θ
j+1
i ) − vi(θji ) ≤

δc∗

8 for all i ∈ N ,

and θji ∈ Θi. Using the two conditions it is simple to show that, by letting θki denote θi, we must

have Q(θk+2
i ,θ−i) = Q(θk−2

i ,θ−i) = N , provided these exist. Further, let θ = (θi,θ−i) and define

Θ̃i = {θ′i ∈ Θi : |vi(θ′i)−vi(θi)| ≤ δc∗

4 }. As |Θi| ≥ 3, we must have that |Θ̃i| ≥ 3. In addition, notice

that for every pair θ′i, θ
′
j ∈ Θ̃i× Θ̃j we have that |vi(θ′i)− vj(θ′j)| ≤ |vi(θi)− vj(θj)|+ δc∗

2 ≤
3|`i−`j |

4 δ.

Therefore, defining Θ̃ =
∏
i∈N Θ̃i, we get that Q(θ) = N, ∀θ ∈ θ̃, and Θ̃ is an acceptable set

satisfying Condition (4). Finally, we show that the reachability requirement (Condition (5)) is

satisfied.

To that end, we explicitly construct a sequence of profiles that are reachable from a θ′ ∈ Θ̃,

and such that for all i ∈ N and all θi with max Θ̃i ≤ θi ≤ θui , there exists a profile in the sequence

of profiles for which i has cost θi and is active. Let θ0 be a profile such that (θ0)i = max Θ̃i for

all i ∈ N . Note that θ0 ∈ Θ̃ by construction. From θ0, we construct a profile θ1 by selecting the

agent j with the minimum virtual cost, and increasing his cost to the adjacent one, call it (θ1)j .

The costs of all other agents do not change in the new profile. Note that, for all i 6= j:

vj((θ1)j)− vi((θ1)i) = vj((θ1)j)− vj((θ0)j) + vj((θ0)j)− vi((θ1)i) ≤ δc∗/8 , (28)

because the difference between adjacent virtual costs is bounded by δc∗/8 by assumption, and

vj((θ0)j) ≤ vi((θ1)i) = vi((θ0)i), by construction. Hence, agent j remains active and all other

agents remain active by monotonicity of Hotelling demand. We can inductively apply this procedure

—select the agent with lowest virtual cost and increase his cost to the adjacent one— to obtain

profiles that are adjacent and in which all agents are active.

Eventually, we will reach a profile θK for which we cannot increase the cost of the agent j with

lowest virtual cost; this means that (θK)j = θj . Further, it must be that θuj = θj . Thus, we have

shown that for all θj with max Θ̃j ≤ θj ≤ θuj , there exists a profile in the sequence of profiles for

which j has cost θj , j is active, and such profile is reachable from θ0.

Let U = {j}; from now on, the set U will contain all agents who have reached θu. Construct

a profile θK+1 by selecting the agent j′ with the lowest virtual cost among those in N\U , and

increasing his virtual cost to the adjacent one. Now three possibilities arise:

1. If the cost of agent j′ can be increased and j′ remains active, then we just increase his cost

and repeat.

2. If the cost of such agent cannot be increased further, this implies that we have shown our

claim for j′, because we have reached θj′ ; hence, we can add him to U and repeat.

3. Finally, we consider the case in which the cost of j′ can be increased but in doing so we have

j′ /∈ Q(θK+1); then, we must have θuj′ = (θK)j′ . To see why this holds, note that as j′ is the

agent with lowest virtual cost among the ones in N\U , he can only be inactive in the new
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profile if an agent in U (agent j) grabs the demand j′ had in the old profile (θK) (by a similar

argument to equation (28)). As a consequence, it is simple to observe that agent j will keep

j′ inactive even if the virtual costs of other agents increase. This together with (θK)j = θj

shows our claim for j′.

We proceed by adding j′ to U and defining θK+1 = (θj′ , (θK)−j′); by construction, θK+1 is

reachable from θ0. We conclude the proof by noting that we can inductively apply this procedure.

Each time we add an agent to U , we have shown the claim for such agent. Specifically, every time

the cost of an agent cannot be increased because he will become inactive, it must be caused by the

fact that one of the costs of at least one agent in U is preventing for doing so. However, in the

current profile all agents in U are at their maximum costs by construction; thus, such agent has

reached θu and we have shown that the statement is true for him as well.

We now show an analogous result for the case of affine demand models. Let θ = (θj)j∈N .

To prove the following lemma we will assume that Q(θ) = N , that is all suppliers are active in

the centralized-optimal solution at the largest cost profile. This assumption significantly simplifies

the proof and the notation required. However, one can also show that any market satisfying the

conditions of Theorem 4.2 is RIOM even if Q(θ) ⊂ N .

Lemma G.6. Any market satisfying the conditions of Theorem 4.2 and for which Q(θ) = N is

RIOM.

Proof. First, note that the existence of d∗ and Condition (1) in the statement of the theorem

defines an acceptable set Θ̃. Furthermore, note that Condition (2) in the statement of the theorem

implies that Condition (4) in the definition of RIOM will be satisfied. Finally, Condition (5) in the

definition of RIOM is trivially satisfied because θ ∈ Θ̃.

Furthermore, in the setting of Lemma G.6 we can also characterize d∗ as follows. Let M =

maxj∈N |Θ̃j |, and let A = A(θ) be the coefficient matrix associated with profile θ, as defined in

Definition G.2. Then, as long as d∗ < 2
M mini∈N{(− 1

Aii
xi(θ))}, we have that the market is RIOM.

Note that x(θ), the optimal allocations for the centralized problem at profile θ, depend on the

models primitives through the demand system and the virtual costs.

G.3 Auxiliary Lemma

We state and prove the following Lemma, which will play a key role in the proof of the main

theorem.

Lemma G.7. Suppose the coefficients (a, b) are such that equality in Eq. (20) holds. For each

i ∈ N and each θi ∈ Θi, let gi(θi) be defined as gi(θi) =
biθi
fi(θi)

. Then for each θ ∈ Θ, we must have

∑
i∈Q(θ)

gi(θi)xi(θ) = 0 (29)
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Proof. Fix θ ∈ Θ. We show the result for the general affine demand model as described in Sec-

tion 2. Recall that the coefficients of the matrix corresponding to the demand equations (that is,

Eqs. (Mi(θ)) ) are as defined by Eq. (25). As the equality in Eq. (20) holds, for each j ∈ Q(θ) we

must have:

bjθjf(θ−j)xj(θ) +

Q(θ)−1∑
i=1

aiθ

(
−F ij +

(1′Q(θ) · F ∗,j)(F i,∗ · 1Q(θ))

1′Q(θ)F1Q(θ)

)
= 0,

where we have used the fact that one constraint is indeed redundant (and thus the summation goes

to Q(θ)− 1 instead of Q(θ)). Therefore,

∑
j∈Q(θ)

bjθjf(θ−j)xj(θ) = −
∑

j∈Q(θ)

Q(θ)−1∑
i=1

aiθ

(
−F ij +

(1′Q(θ) · F ∗,j)(F i,∗ · 1Q(θ))

1′Q(θ)F1Q(θ)

)

= −
Q(θ)−1∑
i=1

aiθ

 ∑
j∈Q(θ)

(
−F ij +

(1′Q(θ) · F ∗,j)(F i,∗ · 1Q(θ))

1′Q(θ)F1Q(θ)

)
= −

Q(θ)−1∑
i=1

aiθ

−F i,∗ · 1Q(θ) + F i,∗ · 1Q(θ)

 ∑
j∈Q(θ)

(1′Q(θ) · F ∗,j)
1′Q(θ)F1Q(θ)


= −

Q(θ)−1∑
i=1

aiθ
(
−F i,∗ · 1Q(θ) + F i,∗ · 1Q(θ)

)
= 0

To complete the proof, note that
∑

j∈Q(θ) b
j
θj
f(θ−j)xj(θ) = f(θ)

(∑
j∈Q(θ) gj(θj)xj(θ)

)
= 0.

Hence,
∑

j∈Q(θ) gj(θj)xj(θ) = 0 as desired.

G.4 Main Theorem

We can now state and prove our main theorem.

Theorem G.1. Consider the general affine demand model in which agents have arbitrary costs

distributions. If the market is RIOM, then OPT (DecLin) = OPT (Cent).

Proof. To show OPT (DecLin) = OPT (Cent), we show that the system of equations is consistent.

Let (a, b) be a vector of coefficients satisfying Eq. (20). Let gi(θi) be as defined in the statement

of Lemma G.7. The idea of the proof is to first show that, if a market is RIOM, then all gi(θi)

must be zero. Then, we show that if gi(θi) = 0, for all θi ∈ Θi and all i ∈ N , then the system is

consistent and thus OPT (DecLin) = OPT (Cent) as desired. Consequently, the proof is divided

into the following steps:

Step 1: Show that if (a, b) satisfies Eq. (20) and a market is RIOM all gi(θi) must be zero.

Let Θ̃ ⊆ Θ be such that it satisfies Conditions (1)-(5) in Definitions G.3 and G.4 respectively
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(we know such Θ̃ exists as the market is RIOM) . Step 1 is further divided into the following

two sub-steps:

(a) Step 1.a: Show that gi(θi) = 0 for all θi ∈ Θ̃i and all i ∈ N .

(b) Step 1.b: Show that gi(θi) = 0 for all θi /∈ Θ̃i and all i ∈ N .

Step 2: Show that gi(θi) = 0, for all θi ∈ Θi and all i ∈ N , implies consistency of the system

of linear equations.

Step 1.a : Show gi(θi) = 0, for all θi ∈ Θ̃i and all i ∈ N . By assumption, Θ̃ satisfies conditions

(1)-(5). Therefore, for every θ ∈ Θ̃ we must have Q(θ) = N (by Condition (1)). Consider two

profiles θ = (θi,θ−i) and θ′ = (θ′i,θ−i) which only differ in agent i’s cost and such that θ,θ′ ∈ Θ̃.

By the definition of Θ̃, such pair of profiles exists (Conditions (3) and (4)). By Eq. (29), we

must have gi(θi)xi(θ) +
∑

j 6=i gj(θj)xj(θ) = 0 and gi(θ
′
i)xi(θ

′) +
∑

j 6=i gj(θj)xj(θ
′) = 0. Hence, by

subtracting the second equality from the first one we obtain

gi(θi)xi(θ)− gi(θ′i)xi(θ′) =
∑
j 6=i

gj(θj)
[
xj(θ

′)− xj(θ)
]
.

For each j ∈ N , we must have xj(θ
′)−xj(θ) = A(θ)ji (vi(θ

′
i)− vi(θi)), where we used the fact that

A(θ) = A(θ′) by definition, as the same set of agents are active. Let A = A(θ), and note that

this A agrees with the one in Lemma G.4, because Q(θ) = N . Hence, we can re-write the above

equality as:

gi(θi)xi(θ)− gi(θ′i)xi(θ′) =
(
vi(θ

′
i)− vi(θi)

)∑
j 6=i

gj(θj)Aji

 ,

and therefore,

gi(θi)xi(θ)− gi(θ′i)xi(θ
′)

vi(θ′i)− vi(θi)
=

∑
j 6=i

gj(θj)Aji

 . (30)

Fix an arbitrary j ∈ N with j 6= i and Aij 6= 0. By strict diagonal dominance of F , such j always

exists (see Eq. (26)). Let θj be the cost of agent j in both θ and θ′, where the cost profiles are as

defined above. Let θ′j ∈ Θj be such that θ′j 6= θj and θ′j ∈ Θ̃j (by Conditions (3) and (4), such θ′j
exists). Define θ̃ = (θi, θ

′
j ,θ−i,j) and θ̃

′
= (θ′i, θ

′
j ,θ−i,j). The only thing we assumed about θj was

θj ∈ Θ̃j . Therefore, the above equality must also hold for any θ̃j ∈ Θ̃j . That is,

gi(θi)xi(θ̃)− gi(θ′i)xi(θ̃
′)

vi(θ′i)− vi(θi)
= gj(θ

′
j)Aji +

∑
k 6=i,j

gk(θk)Aki.

