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Abstract

This paper estimates the price for bearing exposure to U.S. corporate default

risk during 2000-2004, based on the relationship between default probabilities,

as estimated by Moody’s KMV EDFs, and default swap (CDS) market rates.

The default-swap data, obtained through CIBC from 39 banks and specialty

dealers, allow us to establish a strong link between actual and risk-neutral

default probabilities in the three sectors that we analyze: broadcasting and

entertainment, healthcare, and oil and gas. We find dramatic variation over

time in risk premia, from peaks in the third quarter of 2002, dropping by

roughly 50% to late 2003.
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1 Introduction

This paper estimates the time-series behavior of default risk premia for U.S. corpo-

rate debt, based on a close relationship between default probabilities, as estimated

by the Moody’s KMV EDF measure, and default swap (CDS) market rates. The

default-swap data, obtained by CIBC from 39 banks and specialty dealers, allow us

to establish a strong link between actual and risk-neutral default probabilities for

the 93 firms in the three sectors that we analyzed: broadcasting and entertainment,

healthcare, and oil and gas.

Based on over 180,000 CDS rate quotes, we find that 5-year EDFs explain over

74% of the variation in 5-year CDS rates across issuers and time, controlling for non-

linearity and for sectoral and time fixed effects. We also find that the marginal impact

of default probability on credit spreads is proportionately much greater for high-

credit-quality firms than for low-credit-quality firms. For a given default probability,

we find substantial variation over time in credit spreads. For example, after peaking

in the third quarter of 2002, credit risk premia declined steadily and dramatically

through late 2003, when, for a given default probability, credit spreads were on average

roughly 50% lower than at their peak. For example, fixing a default probability, CDS

rates were 41% lower in December 2003 than in August 2002 in the oil-and gas-

sector, 69% lower in the broadcasting-and-entertainment sector, and 49% lower in

the healthcare sector.

A potential explanation for these declines in default risk premia is that by mid-

2002 the corporate debt market had experienced a reduction in risk bearing capacity,

relative to the amount of risk to be borne, driving risk premia to relatively high levels

at that time. This may have been due in part to large default losses in prior months

and increases in market volatility, perhaps exacerbated by frictions in the entry of

new risk capital. Under this hypothesis, fresh capital flowed into this market over

the subsequent months in order to take advantage of the high risk premiums offered,

eventually (but not immediately) driving these risk premia down. This is similar

to the explanation offered by Froot and O’Connell (1999) for dramatic increases in

catastrophic risk insurance premia after major losses of capital, with subsequent slow

declines in premia over time as new capital is attracted into the sector. Consistent

with this interpretation, we find that credit risk premia are strongly dependent on

general stock-market volatility, as measured by the VIX, after controlling for the

influence of firm-specific volatility on default probabilities. This may simply reflect

the fact that credit spreads match the supply and demand for risk bearing: when the

amount of available capital for bearing default risk is small relative to the level of

risk, the price for bearing a given amount of default risk is higher. We are not aware,

however, of evidence that the market price of risk in equity markets varies to such

a large degree over similarly short periods of time, including this particular period.
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We will discuss whether the measured reductions in default risk premia could also

be influenced by errors in estimating default probabilities, by “reaching for yield” by

money managers, or by changes in expected recoveries in the event of default, among

other potential explanations.

Our study is based on an extensive database of credit default swap (CDS) rates

from CIBC, and of Moody’s KMV estimated default frequency (EDF) data. First

panel-regression models, and then arbitrage-free term-structure time-series models,

are used to estimate default risk premia and their variation over time. Among other

indications of these risk premia, we report the ratio of risk-neutral to actual default

probabilities. This ratio may be viewed as the proportional premium for bearing

default risk. For example, if this ratio is 2.0 (for a particular firm, date, and maturity),

then market-based insurance that pays one dollar in the event of default would be

priced at roughly twice the expected discounted default loss.

