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Abstract
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1 Introduction

We calculate equilibria of dynamic double-auction markets in which agents are distin-

guished by their preferences and information. As in an opaque over-the-counter market,

agents gather information over time from the bids and offers of their counterparties. We

characterize the effect of segmentation of investors into groups that differ by their initial

information endowment or by their “connectivity,” which depends on the expected fre-

quency with which they trade with other investors, and the quality of the information

they obtain through their counterparties’ bids. More informed and better connected

agents attain higher expected future profits, provided they are able to disguise the char-

acteristics determining the quality of their information. If, however, the characteristics

determining the quality of information of the bidders are commonly observable, then

investors that are better connected or have better initial information quality can attain

lower expected future trading profits, under stated conditions.

We model N classes of agents that are distinguished by their preferences for the

asset to be auctioned, by the expected rates at which they have trading opportunities

with each of other classes of agents, and by the quality of their initial information about

a random variable Y , which determines the ultimate utilities of the agents for the asset.

Over time, a particular agent of class i meets other agents at a sequence of Poisson arrival

times with mean arrival rate λi. At each meeting, a counterparty of class-j is selected

with probability κij . The two agents are given the opportunity to trade one unit of the

asset in a double auction.

Based on their initial information and on the information gathered from bids in

prior auctions with other agents, the two agents typically assign different conditional

expectations to Y . Because the preference parameters are commonly observed by the

two agents participating in the auction, it is common knowledge which of the two agents

is the prospective buyer and which is the prospective seller. Trade occurs on the event

that the price β bid by the buyer is above the seller’s offer price σ, in which case the

buyer pays σ to the seller. This double-auction format is known as the “seller’s price

auction.”

We provide technical conditions under which the double auctions have a unique

equilibrium in undominated strategies. We show how to compute the offer price σ and

the bid price β, state by state, by solving an ordinary differential equation. These prices

are strictly monotonically decreasing with respect to the seller’s and buyer’s conditional

expectations of Y , respectively. The bids therefore reveal these conditional expectations,
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which are then used to update priors for purposes of subsequent auctions. The technical

conditions that we impose in order to guarantee the existence of such an equilibrium also

imply that this particular equilibrium uniquely maximizes expected gains from trade in

each auction and, consequently, total welfare.

Because our strictly monotone double-auction equilibrium fully reveals the bidders’

conditional beliefs for Y , we are able to explicitly calculate the evolution over time of the

cross-sectional distribution of posterior beliefs of the population of agents, by extending

the results of Duffie and Manso (2007) and Duffie, Giroux, and Manso (2008) to N classes

of investors. We can calculate the Fourier transforms of the cross-sectional distributions

of posterior beliefs of investors in each of the N different classes at each time t as the

solution of a N -dimensional Riccati ordinary differential equation in t. We can solve this

equation and then invert the transforms. In order to characterize the solutions, we also

extend the Wild summation method of Duffie, Giroux, and Manso (2008) to directly

solve the evolution equation for the cross-sectional distribution of beliefs.

The double-auction equilibrium characterization, together with the characteriza-

tion of the dynamics of the cross-sectional distribution of posterior beliefs of each class

of agents, permits a calculation of the expected lifetime utility of each class of agent,

including the manner in which utility depends on the class characteristics determining

information quality, namely the precision of the initial information endowment and the

connectivity of that agent. Whether an agent profits from better information quality

is shown to depend on whether auction counterparties are able to pin down the quality

of that agent’s sources of information. Under specified conditions, well informed agents

may prefer that the quality of their information be less precisely determined. An im-

plication is that investors in over-the-counter markets that trade more actively (thus

gathering more information from counterparty bids and offers) or have better fundamen-

tal research, may prefer to obscure the quality of their information in order to avoid the

impact of adverse selection. By doing so, they may increase the probability that they

can execute a trade, or better the price execution of their trades. For example, a highly

informed investor might prefer to trade anonymously through a proxy, such as a broker,

even at a fee. (We do not, however, model proxy trading.)

Although an agent commonly known to have superior information is in some cases

punished by discriminatory quotes due to adverse selection, to the point of lowering the

agent’s expected profits, we also show (under technical conditions) that if gains from

trade are sufficiently large, then superior information leads to higher expected profits.

That is, under some circumstances, investors with superior information quality prefer
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to have the characteristics determining the quality of their information sources publicly

observable.

Finally, we investigate whether investors with similar preference parameters are

influenced to engage in trading with each other in order to gather information that

benefits their expected profits from future trading opportunities with other investors. For

example, in functioning over-the-counter markets such as those for government bonds, the

informational advantage of participating in more trades is sometimes said to be sufficient

to cause dealers to narrow quoted bid-ask spreads in order to increase counterparty

contacts. We analyze a stylized example of trading that is motivated by informational

gains, and is undertaken even by pairs of counterparties with similar preferences for the

asset. Although this does not contradict the No-Trade Theorem of Milgrom and Stokey

(1982), the intuition runs in the opposite direction: In an over-the-counter market, trade

between asymmetrically informed investors that is not based not on gains from exchange

of the asset can occur in order to gather information that increases expected profits from

future private trading opportunities.

2 Related Literature

A large literature in economics and finance addresses learning from market prices of

transactions that take place in centralized exchanges.1 Less attention, however, is given

to information transmission in over-the-counter markets. Private information sharing

is typical in functioning over-the-counter markets for many types of financial assets,

including bonds and derivatives. In these markets, trades occur at private meetings in

which counterparties offer prices that reveal information to each other, but not to other

market participants.

Wolinsky (1990), Blouin and Serrano (2001), Duffie and Manso (2007), Golosov,

Lorenzoni, and Tsyvinski (2008), Duffie, Giroux, and Manso (2008), and Duffie, Mala-

mud, and Manso (2009a,b) are among the few studies that have investigated the issue of

learning in over-the-counter markets. The models of search and random matching used

in these studies are unsuitable for the analysis of the effects of segmentation of investors

into groups that differ by connectivity and initial information quality. In the current

paper, we are able to study these effects, as our model allows for N classes of investors

with different preferences, initial information quality, and connectivity.

1See, for example, Grossman (1976), Grossman and Stiglitz (1980), Wilson (1977), Milgrom (1981),
Pesendorfer and Swinkels (1997), and Reny and Perry (2006).
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In our model, whenever two agents meet, they have the opportunity to participate

in a double auction. Chatterjee and Samuelson (1983) are among the first to study

double auctions. The case of independent private values has been extensively analyzed by

Williams (1987), Satterthwaite and Williams (1989), and Leininger, Linhart, and Radner

(1989). Kadan (2007) studies the case of correlated private values. We extend these

previous studies by providing conditions for the existence of a unique strictly monotone

equilibrium in undominated strategies of a double auction with common values. Bid

monotonicity is natural in our setting given the strict monotone dependence on Y of

each agent’s ex-post utility for a unit of the asset. Strictly monotone equilibria are

not typically available, however, in more general double auctions with a common value

component, as indicated by, for example, Reny and Perry (2006).

Our paper solves for the dynamics of information transmission in partially seg-

mented over-the-counter markets. Our model of information transmission is also suit-

able for other settings in which learning is through successive local interactions, such as

bank runs, knowledge spillovers, social learning, and technology diffusion. For example,

Banerjee and Fudenberg (2004) and Duffie, Malamud, and Manso (2009) study social

learning through word-of-mouth communication, but do not consider situations in which

agents differ with respect to connectivity. In social networks, agents naturally differ with

respect to connectivity. DeMarzo, Vayanos, and Zwiebel (2003), Gale and Kariv (2003),

Acemoglu, Dahleh, Lobel, and Ozdaglar (2008), and Golub and Jackson (2009) study

learning in social networks. Our model provides an alternative tractable framework to

study the dynamics of social learning when different groups of agents in the population

differ in connectivity with other groups of agents.

The conditions provided here for fully-revealing double auctions carry over to a

setting in which the transactions prices of a finite sample of trades are publicly revealed,

as is often the case in functioning over-the-counter markets. With this mixture of pri-

vate and public information sharing, the information dynamics can be analyzed by the

methods2 of Duffie, Malamud, and Manso (2009b).

3 The Model

This section specifies the economy and characterizes equilibrium behavior. The following

section lays out special cases in which we are able to provide more insights.

2One obtains an evolution equation for the cross-sectional distribution of beliefs that is studied by
Duffie, Malamud, and Manso (2009b) for the case N = 1, and easily extended to the case of general N .

4



3.1 The Double Auctions

A probability space (Ω,F ,P) is fixed. An economy is populated by a continuum (a

non-atomic measure space) of risk-neutral agents who are randomly paired over time for

trade, in a manner that will be described. There are N different classes of agents that

differ according to the quality of their initial information, their preferences for the asset

to be traded, and the expected rate at which they meet each of other classes of agents

for trade. At some future time T , the economy ends and the utility realized by an agent

of class i for each additional unit of the asset is

Ui = viY + vH(1 − Y ),

measured in units of consumption, for strictly positive constants vH and vi < vH , where Y

is a non-degenerate 0-or-1 random variable whose outcome will be revealed immediately

after time T .

Whenever two agents meet at some particular time before T , they are given the

opportunity to trade one unit of the asset in a double auction. The auction format

allows (but does not require) the agents to submit a bid or an offer price for a unit of the

asset. (That agents trade at most one unit of the asset at each encounter is an artificial

restriction designed to simplify the model. One could suppose, alternatively, that the

agents bid for the opportunity to produce a particular service for their counterparty.)

Bids are observed by both agents participating in the auction. If an agent submits a

bid price that is higher than the offer price submitted by the other agent, then one

unit of the asset is assigned to that agent submitting the bid price, in exchange for an

amount of consumption equal to the ask price. Certain other auction formats would be

satisfactory for our purposes; we chose this format, known as the “seller’s price auction,”

for simplicity. Bids and offers in an auction are only observed by agents participating in

the auction.

When a class-i and a class-j agent meet, their preference parameters vi and vj

are assumed to be commonly observable. Based on their initial information and on the

information that they have received from prior auctions held with other agents, the two

agents typically assign different conditional expectations to Y . From the no-speculative-

trade theorem of Milgrom and Stokey (1982), as extended by Serrano-Padial (2007) to

our setting of risk-neutral investors,3 the two counterparties decline the opportunity to

bid if they have identical preferences, that is, if vi = vj . If vi 6= vj , then it is common

3Milgrom and Stokey (1982) assume strictly risk-averse investors. Serrano-Padial (2007) shows that
for investors with identical preferences, even if risk-neutral, if the distributions of counterparties’ pos-
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knowledge which of the two agents is the prospective buyer (“the buyer”) and which is

the prospective seller (“the seller”). The buyer is of class j whenever vj > vi.

The seller has an information set FS that consists of his initially endowed signals

relevant to the conditional distribution of Y , as well any bids and offers that he has

observed at his previous auctions. The seller’s offer price σ must be based only on (must

be measurable with respect to) the information set FS. The buyer, likewise, bids on the

basis of her information set FB. The prices (σ, β) constitute an equilibrium for a seller of

class i and a buyer of class j provided that, fixing β, the offer σ maximizes4 the seller’s

conditional expected gain,

E
[

(σ − E(Ui | FS ∪ {β}))1{σ<β} | FS

]

, (1)

and fixing σ, the bid β maximizes the buyer’s conditional expected gain

E
[

(E(Uj | FB ∪ {σ}) − σ)1{σ<β} | FB

]

. (2)

The seller’s conditional expected utility for the asset, E(Ui | FS∪{β})), once having con-

ducted a trade, incorporates the information FS that the seller held before the auction as

well as the bid β of the buyer. Similarly, the buyer’s utility is affected by the information

contained in the seller’s offer. The informational advantage conferred by more frequent

participation in auctions with well informed bidders is a key focus here.

In Section 3.4, we demonstrate technical conditions under which there are equilibria

in which the offer price σ and bid price β can be computed, state by state, by solving

an ordinary differential equation, and are strictly monotonically decreasing with respect

to E(Y | FS) and E(Y | FB), respectively. This bid monotonicity is natural given the

strict monotone decreasing dependence on Y of Ui and Uj . Strictly monotone equilibria

are not typically available, however, in more general settings explored in the double-

auctions literature, as indicated by, for example, Reny and Perry (2006). Because our

strictly monotone equilibria fully reveal the bidders’ conditional beliefs for Y , we will be

able to explicitly calculate the evolution over time of the cross-sectional distribution of

posterior beliefs of the population of agents, by extending results in Duffie and Manso

(2007) and Duffie, Giroux, and Manso (2008). This, in turn, permits a characterization

of the expected lifetime utility of each type of agent, including the manner in which

teriors have a density, as here, then there is no mechanism leading to trade with positive probability in
which both agents weakly prefer the final allocation over the initial allocation.

4Here, to “maximize” means, as usual, to achieve, almost surely, the essential supremum of the
conditional expectation.
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utility depends on the quality of the initial information endowment and the “market

connectivity” of that agent.

3.2 Information Setting

Agents are initially informed by signals drawn from a common infinite pool of 0-or-1

random variables that are Y -conditionally independent.5 Each signal is received by at

most one agent. Each agent is initially allocated a randomly selected finite subset of

these signals. For almost every pair of agents, the numbers of signals received by each

of them is assumed to be independent of each other, and of the signals. (The number

of signals received by an agent is allowed to be deterministic.) The signals need not

have the same probability distributions. Without loss of generality, for any signal Z, we

suppose that

P(Z = 1 | Y = 0) ≥ P(Z = 1 | Y = 1).

Whenever finite, we define the “information type” of an arbitrary finite set K of

random variables to be

log
P(Y = 0 |K)

P(Y = 1 |K)
− log

P(Y = 0)

P(Y = 1)
, (3)

the difference between the conditional and unconditional log-likelihood ratios. The con-

ditional probability that Y = 0 associated with the information type θ is thus

P (θ) =
Reθ

1 +Reθ
, (4)

where R = P(Y = 0)/P(Y = 1), and the information type of a collection of signals is

one-to-one with the conditional probability that Y = 0 given the signals. Proposition

3 of Duffie and Manso (2007) implies that whenever a collection of signals of type θ is

combined with a disjoint collection of signals of type φ, the type of the combined set of

signals is θ + φ. More generally, we will use the following result from Duffie and Manso

(2007).

Lemma 3.1 Let S1, . . . , Sn be disjoint sets of signals with respective types θ1, . . . , θn.

Then the union S1 ∪ · · · ∪ Sn of the signals has type θ1 + · · ·+ θn. Moreover, the type of

the information set {θ1, θ2, . . . , θn} is also θ1 + θ2 + · · · + θn.

5To be more precise, there is a continuum of signals, indexed by a non-atomic measure space, say
[0, 1]. Almost every pair of signals is Y -conditionally independent.
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The Lemma has two key implications for our analysis. First, if two agents meet

and reveal all of their endowed signals, they both achieve posterior types equal to the

sum of their respective prior types. Second, for the purpose of determining posterior

types, revealing one’s prior type (or any random variable such as a bid that is strictly

monotone with respect to type) is payoff-equivalent to revealing all of one’s signals.

An agent of class i is matched with other agents at each of a sequence of Poisson

arrival times with a mean arrival rate (intensity) λi > 0. At each meeting time, the

agent’s counterparty is randomly selected from the population of agents. The probability

that a class-j counterparty is selected is denoted κij . Without loss of generality for the

purposes of analyzing the evolution of information, we take κij = 0 whenever vi = vj ,

because of the no-trade result for agents with the same preferences. A primitive κ that

does not satisfy this property can without loss of generality be adjusted so as to satisfy

this property by conditioning, case by case, on the event that the agents matched have

vi 6= vj.

As is standard in search models of markets, we assume that, for almost every pair of

agents, the matching times and the counterparties of one agent are independent of those

of the other. We do not show the existence of such a random-matching process, although

Duffie and Sun (2007) show the existence of a model with this random matching property

for a continuum-of-agents in a discrete-time setting, as well as the associated law of large

numbers for random matching on which we rely. Further, the limit behavior of the

discrete-agent matching models as the number of agents gets large is shown by Reminik

(2009) to coincide with the matching behavior on which we rely in our continuous-time

model.6

In this random-matching setting, a given pair of agents that have been matched

will almost surely never be matched again nor will their respective lifetime sets of trading

counterparties overlap. Thus, equilibrium bidding behavior in the multi-period setting

is characterized by equilibrium bidding behavior in each individual auction, as described

6See also Ferland and Giroux (2008). Taking G to be the set of agents, we assume throughout the
joint measurability of agents’ type processes {θit : i ∈ G} with respect to a σ-algebra B on Ω ×G that
allows the Fubini property that, for any measurable subset A of types,

∫

G

P(θαt ∈ A) dγ(α) = E

(∫

G

1θαt∈A dγ(α)

)

,

where γ is the measure on the agent space. Sun (2006) provides a condition on B, which we assume,
that is consistent with the exact law of large numbers. In our setting, if almost every pair of types
from {θαt : α ∈ G} is independent, this law implies that E

(∫

G
1θαt∈A dγ(α)

)

=
∫

G
1θαt∈A dγ(α) almost

surely. Sun (2006) further proves the existence of a model with this property.
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above. Later, we will provide primitive technical conditions on the preference parame-

ters vH and vi, as well as the cross-sectional distribution of initially endowed information

types, that imply the existence of an equilibrium with strictly monotone bidding strate-

gies. In this setting, bids therefore reveal types. Lemma 3.1 and induction thus imply

that agents’ types add up from auction to auction. Specifically, an agent leaves any

auction with a type that is the sum of his type immediately before the auction and the

type of the other agent bidding at the auction. This fact now allows us to characterize

the dynamics of the cross-sectional evolution of posterior types.

3.3 Evolution of Type Distributions

For each class i, we suppose that the initial cross-sectional distribution of types of the

class-i agents has some density ψi0. We do not require that the individual class-i agents

have types with the same probability distribution. Nevertheless, our independence and

measurability assumptions imply the exact law of large numbers, by which the density

function ψi0 has two deterministic outcomes, almost surely, one on the event that Y = 0,

denoted ψHi0 , the other on the event that Y = 1, denoted ψLi0. That is, for any real

interval (a, b), the fraction of class-i agents whose type is initially between a and b is

almost surely
∫ b

a
ψHi0 (θ) dθ on the event that Y = 0, and is almost surely

∫ b

a
ψLi0(θ) dθ on

the event that Y = 1. We make the further assumption that ψHi0 and ψLi0 have moment-

generating functions that are finite on a neighborhood of zero. Special cases satisfying

this condition are the basis for illustrative examples in Section 4.

Our objective now is to calculate, for any time t > 0, the cross-sectional density

ψit of the types of class-i agents. This cross-sectional density has (almost surely) only

two outcomes, one on the event Y = 0 and one on the event Y = 1, denoted ψHit and ψLit,

respectively.

Assuming that the asset auctions are fully revealing, which will be confirmed under

technical conditions, the evolution equation for the cross-sectional densities is

dψit
dt

= −λi ψit + λi ψit ∗

N
∑

j=1

κij ψjt, i ∈ {1, . . . , N}, (5)

where ∗ denotes convolution. We offer a brief explanation of this evolution equation. The

first term on the righthand side captures the outward migration of agents of any given

information type θ at rate λiψit(θ), that is caused by a change to some other information

type due to information gathered at auctions, which occur at the total proportional

rate λi. Here, we use the law of large numbers, which almost surely equates the mean
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rate of change for each agent with the total population rate. The second term captures

the inward migration of agents of a given information type due to learning from bids

at auctions. The second term is easily understood by noting that auctions with class-j

counterparties occur at rate λiκij. At such an encounter, in a fully revealing equilibrium,

bids reveal the types of both agents, which are then added to get the posterior types of

each. A class-i agent of type θ is thus created if a class-i agent of some type φ meets a

class-j agent of type θ − φ. Because this is true for any possible φ, we integrate over φ

with respect to the population densities. Thus, the total rate of increase of the density

of class-i agents of type-θ agents due to the information released at auctions with class-j

agents is

λiκij

∫ +∞

−∞

ψit(φ)ψjt(θ − φ) dφ = λiκij(ψi ∗ ψj)(θ).