By subtracting the inequality when j has cost θj from the one when his cost is θ′j we get

gi(θi)
(
xi(θ̃)− xi(θ)

)
− gi(θ′i)

(
xi(θ̃

′)− xi(θ′)
)

vi(θ′i)− vi(θi)
= Aji

(
gj(θ

′
j)− gj(θj)

)
.
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However, note that xi(θ̃)− xi(θ) = Aij

(
vj(θ

′
j)− vj(θj)

)
. Therefore,

Aij
gi(θi)− gi(θ′i)
vi(θ′i)− vi(θi)

= Aji

gj(θ
′
j)− gj(θj)

vj(θ′j)− vj(θj)
.

Recall that A is symmetric (Lemma G.4).Therefore, whenever Aij 6= 0 we must have:

gi(θi)− gi(θ′i)
vi(θ′i)− vi(θi)

=
gj(θ

′
j)− gj(θj)

vj(θ′j)− vj(θj)
, ∀i 6= j, ∀θi, θ′i ∈ Θ̃i, ∀θj , θ′j ∈ Θ̃j . (31)

Furthermore, the above equality should hold for every i, j ∈ N as we can find a sequence of agents

{l0 = i, . . . , lK = j} such that Alk,lk+1
6= 0 for all 0 ≤ k < K.32

To complete the proof that gi(θi) = 0 for all θi ∈ Θ̃i, we are going to consider two options:

either gi(θi)− gi(θ′i) = 0 for at least one pair of gi(θi), gi(θ
′
i), or gi(θi)− gi(θ′i) 6= 0 for all i ∈ N and

θi, θ
′
i ∈ Θ̃i. We explore both options next:

Case gi(θi) − gi(θ′i) = 0 for at least one pair of gi(θi), gi(θ
′
i). Suppose the numerator is zero

for at least one pair of gi(θi), gi(θ
′
i). Then, gj(θj) − gj(θ′j) must be zero for every j ∈ N and all

pairs θj , θ
′
j ∈ Θ̃j .

The next step is to show that gi(θi) = gj(θj) must hold for every θi ∈ Θ̃i and θj ∈ Θ̃j and

i, j ∈ N ; we will use this fact as an intermediate step to show that indeed we must have gi(θi) = 0

for all θi ∈ Θ̃i and all i ∈ N .

Showing that gi(θi) = gj(θj) is trivial if i = j, as gi(θi) − gi(θ′i) must be zero for every i ∈ N
and all pairs θi, θ

′
i ∈ Θ̃i, by Eq. (31). For the other cases, note that when gi(θi) = gi(θ

′
i), we have

gi(θi)xi(θ)− gi(θ′i)xi(θ
′) = gi(θi)Aii (vi(θi)− vi(θ′i)). By Eq. (30) the above equality reduces to∑

j∈N
gj(θj)Aij = 0, (32)

and this must be true for any i ∈ N . Let AR denote the submatrix of A consisting of (n − 1)

linearly independent rows. By Lemma G.4, we know such matrix exists. Furthermore, we can

assume that those are the n − 1 demand equations that appear in the coefficient matrix M . Let

g = (g1, . . . , gn) denote the vector of coefficients gi = gi(θi) for θ ∈ Θ. By Eq. (32), the vector g

must be in the nullspace of AR. However, as AR ∈ R(n−1)×n has dimension (n− 1) the dimension

of its nullspace is at most 1. We will show that 1 is in Null(AR), which implies that all gi with

i ∈ N must be equal.

Consider (AR)i,∗, that is, row i of the coefficient matrix AR. We will show that (AR)i,∗ ·1 = 0.

32Here we are implicitly assuming that matrix A has only one block. If A has more than one block, then we can
use the same argument for each block.
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Note that

(AR)i,∗ · 1 =
∑
j

(
−F ij +

(1′Q(θ) · F ∗,j)(F i,∗ · 1Q(θ))

1′Q(θ)F1Q(θ)

)
= −F i,∗ · 1 + F i,∗ · 1 = 0,

as desired. Therefore, 1 is in Null(AR) and thus gi(θi) = gj(θj) for all i, j ∈ N , θi ∈ Θ̃i, θj ∈ Θ̃j .

Using that gi(θi) = gj(θj) for all θi ∈ Θ̃i and θj ∈ Θ̃j , we now show that gi(θi) = 0 for all i ∈ N
and all θi ∈ Θ̃i, which implies biθi = 0 for all θi ∈ Θ̃i. If gi(θi) = 0, for some i ∈ N and θi ∈ Θi, we

are done. Otherwise, suppose that gi(θi) = k 6= 0 for all i ∈ N and all θi ∈ Θi. By Lemma G.7 we

have:

0 =
∑

j∈Q(θ)

gj(θj)xj(θ) = k

 ∑
j∈Q(θ)

xj(θ)

 = k,

which is a contradiction /

Case gi(θi) − gi(θ′i) 6= 0 for all i ∈ N and θi, θ
′
i ∈ Θ̃i. Let the pair gi(θi), gi(θ

′
i) be such that

gi(θi)−gi(θ′i)
vi(θ′i)−vi(θi)

= k 6= 0, and rewrite gi(θi) = gi(θ
′
i) + k[vi(θ

′
i) − vi(θi)]. Let θi, θ

′
i, θ
′′
i ∈ Θ̃i and let

θ−i ∈ Θ̃−i. Then, we must have using equation (30):

(
vi(θ

′
i)− vi(θi)

)∑
j 6=i
Ajigj(θj) = gi(θi)xi(θ)− gi(θ′i)xi(θ′)

=
(
gi(θ

′
i) + k[vi(θ

′
i)− vi(θi)]

)
xi(θ)− gi(θ′i)xi(θ′)

= gi(θ
′
i)
(
xi(θ)− xi(θ′)

)
+ k[vi(θ

′
i)− vi(θi)]xi(θ)

= gi(θ
′
i)Aii

(
vi(θi)− vi(θ′i)

)
+ k[vi(θ

′
i)− vi(θi)]xi(θ)

By dividing on both sides by vi(θ
′
i)− vi(θ) we obtain:∑

j 6=i
Ajigj(θj) = −gi(θ′i)Aii + kxi(θ)

In addition, since θ′′i ∈ Θ̃i, we have
gi(θ

′′
i )−gi(θ′i)

vi(θ′i)−vi(θ′′i )
= k by Eq. (31), and thus:

∑
j 6=i
Ajigj(θj) = −gi(θ′i)Aii + kxi(θ

′′)

which is a contradiction, because the virtual costs are strictly increasing and therefore xi(θ) 6=
xi(θ

′′) /

Therefore, we have shown that in the first case we must have gi(θi) = 0 for all θi ∈ Θ̃i and all

i ∈ N , and that the second case cannot arise as it will result in a contradiction. Note that this

concludes the proof of Step 1.a —we have established that gi(θi) = 0 for all θi ∈ Θ̃i and all i ∈ N
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Step 1.b: gi(θi) = 0 for all θi /∈ Θ̃i and all i ∈ N . Next, we show that gj(θj) = 0 whenever

θj < min Θ̃j or θj > max Θ̃j . (Recall that by Condition (2), Θ̃j is an interval.) For θj < min Θ̃j

consider a profile θ = (θj ,θ−j) such that θi ∈ Θ̃i for all i 6= j. By the definition of Θ̃j and the

monotonicity of demand (Lemma G.3), we must have xj(θ) > 0. By Lemma G.7 and Step 1.a we

have

0 =
∑
i∈Q(θ)

gi(θi)xi(θ) = gj(θj)xj(θ).

and therefore gj(θj) = 0 for all θj < min Θ̃j and all j ∈ N .

Let θj > max Θ̃j and θj ≤ θuj , as defined at the beginning of Section G.2. By Condition (5) of

RIOM, there exists a profile θ = (θj , θ−j) and a profile θ′ ∈ Θ̃ such that the profile θ is reachable

from θ′. Hence, there exists a sequence of profiles {θ0 = θ′, . . . ,θK = θ} satisfying Condition (5).

Given that θ′ ∈ Θ̃, we must have that gi(θ
′
i) = 0 for all i ∈ N . We will inductively show that

gi((θk)i) = 0 for every k = 1, . . . ,K and every i ∈ Q(θk). As j ∈ Q(θK), this will establish the

result. Let k be the component in which θ0 and θ1 differ, and k ∈ Q(θ1). (If no such k exists, then

all active agents share the same cost and thus the claim follows from the base case.) By Lemma G.7

we have
∑

i∈Q(θ1) gi((θ1)i)xi(θ1) = 0. As θ0 and θ1 only differ in the kth component, θ0 ∈ Θ̃, and

k ∈ Q(θ1), we must have gk((θ1)k) = 0. We can inductively repeat this argument to show that

all the g’s corresponding to a profile in the path between θ′ and θ must be zero, which implies

gj(θj) = 0 C

Therefore, we have shown that both the statements described in Steps 1.a and 1.b hold. There-

fore if (a, b) satisfies Eq. (20), then gi(θj) = 0 for all i ∈ N and all θi ∈ Θi. This concludes the

proof of Step 1. ♦

Step 2: gi(θj) = 0 for all i ∈ N and all θi ∈ Θi implies the system is consistent. So far

we have shown that gi(θj) = 0 for all i ∈ N and all θi ∈ Θi. By the definition of gi, this implies

biθi = 0 for all i ∈ N and all θi ∈ Θi. To conclude the proof, we show that biθi = 0 for all i ∈ N and

all θi ∈ Θi implies that the system is consistent. To that end, consider a vector (a,0) satisfying

Eq. (20). For each θ ∈ Θ̃, we have

|Q(θ)|−1∑
i=1

aiθ

 ∑
j∈Q(θ)

Aij(θ)vj(θj)

 =
∑

j∈Q(θ)

vj(θj)

|Q(θ)|−1∑
i=1

aiθAij(θ)

 = 0,

as (a,0) satisfying Eq. (20) implies
∑|Q(θ)|−1

i=1 aiθAij(θ) = 0. Hence, we have shown that (a,0)

also satisfies Eq. (21). Therefore, the system is consistent and OPT (DecLin) = OPT (Cent) as

desired.
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H Supplement to Section 4

Theorem H.1. Consider a Hotelling Model with n suppliers such that supplier i is located at

`i = (i−1)
(n−1) (that is, suppliers are equidistant). Further, assume the cost distributions are identical,

and let f denote the such cost distribution and Θ̃ its support. Then, we have OPT (DecLin) =

OPT (Cent).

The proof of Theorem H.1 can be found in Appendix L.3.

I Optimal Mechanisms for Vertical Demand Model

We consider a classic model of pure vertical differentiation (see, e.g. Bresnahan (1987)). There

are n potential suppliers, supplier i offering a product of quality αi. We assume, w.l.o.g., that

α1 < . . . < αn. The qualities of the products are common-knowledge. There is a continuum of

consumers, all wishing to buy one unit of the good (so the market is covered), uniformly distributed

on the consumer-type space Z = [0, 1]. The type of a consumer indicates her value for quality. In

particular, the utility a consumer of type j ∈ Z obtains from consuming the product offered by

supplier i at price pi is given by:

uji(pi) = jαi − pi, (33)

Given a set of potential suppliers with fixed unit prices p = {pi}i∈N , the set of active suppliers

with strictly positive demand is given by:

Q(p) =

{
i ∈ N : max

j∈Z
min
k 6=i
{j (αi − αk)− (pi − pk)} > 0

}
.

Namely, a supplier i ∈ N will be active only if there exists a j ∈ Z for which uji(pi) > ujk(pk) for

all k ∈ N with k 6= i.