While Fisher (1959) took a simple regression approach to explaining yield spreads

on corporate debt in terms of various credit-quality and liquidity related variables,

Fons (1987) gave the earliest empirical analysis, to our knowledge, of the relation-

ship between actual and risk-neutral default probabilities. Driessen (2005) estimated

the relationship between actual and risk-neutral default probabilities, using U.S. cor-

porate bond price data (rather than CDS data), and assuming that conditional de-

fault probabilities are equal to average historical default frequencies by credit rating.

Driessen reported an average ratio of risk-neutral to actual default intensities of 1.89,

after accounting for tax and liquidity effects, roughly in line with our estimates. While

the conceptual foundations of Driessen’s study are similar to ours, there are substan-

tial differences in our respective data sources and methodology. First, the time periods

covered are different. Second, the corporate bonds underlying Driessen’s study are

less homogeneous with respect to their sectors, and have significant heterogeneity with

respect to maturity, coupon, and time period. Each of our CDS rate observations, on

the other hand, is effectively a new 5-year par-coupon credit spread on the underlying

firm that is not as corrupted, we believe, by tax and liquidity effects, as are corporate

bond spreads. (Driessen estimated the portion of the bond yield spread that is associ-

ated with taxes.) Third, and most importantly when considering variation of default

risk premia over time, we do not assume that current conditional default probabil-

ities are equal to historical average default frequencies by credit rating. Kavvathas

(2001) and others have shown that, for a given firm at a given time, the historical

default frequency by firms of the same rating is a stale and coarse-grained estimator

of conditional default probability. Moody’s KMV EDF measures of default probabil-

ity provide significantly more power to discriminate among the default probabilities

of firms (Kealhofer (2003), Kurbat and Korbalev (2002), Bohn, Arora, and Korablev

(2005)).

Blanco, Brennan, and Marsh (2005) show that CDS rates represent somewhat
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fresher price information than do bond yield spreads. This may be due to the fact

that default swaps are “un-funded exposures,” in the language of dealers, meaning

that in order to execute a trade, neither cash nor the underlying bonds need to be

immediately sourced and exchanged. Default swap rates are therefore less likely to

be affected by market illiquidity than are bond yield spreads. The extent of this

difference in liquidity is explored in Longstaff, Mithal, and Neis (2005). The notional

amount of debt covered by default swaps has been roughly doubling each year for the

past decade, and in 2005 is estimated to be over 12 trillion U.S. dollars, according to

the British Bankers Association (www.bba.org).

Bohn (2000), Delianedis and Geske (1998), Delianedis, Geske, and Corzo (1998),

and Huang and Huang (2003) use structural approaches to estimating the relation-

ship between actual and risk-neutral default probabilities, generally assuming that

the Black-Scholes-Merton model applies to the asset value process, and assuming

constant volatility. Eom, Helwege, and Huang (2004) have found that these struc-

tural models tend to fit the data rather poorly, and typically underestimate credit

spreads, especially for shorter maturity bonds. Chen, Collin-Dufresne, and Goldstein

(2005) show an improvement in fit by incorporating an assumption of counter-cyclical

default boundaries. Preliminary new work by Saita (2005) estimates the high levels

of risk premia that can be obtained for portfolios of corporate debt through diversi-

fication.

A weakness of our study is the lack of data bearing on risk-neutral mean loss given

default (LGD). The highest annual cross-sectional sample mean of loss given default

during our sample period was reported by Altman, Brady, Resti, and Sironi (2003) to

be approximately 75%. Using 75% as a rough estimate for risk-neutral mean loss given

default, our measured relationship between CDS and EDF implies that short-term

risk-neutral default probabilities are roughly double their actual-probability counter-

parts, on average, although this premium is higher for high-quality firms than for

low-quality firms, and higher for firms in the broadcasting-and-entertainment sector

than for oil-and-gas or healthcare firms. In particular, this ratio was dramatically

higher in mid-2002 than in late 2003. If the risk-neutral mean LGD were constant

over time, at any particular level, then our results on relative changes over time in

default risk premia would be largely unaffected by the assumed level of risk-neutral

mean LGD. The results of Altman, Brady, Resti, and Sironi (2003), however, indicate

that average realized LGDs tend to be positively correlated with aggregate default

rates. As a robustness check, we provide some indication of the potential impact of

such correlation on estimated CDS rates.