Adding over j gives the second term on the righthand side of the evolution equation (5).

For the case N = 1, this evolution model is motivated in more detail, and solved, by

Duffie and Manso (2007) and Duffie, Giroux, and Manso (2008).

Equation (5) can be solved in terms of the moment generating function of ψit or,

by the same calculation, the Fourier transform ψ̂it of ψit. We have

dψ̂it
dt

= −λi ψ̂it + λi ψ̂it

N
∑

j=1

κij ψ̂jt, i ∈ {1, . . . , N}, (6)

using the fact that the Fourier transform of a convolution of two measures is the product

of their Fourier transforms. Now, (6) is a Riccati ordinary differential equation in t

for the N -dimensional vector ψ̂t(z) = (ψ̂1t(z), . . . , ψ̂Nt(z)). We can solve this equation,

numerically if necessary, and then invert the transform to compute the type densities.

In special cases, we have an explicit solution, for example as follows.

Proposition 3.2 Suppose that N = n + m, with n classes of buyers, all with vi = v̄,

and with m classes of sellers, all with vj = v < v̄. Suppose that all classes have the

same mean contact rate λ. We assume that the class selection probability κij = kj for

buyer-to-seller contacts does not depend on the buyer class i, and likewise that κji = ki

for seller-to-buyer contacts. The initial type densities can vary across the n+m classes

without restriction. We let

φ1t =

n
∑

i=1

ki ψit

and

φ2t =
n+m
∑

j=n+1

kj ψjt.
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We calculate that

φ̂1t =
e−λt (φ̂20 − φ̂10)

φ̂20e−φ̂20(1−e−λt) − φ̂10e−φ̂10(1−e−λt)
φ̂10 e

−φ̂10(1−e−λt)

φ̂2t =
e−λt (φ̂20 − φ̂10)

φ̂20e−φ̂20(1−e−λt) − φ̂10e−φ̂10(1−e−λt)
φ̂20 e

−φ̂20(1−e−λt).

We then have the solution

ψ̂it =
ψ̂i0

φ̂10

φ̂1t, 1 ≤ i ≤ n,

ψ̂jt =
ψ̂j0

φ̂20

φ̂2t, n + 1 ≤ j ≤ n +m.

For general N , λi, κij , and ψi0, an alternative to inverting the transform ψ̂ is to

directly solve the evolution equation for the type distributions by extending the Wild

summation method of Duffie, Giroux, and Manso (2008). The Wild-sum representation

also allows us, in Section 4, to characterize expected auction profits in special cases. In

order to calculate the Wild-sum representation of type densities, we proceed as follows.

For an N -tuple k = (k1, . . . , kN) of nonnegative integers, let ait(k) denote the fraction

of class-i agents who by time t have collected (directly, or indirectly through auctions)

the originally endowed signal information of k1 class-1 agents, of k2 class-2 agents, and

so on, including themselves. This means that |k| = k1 + · · ·+kN is the number of agents

whose originally endowed information has been collected by such an agent. To illustrate,

consider an example agent of class 1 who, by a particular time t has met one agent of

class 2, and nobody else, with that agent of class 2 having beforehand met 3 agents of

class 4 and nobody else, and with those class-4 agents not having met anyone before

they met the class-2 agent. The class-1 agents with this precise scenario of meeting

circumstances would contribute to a1t(k) for k = (1, 1, 0, 3, 0, 0, . . . , 0). We can view ait

as a measure on Z
N
+ , the set of N -tuples of nonnegative integers. By essentially the same

reasoning used to explain the evolution equation (5), we have

a′it = −λi ait + λi ait ∗
N
∑

j=1

κij ajt, ai0 = δei
, (7)

where

(ait ∗ ajt)(k1, . . . , kN) =
∑

{l=(l1,...,lN )∈Z
N
+ , |l|≤|k|}

ait(l) ajt(k − l).
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Here, δei
is the dirac measure placing all mass on ei, the unit vector whose i-th coordinate

is 1.

Theorem 3.3 There is a unique solution of (5), given by

ψit =
∑

k∈Z
N
+

ait(k)ψ
∗k1
10 ∗ · · · ∗ ψ∗kN

N0 , (8)

where ψ∗n
i0 denotes n-fold convolution.

That (8) solves (5) follows from substitution and the use of (7). A complete proof

is given in the Appendix. The system (7) of equations for the discrete measures admits

a closed-form solution via the following recursive procedure. First, ai(0) = 0 for all i,

and, because the probability that a class-i agent has met nobody by time t is e−λit, we

have

ait(ei) = e−λit ai0(ei).

Thus, we have ai(k) for all k with |k| ≤ 1. Then, we can solve (7) inductively: Having

found ai(k) whenever |k| ≤ k, for some k, we calculate it for any k with |k| = k + 1 by

solving (7), using the fact that the right-hand side is an ODE for ai(k) that is linear in

ai(k) and otherwise involves ai(l) only for |l| ≤ k.

The following result will be useful in Section 4.

Proposition 3.4 The measures ait are monotone increasing in time t and in the meeting

intensities λi, in the sense of first order stochastic dominance.

3.4 Double Auction Solution

Fixing a particular time t, suppose that a class-i and a class-j agent meet, and that the

prospective buyer is of class i (that is, vi > vj). We now calculate their equilibrium

bidding strategies. Naturally, we look for equilibria in which the outcome of the offer σ

for a seller of type θ is S(θ) and the outcome of the bid β of a buyer of type φ is B(φ),

where S( · ) and B( · ) are some strictly monotone increasing functions on the real line.

In this case, if (σ, β) is an equilibrium, we also say that (S,B) is an equilibrium.

We assume for the results in this section that whenever two agents are in contact,

each can observe all of the primitive characteristics, ψi0, λi, κi, and vi, of the class of

the counterparty. In the following section, we consider variants of the model in which

the initial type density ψi0, the mean trading rate λi of one’s counterparty, and the
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probabilities κi = (κi1, . . . , κiN) that govern the distribution of the classes of matched

counterparties need not be observable.

Given a candidate pair (S,B) of such bidding policies, a seller of type θ who offers

the price s has an expected increase in utility, defined by (1), of

∫ +∞

B−1(s)

(s− vj − ∆jP (θ + φ)) Ψi(P (θ), φ) dφ, (9)

where ∆j = vH − vj and where Ψi(P (θ), · ) is the seller’s conditional probability density

for the unknown type of the buyer, defined by

Ψi(p, φ) = p ψHit (φ) + (1 − p)ψLit(φ). (10)

Likewise, from (2), a buyer of type φ who bids b has an expected increase in utility for

the auction of

∫ S−1(b)

−∞

(

vi + ∆iP (θ + φ) − S(θ)
)

Ψj(P (φ), θ) dθ. (11)

The pair (S,B) therefore constitutes an equilibrium if, for almost every φ and

θ, these gains from trade are maximized with respect to b and s by B(φ) and S(θ),

respectively.

The hazard rate hLit(θ) associated with ψLit is defined as usual by

hLit(θ) =
ψLit(θ)

GL
it(θ)

,

where GL
it(θ) =

∫∞

θ
ψit(x) dx. That is, given Y = 1, hLit(θ) is the probability density for

the type θ of a randomly selected buyer, conditional on this type being at least θ. We

likewise define the hazard rate hHit (θ) associated with ψHit . We say that ψit satisfies the

hazard-rate ordering if, for all θ, we have hHit (θ) ≤ hLit(θ). The appendix provides a proof

of the following.

Lemma 3.5 Suppose that each signal Z satisfies

P(Z = 1 | Y = 0) + P(Z = 1 | Y = 1) = 1. (12)

Then, for each agent class i and time t, the type density ψit satisfies the hazard-rate

ordering as well as the property

ψHit (x) = exψHit (−x), ψLit(x) = ψHit (−x), x ∈ R. (13)
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The restriction (12) on signal distributions is somewhat typical of learning models, for

example those of Bikhchandani, Hirshleifer and Welch (1992) and Chamley (2004, p.

24). We now adopt this assumption, as well as a technical regularity condition on initial

type densities.

Standing Assumption: Any signal Z satisfies (12). Moreover, the initial type densities

are strictly positive and twice differentiable, with
∫

R

ekx
(∣

∣

∣

∣

d

dx
ψHi0 (x)

∣

∣

∣

∣

+

∣

∣

∣

∣

d2

dx2
ψHi0 (x)

∣

∣

∣

∣

)

dx < ∞ (14)

for any k < αi0, where αi0 = sup{k : ψ̂Hi0 (k) < ∞}.

The calculation of an equilibrium is based on the ODE, stated in the following

result, for the type V2(b) of a buyer who optimally bids b. That is, V2 is the inverse B−1

of the candidate equilibrium bid policy function B.

Lemma 3.6 For any V0 ∈ R, there exists a unique solution V2( · ) on [vi, v
H) to the ODE

V ′
2(z) =

1

vi − vj

(

z − vi
vH − z

1

hHit (V2(z))
+

1

hLit(V2(z))

)

, V2(vi) = V0. (15)

This solution, also denoted V2(V0, z), is monotone increasing in both z and V0. Further,

limz→vH V2(V0, z) = +∞ . The limit V2(−∞, z) = limV0→−∞ V2(V0, z) exists. Moroever,

V2(−∞, z) is continuously differentiable with respect to z.

As shown in the proof of the next proposition, found in the appendix, the ODE (15)

arises from the first-order optimality conditions for the buyer and seller. The solution of

the ODE can be used to characterize equilibria in the double auction, as follows.

Proposition 3.7 Suppose that (S,B) is a continuous equilibrium such that S(θ) ≤ vH

for all θ ∈ R. Let V0 = B−1(vi) ≥ −∞. Then,

B(φ) = V −1
2 (φ), φ > V0.

Further, S(−∞) = limθ→−∞ S(θ) = vi and S(+∞) = limθ→−∞ S(θ) = vH . For any

θ, we have S(θ) = V −1
1 (θ), where

V1(z) = log
z − vi
vH − z

− V2(z) − logR , z ∈ (vi, v
H) .

Any buyer of type φ < V0 will not trade, and has a bidding policy B that is not uniquely

determined at types below V0.
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In our double-auction setting, welfare is increasing in the probability of trade con-

ditional on Y = 1. We are therefore able to rank the equilibria of our model in terms

of welfare, because, from the following corollary of Proposition 3.7, we can rank the

equilibria in terms of the probability of trade conditional on Y = 1.

Corollary 3.8 Let (S,B) be a continuous equilibrium with V0 = B−1(vi). Then S(φ) is

strictly increasing in V0 for all φ, while B(φ) is strictly decreasing in V0 for all φ > V0.

Consequently, the probability of trade conditional on Y = 1 is strictly decreasing in V0.

Buyers and sellers bid more aggressively in equilibria with lower V0. Thus, the

probability of trade conditional on Y = 1 and total welfare are strictly decreasing in V0.

We turn to the study of particular equilibria, providing conditions for the exis-

tence of equilibria in strictly monotone undominated strategies. We also give sufficient

conditions for the failure of such equilibria to exist. We focus on the welfare-maximizing

equilibria.

From Proposition 3.7, the bidding policy B is not uniquely determined at types

below B−1(vi), because agents with these types do not trade in equilibrium. Nevertheless,

the equilibrium bidding policy B satisfying B(φ) = vi whenever φ < V0 weakly dominates

any other equilibrium bidding policy. That is, an agent whose type is below V0 and who

bids less than vi can increase his bid to vi, thereby increasing the probability of buying

the asset, without affecting the price, which will be at most the lowest valuation vi of

the bidder. An equilibrium in strictly monotone undominated strategies is therefore only

possible if V0 = −∞. We now provide technical conditions supporting the existence of

such welfare-maximizing equilibria.

We say that a function g( · ) on the real line or the integers is of exponential type

α at +∞ if, for some constants c > 0 and γ > −1,

lim
x→+∞

g(x)

xγ eαx
= c. (16)

In this case, we write g(x) ∼ Exp+∞(c, γ, α). We say that a family {gt : t ∈ [0, T ]} of

functions satisfies the condition gt(x) ∼ Exp+∞(ct, γt, αt) uniformly in t if the conver-

gence in (16) is uniform in t.

The tail condition (16), which we will use as a technical regularity assumption

on type densities, arises naturally in information percolation models, as we show in the

following simple case, in which we also characterize the tail parameters α, c, and γ.
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Lemma 3.9 Suppose N = 1, and let λ = λ1 and ψt = ψ1t. The Laplace transform ψ̂t of

ψt is given by

ψ̂t(z) =
e−λt ψ̂0(z)

1 − (1 − e−λt)ψ̂0(z)

and ψt(x) ∼ Exp+∞(ct, 0,−αt), where αt is the unique positive number z solving

ψ̂0(z) =
1

1 − e−λt
,

and where

ct =
e−λt

(1 − e−λt)2 d
dz
ψ̂0(αt)

.

Further, αt is monotone decreasing in t, with limt→∞ αt = 0. Moreover, if ψ0 ∼

Exp(c0, 0, α0)), then ψt(x) ∼ Exp+∞(ct, 0,−αt) uniformly in t.

The tail condition (16) also applies to the type density ψit in more general cases,

such as the multi-class example considered in Proposition 3.2, as shown in the Appendix.

We conjecture that the tail condition (16) holds for any of the information percolation

models considered in this paper, but we have not been able to prove this conjecture.

The following proposition provides conditions for the existence of a unique welfare-

maximizing equilibrium in strictly monotone strategies, which are therefore fully re-

vealing. For this purpose, we define α∗ to be the unique positive solution to α∗ =

1 + 1/(α∗2α
∗

), which is approximately 1.31. Our result depends in part on a sufficiently

high level of

G(v) =
vi − vj
vH − vi

,

a measure of the relative gain from trade between buyers and sellers.

Proposition 3.10 Suppose that, for all i and t, there are αit, cit, and γit such that,

uniformly in t,

ψHit (x) ∼ Exp+∞(cit, γit,−αit). (17)

If αiT < 1, then there is no equilibrium associated with V0 = −∞. Suppose, however,

that αiT > α∗ and that, for all t,

−γit <
(αit + 1) logαit

log(αit + 1) − logαit
, if αit ≥ 2

−γit <
log(α2

it − αit) 2αit

log(αit + 1) − logαit
, if αit < 2.

Then, if the gain from trade G(v) is sufficiently large, there exists a unique strictly

monotone equilibrium associated with V0 = −∞. This equilibrium is in undominated

strategies, and maximizes total welfare among all continuous equilibrium bidding policies.
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The technical regularity conditions of the proposition, combined with a sufficiently

large trading motive as measured by G(v), together guarantee that V2(z) does not grow

too fast in z, leading V1(z) to be monotone increasing, and thus allowing a welfare-

maximizing fully-revealing equilibrium in strictly monotone strategies. Under the condi-

tions of Proposition 3.10, there may be other equilibria in undominated strategies that

are associated with a finite V0. The equilibrium with V0 = −∞, however, maximizes the

probability of trade conditional on Y = 1, uniquely so for t > 0, and consequently also

maximizes welfare.

4 Connectedness, Information Quality, and Profitability

We now study whether an agent with more precise initial information or with a higher

expected frequency of opportunities to gather information from trading attains higher

total expected future trading profits. We will also show, in an extension of our model

that allows an agent to hide his initial information quality or his expected frequencies

of auction observations with each of the other agent classes, whether this can increase

the agent’s expected trading profits, through the increased uncertainty of the agent’s

counterparties regarding the quality of the agent’s information. This is relevant in func-

tioning markets through the decision of an investor of whether to trade openly with a

given reputation for market connectedness, or whether to trade through proxy investors

whose quality of information is more uncertain, or through other indirect forms of trade

execution.

For these purposes, we first need to characterize investors’ expected utilities. We

assume throughout this section the existence of a unique welfare-maximizing equilibrium

in strictly monotone bidding strategies for each time t < T , sufficient conditions for which

are given by Proposition 3.10. Our utility calculations are based throughout on these

equilibrium bidding strategies.

The stochastic type process Θ of any particular class-i agent is a Markov process.

The transition distribution function of Θ is determined by the probability density of

Θt − Θs given Θs, for any times s and t > s. We let ρs,t( · |Θs) denote this conditional

density function, and calculate it as follows.

Lemma 4.1 We have

ρs,t(y |Θs) = P (Θs)h
H
s,t(y) + (1 − P (Θs))h

L
s,t(y),
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where, for K = H or K = L, the density hKs,t( · ) satisfies, for each fixed s, the evolution

equation
d

dt
hKs,t = −λi h

K
s,t + λi h

K
s,t ∗

∑

j

κij ψ
K
jt , (18)

with an initial condition at t = s given by the Dirac measure at 0. The Fourier transform

of hKs,t is

ĥKs,t = e−λi (t−s) exp

(

λi

∫ t

s

∑

j

κij ψ̂
K
jτ dτ

)

. (19)

We therefore have the solution

hKs,t = e−λi (t−s)
∞
∑

k=0

1

k!

(

λi

∫ t

s

∑

j

κij ψ
K
jτ dτ

)∗k

. (20)

The ODE (18) follows from an argument like that given for (5). The corresponding ODE

for ĥKs,t is linear, and thus has the solution (19). The solution (20) arises from the series

definition of the exponential function and the fact that multiplication on the Fourier side

corresponds to convolution for the inverse Fourier transform.

The expected future profit at time t of this agent is

Ui(t,Θt) = E

[

∑

τk > t

∑

j

κij πij(τk,Θτk)

∣

∣

∣

∣

Θt

]

,

where τk is this agent’s k-th auction time and πij(t, θ) is the expected profit of a class-i

agent of type θ entering an auction at time t with a class-j agent. Given our equilibrium

bidding functions (B, S) for such an auction, we can calculate πij(t, θ) in the obvious

way.7 Because our class-i agent enters auctions at Poisson times with an intensity of λi,

we have

Ui(t,Θt) = λi

∫ T

t

∫

R

ρt,τ (θ − Θt |Θt) πi(τ, θ) dθ dτ , (21)

where πi(t, θ) =
∑

j κij πij(t, θ).

To this point, we have always assumed that whenever two agents are in contact,

each can observe all of the primitive characteristics, ψi0, λi, κi, and vi, of the class i of the

counterparty. We now consider a variant of the model in which the initial type density

ψi0, the mean trading rate λi, and the vector κi of counterparty selection probabilities are

not observable. These characteristics affect the quality of the counterparty’s information,

7That is, for vi < vj we have πij(t, θ) =
∫ +∞

B−1(S(θ))
(s− vi − ∆iP (θ + φ)) Ψi(P (θ), φ) dφ, and for

vi > vj we have πij(t, θ) =
∫ S−1(B(θ))

−∞

(

vi + ∆iP (θ + φ) − S(φ)
)

Ψi(P (θ), φ) dφ.
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and therefore affect bidding strategies. For this purpose, we assume for the remainder

of this section that two classes, say classes 1 and 2, have v1 = v2, but may differ with

respect to λi and ψi0, and moreover, that their counterparties may or may not be able

to distinguish between classes 1 and 2. In a setting in which this distinction cannot be

made, a class-j agent therefore assigns the probabilities κj1/(κj1+κj2) and κj2/(κj1+κj2)

of facing a class-1 and class-2 counterparty, respectively. We let π̂ij(t, θ) be the expected

profit of a class-i agent of type θ entering an auction at time t with a class-j agent, when

primitive characteristics ψi0, λi, and κi are not observable.