For unit prices p and agent i ∈ Q(p), let %p(i) (resp. ϑp(i)) denote the agent preceding (resp.

following) i in Q(p), that is, %p(i) = max {j ∈ Q(p) : j < i} and ϑp(i) = min {j ∈ Q(p) : j > i}.
Also, let ι(Q(p)) (resp. η(Q(p))) denote the highest (resp. lowest) quality agent in Q(p). Then,

the expected demand for product i is given by:

di(Q,p) =



0 if i /∈ Q(p)

1 if Q(p) = {i}
pϑp(i)−pi
αϑp(i)−αi

if i = η(Q(p))
pϑp(i)−pi
αϑp(i)−αi

− pi−p%p(i)
αi−α%p(i)

if i ∈ Q(p), i 6= η(Q(p)), ι(Q(p))

1− pi−p%p(i)
αi−α%p(i)

if i = ι(Q(p))

(34)

The linear constraints imposed by Eq. (34) that the prices must satisfy so as to haveOPT (DecLin) =
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OPT (Cent) agree with those of Hotelling demand case. That is, the prices must satisfy:

pϑθ(i)(θ)− pi(θ) = vϑθ(i)(θϑθ(i))− vi(θi) ∀θ ∈ Θ, i ∈ Q(θ), i 6= ι(θ), (35)

together with the constraints Ti(θ
j
i ), ∀i ∈ N, ∀θ

j
i ∈ Θi. With this in mind, it is simple to derive a

result analogous to that of Theorem 4.1.

Theorem I.1. Consider the general setting in which agents have arbitrary qualities and costs

distributions. Let b∗ = min1≤i≤n−1(αi+1 − αi). Suppose that the following two conditions are

simultaneously satisfied:

1. There exists θ ∈ Θ and c∗ ∈ R such that vi+2(θi+2)−vi+1(θi+1)
αi+2−αi+1

> c∗ + vi+1(θi+1)−vi(θi)
αi+1−αi for all

1 ≤ i ≤ n− 2, v2(θ2)−v1(θ1)
α2−α1

> c∗, and, 1− c∗ > vn(θn)−vn−1(θn−1)
αn−αn−1

;

2. |Θi| ≥ 3 for all i ∈ N , and for every i ∈ N and every θj ∈ Θi, we have vi(θ
j+1
i )−vi(θji ) ≤

c∗b∗

8 .

Then, we have OPT (DecLin) = OPT (Cent).

The intuition behind these two requirements is the same as that of Theorem 4.1. As usual,

let θ = (θ1, . . . , θn). From the definition of vertical demands (Eq. (34)), it is easy to see that,

by condition (1), for n ≥ 2 we must have Q(θ) = N . Hence, the first condition guarantees the

existence of an ‘interior solution’. The second condition imposes a ‘thin enough’ cost discretization.

J Extension to Multi-Product Suppliers

In this section we propose an extension to our model which allows suppliers to offer more than one

product. We show that, under this extension, our main result extends accordingly; therefore, we

are able to characterize (under additional conditions) the optimal mechanisms for the multiproduct

case.

We now discuss how to extend our model to the case where suppliers can offer multiple prod-

ucts. If each agent is assumed to have a different random variable to represent the cost for each

product, the problem involves solving a multidimensional mechanism design problem. This problem

is recognized to be hard in general. Therefore, our approach is to assume that suppliers’ costs can

be parametrized by a single type, which can be interpreted as if the auctioneer knows the agents’

cost structures but not their underlying cost parameter. This approach is commonly used in the

literature to overcome the multidimensional mechanism design problem (Levin 1997).

For i ∈ N , let Pi denote the set of products offered by supplier i. We assume that agent i has

cost cip(θi) for product p ∈ Pi, where θi is agent i’s type. The utility function of supplier i is given

by

ui = ti −
∑
p∈Pi

cip(θi)xip,

where xip is the amount of product p allocated to i, ti is the payment i receives in the auction, and

θi is his type. Similarly, the interim utility for supplier i when he reports cost θ′i and has true cost
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θi is given by:

Ui(θ
′
i|θi) = Ti(θ

′
i)−

∑
p∈Pi

cip(θi)Xip(θ
′
i).

For each pair (i, p) with i ∈ N and p ∈ Pi, we define the modified virtual cost as:

vip(θi) = cip(θi) +
Fi(ρ(θi))

fi(θi)
(cip(θi)− cip(ρ(θi))) .

As usual, we assume virtual costs to be increasing. Furthermore, we require that the function

hi : R|Pi|×R→ R defined as hi(xi, θi) =
∑

p∈Pi cip(θi)xip satisfies the increasing differences property.

Under these assumptions, the optimal solution to the centralized problem is characterized by the

following proposition.

Proposition J.1. Suppose that (x, t) satisfy the following conditions:

1. The allocation function satisfies for all θ ∈ Θ,

x(θ) ∈ argmaxK(x(θ))−
n∑
i=1

∑
p∈Pi

vip(θi)xip(θ)

s.t.

N∑
i=1

∑
p∈Pi

xip(θ) = 1, xip(θ) ≥ 0 ∀i ∈ N, p ∈ Pi .

2. Interim expected transfers satisfy for all i ∈ N and θji ∈ Θi:

Ti(θ
j
i ) =

∑
p∈Pi

cip(θ
j
i )Xip(θ

j
i ) +

|Θi|∑
k=j+1

∑
p∈Pi

(
cip(θ

k
i )− cip(θk−1

i )
)
Xip(θ

k
i )

Then, (x, t) is an optimal mechanism for the centralized problem.

The proof is provided in the last section of this document. Ideally, we would like to use the

the characterization of the optimal solution to the centralized problem to study the decentralized

problem. The optimal demands for the centralized problem still have an intuitive form, similar to

the single-product case. However, the expected transfers constraints differ, because they involve

terms for potentially many products. This introduces some additional complexities in the analysis,

and the extension of Theorem 4.2 to the multiproduct case is not straightforward.

Surprisingly, under sufficient conditions, we are able to show that our main result still holds.

That is, there exists prices under which we have OPT (DecLin) = OPT (Cent). This is formalized

by the following theorem.

Theorem J.1. Consider the general setting in which agents have arbitrary costs distributions and

offer any arbitrary number of products. Then, there exists c∗ ∈ N, d∗ ∈ R+ such that, whenever

the following conditions are simultaneously satisfied,
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1. There exists a profile θ ∈ Θ such that pi ∈ Q(θ) for all pi ∈ Pi and all i ∈ N . Furthermore,

there exists a d∗ ∈ R such that, for all θ′ ∈ Θ with |θ − θ′|∞ ≤ d∗ we have Q(θ′) = ∪i∈NPi.

2. |Θi| ≥ c∗ for all i ∈ N , and for every i ∈ N and every θj ∈ Θi, we have maxp∈Pi{vip(θ
j+1
i )−

vip(θ
j
i )} ≤ d∗/3.

we have OPT (DecLin) = OPT (Cent).

Although the intuition behind the proof of Theorem J.1 is similar to that of the single-product

case, there are some fundamental differences. For example, the set Q(θ) now denotes the active

products rather than the active suppliers. Note that a single supplier can simultaneously have many

different products in the assortment, which will be reflected in the expected transfer constraints.

In addition, as the cost realization of a supplier is simultaneously valid for all his products, we need

to guarantee that the grid is thin enough for all products offered by the supplier. A sketch of the

proof of Theorem J.1, provided in the last section of this document, shows how to address these

differences.

K Supplement to Section 5

K.1 Equilibrium Bidding Strategies Under the NC (ChileCompra) Mechanism

We can analytically calculate the pure strategy Bayes Nash equilibrium (PSBNE) bids for the agents

under the NC —hereafter may be also referred to as ChileCompra— mechanism with reserve price

θH . Using standard arguments, it is straightforward to verify that the equilibrium bid for a high-

type agent is θH . The characterization for the low-type bid can be found in Table 2. Furthermore,

in Table 2, we compare the equilibrium bidding strategy for the low-type agent in NC with reserve

price θH
33 to the average price per unit payed to a supplier of type θL in the optimal mechanism.34

The pure strategy Bayes Nash equilibrium bids are formally characterized in Lemma L.1, which

can be found in the last section of this document.

K.2 Ex-Ante Restricted-Entry Mechanism.

We analyze what happens if competition for the market is induced by restricting entry before bids

are placed. Suppose that we decide how many agents will be in the menu before observing the bids

and then run a FPA type mechanism to decide the prices. In our two-agent model, this amounts

to deciding when does choosing a single winner using a FPA outperforms the NC mechanism.

Recall that, in general, a FPA does not have an equilibrium in pure strategies when types are

discrete. However, by allowing equilibria in mixed strategies, expected payments in the FPA are

given by θH − f2
L(θH − θL).35 By adding the transportation cost, the total expected cost faced by a

33Note that for low-values of δ a BNE does not exist for the same reasons a BNE does not typically exist in first
price auctions with discrete types Krishna (2009).

34We calculate the average price per unit payed to a supplier of type low as T (θL)/X(θL).
35This follows from standard arguments.
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Value of δ
Optimal NC

award avg. low price award equation strat. low[
1
fH

(θH − θL),∞
)

split
(fH/2+fL(1−x))θH+(x−1/2)θL

fL/2+fHx

where x =
1/fH (θH−θL)+δ

2δ

split
θH

[
(θH − θL), 1

fH
(θH − θL)

]
single

θL+fHθH
1+fH

[
(θH−θL)
2+fH

, (θH − θL)
]

θL+fHθH+δ
1+fH[

fL
2

(θH − θL),
(θH−θL)
2+fH

)
single

θH − δ[
fHfL(θH−θL)

1
2
(1+fH )2+fHfL

, fL
2

(θH − θL)

]
θL + δ 1+fH

fL[
0,

fHfL(θH−θL)
1
2
(1+fH )2+fHfL

]
no BNE -

Table 2: Comparison Optimal mechanism and NC mechanism with reserve price θH . In
all cases, the expected price for an item of cost θH is θH .

designer who chooses to run a FPA is θH − f2
L(θH − θL) + δ

2 . Using these analytical expressions, we

can characterize the set of parameters for which the FPA outperforms NC. To illustrate, for fixed

θL = 10 and θH = 12, the relative performance of NC and FPA as a function of parameters (fL, δ)

can be seen in Figure 4.36

As it can be observed, FPA may or may not improve over NC, depending on the combination

of parameters. In particular, NC outperforms the FPA mechanisms when both fL and the differ-

entiation cost δ are relatively small (the white area). As the differentiation cost increases beyond

θH − θL but fL remains small, the FPA is still worse than NC. In that region (light gray area), the

equilibrium strategy for the low-type in NC mechanism is to bid θH , which agrees with the bid a

low-type agent will place if there was no competition. However, the designer cannot improve by

switching to a FPA; in the light gray area, the reduction in purchasing costs that results from the

price competition cannot compensate for the large transportation cost, even when bids in the NC

mechanism are as high as possible. On the other hand, as fL increases, it is profitable to restrict

the entry using a FPA even if that implies a higher transportation cost (gray area);37 this is due

to the fact that a FPA is able to obtain much lower (expected) bids from the low-type.