As an illustrative example, Figure 1, which shows estimated actual and risk-

neutral 1-year default probabilities for Disney, is consistent with the typical pattern

in our sample of high default risk premia in the third quarter of 2002, particularly

in the broadcasting-and-entertainment sector. More generally, Figure 2 shows the
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Figure 1: Estimated actual and risk-neutral 1-year default probabilities for Disney.

median, within the broadcasting-and-entertainment sector, of the estimated ratios of

risk-neutral to actual default probabilities at each of three maturities: instantaneously

short, one year, and five years.

The remainder of the paper is structured as follows. Section 2 describes our data,

including a discussion of the terms of default swap contracts and an overview of the

construction of the Moody’s KMV EDF measure of default probability. Section 3

presents panel-regression evidence of a strong relationship between CDS rates and

EDFs across several sectors, with higher risk premia for high-quality firms, and dra-

matically declining risk premia from mid-2002 to late 2003. Section 4 introduces a

time-series model of actual default intensities, and our methodology for maximum-

likelihood parameter estimation. Section 4 also contains parameter estimates for each

firm, based on 12 years of monthly observations of 1-year EDFs for each firm. Sec-

tion 5 provides a reduced-form pricing model for default swaps, based on time-series

models of actual and risk-neutral default intensities. Section 5.2 introduces our pa-

rameterization of the time-series model for risk-neutral default intensities, using both

EDFs and CDS rates. Section 5.3 provides estimates of the parameters for each of

the three sectors. Section 6 provides a discussion of the implications of the results.
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Figure 2: Within-sector medians of the ratios of risk-neutral to actual default probabilities, for the
broadcasting-and-entertainment sector, at various maturities.

2 The EDF and CDS Data

This section discusses our data sources for conditional default probabilities and for

default swap rates.

2.1 The EDF Data

Moody’s KMV provides its customers with, among other data, current firm-by-firm

estimates of conditional probabilities of default over time horizons that include the

benchmark horizons of 1 and 5 years. For a given firm and time horizon, this “EDF”

estimate of default probability is fit non-parametrically from the historical default

frequency of other firms that had the same estimated “distance to default” as the

target firm. The distance to default of a given firm is a leverage measure adjusted for

current market asset volatility. Roughly speaking, distance to default is the number

of standard deviations of annual asset growth by which the firm’s expected assets at

a given maturity exceed a measure of book liabilities. The liability measure is, in

the current implementation of the EDF model, the firm’s short-term book liabilities

plus one half of its long-term book liabilities. Estimates of current assets and the

current standard deviation of asset growth (“volatility”) are calibrated from historical
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observations of the firm’s equity-market capitalization and of the liability measure.

The calibration, explained for example in Vassalou and Xing (2004), is based on

the model of Black and Scholes (1973) and Merton (1974), by which the price of a

firm’s equity may be viewed as the price of an option on assets struck at the level

of liabilities. Crosbie and Bohn (2002) and Kealhofer (2003) provide more details

on the KMV model and the fitting procedures for distance to default and EDF.

Bharath and Shumway (2004) show that the fitting procedure is relatively robust.

Duffie, Saita, and Wang (2005) and Bharath and Shumway (2004) show that, although

distance to default (DD) is a sufficient explanatory variable for conditional default

probabilities in the theoretical models of Black and Scholes (1973), Merton (1974),

Fischer, Heinkel, and Zechner (1989), and Leland and Toft (1996), among others,

some incremental predictive power can be obtained by including some additional

firm-specific and macro-economic explanatory variables.