We isolate for utility comparison a particular class-1 agent with type process Θ1

and a particular class-2 agent with type process Θ2. For simplicity, we assume that for

each class, the initial types of almost every pair of agents in the class are identically

and independently distributed given Y . It follows from the law of large numbers that

the probability distribution of the initial type Θ10 has a density equal to the cross-

sectional type density ψ10 of class 1, and likewise that Θ20 has the probability density

ψ20. Because class-1 and class-2 agents are mutually indistinguishable from the viewpoint

of their counterparties, at any given auction they bid or offer according to a pooled bid

policy B and a pooled offer policy S.

For the remaining results, we suppose that the initial Y -conditional type density

ψ10 of class-1 agents is that associated with receiving a random number of signals that

is identically distributed across class-1 agents, with a density p1 on the positive integers.

That is, p1(k), also denoted pik, is the probability of receiving k signals at time zero.

Class-2 agents are initially informed in the same manner, except that the probability

density of the number of signals that they receive is p2. The signals given to each agent

are drawn at random from a common pool of signals whose joint distributions with Y

vary cross-sectionally so that the type of a randomly selected signal has some fixed Y -

conditional probability density f( · ), with outcome fH( · ) on the event Y = 0 and fL( ·)

on the event Y = 1. Thus, for any positive integers m and n > m, receiving n signals

implies strictly better information precision than receiving m signals.

We continue to let Ui(t, θ) denote the expected future profit of a class-i agent of

type θ at time t, in our usual setting of completely observable agent characteristics, and

we let Ûi(t, θ) denote the utility of a class-i agent in the alternative market setting, in

which the characteristics ψi0, λi, and κij of class-1 and class-2 agents are not distin-

guishable. We now show that when one’s quality of information cannot be distinguished

by one’s counterparty, better quality information, whether due to a higher expected fre-

quency of trading encounters or to better initial information, increases total expected
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auction profits.

Theorem 4.2 If λ2 ≥ λ1 and if the initial type densities ψ10 and ψ20 are distinguished

by the fact that the density p2 of the number of signals received by class-2 agents has

first-order stochastic dominance over the density p1 of the number of signals by class-1

agents, then
E[ Û2(t,Θ2t)]

λ2
≥
E[ Û1(t,Θ1t)]

λ1
, t ∈ [0, T ]. (22)

The inequality (22) holds strictly if, in addition, λ2 > λ1 or if p2 has strict dominance

over p1.

The comparison (22) implies that the utility advantage of class-2 agents holds even

after adjusting for their higher expected frequency of auction opportunities. The intuition

is that class-2 investors are expected to be more informed than class-1 investors at any

point in time, either because, in expectation, they will learn more in auctions than class-

1 investors or because they are initially better informed than class-1 investors. Because

class-2 investors cannot be distinguished from class-1 investors by their counterparties,

the class-2 investors attain higher total expected profits than class-1 investors.

The previous result shows that better informed and better connected investors have

higher expected trading profits if they are able to hide the characteristics determining

the quality of their information. We now show that if investors must trade openly with

respect to their connectivity and initial information quality, then having better initial

information and more opportunities to collect information from trades can in some cases

lead to lower expected trading profits.

For the remainder of this section, we further restrict our economy so as to allow

a total of N = 3 classes of agents. We assume that v1 = v2 ≡ v̄ > v3, so that the only

trades are those in which class-3 agents sell to class-1 or class-2 agents.

The next example describes a situation in which better informed buyers have a

lower utility than worse informed buyers, provided that the characteristics determin-

ing their information quality are commonly observable. An analogous example can be

obtained based on a comparison of the matching intensities λi, as in Theorem 4.2.

Example 4.3 Suppose that κ1 = κ2 and λ1 = λ2, so that classes 1 and 2 differ only

with respect to their initial cross-sectional type densities ψ10 and ψ20. In particular, we

suppose that the number of initial signals received by class-2 investors has first-order

dominance over the number received by class-1 investors such that

ψH10(x) = 12
e3x

(1 + ex)5
, ψL10(x) = ψH10(−x),
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and

ψH20 = ψH10 ∗ ψ
H
10.

Moreover, we assume that the seller’s type distribution ψH30 corresponds to a distribution

sufficiently close in total-variation norm to the convex combination of Dirac measures

given by

(1 + e−A)−1
(

e−A δ−A + δA
)

, (23)

for a constant A. Taking v3 = 0, v1 = v2 = 1.6, and A = 1, we have E[ π13(0, θ)] =

0.38331, E[ π23(0, θ)] = 0.37232, E[ π̂13(0, θ)] = 0.38150, and E[ π̂23(0, θ)] = 0.40038.

Therefore, by continuity, there exists a sufficiently small time horizon T such that, for

any time t,

E[U2(t,Θ2t)] < E[ Û1(t,Θ1t)] < E[U1(t,Θ1t)] < E[ Û2(t,Θ2t)], t ∈ [0, T ]. (24)

Class-3 investors face greater adverse selection from class-2 counterparties than

from class-1 counterparties, given the relative information precision of the class-2 in-

vestors. In order to mitigate this increased adverse selection, class-3 investors tend to

bid more conservatively when facing class-2 investors, if they can distinguish them, thus

lowering the expected profit to a class-2 investor. On the other hand, in order to benefit

from completing a sale on the event Y = 1, class-3 investors must bid more aggressively

against class-2 investors than against class-1 investors whenever they believe that the

event Y = 1 is relatively likely. This aggressive bidding brings extra expected benefits

to class-2 investors conditional on the event Y = 1. In Example 4.3, the first effect

dominates the second, and class-2 investors attain lower expected profits than those of

class-1 investors, as stated by (24), when their information quality can be distinguished.

In Example 4.3, if class-1 investors have the choice, they would prefer to operate

in a market in which the quality of counterparty information is revealed. In this situa-

tion, class-1 investors avoid the adverse selection problem of being pooled with class-2

investors.

Although Example 4.3 provides conditions under which better informed buyers

attain lower profits than worse informed buyers when their information quality can be

distinguished, the opposite can happen if the gain from trade is so large as to cause the

opportunity value of an exchange to dominate the adverse selection effect.

In order to state an associated result, we introduce the following notation. For two

densities g1 and g2 on the real line, we say that g2 has a fatter right tail than g1, and
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write Tail(g1) ≺ Tail(g2), if gi ∼ Exp+∞(ci, γi,−αi) and if

lim
x→+∞

g2(x)

g1(x)
= +∞.

This fatter-tail condition applies if either α2 < α1 or both α1 = α2 and γ2 > γ1 . The

weak version of this ordering is defined by writing Tail(g1) � Tail(g2) if α2 ≤ α1 or if

both α1 = α2 and γ2 ≥ γ1 .

From this point, we assume that for each of classes 1 and 2, ψHi0 satisfies an ex-

ponential tail condition ψHi0 ∼ Exp+∞(ci, γi,−αi). For this, if the random number of

signals received by an agent is bounded, it suffices that the probability density fH of

the type of a single randomly selected signal, given Y = 0, satisfies an exponential tail

condition. This result is stated and proved as Appendix Lemma E.1, which also gives

an alternative sufficient condition for cases in which the random number of signals is not

bounded, but has a density with a tail “close to” that of the geometric distribution, in

a sense made precise in Lemma E.1.

Lemma 4.4 If the density p2 of the number of signals endowed to class-2 agents has

first-order stochastic dominance over the density p1 of the number of signals endowed to

class-1 agents, then Tail(ψH10) � Tail(ψH20). Furthermore, if either

sup {k : p1k > 0} < sup {k : p2k > 0}

or if p1(k) and p2(k) are strictly positive for sufficiently large k, with

lim
k→∞

p1(k + 1)

p1(k)
< lim

k→∞

p2(k + 1)

p2(k)
,

then Tail(ψH10) ≺ Tail(ψH20).

In this sense, being more informed means having fatter-tailed information types.

Proposition 4.5 Suppose that κ1 = κ2 and λ1 = λ2, so that classes 1 and 2 differ only

with respect to their initial cross-sectional type densities ψ10 and ψ20. We also suppose

that the number of initial signals received by class-2 investors has first-order dominance

over the number received by class-1 investors, that

α1t + 1

α1t − 1
> α3t, t ∈ [0, T ],
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and that Tail(ψH10) ≺ Tail(ψH20) (more informative tails for class-2 agents).8 Then, if the

gain-from-trade meaure G(v) is sufficiently large,

E[U1(t,Θ1t)] < E[ Û1(t,Θ1t)] < E[ Û2(t,Θ2t)] < E[U2(t,Θ2t)], t ∈ [0, T ].

The same two partially offsetting effects highlighted in the discussion after Example

4.3 continue to play a role here. The gain-from-trade measure G(v) can be made so large,

however, that the expected loss associated with a failure to exchange the asset dominates

the adverse-selection effect, allowing class-2 investors to attain higher profits than class-1

investors even when the determinants of information quality are commonly observed.

Under the conditions of Proposition 4.5, class-1 investors prefer to be in a market

in which the quality of information is not revealed. Again, the adverse selection effect is

dominated by the loss-from-no-trade effect, reversing the result of Example 4.3.

Analogous results can be obtained when agents differ only in terms of the mean

arrival rates of their opportunities to gather information from trading, as we show with

the next proposition.

Proposition 4.6 Suppose that κ1 = κ2 and λ1 < λ2, and that class-1 and class-2 in-

vestors have the same initial information quality, that is, ψ10 = ψ20. We further assume

the exponential tail condition ψHit ∼ Exp+∞ (cit, γit,−αit) for all i and t, with α10 < 3,

α30 >
α10 − 1

3 − α10

,

and
α1t + 1

α1t − 1
> α3t, t ∈ [0, T ].

If the gain-from-trade measure G(v) is sufficiently large, then for any time t we have

E[U2(t,Θ2t)]

λ2

>
E[ Û2(t,Θ2t)]

λ2

>
E[ Û1(t,Θ1t)]

λ1

>
E[U1(t,Θ1t)]

λ1

.

Many of the results of this section can also be stated in the form of comparisons

of the conditional expected utilities, Ui(t,Θit) and Ûi(t,Θit). We avoid this for brevity.

8In fact, this condition is “almost” unnecessary, in that we have already assumed that p2 has
first-order dominance over p1. With this dominance, it is enough for Tail(ψH

10) ≺ Tail(ψH
20) that

limk→∞ p1(k + 1)/p1(k) < limk→∞ p2(k + 1)/p2(k). As a substitute for the condition Tail(ψH
10) ≺

Tail(ψH
20), it suffices that α1 = α2, γ1 = γ2, and c2 > c1.

23



5 Subsidizing Order-Flow Information

So far, in meetings between agents i and j with vi = vj , no trade takes place. In

this section we investigate the possibility that agents with similar preference parameters

engage in trading with the sole purpose of obtaining more information about Y from their

counterparties. In functioning over-the-counter markets, such as those for government

bonds, the informational advantage of handling more trades is sometimes said to be a

sufficient advantage to cause dealers to narrow quoted bid-ask spreads in order to increase

counterparty contacts.

Because of our continuum-of-agents assumption, an agent is indifferent to the

amount of information revealed to a counterparty, because this information has at most

an infinitesimal impact on that agent’s expected future terms of trade. We now describe

a simple mechanism that induces agents to strictly prefer to truthfully reveal information

to their counterparties. This mechanism can be interpreted as the trading of a contingent

claim.

Suppose that upon meeting, two agents i and j with similar parameter preferences

can enter a “swap” agreement by which the amount

k
[

(pj(t) − Y )2 − (pi(t) − Y )2
]

,

will be paid by investor i to investor j at time T , where pi(t) and pj(t) are real variables

reported by investors i and j at time t, and where k > 0 is a coefficient. The protocol

is that the players first negotiate the multiplier k, and then both agents simultaneously

submit their respective “reports” pi(t) and pj(t). Provided that k is strictly greater

than zero and that both agents have agreed to enter, in equilibrium player i optimally

submits a report pi(t) that is his or her conditional expectation of Y (or equivalently,

the conditional probability of the event Y = 1).

For the above mechanism to induce truthful revelation of posteriors in each auction,

we must show that, at any particular meeting there exists some k > 0 such that both

agents are willing to enter the swap agreement voluntarily. Lemma G.1 in the appendix

shows that, keeping fixed the bidding policy of other investors in the economy, an investor

attains strictly higher profits if he learns information from another investor in a meeting.

Because this information gathering activity is not observable by other investors in the

economy, it is a dominating strategy for investors to subsidize order flow with the purpose

of learning information from investors with similar preferences, as long as the cost of the

subsidy, although strictly positive, is sufficiently small. The net expected cost of the

24



subsidy can indeed be made arbitrarily small in each auction, so that the benefits in

terms of information gathering are greater than the costs in terms of the potential loss

to the counterparty. If, for example, we let k be the minimum of two coefficients ki > 0

announced by the two agents when they meet and before they enter the swap agreement,

then there is an equilibrium in which both agents select a small enough ki such that they

are willing to participate in the swap agreement.

Therefore, there exists an equilibrium in which investors always subsidize order

flow with counterparties with similar preference parameters, and counterparties treat

investors as if they have been engaging in this activity.

The ability to subsidize order flow may have a negative impact on investors ex-

pected profits. For example, under the conditions of Example 4.3, an investor attains

higher profits if he is less informed. However, as shown in this section, if investors have

the ability to subsidize order flow to get more information, they will engage in this be-

havior, and may thus end up with a lower profit than if they did not have the ability to

subsidize order flow.
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Appendices

A Information Percolation

Proof of Proposition 3.2. For simplicity, by abuse of notation, we omit everywhere

in this proof the superscript “H” on densities, writing ψt in place of ψHt , and so on.

Passing to Laplace transforms and adding up the equations for ψ̂it over i and the

equation for ψ̂jt over j we get the system

d

dt
φ̂1t = −λ φ̂1t + λ φ̂1t φ̂2t

d

dt
φ̂2t = −λ φ̂2t + λ φ̂1t φ̂2t.

(25)

Subtracting,

φ̂1t − φ̂2t = e−λ t ν̂,

where ν̂ = φ̂10 − φ̂20 satisfies ν̂(0) = 0. That is, in this case φ̂1t converges exponentially

to φ̂2t. Thus,
d

dt
φ̂1t = λ φ̂1t(−1 + φ̂1t − e−λtν̂) .

Denote ξt = φ̂1te
λt. Then,

d

dt
ξt = λe−λtξt(ξt − ν̂).

Integrating, we get
ξ

ξ − ν̂
=
φ̂10

φ̂20

e−ν̂(1−e
−λt).

That is,

φ̂1t = e−λtξ̂t =
e−λt (φ̂20 − φ̂10)

φ̂20e−φ̂20(1−e−λt) − φ̂10e−φ̂10(1−e−λt)
φ̂10 e

−φ̂10(1−e−λt).

On the other hand, integrating (25), we get

φ̂1t = φ̂10 e
−λt eλ

∫ t
0
φ̂2s ds

and therefore

e−λt eλ
∫ t
0
φ̂2s ds =

φ̂1t

φ̂10

.

Similarly,

e−λt eλ
∫ t
0
φ̂1s ds =

φ̂2t

φ̂20

.
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Thus, integrating the equation for the Laplace transform of ψit, we get

ψ̂it = ψ̂i0 e
−λt eλ

∫ t
0
φ̂2s ds =

ψ̂i0

φ̂10

φ̂1t,

and similarly for ψjt.

Proof of Theorem 3.3. Let the probability measures {ait(k) : k ∈ Z
N
+ , i ∈

{1, . . . , N}} on Z
N
+ satisfy the system of ODEs:

a′it = −λi ait + λi ait ∗
N
∑

j=1

κij ajt

or, coordinate-wise,

d

dt
ait(k) = −λi ait(k) + λi

N
∑

j=1

κij
∑

{l1, l2 ∈Z
N
+ : l1+l2 = k}

ait(l1) ajt(l2).

Let

ψit =
∑

k∈Z
N
+

ait(k)ψ
∗k
0 ,

where

ψ∗k
0

def
= ψ∗k1

10 ∗ · · · ∗ ψ∗kN
N0 .

The series is well defined and convergent because ait is a probability measure. Then,

d

dt
ψit =

∑

k∈Z
N
+

d

dt
ait(k)ψ

∗k
0

=
∑

k∈Z
N
+

(

−λiait(k) + λi

N
∑

j=1

κij
∑

l1 + l2 = k

ait(l1) ajt(l2)

)

ψ∗k
0

= −λi ψit + λi

N
∑

j=1

κij





∑

l1∈Z
N
+

ait(l1)ψ
∗l1
0



 ∗





∑

l2∈Z
N
+

ajt(l2)ψ
∗l2
0





= −λi ψit + λi

N
∑

j=1

κij ψit ∗ ψjt .

Uniqueness follows by standard arguments.

Proof of Proposition 3.4. Let f : Z+ → R be monotone increasing and bounded.

Let also Yit be a random variable (taking values in Z+) distributed with the measure ait.
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By (7),

d

dt

∑

k

ait(k) f(k) = −λi
∑

k

ait(k) f(k) + λi

N
∑

j=1

κij(ait ∗ ajt)(k) f(k)

= −λiE[f(Yit)] + λi

N
∑

j=1

κij E[f(Yit + Yjt)]

≥ −λiE[f(Yit)] + λi

N
∑

j=1

κij E[f(Yit)] = 0,

and the stipulated monotonicity in time follows.

Now, define (for the moment, formally), for p ∈ {1, . . . , N},

b
(p)
it =

∂

∂λp
ait.

Differentiating (formally) (7) with respect to λp, for i 6= p we get

d

dt
b
(p)
it = −λi b

(p)
it + λi b

(p)
it ∗

N
∑

j=1

κij ajt + λi ait ∗

N
∑

j=1

κij b
(p)
jt , b

(p)
i0 = 0, (26)

and otherwise we get

d

dt
b
(p)
pt = apt ∗

N
∑

j=1

κpj ajt− apt − λp b
(p)
pt + λp b

(p)
pt ∗

N
∑

j=1

κpj ajt + λp apt ∗
N
∑

j=1

κpj b
(p)
jt , (27)

with the same initial condition b
(p)
p0 = 0. This is a system of linear equations for the

vector b
(p)
t = (b

(p)
it ). Following standard arguments, for example those of Duffie, Manso

and Malamud (2009b), this equation indeed has a unique solution, which is a finite

measure, and this solution measure is indeed the derivative of bit with respect to λp.

Denoting

c
(p)
it = eλit b

(p)
it ,

we get that

d

dt
c
(p)
it = λi e

λit c
(p)
it ∗

N
∑

j=1

κij ajt + λi ait ∗
N
∑

j=1

κij e
(λi−λj)tc

(p)
jt , c

(p)
i0 = 0,

and similarly for i = p.

Now, let us pass to the moment-generating functions ĉ
(p)
it and âit of these measures.

Define the matrix

K̂(t) = (R̂ij(t)),
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where

R̂ij(t) = κije
(λi−λj)t λi âit + δij λi

N
∑

k=1

κikâkt

and let

α̂(t) = (δip) e
λpt
(

âpt ∗
N
∑

j=1

κpj âjt − âpt
)

.

Then, the system (26)-(27) is equivalent to the following system for the moment-generating

functions:
d

dt
ĉ
(p)
t = K̂(t) ĉ

(p)
t + α̂(t). (28)

Consider the fundamental solution Φ(t, τ) to the equation

d

dt
Φ̂(t, τ) = K̂(t) Φ̂(t, τ) , Φ̂(t, t) = IN×N .

Then, the unique solution to (28) is given by

ĉ
(p)
t =

∫ t

0

Φ̂(t, τ) α̂(τ) dτ .

Once again, a standard argument implies that the matrix Φ̂(t, τ) consists of moment

generating functions of measures Φij(t, τ) that solve the system of equations

d

dt
Φ(t, τ) = K(t) ∗ Φ(t) , Φ(t, t) = IdN×N ,

where IdN×N has the Dirac measure δ0 for each diagonal element, and zero off-diagonal

elements. Since K(t) consists of positive measures, it follows (for example, from the

Euler scheme for constructing the solution) that Φ(t, τ) is a matrix of positive measures.