K.3 BRE mechanism

We now study when the BRE mechanism (as defined in Section 5.1) outperforms NC as a function

of the parameters. We find that when δ is relatively small and NC split-awards, restricting entry

improves over NC mechanism regardless of the value of other parameters. In such cases, the decrease

in the low-type equilibrium bid results in a considerable decrease in the expected purchasing cost

without a major increase in the expected transportation cost. In addition, restricting entry performs

better for the middle-values of fL. If fL is too low, the savings are less likely to occur and therefore

the potential impact is smaller. On the other hand, if fL is too high, the best-low-type-bid tends

to increase and the single-award becomes less profitable. This is illustrated by Figure 5, where we

36The black area is omitted from the analysis, as no equilibrium in pure strategies exists in the NC mechanism.
37We note that the non-convexity of the areas FPA and NC is due to the fact that, in NC, the equilibrium bidding

strategy as a function of δ is decreasing in the interval
[
fL
2

(θH − θL), 1
2+fH

(θH − θL)
]
.
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NC low type bid = θH
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Figure 4: For θL = 10, θH = 12, we show when it is profitable to restrict the entry
using a FPA as a function of fL and δ. The black area is omitted from the analysis, as
no equilibrium in pure strategies exists in the NC mechanism. NC outperfoms the FPA
mechanisms only in the white area. The single-winner FPA is better in dark gray area. In
the light-gray area, NC has the highest possible low-type bid, but it is still better than a
single-winner FPA.

fix θL = 10, θH = 12, and show when it is profitable to restrict entry as a function of δ and fL.

Implementation of the BRE The BRE mechanism uses the best split-parameter C that de-

pends on the problem primitives and therefore it may be hard to estimate in practice. However,

in the electronic companion we show that even implementing the BRE mechanism with a rough

estimate of the best C (but not the exact one) typically improves performance. In particular, if

restricting entry is profitable, any smaller C which is relatively close to the best C will induce the

equilibrium bid θH −C. Therefore, if the parameters are in the interior of the gray area in Figure 5

(where restricting entry improves performance), by choosing a conservative C the auctioneer should

be able to increase consumer surplus. Also note that any C larger than the best C yields the same

outcome as the current NC mechanism, so it will not damage performance.

L Additional Proofs

L.1 Proofs of Equilibria for Section 5

Lemma L.1. The unique PSNBE for the NC mechanism with reserve price R = θH are as given

by Table 3.
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Figure 5: For θL = 10, θH = 12, we show when it is profitable to restrict the entry as a
function of the differentiation cost δ and fL. The dashed line represents the cutoff between
single and split award in the optimal mechanism (i.e., δ = 1

fH
(θH − θL)).

Value of δ Equil. strategy bL Award Expected procurement cost

[(θH − θL),∞) bL = θH split θH + δ
4[

(θH−θL)
2+fH

, (θH − θL)
]

bL = fHθH+δ+θL
1+fH

split
fLθL+fH (4−fL)θH

(1+fH )2
− fHfL(θH−θL)2

2δ(1+fH )2
+ δ

(1+fH )2
+ fL

4
δ[

fL
2

(θH − θL),
(θH−θL)
2+fH

)
bL = θH − δ single θH + δ

4
− fL(1+fL)

2
δ[

fHfL(θH−θL)
1
2
(1+fH )2+fHfL

, fL
2

(θH − θL)

]
bL = θL + δ 1+fH

fL
single f2HθH + fL(1 + fH)θL +

17−10fL−2f2L
4

δ[
0,

fHfL(θH−θL)
1
2
(1+fH )2+fHfL

]
No PSBNE - -

Table 3: Equilibrium strategies and expected procurement costs in NC mechanism as a
function of the transportation cost δ

Proof. Let Π(b, (bL, bH)) denote the profit function when a player’s type is θL, his adversary plays

(bL, bH = θH) and his bid is b. We have three different cases depending on the value of bL. We

denote the cases by I, II or III depending on whether bL ∈ [θH − δ, θH ], bL ∈ [θH − 2δ, θH − δ], or,

bL ∈ [θL, θH − 2δ] respectively. This cases are described in Table 4.

Case δ ∈ [(θH − θL),∞). We claim that (bH , bL) = (θH , θH) is a PSBNE. For a player of type

θL, the profit function is as defined in case I. However, since δ ≥ (θH − θL) the only meaningful

case is the first one, that is: Π(b, (b∗, θH)) = (b − θL)
(
fHθH+fLb

∗+δ−b
2δ

)
for b ∈ [θL, θH ]. We

now focus on finding a symmetric equilibrium b∗. By the first order conditions we must have
fHθH+fLb

∗+δ−2b+θL
2δ = 0, or equivalently, (1 + fH)b∗ = fHθH + δ + θL. However, as δ ≥ θH − θL we

obtain b∗ ≥ θH . Hence, the best response for a player of type θL is b = θH . Furthermore, the same

argument shows that θH is the unique symmetric equilibrium. ♦
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Case bL Profit Function

I [θH − δ, θH ] ΠI(b, (bL, bH)) =


(b− θL)

(
fHθH+fLbL+δ−b

2δ

)
if b ∈ [θH − δ, θH ]

(b− θL)
(
fH + fL

bL+δ−b
2δ

)
if if b ∈ [bL − δ, θH − δ]

(b− θL) otherwise

II [θH − 2δ, θH − δ] ΠII(b, (bL, bH)) =


(b− θL)

(
fH

θH+δ−b
2δ

)
if b ∈ [bL + δ, θH ]

(b− θL)
(
fHθH+fLbL+δ−b

2δ

)
if b ∈ [θH − δ, bL + δ]

(b− θL)
(
fH + fL

bL+δ−b
2δ

)
if if b ∈ [bL − δ, θH − δ]

(b− θL) otherwise

III [θL, θH − 2δ] ΠIII(b, (bL, bH)) =


(b− θL)

(
fH

θH+δ−b
2δ

)
if b ∈ [θH − δ, θH ]

(b− θL)fH if b ∈ [bL + δ, θH − δ]
(b− θL)

(
fH + fL

bL+δ−b
2δ

)
if if b ∈ [bL − δ, bL + δ]

(b− θL) otherwise

Table 4: Characterization of the profit functions according to the value of bL.

Case δ ∈
[

(θH−θL)
2+fH

, (θH − θL)
]
. We claim that (bH , bL) =

(
θH ,

fHθH+δ+θL
1+fH

)
is the unique PSBNE.

Note that bL ∈ [θH − δ, θH ] and therefore the profit function is as defined by case I. It can be

verified that ∂
∂b

(
(b− θL)

(
fH + fL

bL+δ−b
2δ

))
is positive at θH−δ for all δ in the considered interval.

Therefore, the best response must be in the interval [θH−δ, θH ], and by deriving the function ΠI in

that interval we can see that fHθH+δ+θL
1+fH

is indeed a best response. To check uniqueness, we divide

it into two cases: b < θH − δ and b ≥ θH − δ. If b ≥ θH − δ, the profit function is Π(b, (b∗, θH)) =

(b− θL)
(
fHθH+fLb

∗+δ−b
2δ

)
and it can be seen that bL as defined above is the unique b for which the

FOCs are satisfied. If b∗ < θH − δ, the profit function is Π(b, (b∗, θH)) = (b− θL)
(
fH + fL

b∗+δ−b
2δ

)
.

Then, b∗ can never be a symmetric equilibrium as ∂Π
∂b > 0 at b = b∗ for any b∗ < θH − δ. ♦

Case δ ∈
[
fL
2 (θH − θL), (θH−θL)

2+fH

]
. We claim that (bH , bL) = (θH , θH − δ) is a PSNE. In this case,

the profit function is a particular case of case I. It suffices to show that the left derivative of the

profit function is positive in θH−δ and the right derivative is negative in θH−δ. The right derivative

at θH − δ is ∂Π
∂b (θH − δ) = −θH+θL+(2+fH)δ

2δ , which cannot be positive as long as δ ≤ 1
2+fH

(θH − θL).

On the other hand, the left derivative is ∂Π
∂b (θH − δ) = fh + fL(−θH+θL+2δ)

2δ which is non-negative

as long δ ≥ fL
2 (θH − θL). Therefore θH − δ is a best response.

To show uniqueness, suppose there exists a different symmetric equilibrium with bL = b∗ with

b∗ 6= θH − δ. First, consider the case in which b∗ > θH − θL. In that case, the BR function is

Π(b, (b∗, θH)) = (b − θL)
(
fHθH+fLb

∗+δ−b
2δ

)
for b ∈ [θH − δ, θH ]. By imposing symmetry, the FOCs

are fHθH+δ+θL = (1+fH)b∗ which implies fHθH+δ+θL > (1+fH)(θH−δ) as b∗ ∈ (θH−δ, θH ] by

assumption. However, this reduces to (2 + fH)δ > θH − θL which is a contradiction. Next, consider

the case b∗ < θH−δ. The profit function is Π(b, (b∗, θH)) = (b−θL)
(
fH + fL

b∗+δ−b
2δ

)
for b < θH−δ.

The FOCs are fH+fL
b∗+δ−2b+θL

2δ . By imposing symmetry, we must have (1+fH)δ+fLθL = fLb
∗ <

fL(θH − δ) which is possible only if 2δ < fL(θH − θL), which is a contradiction. ♦

Case δ ∈
[

fHfL(θH−θL)
1
2

(1+fH)2+fHfL
, fL2 (θH − θL)

]
. We claim that (bH , bL) =

(
θH , θL + δ 1+fH

fL

)
is a PSNE.

Note that bL ≤ θH − δ for all values of δ considered.

We first show that bL satisfies the first order conditions. As usual, consider b∗ ≤ θH − δ.
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The profit function is Π(b, (b∗, θH)) = (b − θL)
(
fH + fL

b∗+δ−b
2δ

)
for b ≥ θH − δ. The FOCs are

fH+fL
b∗+δ−2b+θL

2δ . By imposing symmetry, we must have (1+fH)δ+fLθL = fLb
∗ , or equivalently,

bL = b∗ = θL + δ 1+fH
fL

as desired. In addition, we must show that the agent cannot benefit by

deviating to bL − δ. To that end, note that the expected profit at bL is (bL − θL)(fH + fL/2) =

δ (1+fH)2

2fL
and the expected profit at bL−δ is δ 2fH

fL
. As (1+fH)2

2fL
> 2fH

fL
, the deviation is not profitable.

Furthermore, if bL ≤ θH−2δ, we must also guarantee that a deviation in the interval [bL+δ, θH−δ]
is not profitable. In that case, the profit function is as described by Case III. Note that this function

is strictly increasing in the interval [bL + δ, θH − δ] and therefore we need to compare the max in

the interval [bL + δ, θH − δ] with that in the interval [θL, bL + δ] to obtain the global maximum

and thus the best response. If δ ≤ 1
3(θH − θL), the maximum of the interval [bL + δ, θH − δ]

will be in θH − δ as the right derivative at that point is negative. Since δ ≤ fL
2+fL

(θH − θL) (as

otherwise we are in the previous case) and fL
2+fL

≤ 1
3 , we conclude that the maximum in the interval

[bL + δ, θH − δ] is achieved at θH − δ and the expected revenue is fH(θH − δ − θL). Note that for

fH(θH − δ − θL) < (bL − θL)(fH + fL/2) we must have δ ≥ fHfL(θH−θL)
1
2

(1+fH)2+fHfL
.

To show uniqueness, we show that there cannot be an equilibrium with b∗ > θH − δ. In that

case, the FOCs are fHθH + δ + θL = (1 + fH)b∗ and fHθH + δ + θL > (1 + fH)(θH − δ) only if

(2 + fH)δ > θH − θL, which is a contradiction. ♦

Case δ < fHfL(θH−θL)
1
2

(1+fH)2+fHfL
. The lack of equilibria follows from the arguments in the previous case.

Proposition L.1. Let rL and rU be defined as:

rL =
fL(θH − θL)− (1 + 3fH)δ − 2

√
δ(1 + fH)fH(2δ − fL(θH − θL))

f2L
,

rU =
fL(θH − θL)− (1 + 3fH)δ + 2

√
δ(1 + fH)fH(2δ − fL(θH − θL))

f2L
.

Then, for every C in the (possibly empty) intervals indicated by Table 5, θH − C is the unique

equilibrium bidding (PSBNE) strategy for the low-type in the RE mechanism.