While one could criticize the EDF measure as an estimator of the “true” con-

ditional default probability, it has some important merits for business practice and

for our study, relative to other available approaches to estimating conditional default

probabilities. First, the Moody’s KMV EDF is readily available for essentially all

public U.S. companies, and for a large fraction of foreign public firms. (There is a

private-firm EDF model, which we do not rely on, since our CDS data are for public

firms.) The EDF is fitted non-parametrically to the distance to default, and is there-

fore not especially sensitive, at least on average, to model mis-specification. While

the measured distance to default is itself based on a theoretical option-pricing model,

the function that maps DD to EDF is consistently estimated in a stationary setting,

even if the underlying theoretical relationship between DD and default probability

does not apply. That is, conditional on only the distance to default, the measured

EDF is equal to the “true” DD-conditional default probability as the number of ob-

servations goes to infinity, under typical mixing and other technical conditions for

non-parametric qualitative-response estimation.

A common industry measure of default likelihood is the average historical de-

fault frequency of firms with the same credit rating as the target firm. This mea-

sure is often used, for example, in implementations of the CreditMetrics approach

(www.creditmetrics.com), and is convenient given the usual practice by financial-

services firms of tracking credit quality by internal credit ratings based on the ap-

proach of the major recognized rating agencies such as Moody’s and Standard and

Poors. The ratings agencies, however, do not claim that their ratings are intended

to be a measure of default probability, and they acknowledge a tendency to adjust

ratings only gradually to new information, a tendency strongly apparent in the em-

pirical analysis of Behar and Nagpal (1999), Lando and Skødeberg (2002), Kavvathas

(2001), and Nickell, Perraudin, and Varotto (2000), among others. This tendency to

adjust ratings gradually is illustrated in Figure 3, which shows dramatic variation in
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default rates by rating depending on whether the prior rating was higher or lower.

Bohn, Arora, and Korablev (2005) report that the Moody’s KMV EDF measure has

an out-of-sample accuracy ratio1 for our sample period, 2000-2004, of 0.84, as op-

posed to an accuracy ratio of 0.72 for ratings-based default prediction. Duffie, Saita,

and Wang (2005) describe a more elaborate default prediction model, using distance

to default as well as other covariates, that achieves an accuracy ratio that is slightly

higher than that of the EDF during this period. In Section 6, we discuss the degree

to which our results on time variation in default risk premia may be influenced by

the accuracy of the EDF measure.
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Figure 3: Three-year average default rates by rating, 1996-2003 data. Within rating, average
default rates are also shown for the subset of firms in that rating whose prior rating was higher, and
the subset whose prior rating was lower. Source: Moody’s, 2004.

The Moody’s KMV EDF measure is also extensively used in the financial services

industry. For example, from information provided to us by Moody’s KMV, 40 of

the world’s 50 largest financial institutions are subscribers. Indeed, Moody’s KMV

is the most widely used name-specific major source of conditional default probability

estimates of which we are aware, covering over 26,000 publicly traded firms.

Our basic analysis in Section 3 directly relates daily observations of 5-year CDS

rates to the associated daily 5-year EDF observations. For our time-series model of

default intensities, however, we turn in Section 4 to 12 years of monthly observations

of 1-year EDFs. By sampling monthly rather than daily, we mitigate equity market

microstructure noise, including intra-week seasonality in equity prices, and we also

1The one-year accuracy ratio, a traditional measure of accuracy for default prediction, is

2
∫ 1

0 [f(x) − x] dx, where f(x) is the fraction of the firms that defaulted within one year after the
time of prediction that are within the lowest scoring fraction x of firms, according to the predictive
method.