Hence,

b
(p)
t = diag(e−λit)

∫ t

0

Φ(t, τ) ∗ α(τ) dτ.

Thus, for any monotone increasing bounded f : Z
N
+ → R,

∂

∂λp

∑

k

ait(k) f(k) =
∑

k

b
(p)
it (k) f(k) = e−λit

∫ t

0

∑

j

∑

k

(Φij(t, τ) ∗αj(τ))(k) f(k) dτ.

Let Z be a random variable with distribution Φij(t, τ) (normalized, if necessary, to have

mass one) and let X be an independent variable whose distribution is

N
∑

j=1

κpj ajt .
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Then,

∑

j

∑

k

(Φij(t, τ) ∗ αj(τ))(k) f(k)

= eλpt
∑

k

(

Φip(t, τ) ∗

(

âpt ∗

N
∑

j=1

κpj âjt − âpt

))

(k) f(k)

= E[f(Z +X + Ypt)] − E[f(Z + Ypt)] ≥ 0.

The claim follows.

Proof of Lemma 3.5. First, we say that a pair (FH, FL) of cumulative distribution

functions (CDFs) on the real line is amenable if

dFL(y) = dFH(−y) = e−y dFH(y), (29)

that is, if for any bounded measurable function g,

∫ +∞

−∞

g(y) dFL(y) =

∫ +∞

−∞

g(−y) dFH(y) =

∫ +∞

−∞

e−yg(y) dFH(y).

It is immediate that the set of amenable pairs of CDFs is closed under mixtures,

in the following sense.

Fact 1. Suppose (A,A, η) is a probability space and FH : R×A→ [0, 1] and FL : R×A→

[0, 1] are jointly measurable functions such that, for each α in A, (FH( · , α), FL( · , α))

is an amenable pair of CDFs. Then an amenable pair of CDFs is defined by (F
H
, F

L
),

where

F
H

(y) =

∫

A

FH(y, α) dη(α), F
L
(y) =

∫

A

FL(y, α) dη(α).

The set of amenable pairs of CDFs is also closed under finite convolutions.

Fact 2. Suppose that X1, . . . , Xn are independent random variables and Y1, . . . , Yn are

independent random variables such that, for each i, the CDFs of Xi and Yi are amenable.

Then the CDFs of X1 + · · ·+Xn and Y1 + · · · + Yn are amenable.

For a particular signal Z with type θZ , let FH
Z be the CDF of θZ conditional on

Y = 0, and let FL
Z be the CDF of θZ conditional on Y = 1.

Fact 3. If Z satisfies (12), then (FH
Z , F

L
Z ) is an amenable pair of CDFs.
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In order to verify Fact 3, we let θ be the outcome of the type θZ on the event {Z = 1},

so that

θ = log
P(Y = 0 |Z = 1)

P(Y = 1 |Z = 1)
− log

P(Y = 0)

P(Y = 1)
= log

P(Z = 1 | Y = 0)

P(Z = 1 | Y = 1)
.

Because Z satisfies (12), −θ is the outcome of θZ associated with observing Z = 0, so

we have the following:

P(Z = 1 | Y = 0) =
eθ

1 + eθ
, P(Z = 0 | Y = 0) =

1

1 + eθ
,

P(Z = 1 | Y = 1) =
1

1 + eθ
, and P(Z = 0 | Y = 1) =

eθ

1 + eθ
.

We can then write the CDFs FH
Z and FL

Z as

FH
Z (y) =

eθ

1 + eθ
1{θ≤ y} +

1

1 + eθ
1{−θ≤ y}

and

FL
Z (y) =

1

1 + eθ
1{θ≤ y} +

eθ

1 + eθ
1{−θ≤ y}.

These CDFs are each piece-wise constant, and jump only twice, at y = −θ and y = θ. We

let ∆F (y) = F (y)− limz↑y F (z). At y = −θ and y = θ, we have ∆FH
Z (−y) = e−y∆FH

Z (y)

and ∆FL
Z (y) = ∆FH

Z (−y), completing the proof of Fact 3.

Now, we recall that a particular agent receives at time 0 a random number, say

N , of signals, where N is independent of all else, and can have a distribution that

depends on the agent. By assumption, although the signals need not have the same

joint distributions with Y , all signals satisfy (12). The type of the set of signals received

by the agent is, by Lemma 3.1, the sum of the types of the individual signals. Thus,

conditional on N , the type θ of this agent’s signal set has a CDF conditional on Y = 0,

denoted FH
N , and a CDF conditional on Y = 1, denoted FL

N , that are the convolutions of

the conditional distributions of the underlying N signals given Y = 0 and given Y = 1,

respectively. Thus, by Facts 2 and 3, conditional on N , (FH
N , F

L
N) is an amenable pair of

CDFs. Now, we can average these CDFs over the distribution of N to see by Fact 1 that

this agent’s type has CDFs given Y = 0 and Y = 1, respectively, that are amenable.

Now, let us consider the cross-sectional distribution of agent types of a given class

i at time 0, across the population. Recall that the agent space is the measure space

(G,G, γ). Let γi denote the restriction of γ to the subset of class-i agents, normalized by

the total mass of this subset. Because of the exact law of large numbers of Sun (2006),
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we have, almost surely, that on the event Y = 0, the fraction γi({α : θα0 ≤ y}) of class-i

agents whose types are less than a given number y is

FH(y) ≡

∫

G

FH
α (y) dγi(α),

where FH
α is the conditional CDF of the type θα0 of agent α given Y = 0. We similarly

define FL as the cross-sectional distribution of types on the event Y = 1. Now, by Fact

1, (FH , FL) is an amenable pair of CDFs. By assumption, these CDFs have densities

denoted ψHi0 and ψLi0, respectively, for class i. The definition (29) of amenability implies

that

ψLi0(y) = ψHi0 (−y) = ψHi0 (y) e−y ,

as was to be demonstrated. That ψHit satisfies ψHit (−x) = e−xψHit (x) = ψLit(x) for any

t > 0 now follows from the Wild sum solution (8) and from the fact that amenability

is preserved under convolutions (Fact 2) and mixtures (Fact 1). That the hazard-rate

ordering property is satisfied for any density satisfying (13) follows from the calculation

(suppressing subscripts for notational simplicity):

GL(x)

ψL(x)
=

∫ +∞

x
ψL(y) dy

ψL(x)
=

∫ +∞

x
ψH(y) e(x−y) dy

ψH(x)
≤

∫ +∞

x
ψH(y) dy

ψH(x)
=

GH(x)

ψH(x)
.

B ODE and Equilibrium

Proof of Lemma 3.6. By the assumptions made, the right-hand side of equation (15)

is Lipschitz-continuous, so local existence and uniqueness follow from standard results.

To prove the claim for finite V0, it remains to show that the solution does not blow up

for z < vH . By Lemma 3.5,

1

hHit (V2(z))
≥

1

hLit(V2(z))
,

and therefore

V ′
2(z) =

1

vi − vj

(

z − vi
vH − z

1

hHit (V2(z))
+

1

hLit(V2(z))

)

≤
1

hHit (V2(z))

vH − vi
(vi − vj) (vH − z)

.

(30)

That is,
d

dz
(− logGH(V2(z))) ≤

vH − vi
(vi − vj) (vH − z)

.
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Integrating this inequality, we get

log

(

GH(V0)

GH(V2(z))

)

≤
vH − vi
vi − vj

log
vH − vi
vH − z

.

That is,

GH(V2(z)) ≥ GH(V0)

(

vH − z

vH − vi

)

vH
−vi

vi−vj

,

or equivalently,

V2(V0, z) ≤ G−1
H



GH(V0)

(

vH − z

vH − vi

)

vH
−vi

vi−vj



 .

Similarly, we get a lower bound

V2(V0, z) ≥ G−1
L



GL(V0)

(

vH − z

vH − vi

)

vH
−vi

vi−vj



 . (31)

The fact that V2 is monotone increasing in V0 follows from a standard comparison theorem

for ODEs (for example, (Hartman (1982), Theorem 4.1, p. 26). Furthermore, as V0 →

−∞, the lower bound (31) for V2 converges to

G−1
L





(

vH − z

vH − vi

)

vH
−vi

vi−vj



 .

Hence, V2 stays bounded from below and, consequently, converges to some function

V2(−∞, z). Since V2(V0, z) solves the ODE (15) for each V0 and the right-hand side of

(15) is continuous, V2(−∞, z) is also continuously differentiable and solves the same ODE

(15).

Proof of Proposition 3.7. Suppose that (S,B) is a strictly increasing continuous

equilibrium and let V1(z), V2(z) be the corresponding (strictly increasing and continuous)

inverse functions defined on the intervals (a1, A1) and (a2, A2) respectively, where one or

both ends of the intervals may be infinite.

The optimization problems for auction participants are

max
s
fS(s) ≡ max

s

∫ +∞

V2(s)

(s− vj − ∆jP (θ + φ)) Ψi(P (θ), φ) dφ (32)

and

max
b
fB(b) ≡ max

b

∫ V1(b)

−∞

(

vi + ∆iP (θ + φ) − S(θ)
)

Ψj(P (φ), θ) dθ. (33)
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First, we note that the assumption that A1 ≤ vH implies a positive trading volume.

Indeed, by strict monotonicity of S, there is a positive probability that the selling price

is below vH . Therefore, for buyers of sufficiently high type, it is optimal to participate

in trade.

In equilibrium, it can never happen that the seller trades with buyers of all types.

Indeed, if that were the case, the seller’s utility would be
∫

R

(s− vj − ∆jP (θ + φ)) Ψi(P (θ), φ) dφ,

which is impossible because the seller can then attain a larger utility by increasing

s slightly. Thus, a1 ≥ a2. Furthermore, given the assumption S ≤ vH , buyers of

sufficiently high types find it optimal to trade with sellers of arbitrarily high types. That

is, A2 = supθ B(θ) ≥ supθ S(θ) = A1. Thus,

A2 ≥ A1 > a1 ≥ a2.

Let θl = V2(a1), θh = V2(A1). (Each of these numbers might be infinite if either

A2 = A1 or a2 = a1.) By definition, V1(a1) = −∞, V1(A1) = +∞. Furthermore, fB(b) is

locally monotone increasing in b for all b such that

vi + ∆iP (V1(b) + φ) − S(V1(b)) > 0.

Further, fB(b) is locally monotone decreasing in b if

vi + ∆iP (V1(b) + φ) − S(V1(b)) < 0.

Hence, for any type φ ∈ (θl, θh), B(φ) solves the equation

vi + ∆i P (V1(B(φ)) + φ)) = B(φ).

Letting B(φ) = z ∈ (a1, A1), we get that

vi + ∆i P (V1(z) + V2(z)) = z . (34)

Now, as φ ↑ θh, we have B(φ) ↑ A1 and therefore V1(B(φ)) ↑ +∞. Thus,

A1 = lim
φ↑θh

B(φ) = lim
φ↑θh

(vi + ∆i P (V1(B(φ)) + φ))) = vH ,

and similarly, a1 = vi

We now turn to the first-order condition of the seller. Because V2 is strictly in-

creasing and continuous, it is differentiable Lebesque-almost everywhere by the Lebesque
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Theorem (see, for example, Theorem 7.2 of Knapp (2005), p. 359). Let X ⊂ (a2, A2) be

the set on which V ′
2 exists and is finite. Then, for all θ ∈ V1(X) the first-order condition

holds for the seller. For a seller of type θ, because the offer price s affects the limit of

the integral defining the seller’s utility (9) as well as the integrand, there are two sources

of marginal utility associated with increasing the offer s: (i) losing the gains from trade

with the marginal buyers, who are of type B−1(s)), and (ii) increasing the gain from

every infra-marginal buyer type φ. At an optimal offer S(θ), these marginal effects are

equal in magnitude. This leaves the seller’s first-order condition

Gi(P (θ), V2(S(θ))) = V ′
2(S(θ))

(

S(θ) − vj − ∆j P (θ + V2(S(θ)))
)

Ψi(P (θ) , S(θ)), (35)

where

Gi(p, x) =

∫ +∞

x

Ψi(p, y) dy.

Letting z = S(θ), we have θ = V1(z) and hence

Gi(P (V1(z)), V2(z))

Ψi(P (V1(z)), V2(z))
= V ′

2(z)
(

z − vj − ∆j P (V1(z) + V2(z))
)

. (36)

Now, if V2(z) were not absolutely continuous, it would have a singular component and

therefore, by the de la Valée Poussin Theorem (Saks (1937), p.127) there would be a

point z0 where V ′
2(z0) = +∞. Let θ = V1(z0). Then, S(θ) cannot be optimal because

there will an inequality < in (35) and therefore there will always be an incentive to

deviate. Thus, V2(z) is absolutely continuous and, since the right-hand side of (36) is

continuous and (36) holds almost everywhere in (a2, A2), identity (36) actually holds for

all z ∈ (a2, A2).

Now, using the first order condition (34) for the buyer, we have

z − vj − ∆j P (V1(z) + V2(z)) = z − vj −
∆j

∆i
(z − vi) =

vi − vj
vH − vi

(vH − z). (37)

Furthermore, (34) implies that

P (V1(z)+V2(z)) =
ReV1(z)+V2(z)

1 + ReV1(z)+V2(z)
=

z − vi
vH − vi

⇔ V1(z)+V2(z) = log
z − vi
vH − z

− logR .

That is,

V1(z) = log
z − vi
vH − z

− V2(z) − logR .

Therefore,

P (V1(z)) =
e−V2(z) z−vi

vH−z

1 + e−V2(z) z−vi

vH−z

=
(z − vi)e

−V2(z)

vH − z + e−V2(z) (z − vi)
.
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Using the fact that ΨL
i (V2(z)) = e−V2(z) ΨH

i (V2(z)), we get

Ψi(P (V1(z)), V2(z)) = P (V1(z)) ΨH
i (V2(z)) + (1 − P (V1(z))) ΨL

i (V2(z))

=
(z − vi) e

−V2(z)

vH − z + e−V2(z) (z − vi)
ΨH
i (V2(z))

+
(vH − z) e−V2(z)

vH − z + e−V2(z) (z − vi)
ΨH
i (V2(z))

=
vH − vi

vH − z + e−V2(z) (z − vi)
ΨL
i (V2(z)) .

Similarly,

Gi(P (V1(z)), V2(z)) = P (V1(z))G
H
i (V2(z)) + (1 − P (V1(z)))G

L
i (V2(z))

=
(z − vi)e

−V2(z)GH
i (V2(z)) + (vH − z)GL

i (V2(z))

vH − z + e−V2(z) (z − vi)
.

(38)

Consequently,

Gi(P (V1(z)), V2(z))

Ψi(P (V1(z)), V2(z))
=

P (V1(z))G
H
i (V2(z)) + (1 − P (V1(z)))G

L
i (V2(z))

P (V1(z)) ΨH
i (V2(z)) + (1 − P (V1(z))) ΨL

i (V2(z))

=
(z − vi)e

−V2(z)GH
i (V2(z)) + (vH − z)GL

i (V2(z))

(vH − vi) ΨL
i (V2(z))

= (vH − vi)
−1

(

(z − vi)
1

hHi (V2(z))
+ (vH − z)

1

hLi (V2(z))

)

.

Thus, by (37), the ODE (36) takes the form

V ′
2(z) =

Gi(P (V1(z)), V2(z))

Ψi(P (V1(z)), V2(z))
(

z − vj − ∆j P (V1(z) + V2(z))
)

= (vH − vi)
−1

(

(z − vi)
1

hHi (V2(z))
+ (vH − z)

1

hLi (V2(z))

)

1
vi − vj

vH−vi
(vH − z)

=
1

vi − vj

(

z − vi
vH − z

1

hHi (V2(z))
+

1

hLi (V2(z))

)

, z ∈ (a1, A1) = (vi, v
H).

Consequently, V2(z) solves (15). By Lemma 3.6, V2(v
H) = +∞. Thus A2 = vH and the

proof is complete.

Proof of Corollary 3.8. By Proposition 3.7, V2(V0, z) is monotone increasing in V0.

Consequently, B = V −1
2 is monotone decreasing in V0. Similarly,

V1(V0, z) = log
z − vi
vH − z

− V2(V0, z) − logR

is monotone decreasing in V0 and therefore S = V −1
1 is monotone increasing in V0.

In order to prove Proposition 3.10, we will need the following auxiliary result
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Lemma B.1 Suppose that B, S : R → (vi, v
H) are strictly increasing and that their

inverses V1 and V2 satisfy

vi + ∆i P (V1(z) + V2(z)) = z.

Suppose further that V ′
2(z) solves (15) for all z ∈ (vi, v

H). Then (B , S) is an equilibrium.

Proof. Recall that the seller maximizes

fS(s) =

∫ +∞

V2(s)

(s− vj − ∆jP (θ + φ)) Ψi(P (θ), φ) dφ. (39)

To show that S(θ) is indeed optimal, it suffices to show that f ′
S(s) ≥ 0 for s ≤ S(θ)

and that f ′
S(s) ≤ 0 for s ≥ S(θ) . We prove only the first inequality. A proof of the

second is analogous. So, let s ≤ S(θ) ⇔ V1(s) ≤ θ. Then,

f ′
S(s) = V ′

2(s) (−s + vj + ∆jP (θ + V2(s))) Ψi(P (θ), V2(s)) + Gi(P (θ), V2(s))

= V ′
2(s)Ψi(P (θ), V2(s))

(

−s + vj + ∆jP (θ + V2(s)) +
1

V ′
2(s)hi(P (θ), V2(s))

)

.

By Lemma 3.5,
1

hi(p, V2(s))

is monotone increasing in p. Therefore, by (36),

1

V ′
2(s) hi(P (θ), V2(s))

≥
1

V ′
2(s) hi(P (V1(S)), V2(s))

= s − vj − ∆j P (V1(s) + V2(s)).

Hence,

f ′
S(s) ≥ V ′

2(s) Ψi(P (θ), V2(s))

× (−s+ vj + ∆jP (θ + V2(s)) + s − vj − ∆j P (V1(s) + V2(s))) ≥ 0,

because θ ≥ V1(s) .

For the buyer, it suffices to show that

fB(b) = max
b

∫ V1(b)

−∞

(

vi + ∆iP (θ + φ) − S(θ)
)

Ψj(P (φ), θ) dθ (40)

satisfies f ′
B(b) ≥ 0 for b ≤ B(φ) and f ′

B(b) ≤ 0 for b ≥ B(φ) . That is,

vi + ∆i P (φ + V1(b)) − S(V1(b)) = vi + ∆i P (φ + V1(b)) − b ≥ 0

for b ≤ B(φ), and the reverse inequality for b ≥ B(φ). For b ≤ B(φ), we have φ ≥ V2(b)

and therefore

vi + ∆i P (φ + V1(b)) − b ≥ vi + ∆i P (V2(b) + V1(b)) − b = 0,

as claimed. The case of b ≥ B(φ) is analogous.

37



C Exponential Tails

Lemma C.1 The Laplace transform ψ̂Hit (k) is monotone increasing in k for each i and

all t ≥ 0.

Proof. Using the identity ψHit (−x) = e−x ψHit (x), we get

d

dk
ψ̂Hit (k) =

∫

R

x ekx ψHit (x) dx =

∫ 0

−∞

x ekx ψHit (x) dx +

∫ +∞

0

x ekx ψHit (x) dx

=

∫ +∞

0

x (1 − e−x) ekx ψHit (x) dx > 0.

Lemma 3.9 is a direct consequences of the following result, which also gives the

exponential tail property for ψHit .