Value of δ Interval of C[(
2+fHfL+

√
(1+fH )fH (2+fL+f2

L
)
)
(θH−θL)

2(1+fH )
,
f2L(θH−θL)

fL−2fH
(fL > 2

3
)

] [
fL

2+fL
(θH − θL), min

(
δ−(θH−θL)

fL
,

fH (θH−θL)

1+fH−
fL(θH−θL)

δ

)]
[

(θH − θL),
2+fHfL+

√
(1+fH )fH (2+fL+f2

L
)

2(1+fH )
(θH − θL)

] [
fL

2+fL
(θH − θL), rU

]
[

2fL
(2+fL)(1+fH )

(θH − θL), θH − θL
] [

max
(

fL
2+fL

(θH − θL) , rL

)
, min

(
δ, max

(
rU ,

(θH−θL)−δ
1+fH

))][
fL
2

(θH − θL), 2fL
(2+fL)(1+fH )

(θH − θL)
] [

max
(
fL(θH−θL)−(1+fH )δ

fL
, rL

)
, min

(
δ, max

(
rU ,

(θH−θL)−δ
1+fH

))]
Table 5: For a given C and δ, the intervals for which θH − C is the unique equilibrium
bidding strategy for the low-type are given as a function of the parameters.

Proof. We must consider δ ≥ fL
2 (θH − θL), as otherwise we know that the equilibrium bidding
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strategy for an agent of type low is smaller than θH − δ and, therefore, smaller than θH − C. We

first show that, under the stated conditions, θH − C is an equilibrium. The profit function is:

Π(b, (θH−C, θH)) =


π1(b) = fH

2 (θH − θL) if b = θH

π2(b) = fH (b− θL) θH−b+δ2δ + fL (b− θL) θH−C−b+δ2δ if b ∈ (θH − C, θH)

π3(b) = fH (b− θL) + fL (b− θL) θH−C−b+δ2δ if b ∈ (θH − 2C, θH − C]

π4(b) = b− θL otherwise

For θH −C to be an equilibrium, we need θH −C to be a maximizer of Π(b, (θH −C, θH)). The

following conditions are then necessary (and sufficient):

(a) ∂π3(θH−C)
∂b ≥ 0.

(b) π3(θH − C) ≥ π4(θH − 2C)

(c) π3(θH − C) ≥ maxb∈(θH−C,θH ] π2(b)

We now derive conditions under which (a)− (c) hold:

Condition for (a): ∂π3(b)
∂b = fH+fL

θH+θL−C−2b+δ
2δ . Then, ∂π3(θH−C)

∂b = fH+fL
θH+θL−C−2(θH−C)+δ

2δ =

fH + fL
θL−θH+C+δ

2δ and it is non-negative whenever C ≥ (θH − θL)− 1+fH
fL

δ.

Condition for (b): π3(θH − C) ≥ π4(θH − 2C) is equivalent to
(
fH + fL

2

)
(θH − C − θL) ≥

(θH − θL − 2C) which occurs if and only if
(

1 + fL
2

)
C ≥ fL

2 (θH − θL) or C ≥ fL
2+fL

(θH − θL).

Condition for (c): We just consider the case in which the max is at θH or the case where

the max is somewhere in (θH −C, θH). Note that ∂π2(b)
∂b = ∂

∂b

(
(b− θL) θH−b+δ2δ − fL (b− θL) C

2δ

)
=

θH+θL−2b+δ
2δ − fL C2δ .

First, note that if ∂π2
∂b (θH − C) ≤ 0, condition (c) is automatically satisfied as π3(θH − C) ≥

π2(θH −C). Hence, condition (c) holds whenever C ≤ (θH−θL)−δ
1+fH

. Next, consider the case in which

maxb∈(θH−C,θH ] π2(b) is achieved at θH − C < b∗ < θH . Then, we must have ∂π2
∂b (θH) < 0, or

equivalently, δ− (θH − θL) < fLC. In that case, we must have π3(θH −C) ≥ π2(b∗), or equivalently(
fH + fL

2

)
(θH − C − θL) ≥ ((θH−θL+δ)−CfL)2

8δ . Note that this quadratic constraint imposes both a

lower and upper bound on C. Finally, if the maximum is achieved at θH , we must have ∂π2
∂b (θH) ≥ 0,

therefore, δ−(θH−θL) ≥ fLC. In addition, we must have fH (θH − θL) ≥
(

1 + fH − fL(θH−θL)
δ

)
C.

We can summarize the conditions (a) − (c) by requiring C ∈ C, where the set C is defined as

follows:
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C =



C : (1) max
(

(θH − θL)− 1+fH
fL

δ, fL
2+fL

(θH − θL)
)
≤ C ≤ δ and either

(2A) δ − (θH − θL) < fLC and
(
fH + fL

2

)
(θH − C − θL) ≥ ((θH−θL+δ)−CfL)2

8δ , or,

(2B) δ − (θH − θL) ≥ fLC and fH (θH − θL) ≥
(

1 + fH − fL(θH−θL)
δ

)
C, or,

(2C) C ≤ (θH−θL)−δ
1+fH


Constraint (1) groups the constraints imposed (a) and (b) plus requiring C ≤ δ. Constraints

(2A)− (2C) represent the (disjoint) constraints imposed in (c). By using algebraic manipulations

we can obtain the intervals in Table 5. In particular, rL and rU correspond to the roots of the

quadratic equation given in Condition (2A) of set C.
We show uniqueness (except in border cases) by contradiction. Suppose there exists a symmetric

equilibrium strategy b∗ that is an equilibrium. First, it is easy to see that b∗ < θH−C is not possible

unless δ ≤ fL
2 (θH − θL). Second, we argue that b∗ cannot be θH . The profit when both players

select θH is θh−θL
2 ; by deviating to θH − C the profit is (θH − C − θL), which is bigger provided

C < θH−θL
2 . However, note that C ≤ rU for the appropriate δ and rU as a function of δ is

concave, achieves its max at 1+fH
2 (θH − θL) and the max value is θH−θL

2 . Therefore, whenever rU

is binding, C ≤ rU < θH−θL
2 . as desired. For δs for which fH(θH−θL)

1+fH−
fL(θH−θL)

δ

is binding, note that

we must δ ≥ (θH − θL) and therefore the condition is satisfied. Finally, for the cases in which

b∗ ∈ (θH − C, θH), we have that b∗ = fHθH+δ+θL
1+fH

(must satisfy the first order conditions) and

hence δ ≤ (θH − θL). However, the reader can verify that θH − C is a profitable deviation for the

appropriate values of C. In particular, this holds for C = rU .

As the designer is utilitity-maximizer, we are concerned with the biggest C under which we can

have an equilibrium. This yields 3 different cases, as shown by Table 6, 7, and 8 respectively.

Value of δ Best low-type bid[
1

2+fH
(θH − θL),

(1+fH )(
√
2+
√
fH )2

(2+fL)
(θH − θL)

]
θH − rU[

fL
2

(θH − θL), 1
2+fH

(θH − θL)
]

θH − δ

Table 6: Case 1:
(
fL ≥ 1

6

(
1− 23

(181+24
√

78)1/3
+ ((181 + 24

√
78)1/3

)
≈ 0.8641

)

Value of δ Best low-type bid[
2+fHfL+

√
(1+fH )fH (2+fL+f2

L
)

2(1+fH )
(θH − θL),

f2L
fL−2fH

(θH − θL)

]
θH − fH (θH−θL)

1+fH−
fL(θH−θL)

δ[
1

2+fH
(θH − θL),

2+fHfL+
√

(1+fH )fH (2+fL+f2
L
)

2(1+fH )
(θH − θL)

]
θH − rU[

fL
2

(θH − θL), 1
2+fH

(θH − θL)
]

θH − δ

Table 7: Case 2: 2/3 < fL ≤ 1
6

(
1− 23

(181+24
√

78)1/3
+ ((181 + 24

√
78)1/3

)
≈ 0.8641
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Value of δ Best low-type bid[
2+fHfL+

√
(1+fH )fH (2+fL+f2

L
)

2(1+fH )
(θH − θL),∞

)
θH − fH (θH−θL)

1+fH−
fL(θH−θL)

δ[
1

2+fH
(θH − θL),

2+fHfL+
√

(1+fH )fH (2+fL+f2
L
)

2(1+fH )
(θH − θL)

]
θH − rU[

fL
2

(θH − θL), 1
2+fH

(θH − θL)
]

θH − δ

Table 8: Case 3: fL ≤ 2/3

To derive Case 1, we know that rU >
fL

2+fL
(θH − θL) only if

δ ≤
(2 + fH)(1 + fH) + 2

√
2
√
fH(4− f2

L)2

(2 + fL)2
(θH − θL) =

(1 + fH)(
√

2 +
√
fH)2

(2 + fL)
(θH − θL).

Note that, whenever (1+fH)(
√

2+
√
fH)2

(2+fL) (θH−θL) ≤ 2+fHfL+
√

(1+fH)fH(2+fL+f2L)

2(1+fH) (θH − θL) (equiv-

alently, fL > l1 = 1
6

(
1− 23

(181+24
√

78)1/3
+ ((181 + 24

√
78)1/3

)
or fL ≈ 0.8641. In addition, we

highlight that (1+fH)(
√

2+
√
fH)2

(2+fL) (θH − θL) > (θH − θL) whenever fH ≥
√

2 −
√

2
√

2− 1 ≈ 0.062.

Therefore, if fL > 0.938, we have that our mechanism will not work better than the original for

δ ≥ (θH − θL). Case 2 is derived from the fact that we have an upper bound on the largest interval

only if fL > 2/3. Finally, standard calculations allow us to derive Case 3.

Now, we briefly discuss the idea behind the characterization of the best low-type bid. Intuitively,

the advantage of bidding at θH−C is to capture the whole demand when the other agent has a high

cost. As fL becomes close to one, this advantage vanishes; for this reason, the best low-type bid

is increasing in fL. In addition, the best low-type bid is also increasing in δ; as the transportation

cost increases, demands become less sensitive to prices and, therefore, a supplier can increase his

bid without significantly decreasing demand.

L.2 Multiproduct Model - Proofs

L.2.1 Proof of Proposition J.1

Proof. Recall that the utility of supplier i is

ui = ti −
∑
p∈Pi

cip(θi)xip,

where xip is the amount of product p allocated to i, ti is the payment i receives in the auction, and

θi is his type. Similarly, the interim utility for supplier i when he reports cost θ′i and has true cost

θi is given by:

Ui(θ
′
i|θi) = Ti(θ

′
i)−

∑
p∈Pi

cip(θi)Xip(θ
′
i).
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The centralized problem is then:

[P1] max
x,t

Eθ

K(x(θ))−
n∑
i=1

∑
p∈Pi

ti(θ)


s.t. Ui(θi|θi) ≥ Ui(θ′i|θi) ∀i ∈ N, ∀θi, θ′i ∈ Θi (IC)

Ui(θi|θi) ≥ 0 ∀i ∈ N, ∀θi ∈ Θi (IR)∑
i∈N

∑
p∈Pi

xip(θ) = 1 ∀θ ∈ Θ, xi(θ) ≥ 0 ∀i ∈ N, θ ∈ Θ, (Feas)

where Ui(θ
′
i|θi) is defined accordingly.

Throughout this proof, we define mi to be the number of costs in the support of agent i, that

is, mi = |Θi|. We use the same technique as in the proof of Proposition 3.1, which is based on the

works by Myerson (1981) and Vohra (2011). To avoid repetition, the reader will be referred to the

proof of Proposition 3.1 when needed. We start by re-stating the IC and IR constraints in terms

of the expected allocations and transfers:

max
x,t

Eθ

K(x(θ))−
n∑
i=1

∑
p∈Pi

ti(θ)


s.t. Ti(θi)−

∑
p∈Pi

Xip(θi)cip(θi) ≥ Ti(θ′i)−
∑
p∈Pi

Xip(θ
′
i)cip(θi) ∀i, ∀θi, θ′i ∈ Θi

Ti(θi)−
∑
p∈Pi

Xip(θi)cip(θi) ≥ 0 ∀i, ∀θi ∈ Θi∑
i∈N

∑
p∈Pi

xip(θ) = 1 ∀θ ∈ Θ, xi(θ) ≥ 0 ∀i ∈ N, θ ∈ Θ,

Recall that Θi = {θ1
i , ..., θ

mi
i }. If we add a dummy type per agent θmi+1

i such that Xi(θ
mi+1
i ) = 0

and Ti(θ
mi+1
i ) = 0, then we can fold the IR constraints into the IC constraints.