7



avoid some of the intra-month seasonality in EDFs caused by monthly uploads of

firm-level accounting liability data. By using 1-year EDFs rather than 5-year EDFs,

our intensity estimates are less sensitive to model mis-specification, as the 1-year EDF

is theoretically much closer to the intensity than is the 5-year EDF. As a robustness

check, we have also fit our time-series model of default risk premia to 5-year EDF

data; the results are similar in major respects to those reported here.

2.2 Default Swaps and the CDS Database

A default swap, often called (with inexplicable redundancy) a “credit default swap”

(CDS), is an over-the-counter derivative security designed to transfer credit risk.

With minor exceptions, a default swap is economically equivalent to a bond insur-

ance contract. The buyer of protection pays periodic (usually quarterly) insurance

premiums until the expiration of the contract or until a contractually defined credit

event, whichever is earlier. For our data, the stipulated credit event is default by

the named firm. If the credit event occurs before the expiration of the default swap,

the buyer of protection receives from the seller of protection the difference between

the face value and the market value of the underlying debt. The buyer of protection

normally has the option to substitute other types of debt of the underlying named

obligor. The most popular settlement mechanism at default is for the buyer of protec-

tion to submit to the seller of protection debt instruments of the named firm, of the

total notional amount specified in the default-swap contract, and to receive in return a

cash payment equal to that notional amount, less the fraction of the default-swap pre-

mium that has accrued (on a time-proportional basis) since the last regular premium

payment date. Recently, the market has introduced an auction for cash settlement of

CDS for cases involving major defaults, such as those in 2005 of Collins-Aikman and

Delphi, in order to avoid settlement disruptions caused by a shortage of transferable

debt instruments of the underlying name, relative to the number and sizes of required

settlement trades.

The CDS rate is the annualized premium rate, as a fraction of the face value of

debt covered. Using an actual-360 day-count convention, the CDS rate is thus four

times the quarterly premium. Our observations are at-market, meaning that they

are bids or offers of the default-swap rates at which a buyer or seller of protection

is proposing to enter into new default swap contracts, without an up-front payment.

Because there is no initial exchange of cash flows on a standard default swap, the

at-market CDS rate is, in theory, that for which the net market value of the contract

is zero. In practice, there are implicit dealer margins that we treat by assuming that

the average of the bid and ask CDS rates is the rate at which the market value of the

default swap is indeed zero.

For the purpose of settlement of default swaps, the contractual definition of default
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normally allows for bankruptcy, a material failure by the obligor to make payments

on its debt, or a restructuring of its debt that is materially adverse to the inter-

ests of creditors. (This is the same definition of default used for purposes of the

Moody’s KMV EDF estimator of default probability.) The coverage of default swaps

for restructuring has been a question of debate among the community of buyers and

sellers of protection. Banks, especially European banks, generally prefer to include

restructuring as a covered default event, given the relatively greater exposure of bank

loans (versus traded bonds) to restructuring risk. ISDA, the industry coordinator of

standardized default-swap contracts, has arranged a consensus contractual definition

of default and coverage in the event of default that is likely to be reflected in most

of our data. This consensus definition has been adjusted over time, however, and to

the extent that these adjustments during our observation period are material, or to

the degree of heterogeneity in our data over the definition of default that is applied,

our results could be affected. The contractual definition of default can affect the

estimated risk-neutral implied default probabilities, since of course a wider definition

of default implies a higher risk-neutral default probability.

For a given level of seniority (our data are based on senior unsecured debt instru-

ments), there is less recovery-value heterogeneity if the event of default is bankruptcy

or failure to pay, for these events normally trigger cross-acceleration covenants that

cause debt of equal seniority to convert to immediate obligations that are pari passu,

that is, of equal legal priority. If restructuring is included as a contractually covered

credit event, however, then there is the potential for significant heterogeneity at de-

fault in the market values of the various debt instruments of the obligor, as fractions

of their respective principals, especially when there is significant heterogeneity with

respect to maturity. The resulting cheapest-to-deliver option can therefore increase

the loss to the seller of protection in the event of default. Without, at this stage, data

bearing on the heterogeneity of market value of the pool of deliverable obligations for

each default swap, we are in effect treating the cheapest-to-deliver option value as a

constant that is absorbed into the estimated risk-neutral mean fractional loss given

default, L∗, to the seller of protection in the event of default. While we vary L∗ across

sectors, we generally assume that L∗ is constant across time. To the extent that L∗

varies over time or across issuers, our implied risk-neutral default probabilities would

be corrupted.