Proposition C.2 (Exponential tails) Let k = α(t) be the unique solution to

φ̂H10(k) e
−φ̂H

10(k) (1−e−λt) = φ̂H20(k) e
−φ̂H

20(k) (1−e−λt)

satisfying mini∈{1,2} φ
H
i0(α(t)) ≤ (1 − e−λt)−1 . Then, for all t in (0, T ],

ψHit ∼ Exp+∞(ci(t) , 0 , −α(t))

(41)

d

dx
ψHit ∼ Exp+∞(−α(t) ci(t), 0,−α(t)),

with9

ci(t) =
e−λt ψ̂Hi0 (α(t)) (φ̂H10 − φ̂H20)(α(t))

φ̂H10(α(t)) d
dk

(

(1 − e−λt)(φ̂H10(k) − φ̂H20(k)) − log
(

φ̂H
10

φ̂H
20

)

(k)
)

| k=α(t)

.

Furthermore, these exponential tails are uniform in t if (41) holds for t = 0.

Proof. Since the functions φ̂10(k) and φ̂20(k) are analytic in k in the stripe

H := <k ∈

(

− min
i∈{ 1, ..., n+m}

αi0 − 1, min
i∈{1, ..., n+m}

αi0

)

,

9For the case in which φ̂H
i0(α(t)) = (1−e−λt)−1 for i = 1, 2, both the numerator and the denominator

of ci(t) are zero, so the stated formula must be understood as a limit as k ↑ α(t). In this case,

ci(t) =
e−λt ψ̂H

i0 (α(t))

(1 − e−λt) 1
2

d
dk

(

φ̂H
20(k) + φ̂H

10(k)
)

|k=α(t)

.
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it follows directly from their definitions that the functions φ̂1t(k) and φ̂2t(k) are mero-

morphic in k for k ∈ H.

Let

T = {t > 0 : ∃k > 0 : φ̂10(k) = φ̂20(k) = (1 − e−λt)−1} .

By analyticity, T is at most countable. For any t ∈ T , define

α(t) = min{k : φ̂10(k) = φ̂20(k) = (1 − e−λt)−1}

and

n(t) = max

{

l ≥ 0 :
dm

dkm

(

φ̂10(k) − φ̂20(k)
)

|k=α(t) = 0, m ≤ l

}

.

For any t 6∈ T , let α(t) be the unique solution to

φ̂10(k) e
−φ̂10(k) (1−e−λt) = φ̂20(k) e

−φ̂20(k) (1−e−λt)

and let

n(t) = max
{

l ≥ 0 :

dm

dkm

(

φ̂10(k) e
−φ̂10(k)(1−e−λt) − φ̂20(k)e

−φ̂20(k)(1−e−λt)
)

|k=α(t) = 0, m ≤ l
}

.

By Lemma C.1, φ̂i0(k) is monotone increasing in k. Thus, either φ̂10(k) and φ̂20(k) hit

the level (1− e−λt)−1 together, in which case we are in the set T , or one of them crosses

this level earlier than the other. The function x 7→ xe−x(1−e
−λt) is monotone increasing

for x < (1 − e−λt)−1, and monotone decreasing for x > (1 − e−λt)−1. Hence, when k

reaches the level α(t),

d

dk

(

φ̂10(k) e
−φ̂10(k) (1−e−λt)

)

|k=α(t) and
d

dk

(

φ̂20(k) e
−φ̂20(k) (1−e−λt)

)

|k=α(t)

have opposite signs, implying that n(t) = 0.

First, consider some t ∈ T . By assumption,

φ̂20(α(t)) − φ̂10(α(t)) ≈
1

(n(t) + 1)!

dn(t)+1

dkn(t)+1

(

φ̂20(k) − φ̂10(k)
)

|k=α(t).

Similarly, a direct calculation shows that, for any smooth function f such that

f ′((1 − e−λt)−1) = 0, f ′′((1 − e−λt)−1) 6= 0,
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we have

f(φ̂20(k)) − f(φ̂10(k)) ≈
1

(n(t) + 1)!
(k − α(t))n(t)+2 f ′′((1 − e−λt)−1)ξk,

where

ξk =
dn(t)+1

dkn(t)+1

(

φ̂20(k) − φ̂10(k)
)

|k=α(t)
1

2

d

dk

(

φ̂20(k) + φ̂10(k)
)

|k=α(t).

In our case,

f(x) = x e−x(1−e
−λt) ⇒ f ′′((1 − e−λt)−1) = −(1 − e−λt)−1 e−1 .

Thus, the leading term of the asymptotic behavior at k = α(t) is given by

ψ̂it ∼
k↑α(t)

e−λt ψ̂i0(α(t))

(1 − e−λt) 1
2
d
dk

(

φ̂20(k) + φ̂10(k)
)

|k=α(t)

1

α(t) − k
.

Similarly, for t 6∈ T ,

ψ̂it ∼
k↑α(t)

e−λt ψ̂i0(α(t)) (ψ̂20 − ψ̂10)(α(t)) e−φ̂10(α(t)) (1−e−λt)

d
dk

(

φ̂H10(k) e
−φ̂H

10(k) (1−e−λt) − φ̂20(k) e−φ̂20(k) (1−e−λt)
)

|k=α(t) (α(t) − k)
.

By Theorem 3.3, we can write

ψit =
∑

k

ait(k)ψ
∗k1
10 · · · ψ∗kN

N0

and ait(k) = 0 if k1 = 0. Thus,

ψit = ψi0 ∗ ζ,

with

ζ
def
=
∑

k

ait(k)ψ
∗(k1−1)
10 · · · ψ∗kN

N0 .

Then,

ζ̂ =
ψ̂it

ψ̂i0
.

By Theorem 3.3, ζ is the density of a probability measure. A Tauberian Theorem

(Proposition 1 in Aramaki (1983))10 implies that, for any ε > 0,

X(y)
def
=

∫ y

−∞

eε+α(t) x ζ(x) dx

10In fact, we could have directly used Ikehara’s Tauberian Theorem (see, for example, Theorem 4.2 of
Korevaar (2004), p.124). However, we appeal to the higher order version of Ikehara’s Theorem to show
that our result does not depend on the fact that n(t) = 0.
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satisfies the asymptotic

X(y) ∼ c̃i(t) ε
−1 eεy,

where

c̃i(t) =
ci(t)

ψ̂i0(α(t))
.

Thus,11

ψit(x) =

∫

R

ψi0(x− y) ζ(y) dy =

∫

R

ψi0(x− y) e−(α(t)+ε) y dX(y)

=

∫

R

e−(α(t)+ε)y X(y)

(

d

dx
ψi0(x− y) + (α(t) + ε)ψi0(x− y)

)

dy

= e−(α(t)+ε)x

∫

R

e(α(t)+ε)y X(x− y)

(

d

dy
ψi0(y) + (α(t) + ε)ψi0(y)

)

dy.

(42)

Therefore, by the Lebesque dominated convergence theorem,

lim
x→+∞

ψit(x)

e−α(t)x
=

∫

R

eα(t)y ε−1 c̃i(t)

(

d

dy
ψi0(y) + (α(t) + ε)ψi0(y)

)

dy . (43)

But
∫

R

eα(t)y

(

d

dy
ψi0(y) + α(t)ψi0(y)

)

dy =

∫

R

(

d

dy
(eα(t)y ψi0(y))

)

dy = 0,

and therefore

lim
x→+∞

ψit(x)

e−α(t)x
= c̃i(t)

∫

R

eα(t)yψi0(y) dy = ci(t) .

The asymptotic behavior of

d

dx
ψit(x) =

∫

R

d

dx
ψi0(x− y) ζ(y) dy

is proved analogously. The fact that the tails are uniform follows from a standard proof

of the Tauberian Theorem (see the proof of Proposition 1 of Aramaki (1983)).12

Corollary C.3 Let α∗ be as in Proposition 3.10. Suppose that

T <
1

λ
log

(

max{φ̂H10(α∗) , φ̂
H
20(α∗)}

1 − max{φ̂H10(α∗) , φ̂
H
20(α∗)}

)

.

11We note that αi(0) > αi(t), and therefore the boundary terms arising from integration by parts
vanish for sufficiently small ε.

12In fact, Subhankulov (1976) (Theorem 5.1.2, p. 196) establishes strong bounds on the tails that can
be used to determine the exact speed of convergence to exponential tails.

41



Then, there exists an A > 0 such that, for any

vi − vj
vH − vi

> A,

there exists a unique continuous equilibrium. By contrast, if

T >
1

λ
log

(

min{φ̂H10(1) , φ̂H20(1)}

1 − min{φ̂H10(1) , φ̂H20(1)}

)

,

then there exist no continuous equilibria.

D Proof of Proposition 3.10

Proof of Proposition 3.10. It follows from Proposition 3.7 and Lemma B.1 that a

strictly monotone equilibrium in undominated strategies exists if and only if there exists

a solution V2(z) to (15) such that V2(vi) = −∞ and

V1(z) = log
z − vi
vH − z

− V2(z) − logR

is monotone increasing in z and satisfies V1(vi) = −∞ , V1(v
H) = +∞. Furthermore,

such an equilibrium is unique if the solution to the ODE (15) with V2(vi) = −∞ is

unique.

Fix a t ≤ T and denote for brevity α = αit , γ = γit , c = cit. Let also

g(z) = e(α+1) V2(z) .

Then, a direct calculation shows that V2(z) solves (15) with V2(vi) = −∞ if and only

if g(z) solves

g′(z)

= g(z)
α+ 1

vi − vj

(

z − vi
vH − z

1

hHi ((α + 1)−1 log g(z))
+

1

hLi ((α+ 1)−1 log g(z))

)

,
(44)

with g(vi) = 0. By assumption and Lemma 3.5,

hHi (V ) ∼ ci |V |
γ e(α+1)V and hLi (V ) ∼ ci |V |

γ eαV (45)

as V → −∞ because GH,L
i (V ) → 1. Hence, the right-hand side of (44) is continuous and

the existence of a solution follows from the Euler theorem. Therefore, when studying

the asymptotic behavior of g(z) as z ↓ vi, we can replace hHi and hLi by their respective

asymptotics (45).
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Indeed, let us consider

g̃′(z) = (α + 1) g̃(z)
1

vi − vj

(

z − vi
vH − z

1

c ((α+ 1)−1 log 1/g̃)γ g̃

+
1

c((α + 1)−1 log 1/g̃)γ g̃α/(α+1)

)

,

(46)

with the initial condition g̃(vi) = 0. We consider only values of z sufficiently close to

vi, so that log g̃(z) < 0.

It follows from standard ODE comparison arguments and the results below that

for any ε > 0 there exists a z̄ > vi such that

∣

∣

∣

∣

g(z)

g̃(z)
− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

g′(z)

g̃′(z)
− 1

∣

∣

∣

∣

≤ ε (47)

for all z ∈ (vi, z̄) . The assumptions of the Proposition guarantee that the same asymp-

totics hold for the derivatives of the hazard rates, which implies that the estimates

obtained in this manner are uniform.

First, we will consider the case of general (not necessarily large) vi − vj and show

that, when α < 1, g(z) decays so fast as z ↓ vi that V1(z) cannot remain monotone

increasing.

At points in the proof, we will define suitable positive constants denoted C1, C2,

C3, . . . without further mention.

Denote

ζ =
(α + 1)γ+1

c (vi − vj)
. (48)

Then, we can rewrite (46) in the form

g̃′(z) =
ζ

(log 1/g̃)γ

(

z − vi
vH − z

+ g̃1/(α+1)

)

. (49)

From this point, throughout the proof, without loss of generality, we assume that vi = 0.

Furthermore, after rescaling if necessary, we may assume that vH − vi = 1. Then, the

same asymptotic considerations as above imply that, when studying the behavior of g̃

as z ↓ vi, we may replace vH − z ≈ vH − vi in (46) by 1.

Let A(z) be the solution to

z =

∫ A(z)

0

ζ−1 (− log x)γ x−1/(α+1) dx .
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A direct calculation shows that

B(z)
def
=

∫ z

0

ζ−1 (− log x)γ x−1/(α+1) dx ∼ ζ−1α + 1

α
(− log z)γ zα/(α+1) .

Conjecturing the asymptotics

A(z) ∼ K (− log z)γ(α+1)/α z(α+1)/α (50)

and substituting these into B(A(z)) = z, we get

K = ζ
α+1

α

(

α

α + 1

)
(γ+1)(α+1)

α

.

Standard considerations imply that this is indeed the asymptotic behavior of A(z). It is

then easy to see that

A′(z) ∼ K
α+ 1

α
(− log z)γ(α+1)/α z1/α. (51)

By (49),

g̃′(z) ≥
ζ

(log 1/g̃)γ
g̃1/(α+1).

Integrating this inequality, we get g̃(z) ≥ A(z). Now, the factor (log 1/g̃)γ is asymptot-

ically negligible as z ↓ vi. Namely, for any ε > 0 there exists a C1 > 0 such that

C1 g̃
1/(α+ε+1) ≥

ζ

(log 1/g̃)γ
g̃1/(α+1) ≥ C−1

1 g̃1/(α−ε+1).

Thus,
(

(g̃)
α−ε

1+α−ε

)′

≥ C2 .

Integrating this inequality, we get that

g̃(z) ≥ C3 (z − vi)
α−ε+1

α−ε . (52)

Let

l(z) = B(g̃(z)) − z .

Then, for small z, by (50),

l′(z) = g̃′(z) ζ−1 (− log g̃)γ g̃−1/(α+1) − 1

=
ζ

(log 1/g̃)γ

(

z

vH − z
+ g̃1/(α+1)

)

ζ−1 (− log g̃)γ g̃−1/(α+1) − 1

=
z

1 − z

1

g̃1/(α+1)

=
z

1 − z

1

(A(l(z) + z))1/(α+1)

≤
z

1 − z

1

(A(l(z)))1/(α+1)
,

(53)
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where we have used the fact that l(z) ≥ 0 because h(0) = 0 and l′(z) ≥ 0. Integrating

this inequality, we get that, for small z,

l(z) ≤ C4 z
2(α−ε)/(α−ε+1).

Hence, for small z,

g̃(z) = A(l(z) + z) ≤ A((C4 + 1)z2(α−ε)/(α−ε+1)) ≤ C5 z
2−ε. (54)

Let C(z) solve
∫ C(z)

0

(− log x)γ dx = ζ

∫ z

0

x

1 − x
dx .

A calculation similar to that for the function A(z) implies that

C(z) ∼ C6 (− log z)γ z2 (55)

as z → 0. Integrating the inequality

g̃′(z) ≥
ζ

(− log g)γ
z

1 − z
,

we get that

g̃(z) ≥ C(z).

Let now α < 1. Then, (54) immediately yields that the second term in the brackets in

(46) is asymptotically negligible and, consequently,

ζ

(log 1/g̃)γ
z

1 − z
≤ g̃′(z) ≤

(1 + ε) ζ

(log 1/g̃)γ
z

1 − z
(56)

holds for sufficiently small z. Integrating this inequality implies that

C(z) ≤ g̃(z) ≤ (1 + ε)C(z).

Now, (56) implies that

(1 − ε) 2C(z)z−1 ≤ g̃′(z) ≤ 2 (1 + ε)C(z) z−1

for sufficiently small z.13

Using the asymptotics (45) and repeating the same argument implies that g(z)

also satisfies these bounds. (The calculations for g are lengthier and omitted here.)

13We are using the same ε in all of these formulae. This can be achieved by shrinking if necessary the
range of z under consideration.

45



Now,

V ′
2(z) =

g′(z)

(α + 1) g(z)
≥ (1 − ε)

2

α + 1
z−1.

Therefore,

V ′
1(z) =

1

z (1 − z)
− V ′

2(z) < 0

for sufficiently small z. Thus, V1(z) cannot be monotone increasing and the equilibrium

does not exist.

Let now α > 1. We will now show that there exists a unique solution to (44) with

g(0) = 0. Since the right-hand side loses Lipschitz continuity only at z = 0, it suffices to

prove local uniqueness at z = 0. Hence, we need only consider the equation in a small

neighborhood of z = 0. (It is recalled that we assume vi = 0.)

As above, we prove the result directly for the ODE (46), and then explain how the

argument extends directly to (44).

Suppose, to the contrary, that there exist two solutions g̃1 and g̃2 to (46). Define

the corresponding functions l1 and l2 via li = B(g̃i) − z. Both functions solve (53).

Integrating over a small interval [0, l], we get

|l1(x) − l2(x)| ≤

∫ x

0

z

1 − z

∣

∣

∣

∣

1

(A(l1(z) + z))1/(α+1)
−

1

(A(l2(z) + z))1/(α+1)

∣

∣

∣

∣

dz . (57)

Now, we will use the following elementary inequality: There exists a constant C6 > 0

such that

a1/α − b1/α ≤
C6 (a− b)

a(α−1)/α + b(α−1)/α
(58)

for a > b > 0. Indeed, let x = b/a and β = 1/α. Then, we need to show that

(1 + x1−β) (1 − xβ) ≤ C6 (1 − x)

for x ∈ (0, 1) . That is, we must show that

x1−β − xβ ≤ (C6 − 1) (1 − x).

By continuity and compactness, it suffices to show that the limit

lim
x→1

x1−β − xβ

1 − x

is finite. This follows from L’Hôpital’s rule.
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By (50) and (51), we can replace the function A(z) in (57) by its asymptotics (50)

at the cost of getting a finite constant in front of the integral. Thus, for small z,

|l1(x) − l2(x)|

≤ C7

∫ x

0

z

∣

∣

∣

∣

((− log(l1 + z))γ (l1 + z))1/α − ((− log(l2 + z))γ (l2 + z))1/α

((− log(l1 + z))γ (l1 + z))1/α((− log(l2 + z))γ (l2 + z))1/α

∣

∣

∣

∣

dz .
(59)

By (58),

|((− log(l1 + z))γ (l1 + z))1/α − ((− log(l2 + z))γ (l2 + z))1/α|

≤ C6
|(− log(l1 + z))γ (l1 + z) − (− log(l2 + z))γ (l2 + z)|

((− log(l1 + z))γ (l1 + z))(α−1)/α + ((− log(l2 + z))γ (l2 + z))(α−1)/α
.

(60)

Now, consider some γ > 0. Then, for any sufficiently small a > b > 0, a direct calculation

shows that

0 < (log(1/a))γ a − (log(1/b))γ b ≤ ((log(1/a))γ + (log(1/b))γ) (a− b).

If, instead, γ ≤ 0, then the function a 7→ (log(1/a))γ a is continuously differentiable at

a = 0, and hence

0 < (log(1/a))γ a − (log(1/b))γ b ≤ C8 (a− b) .

Since α > 1, the same calculation as that preceding (56) implies that

A(z) ≤ g̃i(z) = A(z + li(z)) ≤ (1 + ε)A(z) , i = 1 , 2

for sufficiently small z.

Thus,

∣

∣

∣

∣

((− log(l1 + z))γ (l1 + z))1/α − ((− log(l2 + z))γ (l2 + z))1/α

((− log(l1 + z))γ (l1 + z))1/α((− log(l2 + z))γ (l2 + z))1/α

∣

∣

∣

∣

≤ C9 |l1(z) − l2(z)|
1

z((α+1)/α)−ε

≤ C9

(

sup
z ∈ [ 0, ε̄ ]

|l1(z) − l2(z)|

)

1

z((α+1)/α)−ε

(61)

for z ∈ [0, ε̄]. Thus, (59) implies that

|l1(x) − l2(x)| ≤ C10

(

sup
z ∈ [0,ε̄]

|l1(z) − l2(z)|

)

∫ x

0

z
1

z((α+1)/α)+ε
dz

= C11 (ε̄)
α−1

α
−ε sup

z ∈ [0,ε̄]

|l1(z) − l2(z)|

(62)
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for all l ≤ ε̄. Taking the supremum over l ∈ [0, ε̄], we get

sup
z ∈ [0,ε̄]

|l1(z) − l2(z)| ≤ C11 (ε̄)
α−1

α
−ε sup

z∈[0,ε̄]

|l1(z) − l2(z)| .

Picking ε̄ so small that C11 (ε̄)
α−1

α
−ε < 1 immediately yields that l1 = l2 on [0, ε̄] and

hence, since the right-hand side of (46) is Lipschitz continuous for z l 6= 0, we have l1 = l2

for all z by a standard uniqueness result for ODEs.