Using the arguments in Theorem 6.2.1 in Vohra (2011) for our procurement setting we obtain

that an allocation x is implementable in Bayes Nash equilibrium if and only if Xip(·) is monotoni-

cally decreasing for all i = 1, ..., n and all p ∈ Pi. Further, by Theorem 6.2.2 in Vohra (2011), all IC

constraints are implied by the following local adjacent IC constraints (BNICdi,θ) and (BNICdi,θ)
38

for all i ∈ N and all θ ∈ Θi.

In addition, using standard arguments, we can show that all downward constraints (BNICdi,j)

bind in the optimal solution.39 Hence,

Ti(θ
j
i )−

∑
p∈Pi

Xip(θ
j
i )cip(θ

j
i ) = Ti(θ

j+1
i )−

∑
p∈Pi

Xip(θ
j+1
i )cip(θ

j
i ) ∀i ∈ N, ∀j ∈ {1, ...,mi}.

Further, it is simple to show that in this case, the upward constraints (BNICui,j) are satisfied.

38These are defined in the proof of Proposition 3.1
39A formal proof can be obtained by trivially adapting the Lemma 6.2.4 in Vohra to the procurement case.
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Applying the previous equation recursively we obtain:

Ti(θ
j
i ) =

∑
p∈Pi

cip(θji )Xip(θ
j
i ) +

mi∑
k=j+1

(cip(θ
k)− cip(θk−1)Xip(θ

k
i )

 . (36)

Replacing in the objective and using simple algebra40 we obtain

obj = Eθ [K(x(θ))]−
n∑
i=1

∑
p∈Pi

∑
θi∈Θi

fi(θi)Ti(θi) =
∑
θ∈Θ

f(θ)

K(x(θ))−
n∑
i=1

∑
p∈P (i)

vip(θi)xip(θ)


where vip is the modified virtual cost function for each agent-product pair ip, defined as

vip(θi) = cip(θi) +
Fi(ρ(θi))

fi(θi)
(cip(θi)− cip(ρ(θi))) .

Therefore, if we can find an allocation function such that for all θ ∈ Θ and i ∈ N ,

x(θ) ∈ argmaxK(x(θ))−
n∑
i=1

∑
p∈Pi

vip(θi)xip(θ)

s.t.
N∑
i=1

∑
p∈Pi

xip(θ) = 1, xip(θ) ≥ 0 ∀i ∈ N, p ∈ Pi .

and such that the interim expected allocations are monotonic for all i ∈ N and p ∈ Pi, and such

that the interim expected transfers are satisfied, then we have found an optimal solution.

L.2.2 Sketch of Proof of the Extension of the Main Theorem to the Multiproduct

Case

We start with some remarks:

• Proposition G.7 extends easily: for every θ ∈ Θ, we have
∑

(i,p)∈Q(θ) gi(θj)xip(θ) = 0.

• All the observations in Section G.1 still hold, as the demand system remains unmodified.

We now provide a sketch of the proof of Theorem J.1.

Sketch of proof of Theorem J.1. To show OPT (DecLin) = OPT (Cent), we show that the system

of equations is consistent. Let (a, b) be a vector of coefficients satisfying Equation (20). Let gi(θi)

be as defined in the statement of Proposition G.7. As the instance is RIOM, we know that there

exists a subset of profiles Θ̃ ⊆ Θ that satisfies Conditions (1)-(5). The proof will follow the same

structure as the proof of Theorem G.1.

40See the proof of Proposition 3.1 for the calculations
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We show that gi(θi) = 0 for all θi ∈ Θ̃i and all i ∈ N . Consider two profiles θ = (θi,θ−i)

and θ′ = (θ′i,θ−i) which only differ in agent i’s cost and such that θ,θ′ ∈ Θ̃. By the definition

of Θ̃, such pair of profiles exists (Condition (4)). By Eq. (29), we must have gi(θi)
∑

p∈Pi xip(θ) +∑
j 6=i gj(θj)

(∑
p∈Pj xjp(θ)

)
= 0 and gi(θ

′
i)
∑

p∈Pi xip(θ
′)+
∑

j 6=i gj(θj)
(∑

p∈Pj xjp(θ)
)

= 0. Hence,

by subtracting the second equality from the first one we obtain

gi(θi)
∑
p∈Pi

xip(θ)− gi(θ′i)
∑
p∈Pi

xip(θ
′) =

∑
j 6=i

gj(θj)

∑
p∈Pj

(xjp(θ
′)− xjp(θ))

 .
For each pi ∈ Pi, each j ∈ N and each pj ∈ Pj , we must have xjp(θ

′)−xjp(θ) = A(θ)pj ,pi (vip(θ
′
i)− vip(θi)),

where we used the fact that A(θ) = A(θ′) by definition (see Claim G.1). Let A = A(θ). Re-write

the above equality as:

gi(θi)
∑
p∈Pi

xip(θ)− gi(θ′1)
∑
p∈Pi

xip(θ
′) =

∑
pi∈Pi

∑
j 6=i

gj(θj)

∑
pj∈Pj

Apj ,pi

(vip(θ′i)− vip(θi)) ,
Fix an arbitrary j ∈ N with j 6= i and Aij 6= 0. Assume that j has cost θj in both θ and θ′

as defined above. Let θ′j ∈ Θj be such that θ′j 6= θj and θ′j ∈ Θ̃j . Define θ̃ = (θi, θ
′
j ,θ−i,j) and

θ̃
′
= (θ′i, θ

′
j ,θ−i,j). The only thing we assumed about θj was θj ∈ Θ̃j . Therefore, the above equality

must also hold for any Θ̃j . That is,

gi(θi)
∑

p∈Pi xip(θ̃)− gi(θ′1)
∑

p∈Pi xip(θ̃
′
) =

=
∑

pi∈Pi

(
gj(θ

′
j)
∑

pj∈Pj Apj ,pi +
∑

k 6=i,j gk(θk)
(∑

pk∈Pk Apk,pi

))
(vip(θ

′
i)− vip(θi)) .

By subtracting the inequality when j has cost θj from the one when his cost is θ′j we obtain

gi(θi)
∑

p∈Pi

(
xip(θ̃)− xip(θ)

)
− gi(θ′i)

∑
p∈Pi

(
xip(θ̃

′
)− xip(θ′)

)
=

=
(
gj(θ

′
j)− gj(θj)

)∑
pi∈Pi

∑
pj∈Pj Apj ,pi (vip(θ

′
i)− vip(θi)) .

However, note that xipi(θ̃)− xipi(θ) = Api,pj

(
vjpj (θ

′
j)− vjpj (θj)

)
. Therefore,

(gi(θi)− gi(θ′i)))
∑

pi∈Pi
∑

pj∈Pj Apj ,pi

(
vjpj (θ

′
j)− vjpj (θj)

)
=

=
(
gj(θ

′
j)− gj(θj)

)∑
pi∈Pi

∑
pj∈Pj Apj ,pi (vip(θ

′
i)− vip(θi)) ,

or, equivalently, as long as Api,pj 6= 0 for some pi ∈ Pi and pj ∈ Pj we must have

gi(θi)− gi(θ′i)∑
pi∈Pi

∑
pj∈Pj Apj ,pi (vip(θ′i)− vip(θi))

=
gj(θ

′
j)− gj(θj)∑

pi∈Pi
∑

pj∈Pj Apj ,pi

(
vjpj (θ

′
j)− vjpj (θj)

) . (37)
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Furthermore, the above equality should hold for every i, j ∈ N as we can find a sequence of agents

{l0 = i, . . . , lK = j} such that Alk,lk+1
6= 0 for all 0 ≤ k < K.41

We now use Eq. (37) to show that gi(θi) = 0 for all θi ∈ Θ̃i as desired. Similarly to the single-

product case, we consider two cases: that the numerator is zero for at least one pair gi(θi), gi(θ
′
i),

or that is non-zero for all pairs.

Suppose the numerator is zero for at least one pair of gi(θi), gi(θ
′
i). Then, gj(θj)− gj(θ′j) must

be zero for every j ∈ N and all pairs θj , θ
′
j ∈ Θ̃j . We now show that gi(θi) = gj(θj) must hold for

every θi ∈ Θ̃i and θj ∈ Θ̃j and i, j ∈ N . This is trivial if i = j, as gi(θi) − gi(θ′i) must be zero for

every i ∈ N and all pairs θi, θ
′
i ∈ Θ̃i. Otherwise, note that when gi(θi) = gi(θ

′
i), we have

gi(θi)
∑
p∈Pi

xip(θ)− gi(θ′i)
∑
p∈Pi

xip(θ
′) = gi(θi)

∑
p∈Pi

∑
p′∈Pi

Ap,p′

(vip(θi)− vip(θ′i)) .
Therefore,

∑
pi∈Pi

∑
j∈N

gj(θj)

∑
pj∈Pj

Apj ,pi

(vipi(θ′i)− vipi(θi)) = 0,

or, equivalently,

∑
j∈N

gj(θj)

∑
pj∈Pj

∑
pi∈Pi

Apj ,pi

(
vipi(θ

′
i)− vipi(θi)

) = 0,

and this must be true for any i ∈ N . By Lemma G.4, we know that A has rank n − 1. Consider

the matrix R obtained from A as follows: for each i ∈ N and each pi ∈ Pi, multiply the column

corresponding to pi by (vipi(θ
′
i)− vipi(θi)) where θi, θ

′
i ∈ Θ̃i. Note that, since (vipi(θ

′
i)− vipi(θi)) 6=

0, the matrix R has rank n− 1. Furthermore, we can re-write the above equation as:

∑
j∈N

gj(θj)

∑
pj∈Pj

∑
pi∈Pi

Rpj ,pi

 = 0, (38)

and this must be true for any i ∈ N . Let g = (g1, . . . , gn) denote the vector of coefficients gi = gi(θi)

for θ ∈ Θ. By equation (38), the vector g must be in the nullspace of R′. However, as R has rank

(n− 1), the dimension of its nullspace is 1. Using the same arguments as in the proof of the main

Theorem, it is easy to see that 1 ∈ Null(R′), which implies that all gi with i ∈ N must be equal.

Furthermore, let g = gi(θi). As gi(θi) = gj(θj) for all θi ∈ Θ̃i and θj ∈ Θ̃j ,

0 =
∑
i∈N

gi(θi)
∑
p∈Pi

xip(θ) = g

∑
i∈N

∑
p∈Pi

xip(θ)

 = g

41Here we are implicitly assuming that matrix A has only one block. If A has more than one block, then we can
use the same argument for each block.
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which implies gi(θi) = 0 for all i ∈ N and θi ∈ Θ̃i.

The rest of the proof generalizes straightforward from the single-product case.

L.3 Proof of Theorem H.1

Before presenting the proof of Theorem H.1, we state and and prove some propositions.

Proposition L.2. If the coefficients (a, b) are such that equality (20) holds, then for each θ ∈ Θ,

we must have: ∑
j∈Q(θ)

bjθjf(θ−j)xj(θ) = 0 (39)

and

aiθ =
∑

{j∈Q(θ): j≤i}

bjθjf(θ−j)xj(θ) ∀ i ∈ Q(θ), i 6= ι(θ). (40)

The proof is omitted, as it follows the same step as the proof of Lemma G.7. We highlight that

the conditions stated in Proposition L.2 are necessary but need not to be sufficient.