The impact of the cheapest-to-deliver option is, within the current “modified”

and “modified-modified” ISDA contractual standards, mitigated by a contractual

restriction on the types of deliverable debt instruments, especially with respect to

maturity. While there is a tendency for a different standard for European (usually

“modified-modified”) versus U.S. firms (usually “modified”), all of our data are for

U.S. firms. Restructurings are also associated with higher average default recoveries.2

2In a 2004 report, “High Yield Credit Default Swaps,” Fitch Ratings reports substantially higher
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Figure 4: Distribution of CDS quote providers by number of quotes provided. Data source: CIBC.

Ignoring the cheapest-to-deliver effect, the CDS rate is, in frictionless markets,

a close approximation of the par-coupon credit spread of the same maturity as the

default swap, due to arbitrage reasoning shown by Duffie (1999). Our results thus

speak to the relationship between EDFs and corporate credit spreads. Indeed, that

par credit spreads are relatively close to CDS rates is confirmed in the empirical

analysis of Blanco, Brennan, and Marsh (2005), provided one measures bond spreads

relative to interest-rate swap yields, rather than treasury yields, which can be con-

taminated by tax exemption of coupon income, repo specials, and liquidity effects.

To the extent that CDS rates differ from bond credit spreads, Blanco, Brennan, and

Marsh (2005) indicate that CDS rates tend to reflect slightly fresher information.

Our CIBC data set consists of over 180,000 intra-day CDS rate quotes on 93 firms

from three Moody’s industry groups. The anonymous sources of these quotes include

27 investment banks and 12 default-swap brokers. The concentration of the number

of quotes by source is shown in Figure 4. A weakness of our study is that a single

broker-dealer is the source for almost 60% of our observations.

We selected three representative Moody’s-defined North American industry groups:

Broadcasting and Entertainment, Oil and Gas, and Healthcare. The CDS quotes are

for 1-year and 5-year, quarterly premium, senior unsecured, US-Dollar-denominated,

recoveries for 2001-2003 for restructurings (52.7%) than for default by missed payment (29.4%) or
bankruptcy (25.3%).
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Figure 5: Number of firms by median credit rating during the sample period. Sources: CIBC and
Moody’s.

at-the-money default swaps. The 5-year quotes are the most liquid, and are the basis

for our panel-regression analysis. (Our main time-series analysis relies more heavily

on the 5-year benchmark, allowing for noisy observation of the 1-year quotes. We

do explore a variant, described in Section 4, in which both the 1-year and the 5-year

CDS are assumed to be measured with error.) A company from any of these three

sectors is included in our time-series analysis if and only if at least 1,000 historical

pairs of CDS bid and ask quotes for that firm were available during the sample pe-

riod. The range of credit qualities of the included firms may be judged from Figure 5,

which shows, for each credit rating, the number of firms in our study of that median

Moody’s rating during the sample period. Figure 5 indicates a concentration of Baa-

rated firms. Daily CDS mid-point rate quotes were estimated from intra-day bid and

ask quotes.3

Figure 6 shows a histogram of the ratio of bid quotes to the daily median bid quote

for the same name, after removing the points associated with the median quote itself

(of which there are approximately 38,500). The plot shows substantial intraday or

cross-broker variation in CDS quotes of a given name. To the extent that these quote

3We used the following algorithm: (a) If a bid and an ask were present, we record the bid-ask
spread. (b) If the bid is missing, we subtract the average bid-ask spread to estimate the ask. (c) If
the ask is missing, we add the average bid-ask spread to estimate the bid. (d) From the resulting
bid and ask, we calculate the mid-quote as the average of the bid and ask quotes.
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Figure 6: Intraday distribution of ratio of five-year CDS bids to median bid, after removing the
median bids. Source: CIBC.

data are noisy, they reduce the precision of our results. We are not aware of substantial

databases of CDS transaction prices. In Section 4, we report the implications for our

time-series model of CDS rates of allowing for noisy observation of CDS rates.