The fact that the same result holds for the original equation (44) follows by the

same arguments as above.

It remains to prove the last claim, namely the existence of equilibrium for suffi-

ciently large vi − vj . By Proposition 3.7, it suffices to show that

V ′
1(z) =

1

z (1 − z)
− V ′

2(z) > 0 (63)

for all z ∈ (0, 1) provided that vi − vj is sufficiently large.

It follows from the proof of Lemma 3.5 that

G−1
L

(

(1 − z)
1

(vi−vj )

)

≤ V2(z) ≤ G−1
H

(

(1 − z)
1

(vi−vj )

)

.

Thus, as vi − vj ↑ +∞, V2(z) converges to −∞ uniformly on compact subsets of [0, 1).

By assumption,

lim
V→+∞

1

hHi (V )
=

1

α
, lim

V→+∞

1

hLi (V )
=

1

α + 1
.

Thus, as z ↑ 1,

V ′
2(z) ∼

1

α (vi − vj)

1

1 − z
<

1

z(1 − z)
.

Fixing a sufficiently small ε > 0, we will show below that there exists a threshold W

such that (63) holds for all vi − vj > W and all z such that V2(z) ≤ −ε−1. Since,

by the assumptions made, 1/hHi (V ) and 1/hLi (V ) are uniformly bounded from above for

V ≥ −ε−1, it will immediately follow from (15) that (63) holds for all z with V2(z) ≥ −ε−1

as soon as vi − vj is sufficiently large.

Thus, it remains to prove (63) when V2(z) ≤ −ε−1 . We pick an ε so small that we

can replace the ODE (44) by (46) when proving (63). That is, once we prove the claim

for the “approximate” solution g̃(z), the actual claim will follow from (47).

Let

g̃(z) =
ζ

(− log ζ)γ
f(z)

def
= δ f(z).
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Then, (44) is equivalent to the ODE

f ′(z) =

(

log(1/ζ)

log(1/ζ) + log(1/f(z))

)γ (
z

1 − z
+ δ1/(α+1) f(z)1/(1+α)

)

. (64)

As vi − vj → +∞, we get that ζ, δ → 0. Let

f0(z)
def
=

∫ z

0

x

1 − x
dx = − log(1 − z) − z .

Using bounds analogous to that preceding (56), it is easy to see that

lim
vi−vj→+∞

f(z) = f0(z) , lim
vi−vj→+∞

f ′(z) = f ′
0(z),

and that the convergence is uniform on compact subsets of (0, 1). Fixing a small ε1 > 0,

we have, for z > ε1,

lim
vi−vj→∞

V ′
2(z) = lim

vi−vj→∞

g̃′(z)

(α+ 1)g̃(z)

= lim
vi−vj→∞

f ′(z)

(α+ 1)f(z)

=
f ′

0(z)

(α + 1)f0(z)

=
z

(α + 1) (1 − z) (− log(1 − z) − z)
.

We then have
d2

dz2
(− log(1 − z)) =

1

(1 − z)2
≥ 1.

Therefore, by Taylor’s formula,

− log(1 − z) − z ≥
1

2
z2 .

Hence,
z

(α + 1) (1 − z) (− log(1 − z) − z)
≤

2

α+ 1

1

z(1 − z)
.

Therefore (63) holds for large vi − vj because α > 1. This argument does not work as

z → 0 because f(0) = f0(0) = 0. So, we need to find a way to get uniform upper bounds

for f ′(z)/f(z) when z is small. By the comparison argument used above, and picking ε1

sufficiently small, since our goal is to prove inequality (63), we can replace 1− z by 1 in

(64).
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In this part of the proof, it will be more convenient to deal with g̃ instead of f. By

the above, we may replace g̃ by the function g1 solving

g′1(z) =
ζ

(− log(g1))γ

(

z + g
1/(1+α)
1

)

.

Let

d(z) =

∫ z

0

(

log

(

1

x

))γ

dx ,

D(z) = d−1(z), and k(z) = D(g1(z)). Then, we can rewrite the ODE for g1 as

k′(z) = ζ
(

z + (D(k(z)))1/(α+1)
)

, k(0) = 0.

Define L(z) via
∫ L(z)

0

(D(x))−1/(α+1) dx = z,

and let

φ(z) = L(ζ z) +
1

2
ζ z2 ≥ L(ζz).

Then, by the monotonicity of D(z),

φ′(z) = ζ L′(ζz) + ζ z = ζ
(

z + (D(L(ζz)))1/(α+1)
)

≤ ζ (z + (D(φ(ζz)))1/(α+1)),

By a comparison theorem for ODEs (for example, Hartman (1982), Theorem 4.1, p.

26),14 we have

k(z) ≥ φ(z) ⇔ g1(z) = D(k(z)) ≥ D(φ(z)) . (65)

Therefore, since the functions x(− log x)γ and xα/(α+1) (− log x)γ are monotone increasing

for small x, we have

(1 + α)V ′
2(z) =

g′(z)

g(z)

≤ (1 + ε)
g′1(z)

(α + 1) g1(z)

=
(1 + ε)ζ z

g1 (− log g1)γ
+

(1 + ε)ζ

g
α/(α+1)
1 (− log g1)γ

≤
(1 + ε)ζ z

D(φ(z)) (− logD(φ(z)))γ
+

(1 + ε)ζ

D(φ(z))α/(α+1) (− logD(φ(z)))γ
.

(66)

14Even though the right-hand side of the ODE in question is not Lipschitz continuous, the proof of
this comparison theorem easily extends to our case because of the uniqueness of the solution, due to
(62).
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Thus, it suffices to show that

ζ z2

D(φ(z)) (− logD(φ(z)))γ
+

ζ z

D(φ(z))α/(α+1) (− logD(φ(z)))γ
< (1 − ε)(1 + α)

for some ε > 0, and for all sufficiently small z and ζ. Now, a direct calculation similar

to that for the functions A(z) and C(z) implies that

d(z) ∼ z (− log z)γ

and therefore that

D(z) ∼ z (− log z)−γ .

Thus, it suffices to show that

ζ z2

φ(z) (− log φ)−γ (− log(φ(z) (− log φ)−γ))γ

+
ζ z

(φ(z) (− logφ)−γ)α/(α+1) (− log(φ(z) (− logφ)−γ))γ

< (1 − ε)(1 + α).

(67)

Leaving the leading asymptotic term, we need to show that

ζ z2

φ(z)
+

ζ z

(φ(z))α/(α+1) (− log(φ(z)))γ/(α+1)
< (1 − ε)(1 + α) .

We have
∫ z

0

(D(x))−1/(α+1)dx ∼
α + 1

α
zα/(α+1) (− log z)γ/(α+1).

Therefore

L(z) ∼

(

α

α + 1
z

)(α+1)/α

(− log z)−γ/α .

Hence, we can replace φ(z) by

φ̃(z)
def
=

(

α

α + 1
ζz

)(α+1)/α

(− log(ζz))−γ/α +
1

2
ζ z2 .

Let

x =
ζ z2

(ζz)(α+1)/α (− log(ζz))−γ/α
.

Then,

ζ z2

φ̃(z)
+

ζ z

(φ̃(z))α/(α+1) (− log(φ̃(z)))γ/(α+1)

=
1

(

(

α
α+1

)
α+1

α + 0.5x
)α/(α+1)

(

− log(ζz)

− log φ̃

)γ/(α+1)

+
x

(

α
α+1

)
α+1

α + 0.5x
.
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We have

log(φ̃) = log(ζ z) + log

(

(

α

α+ 1

)(α+1)/α

(ζz)1/α (− log(ζz))−γ/α + 0.5 z

)

≤ log(ζz)

for small ζ, z. Furthermore, for any ε > 0 there exists a δ > 0 such that

(

α

α + 1

)(α+1)/α

(ζz)1/α (− log(ζz))−γ/α ≥ (ζz)1/(α−ε)

for all ζz ≤ δ. Hence,
α− ε

α− ε+ 1
≤

− log(ζz)

− log φ̃
≤ 1

for all sufficiently small ζ, z. Consequently, to prove (66) it suffices to show that

sup
x>0

χ(x) < 1 + α,

where

χ(x) =
1

(

(

α
α+1

)
α+1

α + 0.5x
)α/(α+1)

Aα +
x

(

α
α+1

)
α+1

α + 0.5x
,

with

Aα = max

{

(

α

α + 1

)γ/(α+1)

, 1

}

.

Let

K =

(

α

α + 1

)
α+1

α

.

Then,

χ′(x) = −
0.5Aα α

α+ 1

1

(K + 0.5x)(2α+1)/(α+1)
+

K

(K + 0.5x)2
.

Thus, χ′(x∗) = 0 if and only if

K + 0.5x∗ =

(

K
0.5Aα α
α+1

)α+1

,

which means that

x∗ = 2

(

(

2

Aα

)α+1

− 1

)

(

α

α + 1

)
α+1

α

.
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Then,

χ(x∗)

=
1

(

(

α
α+1

)
α+1

α + 0.5x∗

)α/(α+1)
Aα +

x∗
(

α
α+1

)
α+1

α + 0.5x∗

=
1

((2/Aα)α+1 (α/(α+ 1))(α+1)/α)
α/(α+1)

Aα +
2
(

(

2
Aα

)α+1
− 1
)

(

α
α+1

)
α+1

α

(2/Aα)α+1 (α/(α+ 1))(α+1)/α

=

(

Aα
2

)α
α + 1

α
Aα + 2 − 2

(

Aα
2

)α+1

= 2 +
Aα+1
α

2α α
.

(68)

There are three candidates for x that achieve a maximum of χ, namely x = 0, x = +∞,

and x = x∗, which is positive if and only if Aα < 2.

If γ ≥ 0, then Aα = 1, so x = 0 and x = +∞ satisfy the required inequality as

soon as α > 1, whereas χ(x∗) < α+ 1 if and only if α > α∗, where

α∗ = 1 +
1

α∗ 2α∗

.

A calculation shows that α∗ ∈ (1.30, 1.31).

If γ < 0, then

χ(0) =
(α + 1)Aα

α
, χ(+∞) = 2,

and this gives the condition Aα < α. If Aα > 2, that is, if

−γ > (α + 1)
log 2

log((α + 1)/α)
,

then we are done. Otherwise, we need the property

2 +
Aα+1
α

2α α
< α + 1 ⇔ −γ <

log ((α2 − α) 2α)

log((α + 1)/α)
.

By assumption, ψit ∼ Exp+∞(cit, γit,−αit) uniformly if t. Thus, the arguments above

imply that a lower bound for vi − vj that is sufficient to guarantee the existence of

equilibrium for each fixed t can be chosen, independent of t.

E Proofs of Section 4

Everywhere in the sequel, we assume for simplicity that R = 1.

53



Proof of Theorem 4.2. The expected utility of a seller of class i ∈ {1, 2} of a

trade with a class-3 buyer is

1

2
λi

∫ T

t

∫

R

(ψHiτ (z) + ψLiτ (z)) Π(τ, z, Sτ (z)) dz dτ

=
1

2
λi

∫ T

t

∫

R

ψHiτ (z) (1 + e−z) Π(τ, z, Sτ (z)) dz dτ,

where

Π(τ, z, S) = P (z)(S − vH)GH
3τ (V2τ (S)) + (1 − P (z)) (S − v1)G

L
3τ (V2τ (S)).

Let fH be the probability density of a single signal, so that

ψHi0 =

∞
∑

k=1

pik (fH)∗k , i = 1, 2.

Substituting these expansions into (8), we get that

ψit =
∑

k∈Z
N−1
+

ãit(k) f
∗k1 ψ∗k2

30 · · · ψ
∗kN−1

N0 ,

where the measures ãit on Z
N−1
+ satisfy the system of equations

ã′it = −λi ãit + λi ãit ∗

N
∑

j=1

κij ãjt, (69)

but with the initial conditions (ãi0)(k, 0, . . . , 0) = pik and (ãi0)(0, k2, . . . , kN−1) = 0.

Then, the same argument as in the proof of Proposition 3.4 implies that the measure ã2t

dominates ã1t is the sense of first-order stochastic dominance. Therefore, it suffices to

show that
∫

R

(1 + e−z) Π(τ, z, Sτ (z)) ((fH)∗k1 ∗ (ψH30)
∗k2 · · · ∗ (ψH0N )∗kN−1)(z − x) dz

=

∫

R

(1 + e−z−x) Π(τ, z + x, Sτ (z + x)) ((fH)∗k1 ∗ ψ∗k2
30 · · · ∗ (ψH0N )∗kN−1)(z) dz

(70)

is monotone increasing in k = (k1, . . . , kN).

To show the latter, it suffices to prove that

∫

R

(1 + e−x−y−z) Π(τ, x+ y + z, Sτ (x+ y + z)) ζ(z) dz

> (1 + e−x−y) Π(τ, x+ y, Sτ(x+ y)),

(71)
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for any x, y and any probability density ζ satisfying (13).

Now, by the optimality of S, we have that

Π(τ, x+ y + z, Sτ (x+ y + z)) ≥ Π(τ, x+ y + z, Sτ (x+ y)),

and the inequality is strict for all z 6= 0. Therefore,

∫

R

(1 + e−x−y−z) Π(τ, x+ y + z, Sτ (x+ y + z)) ζ(z) dz

>

∫

R

(1 + e−x−y−z) Π(τ, x+ y + z, Sτ (x+ y)) ζ(z) dz

=

∫

R

(1 + e−x−y−z)
(

P (x+ y + z)(Sτ (x+ y) − vH)GH
3τ (V2τ (Sτ (x+ y)))

+ (1 − P (x+ y + z)) (Sτ (x+ y) − v1)G
L
3τ (V2τ (Sτ (x+ y)))

)

ζ(z) dz

= (Sτ (x+ y) − vH)GH
3τ (V2τ (Sτ (x+ y)))

∫

R

(1 + e−x−y−z)P (x+ y + z)ζ(z) dz

+ (Sτ (x+ y) − v1)G
L
3τ (V2(Sτ (x+ y)))

∫

R

(1 + e−x−y−z) (1 − P (x+ y + z))ζ(z) dz .

(72)

The claim follows now from the identities (1 + e−x)P (x) = 1,

(1 + e−x)(1 − P (x)) = e−x,

and
∫

R

ζ(z) dz =

∫

R

e−z ζ(z) dz = 1.

Proof of Lemma 4.4. We have

ψ̂Hi0 (s) =

∞
∑

k=1

pik (f̂H)k(s).

Standard results (for example, Korevaar (2004), Theorem 15.3, p. 30) imply that

f̂H(s) ∼
cΓ(γ + 1)

(α− s)γ+1
.

Suppose first that15

K1
def
= sup {k : p1k > 0} < K2

def
= sup {k : p2k > 0} < ∞.

15The case of sup {k : p2k > 0} = ∞ is analogous.
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Then,

ψ̂Hi ∼
piKi

(cΓ(γ + 1))Ki

(α− s)Ki(γ+1)
.

Therefore (using, for example, Korevaar (2004), Theorem 15.3, p. 30)

ci =
piKi

(cΓ(γ + 1))Ki

Γ(Ki(γ + 1))

and

γi = Ki(γ + 1) − 1 , αi = α.

The claim follows.

If K1 = K2 = ∞, we have

inf{s : ψ̂Hi (s) = ∞} = αi,

where αi is the unique positive number s solving

f̂H(s) = lim
k→∞

pik
pi k+1

,

and therefore α1 > α2.

Lemma E.1 If fH ∼ Exp+∞(c, 0,−α) and if there is a finite maximum number N(i)

of signals that an agent of class i receives with strictly positive probability, then ψi0 ∼

Exp+∞(ci0 , N(i) − 1 , −α), where

ci0 =
piN(i) c

N(i)

(N(i) − 1)!
, γi0 = N(i) − 1.

Alternatively, suppose that the moment generating function of fH is finite on (−ε, ε) for

some ε > 0 and that for some positive constants r < 1 and R > 1, we have

pikR
k − 1 = O(rk). (73)

Then, ψi0 satisfies an exponential tail condition.

Condition (73) implies that, asymptotically in k, the probability of receiving k

signals is close to geometric in k, in a particularly tight sense.

Proof. The second claim follows by the Tauberian arguments used in the proof of

Proposition C.2.
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For the first claim, it suffices to show that

(fH)∗k ∼ Exp+∞(ck/((k − 1)!) , k − 1 , −α).

We will prove this by induction in k. The case of k = 1 follows by the assumption on fH .

Suppose that we have proved the claim for some positive integer k; we will now prove it

for k + 1. Let φ = (fH)∗k. We use the decomposition

(φ ∗ fH)(x) =

(
∫ A

−∞

+

∫ +∞

A

)

φ(x− y) fH(y) dy.

Now, we fix an ε > 0 and pick some constant A so large that

fH(y)

c e−αy
∈ (1 − ε, 1 + ε)

for all y > A. Then,
∫ +∞

A
φ(x− y) fH(y) dy

c
∫ +∞

A
φ(x− y) e−αy dy

∈ (1 − ε, 1 + ε)

for all x. Changing variables, applying L’Hôpital’s rule, and using the induction hypoth-

esis, we get

lim
x→+∞

∫ +∞

A
φ(x− y) e−αy dy

xk e−αx
= lim

x→+∞

∫ x−A

−∞
φ(z) e−α(x−z) dy

xk e−αx

= lim
x→+∞

∫ x−A

−∞
φ(z) eαz dz

xk

= lim
x→+∞

φ(x− A)eα(x−A)

k xk−1

= lim
x→+∞

ck (x−A)k−1 e−α(x−A) eα(x−A)

k! xk−1

=
ck

k!
.

(74)

Now, using the Lebesque dominated convergence theorem and the induction hypothesis,

we get

lim
x→+∞

∫ A

−∞
φ(x− y) fH(y) dy

xk−1 e−αx
= lim

x→+∞

∫ A

−∞

φ(x− y)

xk−1 e−αx
fH(y) dy

=
ck

(k − 1)!

∫ A

−∞

eαy fH(y) dy.

(75)

Consequently,

(1 − ε)
ck+1

k!
≤ lim inf

x→+∞

(fH)∗(k+1)(x)

xk e−αx
≤ lim sup

x→+∞

(fH)∗(k+1)(x)

xk e−αx
≤ (1 + ε)

ck+1

k!
,
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and the claim follows because ε > 0 is arbitrary.

Proof of Proposition 4.5. It will follow from the results below that it suffices to prove

the result for a single auction at time zero. For a strictly positive time t, for i = 1 and

i = 2,

ψit ∼ Exp(cit , γ(t) , −α(t)),

with γ(t), α(t) and with c2t > c1t. It follows that the monotonicity result holds for any

auction at any time t > 0. Indeed, it follows directly from (6) that

ψ̂2t =
ψ̂20

ψ̂10

ψ̂1t.

Therefore,

c2t = c1t
ψ̂20(α(t))

ψ̂10(α(t))
> c1t,

because p1 ≺fosd p2 and Lemma C.1 together yield, for all k > 0,

ψ̂10(k) < ψ̂20(k).

In order to prove Proposition 4.5, we will need a detailed analysis of the asymptotic

behavior of Si(y) as G(v) → ∞. Let

ζ =
(α + 1)γ+1

c (v̄ − v3)
.

Here, we consciously suppress indices for α, γ and c. Namely, if the information type

is not hidden, (c, γ, α) = (ci, γi, αi). If the information type is hidden, we will have

(c, γ, α) = (κ2 c2, γ2, α2) if Tail(ψ10) ≺ Tail(ψ20), and we have (c, γ, α) = (κ1c1 +

κ2c2, γ2, α2) if (γ1, α1) = (γ2, α2) .

As in the proof of Proposition 3.10, we define

g(z) = e(α+1)V2(z) =
ζ

(− log ζ)γ
f(z)

def
= ε f(z) .