Proposition L.3. Consider the setting of Theorem H.1 and let (a, b) be a vector of coefficients

satisfying Eq. (20). Then, for every θk ∈ Θ̃, we must have b1θk + bnθk + 2
∑n−1

i=2 b
i
θk

= 0.

Proof. Consider the profile θ such that agent i has cost θi = θk for all 1 ≤ i ≤ n. By Proposition 3.1,

the optimal allocations are x1(θ) = xn(θ) = 1
2(n−1) and xi(θ) = 1

(n−1) for 2 ≤ i ≤ n − 1. By

equation (39) in Proposition L.2 we must have that

0 =
∑

j∈Q(θ) b
j
θk
f(θ−j)xj(θ) =

∑n
j=1 b

j
θk
f(θk)

n−1xj(θ) = f(θk)n−1

2(n−1)

(
b1θk + bnθk + 2

∑n−1
i=2 b

i
θk

)
Proposition L.4. Consider the setting of Theorem H.1 and let (a, b) be a vector of coefficients

satisfying equation (20). Let θ be the highest value in Θ̃. Then, for every θk ∈ Θ̃ such that

v(θ)− v(θk) ≥ δ
n−1 , we have biθk = 0 for all 1 ≤ i ≤ n.

Proof. We show by induction in the agent number that biθk = b1θk for all 2 ≤ i ≤ n. This fact,

together with Proposition L.3 imply the result. The equality biθk = b1θk trivially holds for i = 1.

Consider now the profile θ in which θ1 = θ and θj = θk for all j 6= 1. As v(θ) − v(θk) ≥ δ
n−1 .

By Proposition 3.1, the optimal allocations are defined as x1(θ) = 0, x2(θ) = 3
2(n−1) =, xj(θ) =

1
n−1 for 2 ≤ j ≤ n − 1, and xn(θ) = 1

2(n−1) . We can then write
∑

j∈Q(θ) b
j
θk
f(θ−j)xj(θ) =

f(θ)f(θk)n−2

2(n−1)

(
3b2θk + 2

∑n−1
i=3 b

i
θk

+ bnθk

)
. By Eq. (39), we must have 3b2θk + 2

∑n−1
i=3 b

i
θk

+ bnθk = 0. By

Proposition L.3, we must have b1θk + bnθk + 2
∑n−1

i=2 b
i
θk

= 0. By considering the difference between

both equalities, we obtain b2θk = b1θk .

Suppose that for j ≤ i we have bjθk = b1θk . We now want to show it holds bi+1
θk

= b1θk for i+1 < n.

To that end, consider the profile θ in which θi = θ and θj = θk for all j 6= i, and define (θk)
n to

be the profile in which every agent has cost θk. Recall that xj((θk)
n) = 1

2(n−1) if j = 1 or j = n

and xj((θk)
n) = 1

(n−1) otherwise. Then, compared to the profile (θk)
n, all optimal allocations will
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remain the same except for those of agents i−1, i and i+1. While the optimal allocation of agent i

will now be zero, the allocations of both i−1 and i+1 will increase by 1
2(n−1) . By Eq. (39), we must

have 0 =
∑

j∈Q(θ) b
j
θk
f(θ−j)xj(θ) = f(θ)f(θk)

n−2
(∑

j 6=i b
j
θk
xj(θ)

)
. Therefore, 0 =

∑
j 6=i b

j
θk
xj(θ)

which implies

0 =
1

2(n− 1)

b1θk + bnθk +
i−2∑
j=2

2bjθk + 3bi−1
θk

+ 3bi+1
θk

n−1∑
j=i+2

2 + bjθk

 .

By multiplying the above equation by 2(n−1) and considering difference between that equation

and b1θk+bnθk+2
∑n−1

i=2 b
i
θk

= 0 (given by Proposition L.3), we obtain bi−1
θk
−2biθk+bi+1

θk
= 0. Therefore,

by inductive hypothesis, we conclude bi+1
θk

= b1θk . Finally, the case i + 1 = n follows by the same

arguments as before, with the only difference that the coefficient of bi+1
θk

in the main equation of

the proof will be 2 instead of three.

We can now proceed to prove Theorem H.1 by dividing it into the following two (disjoint)

Lemmas.

Lemma L.2. Consider the setting of Theorem H.1. and let θ and θ be respectively the lowest and

highest values in Θ̃. If v(θ)− v(θ) ≤ δ
n−1 , then OPT (DecLin) = OPT (Cent).

Proof. Let us start by highlighting that, although costs are IID, the agents are not (ex-ante)

symmetric as they have different locations. In this particular setting Q(θ) = {1, . . . , n} for every

cost profile θ ∈ Θ, so players 1 and n are ex-ante symmetric, and all agents i, j such that 2 ≤ i, j ≤
n− 1 are ex-ante symmetric as well. This implies that, for every θk ∈ Θ̃, we have X1(θk) = Xn(θk)

and Xi(θk) = Xj(θk) for all 2 ≤ i, j ≤ n− 1. We now show that X1(θk) = 2X2(θk). By definition:

X1(θk) =
∑

θ−1∈Θ−1

f(θ−1)x1(θk,θ−1) =
∑
θq∈Θ̃

f(θq)x1(θk, θq),

where the last equality follows from the fact that all agents are always active, hence the allocation

of agent 1 depends only on his own cost and the cost of agent 2. Similarly, the demand for agent 2

only depends on his cost and the costs of the adjacent agents. Let xli(θ) (resp. xri (θ)) denote the

demand that i experiences to his left (resp. his right) in the [0, 1] segment. Then, we have:

X2(θk) =
∑
θqΘ̃

∑
θp∈Θ̃

f(θq)f(θp)
(
xl2(θq, θk) + xr2(θk, θp)

)
= 2

∑
θq

f(θq)x1(θk, θq),

where the last equality follows from the fact that xl2(θq, θk) = xr1(θk, θq) and xr2(θk, θp) = xl2(θp, θk).

Let (a, b) be a vector of coefficients satisfying the equality in Eq. (20). We want to show that

the equality in Eq. (21) is also satisfied. To do so, we first show that

∑
i∈N

∑
θji∈Θi

bi
θji

θjiXi(θ
j
i ) +

|Θi|∑
k=j+1

(θki − θk−1
i )Xi(θ

k
i )

 = 0.
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In particular, we show that for every θk ∈ Θ̃, the sum over all i ∈ N of the RHS of the equations

corresponding to those in Ti(θk) is zero. By our previous result, we have that Xi(θ
k) = 2X1(θk)

for all 2 ≤ i ≤ n and Xn(θk) = X1(θk). Hence,

n∑
i=1

biθk

θkXi(θ
k) +

m∑
j=k+1

(θj − θj−1)Xi(θ
j)

 = b1θk

θkX1(θk) +

m∑
j=k+1

(θj − θj−1)X1(θj)

+

bnθk

θkX1(θk) +

m∑
j=k+1

(θj − θj−1)X1(θj)

+

n−1∑
i=2

biθk

θk2X1(θk) +

m∑
j=k+1

(θj − θj−1)2X1(θj)


=

θkX1(θk) +

m∑
j=k+1

(θj − θj−1)X1(θj)

(b1θk +

n−1∑
i=2

2biθk + bnθk

)
= 0

where the last equality follows from Proposition L.3. As we have shown that, for every θk ∈ Θ̃, the

sum over all i ∈ N of the RHS of the equations corresponding to those in Ti(θk) is zero we have:

∑
i∈N

∑
θji∈Θi

bi
θji

θjiXi(θ
j
i ) +

|Θi|∑
k=j+1

(θki − θk−1
i )Xi(θ

k
i )

 = 0.

To complete the proof, we must show that
∑
θ∈Θ

∑
i∈Q(θ)
i 6=ι(Q(θ))

aiθ
(
vϑθ(i)(θϑθ(i))− vi(θi)

)
. As in our

case we haveQ(θ) = {1, . . . , n} for all θ ∈ Θ, this reduces to show that
∑
θ∈Θ

∑
i<n a

i
θ (v(θi+1)− v(θi)) =

0. We do that next.
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∑
θ∈Θ

(
n−1∑
i=1

aiθ (v(θi+1)− v(θi))

)
=

∑
θ∈Θ

n−1∑
i=1

 i∑
j=1

bjθjf(θ−j)xj(θ)

 (v(θi+1)− v(θi))


=

∑
θ∈Θ

v(θn)

n−1∑
j=1

bjθjf(θ−j)xj(θ)

− n−1∑
i=1

v(θi)b
i
θi
f(θ−i)xi(θ)


= −

∑
θ∈Θ

n∑
i=1

v(θi)b
i
θi
f(θ−i)xi(θ)

= −
∑
θk∈Θ

n∑
i=1

v(θk)b
i
θk

 ∑
θ−i∈Θ

f(θ−i)xi(θk, θ−i)


= −

∑
θk∈Θ

v(θk)

(
n∑
i=1

biθkXi(θk)

)

= −
∑
θk∈Θ

v(θk)X1(θk)

(
b1θk + bnθk +

n−1∑
i=2

2biθk

)
= 0.

where the first and third equalities follow from the definitions of aiθ and bnθ given in Proposition L.2

respectively; and the second to last equality follows from the fact that 2X1(θk) = X2(θk). Finally,

the last equality follows from Proposition L.3. Therefore, we have show that every vector of

coefficients (a, b) that satisfies the equality in Eq. (20), must also satisfy the equality in Eq. (21).

Hence, the system of linear equations is consistent and OPT (P0) = OPT (P1) as desired.

Lemma L.3. Consider the setting of Theorem H.1. and let θ and θ be defined as the lowest and

highest values in Θ̃ respectively. If v(θ)− v(θ) ≥ δ
n−1 , then OPT (DecLin) = OPT (Cent).

Proof. Let (a, b) be a vector of coefficients satisfying the equality in Eq. (20). As usual, we want

to show that (a, b) also satisfies the equality in Eq. (21). Let θk = argmax{θj ∈ Θ̃ : v(θ)− v(θj) ≥
δ

n−1}. As v(θ)−v(θ) ≥ δ
n−1 , such θk must exist. By Proposition L.4, we have that biθj = 0 for every

agent i ∈ N and for all θj ∈ Θ̃ such that θj ≤ θk. We shall prove the result by considering three

separate cases: v(θk+1)− v(θk) ≥ δ, v(θk+1)− v(θk) <
δ
2 and δ

2 ≤ v(θk+1)− v(θk) < δ .

Case v(θk+1)− v(θk) ≥ δ: Then, an agent with cost θk+1 can be active only if all other agents

have costs at least θk+1. Further, by the definition of θk, we know that v(θ)− v(θk+1) < δ
n−1 which

implies that an agent with cost θk+1 will be active in all profiles consisting of costs greater or equal

than θk+1. Therefore, an agent with cost θk+1 can be active only if all other agents have costs at

least θk+1. By mimicking the proof of Lemma L.2, we can show that Xi(θj) = 2X1(θj) = 2Xn(θj)

for all 2 ≤ i ≤ n− 1 and all θj ≥ θk+1, and that biθj = 0 for all i ∈ N and for all θj ∈ Θ̃ such that

θj > θk. Hence, we have show that biθj = 0 for all i ∈ N and for all θj ∈ Θ̃. By Proposition L.2,
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this implies that aiθ = 0 for every θ ∈ Θ and every i ∈ Q(θ). Therefore, (a, b) = 0 and the result

holds.

Case v(θk+1)− v(θk) < δ
2 : . Again, we show that the system of equations is consistent by

showing that biθj = 0 for all agent i and all θj ∈ Θ̃. By Proposition L.4, this holds for all θj ≤ θk.

By induction in i, we next show that biθk+1
for every i ∈ N . By symmetry, it suffices to show it for

every i ≤ n
2 + 1.