Then, as we have shown in the proof of Proposition 3.10, we may assume that, for large

G(v),

f ′(z) =

(

log(1/ζ)

log(1/ζ) + log(1/f(z))

)γ (
z − v̄

vH − z
+ ε1/(α+1) f(z)1/(1+α)

)

, f(v̄) = 0.

(76)
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See (64). Furthermore, as G(v) → ∞, we have ζ, ε→ 0 ,

lim
G(v)→∞

f(z) = f0(z),

where

f0(z) = (vH − v̄) log
vH − v̄

vH − z
− (z − v̄),

and the convergence is uniform on compact subsets of [v̄, vH).

From this point, for simplicity we take the case γi = 0 for all i. The general case

follows by similar but lengthier arguments. Hence, we assume that f solves

f ′(z) =
z − v̄

vH − z
+ ε1/α+1 f 1/(α+1). (77)

Since the solution f(z) to (77) is uniformly bounded on compact subsets of [v̄, vH), by

integrating (77) we find that

0 ≤ f(z) − f0(z) = O(ε1/(α+1) (z − v̄)),

uniformly on compact subsets of [v̄, vH) . Furthermore, f0(z) ≤ C1 (z − v̄)2, uniformly

on compact subsets of [v̄, vH) . Substituting these bounds into (77), we get

f(z) − f0(z) ≤ C2 ε
1/(α+1)

∫ z

v̄

(ε1/α+1 (z − v̄) + (z − v̄)2)1/(α+1) dz

≤ C3 ε
1/(α+1) (z − v̄) (ε1/(α+1)2 (z − v̄)1/(α+1) + (z − v̄)2/(α+1)).

Let now

l(z) = f(z)α/(α+1) −
ε1/α+1α

α + 1
(z − v̄) .

Then,

l′(z) =
α

α + 1
f ′(z) f−1/(α+1) −

ε1/α+1α

α + 1

=
α

α + 1

z − v̄
(

ε1/α+1α
α+1

(z − v̄) + l(z)
)1/α

≤
α

α + 1

z − v̄

(l(z))1/α
.

(78)

Integrating this inequality, we get

l(z) ≤
1

2
(z − v̄)2,

and therefore

f(z) ≤ C4 ((z − v̄)2 + ε1/α (z − v̄)(α+1)/α) . (79)
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Consequently,

eV2(z) = ε1/(α+1)
(

f0(z) + o(ε1/(α+1) (z − v̄))
)1/(α+1)

uniformly on compact subsets of [v̄, vH) . Therefore,

lim
ε→0

(

V2(z) −
1

α + 1
log ε

)

=
1

α + 1
log f0(z),

uniformly on compact subsets of (v̄, vH).

Now, since V2 → −∞ uniformly on compact subsets of [v̄, vH),

V1(z) = log
z − v̄

vH − z
− V2(z)

converges to +∞, uniformly on compact subsets of (v̄, vH) . Pick an η > 0 and let ε be

so small that V2(v̄ + ε) > K for some very large K. Then, for all θ < K we have that

v̄ < S(θ) < S(K) < S(V2(v̄ + ε)) = v̄ + ε.

Thus, S(θ) converges to v̄ uniformly on compact subsets of [−∞,+∞) (with −∞ in-

cluded). Furthermore,

lim
ε→0

(

V1(z) +
1

α + 1
log ε

)

= log
z − v̄

vH − z
−

1

α + 1
log f0(z)

def
= M(z)

uniformly on compact subsets of (v̄, vH). Let M̂(z) = M−1(z). We claim that

lim
ε→0

S

(

θ −
1

α + 1
log ε

)

= M̂(θ) , (80)

uniformly on compact subsets of R. Indeed, S
(

θ − 1
α+1

log ε
)

is the unique solution to

the equation in y given by

θ = V1(y) +
1

α + 1
log ε .

Since the right-hand side converges uniformly to the strictly monotone function M( · ),

this unique solution also converges uniformly to M̂(θ). Furthermore,

v̄ + ∆i P (V1(z) + V2(z)) = z ⇔ v̄ + ∆i P (θ + V2(S(θ))) = S(θ)

implies that

V2

(

S

(

θ −
1

α + 1
log ε

))

= log

(

S − v̄

vH − S

)

− θ +
1

α+ 1
log ε
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and therefore

V2

(

S

(

θ −
1

α + 1
log ε

))

−
1

α + 1
log ε → log

(

M̂(θ) − v̄

vH − M̂(θ)

)

− θ.

We have

M(z) = log







z − v̄

(vH − z)
(

(vH − v̄) log
(

vH−v̄
vH−z

)

− (z − v̄)
)1/(αi+1)






.

Now, for z ≈ v̄,

log

(

vH − v̄

vH − z

)

= − log

(

1 −
z − v̄

vH − v̄

)

≈
z − v̄

vH − v̄
+

1

2

(

z − v̄

vH − v̄

)2

, (81)

and therefore

Mi(z) ≈ (1 + α)−1 log(2(vH − v̄)) +
αi − 1

αi + 1
log

(

z − v̄

vH − v̄

)

(82)

as z → v̄. Consequently, as θ → −∞, we have

M̂(θ) ∼ v̄ + K e
α+1
α−1

θ

for some constant K = K(α).

By continuity,16 it suffices to prove Proposition 4.5 for a single auction at time

zero. For brevity, we omit the index 0 in this proof. For example, we write “ψi” for ψi0.

We use the notation uH,Li for the pair of expected utilities of a class-i investor in

an auction held at time zero, conditional on Y = 0 and Y = 1, respectively.17

uH,Li =

∫

R

ψH,Li (x)

∫ V1,i(Bi(x))

−∞

({vH , v̄} − Si(y))ψ
H,L
3 (y) dy dx

=

∫

R

ψH,L3 (y) ({vH, v̄} − Si(y))G
H,L
i (V2,i(Si(y))) dy

=

∫

R

ψH,L3 (y) ({vH, v̄} − Si(y)) dy

−

∫

R

ψH,L3 (y) ({vH, v̄} − Si(y))F
H,L
i (V2,i(Si(y))) dy

= ({vH , v̄} − v̄) +

∫

R

ψH,L3 (y) (v̄ − Si(y)) dy

−

∫

R

ψH,L3 (y) ({vH, v̄} − Si(y))F
H,L
i (V2,i(Si(y))) dy ,

(83)

16Because the exponential tails are uniform, it will follow that the convergence proved below is also
uniform in time.

17Here, S1(y) and S2(y) are different if and only if information type is not hidden.
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where Fi = 1 − Gi . Let us first study the asymptotic behavior of the term
∫

R

ψH,L3 (y) (v̄ − Si(y)) dy

as G(v) → ∞. We have
∫

R

ψH,L3 (y) (v̄ − Si(y)) dy

=

∫

R

ψH,L3

(

y −
1

αi + 1
log εi

) (

v̄ − Si

(

y −
1

αi + 1
log εi

))

dy .

(84)

Since, by assumption, ψH,L3 ∼ Exp+∞(c3, γ3,−{α3, α3 + 1}), we get

lim
ε→0

c−1
3 ε−{α3,α3+1}/(αi+1) ψH,L3

(

y −
1

αi + 1
log εi

)

= e−{α3,α3+1} y.

By (80),

v̄ − Si

(

y −
1

αi + 1
log εi

)

→ v̄ − M̂i(y) .

In order to conclude that

lim
ε→0

ε−α3/(αi+1)

∫

R

ψH3

(

y −
1

αi + 1
log εi

) (

v̄ − Si

(

y −
1

αi + 1
log εi

))

dy

= c3

∫

R

e−α3y (v̄ − M̂i(y)) dy,

(85)

and that
∫

R

ψL3

(

y −
1

αi + 1
log εi

) (

v̄ − Si

(

y −
1

αi + 1
log εi

))

dy = o(εα3/(αi+1)),

we will show that the integrands

I(y) = ε−α3/(αi+1) ψH3

(

y −
1

αi + 1
log εi

) (

v̄ − Si

(

y −
1

αi + 1
log εi

))

and

ε−(α3+ε)/(αi+1) ψL3

(

y −
1

αi + 1
log εi

) (

v̄ − Si

(

y −
1

αi + 1
log εi

))

have an integrable majorant. Then, (85) will follow from the Lebesque dominated con-

vergence theorem.

We decompose the integral in question into three parts, as

∫ 1
1+α

log ε

−∞

I1(y) dy +

∫ A

1

1+αL log ε

I2(y) dy +

∫ +∞

A

I3(y) dy,

and prove the required limit behavior for each integral separately. To this end, we will

need to establish sharp bounds for S(θ) and V2(θ).
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Lemma E.2 Let L(θ, ε) be a function such that

lim
θ→−∞,ε→0

L(θ, ε) = 0.

We have

S

(

θ −
1

α + 1
log ε

)

≤ v̄ + C1 L(θ, ε) (86)

for all sufficiently small ε > 0 and sufficiently small θ if and only if

1

α + 1
log f(v̄ + L(θ, ε)) − log(L(θ, ε)) ≤ C2 − θ . (87)

If (86) holds, we have

V2

(

S

(

θ3 −
1

α+ 1
log ε

))

≤
log ε

1 + α
+ C3 + logL(θ, ε) − θ. (88)

Proof. Applying V1 to both sides of (86) and using the fact that V1 is strictly increasing,

we see that the desired inequality is equivalent to

θ −
1

α + 1
log ε ≤ V1(v̄ + L) .

Now,

V1(z) +
1

α + 1
log ε = log

z − v̄

vH − z
− V2(z) +

1

α+ 1
log ε = log

z − v̄

vH − z
−

1

α+ 1
log f(z) .

The claim follows because we are in the regime when vH − z is uniformly bounded away

from zero.

Furthermore,

−
log ε

1 + α
+ V2(S) = log

(

S − v̄

vH − S

)

− θ. (89)

If θ is bounded from above, S is uniformly bounded away from vH , and hence

log

(

S − v̄

vH − S

)

− θ ≤ C4 + log(S − v̄) − θ.

The claim follows.

Lemma E.3 Suppose that ε > 0 is sufficiently small. Then, for

θ ≥
1

α + 1
log ε, (90)
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we have

S

(

θ −
1

α + 1
log ε

)

≤ v̄ + C5 e
α+1
α−1

θ , (91)

and for

θ ≤
1

α + 1
log ε, (92)

we have that

S

(

θ −
1

α + 1
log ε

)

≤ v̄ + C6 ε
1

(α+1)(α−1) e
α

α−1
θ . (93)

Proof. By Lemma E.2, inequality (93) is equivalent to

1

α+ 1
log f(v̄ + C6 ε

1
(α+1)(α−1) e

α
α−1

θ) − log(C6 ε
1

(α+1)(α−1) e
α

α−1
θ) ≤ −θ + C7 . (94)

Under the condition (92),

max
{

(z − v̄)2 , ε1/α (z − v̄)(α+1)/α
}

= ε1/α (z − v̄)(α+1)/α (95)

for

z = C8 ε
1

(α+1)(α−1) e
α

α−1
θ .

Hence, by (79),

f(z) ≤ C9 ε
1/α (z − v̄)(α+1)/α .

Consequently,

1

α + 1
log f(v̄ + C6 ε

1
(α+1)(α−1) e

α
α−1

θ) − log
(

C6 ε
1

(α+1)(α−1) e
α

α−1
θ
)

≤ C10 +
1

(α + 1)α
log ε +

1

α

(

α

α− 1
θ +

1

(α + 1)(α− 1)
log ε

)

−

(

α

α− 1
θ +

1

(α+ 1)(α− 1)
log ε

)

= −θ + C10 ,

(96)

and (93) follows.

Similarly, when θ satisfies (90), a direct calculation shows that

max
{

(z − v̄)2 , ε1/α (z − v̄)(α+1)/α
}

= (z − v̄)2 (97)

for

z = v̄ + C5 e
α+1
α−1

θ .
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Therefore, by (79),

1

α + 1
log f(v̄ + C5 e

α+1
α−1

θ) − log(C5 e
α+1
α−1

θ )

≤ C11 +
2

α− 1
θ −

α + 1

α − 1
θ = −θ + C11,

(98)

and (91) follows.

Lemma E.4 If
α + 1

α− 1
> α3,

then

∫ 1
α+1

log ε

−∞

ψH,L3

(

θ −
1

α+ 1
log ε

) (

v̄ − S

(

θ −
1

α + 1
log ε

))

dθ = o(εα3/(α+1)) .

Proof. By (92), since ψH,L3 is bounded, we get

∫ 1
α+1

log ε

−∞

ψH,L3

(

θ −
1

α+ 1
log ε

) (

v̄ − S

(

θ −
1

α + 1
log ε

))

dθ

≤ C12

∫ 1
α+1

log ε

−∞

ε
1

(α+1)(α−1) e
α

α−1
θ dθ

= ε
1

(α+1)(α−1)
α− 1

α
ε

1
(α+1)(α−1)

+ α
(α+1)(α−1)

= o(εα3/(α+1)) .

(99)

Lemma E.5 If
α + 1

α− 1
> α3,

then

lim
ε→0

ε−
α3

α+1

∫ A

1
α+1

log ε

ψH3

(

θ −
1

α+ 1
log ε

) (

v̄ − S

(

θ −
1

α + 1
log ε

))

dθ

= c3

∫ A

−∞

(v̄ − M̂(θ)) e−α3 θ dθ

(100)

and
∫ A

1
α+1

log ε

ψL3

(

θ −
1

α + 1
log ε

) (

v̄ − S

(

θ −
1

α + 1
log ε

))

dθ = o(εα3/(α+1)).
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Proof. By assumption, as x→ ∞,

ψH3 (x) ∼ c3 e
−α3x.

The claim follows from (80) and (90), which provides an integrable majorant.

The same argument implies the following result.

Lemma E.6 We have

lim
ε→0

ε−
α3

α+1

∫ +∞

A

ψH3

(

θ −
1

α + 1
log ε

) (

v̄ − S

(

θ −
1

α+ 1
log ε

))

dθ

= c3

∫ +∞

A

(v̄ − M̂(θ)) e−α3 θ dθ

(101)

and
∫ +∞

A

ψL3

(

θ −
1

α + 1
log ε

) (

v̄ − S

(

θ −
1

α + 1
log ε

))

dθ = o(εα3/(α+1)) .

Finally, to complete the proof, it suffices to show that the term
∫

R

ψH,L3 (y) ({v̄, vH} − Si(y))F
H,L
i (V2,i(Si(y))) dy = o(εα3/(α+1)) (102)

in (83) is negligible for large G(v) As G(v) → +∞, we have V2,i(Si(y)) → −∞.

Furthermore, as x→ −∞,

FH,L
i (x) ∼

ci
{αi + 1, αi}

ex {αi+1,αi}.

The claim then follows by essentially the same arguments used above. Special care is

only needed because (vH − S)−1 blows up as θ ↑ +∞.

By (89),

FH
i

(

V2

(

S

(

θ −
1

α + 1
log ε

)))

≤ C13 ε

(

S − v̄

vH − S
e−θ
)αi+1

.

Thus, to get an integrable majorant, it would suffice to have a bound

vH − S ≥ C14 e
−βθ,

for some β > 0 and for a sufficiently large θ. By the argument used in the proof of

Lemma E.2, it suffices to show that for sufficiently large θ,

1

α + 1
log f(vH − C14 e

−βθ) ≤ C15 + (β − 1) θ .
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Now, it follows from (77) that

f ′(z) ≤ f(z)1/(α+1) +
vH − v̄

vH − z
.

Since, for sufficiently small ε, f(z) is uniformly bounded away from zero on compact

subsets of (v̄, vH ], we get

d

dz
(f(z)α/(α+1)) ≤ C16 (1 + (vH − z)−1),

for some K > 0 when z is close to vH . Integrating this inequality, we get

f(z)α/(α+1) ≤ C17 (1 − log(vH − z)).

Consequently,
1

α+ 1
log f(vH − C14 e

−βθ) ≤ C18 log θ

if θ is sufficiently large. Hence, the required inequality holds for any β > 1 with a

sufficiently large C14. Pick a β so that (β − 1)(α + 1) < α3. Then we get that, for

sufficiently large θ,

FH
i

(

V2

(

S

(

θ −
1

α+ 1
log ε

)))

≤ C19 e
(β−1)(α+1)θ ,

and the claim follows.

Thus, the unconditional expected utility of agent i is approximately

0.5 (vH − v̄) − ε
α3/(α+1)
i

∫

R

(M̂i(θ) − v̄) e−α3θ dθ .

For the case in which the information characteristics of classes 1 and 2 are not hidden,

we need to consider two sub cases. If α1 > α2, then, since ε1 and ε2 differ from each

other by a constant proportion, sending G(v) to infinity leads to

ε
α3/(α1+1)
1

∫

R

(M̂1(θ) − v̄) e−α3θ dθ > ε
α3/(α2+1)
2

∫

R

(M̂2(θ) − v̄) e−α3θ dθ,

and the claim follows. If, instead, α1 = α2 but c1 < c2, we get that ε1 > ε2 and M̂1 = M̂2,

so the claim also follows in this case.

The case in which information characteristics are hidden is handled analogously.
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F Proof of Proposition 4.6

First, we note that the evolution equations

d

dt
ψ̂it = λi ψ̂it (−1 + ψ̂3t)

imply that

ψ̂2t = ψ̂20 e
−λ2t eλ2

∫ t
0 ψ̂3τ dτ = ψ̂20

(

ψ̂1t

ψ̂10

)λ2/λ1

.

Since, by assumption, ψit ∼ Exp+∞(cit, γit,−αit), we immediately get (see, for example,

Korevaar (2004), Theorem 15.3, p.30) that α1t = α2t and that

ψ̂it(k) ∼
k↑α1t

cit Γ(γit + 1)

(αit − k)γit+1
.

This immediately yields that

γ2t + 1 =
λ2

λ1

(γ1t + 1) ⇒ γ2t > γ1t .

Consequently, Tail(ψ1t) ≺ Tail(ψ2t) . It follows from the proof of Proposition 4.5 that

the required result holds for any positive t > 0, provided that v̄− v3 is larger than some

t-dependent threshold.

Thus, it remains to show the required inequality, comparing auction expected util-

ities, over a sufficiently small time interval [0, t]. Thus, from now on, we will assume that

T is sufficiently small. Furthermore, we will provide a proof only for the case in which

the information characteristics are not hidden. The case of unobservable information

characteristics is handled analogously.

We have

λ−1
i E[Ui(Θi0)] =

1

2

∫ T

0

∫

R

(

ψHiτ (θ) π
H
i (τ, θ) + ψLiτ (θ) π

L
i (τ, θ)

)

dθ dτ.

Here,
d

dτ
ψKiτ = −λi ψ

K
iτ + λi ψ

K
iτ ∗ ψK3τ (103)

for K = H or K = L, and

πH,Li (τ, z) =

∫ V1,i(Bi(τ,z))

−∞

({vH , v̄} − Si(τ, y))ψ
H,L
3τ (y) dy .

By assumption,

ψH,L10 = ψH,L2,0 .
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Therefore V2,i(0, z) is also independent of i, and we will omit the index i in what follows.

We denote

Πi(τ) =

∫

R

(

ψHiτ (θ) π
H
i (τ, θ) + ψLiτ (θ) π

L
i (τ, θ)

)

dθ.

It follows from (103) that, for small τ,

ψKi,τ = (1 − λiτ)ψ0i + λi τ ψi0 ∗ ψK30 + o(τ).

Consequently,18

Πi(τ) = (1 − λiτ)

∫

R

(

ψHi0 (θ) πHi (τ, θ) + ψLi0(θ) π
L
i (τ, θ)

)

dθ

+ λiτ

∫

R

(

(ψi0 ∗ ψ30)
H(θ) πHi (τ, θ) + (ψi0 ∗ ψ30)

L(θ) πLi (τ, θ)
)

dθ + o(τ) .

(104)

The argument used in the proof of Theorem 4.2 implies that for small τ ,

∫

R

(

(ψi0 ∗ ψ30)
H(θ) πHi (τ, θ) + (ψi0 ∗ ψ30)

L(θ) πLi (τ, θ)
)

dθ

>

∫

R

(

ψHi0 (θ) πHi (τ, θ) + ψLi0(θ) π
L
i (τ, θ)

)

dθ.

(105)

Thus, in order to complete the proof, it remains to show that, for small τ ,

∫

R

(

ψH20(θ) π
H
2 (τ, θ) + ψL20(θ) π

L
2 (τ, θ)

)

dθ

>

∫

R

(

ψH10(θ) π
H
1 (τ, θ) + ψL10(θ) π

L
1 (τ, θ)

)

dθ.

(106)

As above, for simplicity, we use the normalization v̄ = 0, vH = 1. As in the proof

of Proposition 3.10, let

gi(τ, z) = e(α+1)V2,i(τ,z),

where

α
def
= α10 = α20 .

Let also

wi(z) =
d

dτ
gi(τ, z) |τ=0.

18The o(τ) term is a measure and therefore, when integrating against it, the result requires additional
justification. This is supplied by using the bounds derived in the proof of Proposition 4.5.
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It follows from the proof of Proposition 3.1019 that this derivative is well-defined and we

can differentiate (46) to obtain

d

dz
wi(z) = (α + 1)w(z)

1

(v̄ − v3)

(

z

1 − z

GH
0 (V2(0, z))

ψH0 (V2(0, z))
+

GL
0 (V2,i(τ, z))

ψL0 (V2,i(τ, z))

)

+
(α + 1) g(0, z)

(v̄ − v3)

(

z

(1 − z)(ψH0 (V2(0, z)))2
×

(

((

d

dτ
GH

0

)

(V2(0, z)) − ψH0 (V2(0, z)) (α+ 1)−1wi(z)g(0, z)
−1

)

ψH0 (V2(0, z))

− GH
0 (V2(0, z))

((

d

dτ
ψH0

)

(V2(0, z)) +
d

dV
ψH0 (V2(0, z)) (α+ 1)−1w(z)g(0, z)−1

)

)

+

(

((

d

dτ
GL

0

)

(V2(0, z)) − ψLi0(V2(0, z)) (α+ 1)−1wi(z)g(0, z)
−1

)

−
GL

0 (V2(0, z))

ψL0 (V2(0, z))

((

d

dτ
ψL0

)

(V2(0, z)) +
d

dV
ψL0 (V2(0, z)) (α + 1)−1wi(z)g(0, z)

−1

)

))

,

(107)

with w(0) = 0. This is a linear ODE. Solving it, we obtain

w(z) =

∫ z

0

e
∫ z

y
χ(x)dx µi(y) dy,

where

χ(z) = (α+ 1)
1

(v̄ − v3)

(

z

1 − z

GH
τ (V2(0, z))

ψH0 (V2(0, z))
+

GL
0 (V2(0, z))

ψL0 (V2(0, z))

)

−
1

v̄ − v3

(

z

(1 − z)(ψH0 (V2(0, z)))2
×

(

(ψH0 (V2(0, z)))
2 + GH

0 (V2(0, z))
d

dV
ψH0 (V2(0, z))

)

+ (ψL0 (V2(0, z)))
−2

(

(ψL0 (V2(0, z)))
2 + GL

0 (V2(0, z))
d

dV
ψL0 (V2(0, z))

)

)

(108)

19This claim follows from implicit function theorem if we rewrite the required ODE as an integral
equation and use the arguments from the proof of Proposition 3.10.
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is independent of i and where

µi(z) =
(α + 1) g(0, z)

(v̄ − v3)

(

z

(1 − z)(ψH0 (V2(0, z)))2
×

(

(

−λiG
H
0 + λiG

H
0 ∗ ψH30

)

(V2(0, z))ψ
H
0 (V2(0, z))

− GH
0 (V2(0, z))

(

−λi ψ
H
0 + λiψ

H
0 ∗ ψH30

)

(V2(0, z))

)

+ (ψL0 (V2(0, z)))
−2

(

(

−λiG
L
0 + λiG

L
0 ∗ ψL30

)

(V2(0, z))ψ
L
0 (V2(0, z))

− GL
0 (V2(0, z))

(

−λi ψ
L
0 + λiψ

L
0 ∗ ψL30

)

(V2(0, z))

))

.

(109)

By definition,
d

dτ
V2,i(τ, z)|τ=0 =

wi(z)

(α + 1) g(0, z)

def
= Wi(z) . (110)

For brevity, we use the notation g(z) = g(0, z), S(z) = S(0, z), and B(z) = B(0, z).

We have
d

dτ
V1,i(τ, z)|τ=0 = −Wi(z).

Therefore, differentiating the identity

V1,i(τ, Si(τ, z)) = z,

we get

d

dτ
Si(τ, z)|τ=0 =

Wi(S(z))
d
dz

(V1)(S(z))

=
Wi(S(z))

1
S(z)(1−S(z))

− (v̄ − v3)−1
(

S(z)
1−S(z)

1
hH(V2(S(z)))

+ 1
hL(V2(S(z)))

) .
(111)

Differentiating the identity

V2,i(Si(τ, z)) = log
Si(τ, z)

1 − Si(τ, z)
− z

with respect to τ , we get

d

dτ
(V2,i(Si(τ, z))) |τ=0

=
Wi(S(z))

1
S(z)(1−S(z))

− (v̄ − v3)−1
(

S(z)
1−S(z)

1
hH(V2(S(z)))

+ 1
hL(V2(S(z)))

)

1

S(z) (1 − S(z))
.

(112)

71



Therefore,

d

dτ

(
∫

R

ψH,L0 (z) πH,Li (τ, z)dz

)

|τ=0

=
d

dτ

(
∫

R

GH
i (V2,i(τ, Si(τ, y))({v

H, v̄} − Si(τ, y))ψ
H,L
3τ (y)dy

)

|τ=0

= −

∫

R

ψH,L0 (V2(S(y)))
Wi(S(y))

1
S(y)(1−S(y))

− (v̄ − v3)−1
(

S(y)
1−S(y)

1
hH(V2(S(y)))

+ 1
hL(V2(S(y)))

)

×
1

S(y) (1− S(y))
({1, 0} − S(y))ψH,L30 (y) dy

−

∫

R

GH,L
0 (V2(S(y)))

Wi(S(y))

1
S(y)(1−S(y))

− (v̄ − v3)−1
(

S(y)
1−S(y)

1
hH(V2(S(y)))

+ 1
hL(V2(S(y)))

)

× ψH,L30 (y) dy

+

∫

R

GH,L
0 (V2(S(y))) ({1, 0} − S(y))

× λ3

(

−ψH,L30 (y) + ψH,L30 ∗
∑

k

κ3k ψ
H,L
k0 (y)

)

dy

def
= π̃H,Li .

(113)

We now define

π̃i =
1

2
(π̃Hi + π̃Li ) . (114)

In order to prove (106), it remains to show that

π̃2 > π̃1 .

As in the proof of Proposition 4.5, we assume for simplicity that γi = 0 for all i (that is,

no power tails). Recall also that, by assumption, ψ10 = ψ20. Hence, (c1, α1) = (c2, α2) =

(c, α).

We will use the same bounds and asymptotic results that were derived in the proof

of Proposition 4.5.

Let us first understand the behavior of Wi(z) as G(v) → ∞. We have

V2(z) ≈
1

α+ 1
log(ε f0(z)).

Therefore,

g(0, z) ≈ e(α+1)V2(z) ∼ ε f0(z)

ψH,L0 (V2(z)) ∼ c e{α+1,α} ( 1
α+1

log(ε f0(z))) = c ε{α+1,α}/(α+1) f0(z)
{α+1,α}/(α+1),
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and
d

dV
ψH,L0 (V2(z)) ∼ c {α + 1, α} e{α+1,α}( 1

α+1
log(ε f0(z)))

= c {α+ 1, α} ε{α+1,α}/(α+1) f0(z)
{α+1,α}/(α+1),

(115)

and
1

v̄ − v3
=

c

α + 1
ε .

Therefore,

χ(z)

= (α+ 1)
1

(v̄ − v3)

(

z

1 − z

GH
0 (V2(0, z))

ψH0 (V2(0, z))
+

GL
0 (V2(0, z))

ψL0 (V2(0, z))

)

−
1

v̄ − v3

(

z

(1 − z)(ψH0 (V2(0, z)))2

×

(

(ψH0 (V2(0, z)))
2 + GH

0 (V2(0, z))
d

dV
ψH0 (V2(0, z))

)

+ (ψL0 (V2(0, z)))
−2

(

(ψL0 (V2(0, z)))
2 + GL

0 (V2(0, z))
d

dV
ψL0 (V2(0, z))

)

)

(116)

= c ε

(

z

1 − z

1

c ε f0(z)
+

1

c εα/(α+1) f0(z)α/(α+1)

)

−
c

α + 1
ε

(

z

(1 − z)(c ε f0(z))2

(

(c ε f0(z))
2 + (α + 1) c ε f0(z)

)

+ (cεα/(α+1)f
α/(α+1)
0 )−2

(

(cεα/(α+1)f
α/(α+1)
0 )2 + c α εα/(α+1)f

α/(α+1)
0

)

)

=
1

α + 1
ε1/(α+1) f0(z)

−α/(α+1) + O(ε) .

(117)

For simplicity, we assume that α30 6= α. (If α30 = α, then power tails will appear.

The analysis is in that case analogous, but technically more involved.) We then have, as

x→ −∞,

(ψH0 ∗ ψH30)(x) =

∫

R

ψH0 (x− y)ψH30(y) dy

∼

{

c e(α+1)x ψ̂H30(α) , α < α30

c30 e
(α30+1)x ψ̂H0 (α30) , α > α30

≡ d e(β+1)x,

where

(d, β)
def
=

{

(cψ̂H30(α), α) , α < α30

(c30ψ̂
H
0 (α30), α30) , α > α30
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and where we have used the fact that

ψ̂H(k) = ψ̂H(−k − 1).

In this case,

(GH
0 ∗ψ

H
30)(x) −GH

0 (x) = FH
0 (x) − (FH

0 ∗ψ30)(x) ∼
x↓−∞

1

α+ 1
c e(α+1)x −

1

β + 1
d e(β+1)x.

Thus, in complete analogy with (116),

µi(z) =
(α + 1) g(0, z)

(v̄ − v3)

(

z

(1 − z)(ψH0 (V2(0, z)))2

×

(

(

−λiG
H
0 + λiG

H
0 ∗ ψH30

)

(V2(0, z))ψ
H
0 (V2(0, z))

− GH
0 (V2(0, z))

(

−λi ψ
H
0 + λiψ

H
0 ∗ ψH30

)

(V2(0, z))

)

+ (ψL0 (V2(0, z)))
−2

(

(

−λiG
L
0 + λiG

L
0 ∗ ψL30

)

(V2(0, z))ψ
L
0 (V2(0, z))

− GL
0 (V2(0, z))

(

−λi ψ
L
0 + λiψ

L
0 ∗ ψL30

)

(V2(0, z))

))

(118)

∼ c ε2 f0(z)

(

z

(1 − z) (c ε f0(z))2

×

(

λi

(

1

α + 1
c ε f0(z) −

1

β + 1
d ε(β+1)/(α+1) f0(z)

(β+1)/(α+1)

)

c ε f0(z)

− λi
(

d ε(β+1)/(α+1) f0(z)
(β+1)/(α+1) − c ε f0(z)

)

)

+ (c εα/(α+1) f0(z)
α/(α+1))−2

×

(

λi

(

1

α
c εα/(α+1) f0(z)

α/(α+1) −
1

β
d εβ/(α+1) f

β/(α+1)
0

)

c (ε f0(z))
α/(α+1)

− λi
(

d (ε f0(z))
β/(α+1) − c (εf0(z))

α/(α+1)
)

))

= −λi b
z

(1 − z) c
ε(β+1)/(α+1) f0(z)

(β−α)/(α+1) + o(ε(β+1)/(α+1)) ,

(119)
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where

b
def
=

{

d , α30 < α

c (ψ̂H30(α) − 1) , α30 > α

is a positive constant.

Therefore,

wi(z) =

∫ z

0

e
∫ z
y χ(x)dx µi(y) dy

≈ − ε(β+1)/(α+1)λi b

∫ z

0

y

(1 − y) c
f0(y)

(β−α)/(α+1) dy + o
(

ε(β+1)/(α+1)
)

.

(120)

Therefore,

Wi(z) = − ε(β−α)/(α+1)λi X(z) + o
(

ε(β−α)/(α+1)
)

,

with

X(z)
def
= b

∫ z

0
y

(1−y) c
f0(y)

(β−α)/(α+1) dy

(α + 1)f0(z)
.

Since f0(z) = log(1 − z)−1 − z, a direct calculation shows that

X(z) ∼ C1 z
2(β−α)

α+1

as z ↓ 0, and that X(z) is bounded when z ↑ 1.
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Now,

∫

R

ψH0 (V2(S(y)))
Wi(S(y))

1
S(y)(1−S(y))

− (v̄ − v3)−1
(

S(y)
1−S(y)

1
hH,L(V2(S(y)))

+ 1
hL(V2(S(y)))

)

×
1

S(y) (1− S(y))
({1, 0} − S(y))ψH,L30 (y) dy

=

∫

R

ψH,L0 (V2(S(y − (α + 1)−1 log ε)))Wi(S(y − (α+ 1)−1 log ε))

×

(

1

S(y − (α + 1)−1 log ε)(1 − S(y − (α + 1)−1 log ε))

− (v̄ − v3)
−1

(

S(y − (α + 1)−1 log ε)

1 − S(y − (α+ 1)−1 log ε)

1

hH,L(V2(S(y − (α+ 1)−1 log ε)))

+
1

hL(V2(S(y − (α+ 1)−1 log ε)))

))−1

ψH,L30 (y − (α+ 1)−1 log ε) dy

∼ cε{1,α/(α+1)}

∫

R

(

M̂(y)

1 − M̂(y)
e−y

){α+1,α}

Wi(M̂(y))

(

1

M̂(y)(1 − M̂(y))

− (α + 1)−1cε

(

M̂(y)

1 − M̂(y)

1

c ε
(

M̂(y)

1−M̂(y)
e−y
)α+1 +

1

c εα/(α+1)
(

M̂(y)

1−M̂(y)
e−y
)α

))−1

× c30 ε
{α30,α30+1}/(α+1) e−{α30,α30+1}y dy

∼ −cε(α30+β+1)/(α+1)

∫

R

(

M̂(y)

1 − M̂(y)
e−y

){α+1,α}

λiX(M̂(y))

×

(

1

M̂(y) (1− M̂(y))
−

1

α + 1

e(α+1)y(1 − M̂(y))α

(M̂(y))α

)−1

c30 e
−{α30,α30+1}y dy,

(121)

where, by arguments used in the proof of Proposition 4.5, this asymptotic relationship

holds provided that α < 3 and 2(α+ 1)/(α− 1) > α30 .

76



Similarly,

∫

R

GH
0 (V2(S(y)))

Wi(S(y))

1
S(y)(1−S(y))

− (v̄ − v3)−1
(

S(y)
1−S(y)

1
hH(V2(S(y)))

+ 1
hL(V2(S(y)))

)

× ψH30(y) dy

=

∫

R

GH
0 (V2(S(y − (α+ 1)−1 log ε)))

×Wi(S(y − (α + 1)−1 log ε))

(

1

S(y − (α + 1)−1 log ε)(1 − S(y − (α+ 1)−1 log ε))

− (v̄ − v3)
−1

(

S(y − (α+ 1)−1 log ε))

1 − S(y − (α + 1)−1 log ε))

1

hH(V2(S(y − (α + 1)−1 log ε))))

+
1

hL(V2(S(y − (α + 1)−1 log ε))))

))−1

ψH30(y − (α + 1)−1 log ε)) dy

(122)

∼

∫

R

Wi(M̂(y))

(

1

M̂(y)(1 − M̂(y))

− (α + 1)−1cε

(

M̂(y)

1 − M̂(y)

1

c ε
(

M̂(y)

1−M̂(y)
e−y
)α+1 +

1

c εα/(α+1)
(

M̂(y)

1−M̂(y)
e−y
)α

))−1

× εα30/(α+1) c30 e
−α30y dy

∼ εα30/(α+1)

∫

R

Wi(M̂(y))

(

1

M̂(y) (1 − M̂(y))
−

1

α + 1

e(α+1)y(1 − M̂(y))α

(M̂(y))α

)−1

× c30 e
−α30y dy

∼ −ε(α30+β−α)/(α+1)

∫

R

λiX(M̂(y))

×

(

1

M̂(y) (1 − M̂(y))
−

1

α+ 1

e(α+1)y(1 − M̂(y))α

(M̂(y))α

)−1

c30 e
−α30y dy,

(123)

and the corresponding term for L state is of order o(ε(α30+β−α)/(α+1)) provided that α < 3

and
α + 1

α− 1
> α30 >

α− 1

3 − α
.

Gathering all the terms from (113), we get that the terms (121) are asymptotically

negligible. Furthermore, for the terms (122), the senior term comes from the state H-
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contribution, and is given by

λi ε
(α30+β−α)/(α+1)

∫

R

X(M̂(y))

×

(

1

M̂(y) (1 − M̂(y))
−

1

α+ 1

e(α+1)y(1 − M̂(y))α

(M̂(y))α

)−1

c e−α30y dy.

(124)

It follows from the proof of Proposition 3.10 that the comparison V ′
1(z) > 0 for large

v̄ − v3 is equivalent to

1

M̂(y) (1− M̂(y))
−

1

α + 1

e(α+1)y(1 − M̂(y))α

(M̂(y))α
> 0.

The claim follows.

G Proofs of Section 5

Lemma G.1 Suppose that an agent of type θ decides to exchange information with

another agent. Then, his future expected profit will be strictly larger than if he does not

exchange information.

Proof. Let the other agent’s type density, conditional on state Y = 0, be ψH(z). Then,

if the agent decides to exchange information, his unconditional type distribution is

P (θ)ψH(z − θ) + (1 − P (θ))ψL(z − θ) = P (θ) (1 + e−z)ψH(z − θ).

Let also Π(τ, z) be the agent’s profit at time τ, given that his type at time τ is equal to

z. Then, if he does not exchange information, his expected utility is

P (θ)

∫ T

t

∫

R

hH(t, τ, z − θ) (1 + e−z) Π(τ, z) dz dτ,

where hH,L(t, τ, z − θ) is his type density at time τ given his type θ at time t and where

we have used the identity

P (θ) hH(t, τ, z − θ) + (1 − P (θ)) hL(t, τ, z − θ) = P (θ) (1 + e−z) hH(t, τ, z − θ) .

If he does decide to exchange information, the same argument implies that his expected

utility is

P (θ)

∫ T

t

∫

R

(hH ∗ ψH)(z − θ) (1 + e−z) Π(τ, z) dz dτ
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Thus, it suffices to show that
∫

R

(hH ∗ ψH)(z − θ) (1 + e−z) Π(τ, z) dz ≥

∫

R

hH(t, τ, z − θ) (1 + e−z) Π(τ, z) dz .

But,
∫

R

(hH ∗ ψH)(z − θ) (1 + e−z) Π(τ, z) dz

=

∫

R

∫

R

hH(t, τ, z − θ − x)ψH(x) (1 + e−z) Π(τ, z) dx dz

=

∫

R

hH(t, τ, y − θ)

∫

R

ψH(x) (1 + e−x−y) Π(τ, x+ y) dx dy,

where we have used the change of variables z − x = y. Thus, it suffices to show that
∫

R

ψ(x) (1 + e−x−y) Π(τ, x+ y) dx > (1 + e−y) Π(τ, y).

This inequality follows from (71).
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Korevaar, Jacob. 2004. Tauberian Theory: A Century of Developments, Birkhäuser.
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