Let q ∈ N0 be such that q δ
(n−1) ≤ v(θk+1) − v(θk) < (q + 1) δ

(n−1) . Consider the profile θ in

which θ1 = θk+1, θi = θk+1 for the next q agents (that is, for 2 ≤ i ≤ q + 1) and θi = θk for the

remaining agents. As q δ
(n−1) ≤ v(θk+1) − v(θk), any agent i with cost θk+1 will be active only if

every agent j such that |i− j| ≤ q has cost θk+1 as well. Further, as v(θk+1)− v(θk) < (q+ 1) δ
(n−1) ,

if every agent j such that |i− j| ≤ q has cost θk+1, agent i will be active. Therefore, the definition

of q implies Q(θ) = {1} ∪ {i : q + 1 < i ≤ n}. By Proposition L.2, we have

0 =
∑

j∈Q(θ)

bjθjf(θ−j)xj(θ) = b1θk+1
f(θ−1)x1(θ) +

∑
q+1<j≤n

bjθkf(θ−j)xj(θ) = b1θk+1
f(θ−1)x1(θ).

Therefore, we must have b1θk+1
= 0, which establishes the base case.

Now suppose that bjθk+1
= 0 for all j ≤ i. We show that bi+1

θk+1
= 0 it holds for i+ 1 ≤ n

2 as well.

By hypothesis, v(θk+1)−v(θk) <
δ
2 . By the definition of q, we must have 2q < (n−1) and therefore

q+1 ≤ n−(i+1). Hence, the profile θ in which θj = θk+1 for all j ≤ i+1+q and θj = θk for all j >

i+1+q is well defined. By the same arguments as before, Q(θ) = {1, . . . i+1}∪{i+1+q+1, . . . , n}.
Then, by Proposition L.2 we have

0 =
∑

j∈Q(θ)

bjθjf(θ−j)xj(θ) =
i+1∑
j=1

bjθk+1
f(θ−j)xj(θ)+

∑
q+i+1<j≤n

bjθkf(θ−j)xj(θ) = bi+1
θk+1

f(θ−1)xi+1(θ),

where the last equality follows from the inductive hypothesis. Then, bi+1
θk+1

= 0 and our proof yields

bjθk+1
= 0 for every j ∈ N .

To conclude the proof for this case, we show that biθq = 0 for each i and each θq with q > k+ 1.

To do so, construct a profile θ in which θi = θj and θl = θk+1 for every agent l ∈ N with l 6= i.

Note that v(θj)− v(θk+1) ≤ v(θ)− v(θk+1) < δ
n−1 , where the last inequality follows from definition

of θk. Thus, all agents are active in θ. By Proposition L.2:

0 =
∑
l∈Q(θ)

blθlf(θ−l)xl(θ) = biθjf(θ−i)xi(θ) +
∑
l 6=i

blθk+1
f(θ−l)xl(θ) = biθjf(θ−i)xi(θ),

and biθj = 0 as desired. So far, we have shown that biθj = 0 for all i ∈ N and for all θj ∈ Θ̃. By

Proposition L.2, we must have aiθ = 0 for every θ ∈ Θ and every i ∈ Q(θ). Hence, (a, b) = 0 and

the result follows.
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Case δ
2 ≤ v(θk+1)− v(θk) < δ: We know that biθj = 0 for all agents i ∈ N and all θj ∈ Θ̃

such that j ≤ k. We now see what happens for θj with j ≥ k + 1. For each j ≥ k + 1, let

q(j) ∈ N0 be such that q(j) δ
(n−1) ≤ v(θj) − v(θk) < (q(j) + 1) δ

(n−1) . Consider the partition of

N into {N1(j), N2(j)} defined as follows: N1(j) = {1, . . . , n − q(j) − 1} ∪ {q(j) + 2, . . . , n} and

N2(j) = {n−q(j), . . . , q(j)+1}. We first show that biθj = 0 for all agent i ∈ N1(j) and all j ≥ k+1.

If N1(j) = ∅, the claim vacuously holds. Therefore, we may assume that N1 6= ∅ and hence

{1, n} ⊆ N1(j). Consider the profile θ in which θ1 = θj , θi = θj for the next q(j) agents (that is,

for 2 ≤ i ≤ q(j) + 1) and θi = θk for the remaining agents. By using the same arguments as in

the previous case, we can show that b1θj = 0. Once this has been established, we can use the same

inductive argument to show that biθj = 0 holds for every i ∈ N1(j) such that i ≤ n − (q(j) + 1).

Furthermore, by symmetry, we must also have biθj = 0 for every i ∈ N1(j) such that i > q(j) + 1.

Therefore, biθj = 0 for all agent i ∈ N1(j).

Next, we show that for every i, i′ ∈ N2(j) we must have Xi(θj) = Xi′(θj) if N1(j) 6= ∅ or

2X1(θj) = 2Xn(θj) = Xi(θj) for every i ∈ N such that 2 ≤ i ≤ n − 1 if N1(j) = ∅. To that end,

note that whenever the cost of i ∈ N2 is θj , he can only be active if all other agents have cost at

least θk+1. Moreover, by definition of θk we have v(θ)− v(θk+1) < δ
n−1 . Hence, in any profile θ in

which i is active, we must have Q(θ) = N . This implies that for every i ∈ N2 and any θ ∈ Θ, we

have either xi(θ) = 0, or xi(θ) only depends on the values θi−1, θi, θi+1, (in the cases of i = 1 or

i = n, this reduces to only the costs of i and that of his immediate neighbor). By mimicking the

proof of Lemma L.2, we can easily show that Xi(θj) = Xi′(θj) every i, i′ ∈ N2(j) when N1(j) 6= ∅
or 2X1(θj) = 2Xn(θj) = Xi(θj) for every i ∈ N such that 2 ≤ i ≤ n− 1 when N1(j) = ∅.

Let J1 = {j ≥ k + 1 : N1(j) 6= ∅} and J2 = {j ≥ k + 1 : N1(j) 6= ∅}. As the virtual costs are

increasing, we have that N1(j′) ⊆ N1(j) whenever j′ ≥ j. Hence, J1, J2 can be seen as a partition

of the indices j with k + 1 ≥ j ≤ |Θ̃| with the property that j1 ≤ j2 for every j1 ∈ J1, j2 ∈ J2. We

highlight that, by hypothesis, J1 6= ∅, but J2 might be empty. For j ∈ J1, let (θj)
n be the profile

in the cost of every agent is θj . By Proposition L.3, we must have b1θj + bnθj + 2
∑n−1

i=2 b
i
θj

= 0, and

therefore
∑

i∈N2(j) b
i
θj

= 0. Similarly, for j ∈ J2 we have b1θj + bnθj + 2
∑n−1

i=2 b
i
θj

= 0.

We now show that for every θj ∈ Θ̃, the sum over all i ∈ N of the RHS of the equations

corresponding to those in Ti(θj) is zero, that is,

n∑
i=1

biθj

θjXi(θ
j) +

|Θ̃|∑
j′=j

(θj
′ − θj′−1)Xi(θ

j′)

 = 0.

If j ≤ k, we have biθj = 0 for all i ∈ N and the claim follows. Otherwise, we have only those

i ∈ N2(j) can have positive coefficients. Therefore, the above equation reduces to

∑
i∈N2(j)

biθj

θjXi(θ
j) +

|Θ̃|∑
j′=j

(θj
′ − θj′−1)Xi(θ

j′)

 = 0.

Suppose j ∈ J1. We have shown that Xi(θ
j) = Xi′(θ

j) for every i, i′ ∈ N2(j) and j ∈ J1.
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As N2(j) ⊆ N2(j′) for every j′ ≥ j, we must have Xi(θ
j′) = Xi′(θ

j′). In addition, we know that∑
i∈N2(j) b

i
θj

= 0. Hence, if j ∈ J1,

∑
i∈N2(j) b

i
θj

(
θjXi(θ

j) +
∑|Θ̃|

j′=j(θ
j′ − θj′−1)Xi(θ

j′)
)

=(∑
i∈N2(j) b

i
θj

)(
θjXi(θ

j) +
∑|Θ̃|

j′=j(θ
j′ − θj′−1)Xi(θ

j′)
)

= 0,

as desired. Similarly, if j ∈ J2, 2X1(θj) = 2Xn(θj) = Xi(θj) for every i ∈ N such that 2 ≤ i ≤ n−1

and this must hold for every j′ ≥ j. In addition, b1θj + bnθj + 2
∑n−1

i=2 b
i
θj

= 0. Therefore,

∑
i∈N b

i
θj

(
θjXi(θ

j) +
∑|Θ̃|

j′=j(θ
j′ − θj′−1)Xi(θ

j′)
)

=

=
(
b1θj + bnθj + 2

∑n−1
i=2 b

i
θj

)(
θjX1(θj) +

∑|Θ̃|
j′=j(θ

j′ − θj′−1)X1(θj
′
)
)

= 0

So far we have shown that, for every θj ∈ Θ̃, the sum over all i ∈ N of the RHS of the equations

corresponding to those in Ti(θj) is zero and therefore:

∑
i∈N

∑
θji∈Θi

bi
θji

θjiXi(θ
j
i ) +

|Θi|∑
k=j+1

(θki − θk−1
i )Xi(θ

k
i )

 = 0.

To complete the proof, we must show that
∑
θ∈Θ

∑
i∈Q(θ)
i 6=ι(Q(θ))

aiθ
(
vϑθ(i)(θϑθ(i))− vi(θi)

)
.

∑
θ∈Θ

 ∑
i∈Q(θ)
i 6=ι(θ)

aiθ
(
vϑθ(i)(θϑθ(i))− vi(θi)

) =
∑
θ∈Θ

 ∑
i∈Q(θ)
i6=ι(θ)

 ∑
j∈Q(θ)
j≤i

bjθjf(θ−j)xj(θ)

(vϑθ(i)(θϑθ(i))− vi(θi)
)

=
∑
θ∈Θ

v(θι(θ))

 ∑
i∈Q(θ)
i6=ι(θ)

bjθjf(θ−j)xj(θ)

− ∑
i∈Q(θ)
i 6=ι(θ)

v(θi)b
i
θif(θ−i)xi(θ)


= −

∑
θ∈Θ

∑
i∈Q(θ)

v(θi)b
i
θif(θ−i)xi(θ)

= −
∑
θ∈Θ

n∑
i=1

v(θi)b
i
θif(θ−i)xi(θ)

where the first and third equalities follow from the definitions of aiθ and biθ given in Proposition L.2 respec-

tively, and the last equality follows from the fact that xi(θ) = 0 if i /∈ Q(θ). Therefore, we just need to show

that
∑
θ∈Θ

∑n
i=1 v(θi)b

i
θi
f(θ−i)xi(θ) = 0. To that end, note that biθj 6= 0 only if i ∈ N2(j). Then,
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∑
θ∈Θ

n∑
i=1

v(θi)b
i
θif(θ−i)xi(θ) =

∑
θk∈Θ̃

n∑
i=1

v(θk)biθk

 ∑
θ−i∈Θ

f(θ−i)xi(θk, θ−i)


=

∑
j≥k+1

∑
i∈N2(j)

v(θj)b
i
θj

 ∑
θ−i∈Θ

f(θ−i)xi(θj , θ−i)


=

∑
j∈J(1)

v(θj)

 ∑
i∈N2(j)

biθjXi(θj)

+
∑
j∈J(2)

v(θj)

(
n∑
i=1

biθjXi(θj)

)

=
∑
j∈J(1)

v(θj)Xn
2

(θj)

 ∑
i∈N2(j)

biθj

+
∑
j∈J(2)

v(θj)X1(θj)

(
b1θj + bnθj +

n−1∑
i=2

2biθj

)
= 0.

Therefore, we have show that every vector of coefficients (a, b) that satisfies Eq. (20), must also satisfy

(21). Thus, the system of linear equations is consistent and OPT (DecLin) = OPT (Cent) as desired.
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