The firms that we studied from the broadcasting-and-entertainment industry are

listed in Table 1, along with their median 1-year EDF and median Moody’s credit

rating during the sample period from June 2000 to December 2004, and the number

of CDS quotes available for each. The same information covering firms from the

healthcare and oil-and-gas industries is provided in Appendix C.

3 Panel Regression Analysis

In order to inform the parameterization of our time-series model, and to obtain a

simple and relatively robust measure of the sensitivity of credit spreads (CDS rates)

to default probabilities, we undertook a panel-regression analysis of all 33,912 paired

EDF and median4 CDS observations from December 2000 through December 2004,

4Under iid measurement noise, more precise estimates would be obtained by using all CDS
observations separately, rather than the median CDS observation. We prefer using the median,
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Table 1: Broadcasting and Entertainment Firms

Name of Firm Median EDF Median Rating No. Quotes
(basis points)

Adelphia Communications Corp 378 N/A 228
Belo Corp 6 Baa3 1,168

Brunswick Corp 9 Baa2 1,390
Charter Communications Inc 600 N/A 456

Clear Channel CommunicationsInc 41 Baa3 3,330
Comcast Cable Communications – Baa3 1,182

Comcast Corp 40 Baa3 2,723
Cox Communications Inc 17 Baa3 4,956

Cox Enterprises Inc – Baa3 1,058
Historic TW Inc – Baa1 1,462

Interpublic Group of Cos Inc 229 Baa3 1,095
Knight-Ridder Inc 3 A2 1,290
LibertyMediaCorp 48.5 Baa3 2,244

Mediacom Communications Corp 857 Caa1 168
News America Holdings – N/A 1,165

News America Inc – Baa3 1,679
OmnicomGroup 38 Baa1 2,539

Primedia Inc 939.5 B3 332
Royal Caribbean Cruises Ltd 107 Ba2 1,043

Sabre Holdings Corp 64.5 Baa2 1,467
Time Warner Inc 135 Baa1 5,549

Viacom Inc 18 A3 3,997
Walt Disney Co 23 Baa1 4,459

for our 3 sectors. Outliers that could be identified unambiguously were removed

manually.

As illustrated in Figure 7, a simple preliminary ordinary-least-squares (OLS) linear

model of the relationship between a firm’s 5-year CDS rate and its annualized 5-year

EDF, measured in basis points on the same day, reveals that the CDS rate increases

on average by roughly 16 basis points for each 10 basis point increase in the 5-year

EDF. If one were to take the risk-neutral expected loss given default to be, say,

75% and the annual conditional default probabilities to be constant over time, this

would imply an average ratio of risk-neutral to actual annual default probabilities of

approximately (16/0.75)/10, or 2.0, roughly consistent with the results of Driessen

(2005). The associated coefficient of determination, R2, is 0.73.

Linearity of the CDS-EDF relationship, however, is placed in doubt by a sizable

intercept estimate of roughly 33 basis points, more than 30 times its standard error.

Absent an unexpectedly large liquidity impact on CDS rates, the fitted default swap

given the potential damage caused by outliers.
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Figure 7: Scatter plot of EDF and CDS observations and OLS fitted relationship. Source: CIBC
(CDS) and Moody’s KMV (EDF).

rate should be closer to zero at low levels of EDF. While there may be mis-specification

due to the assumed homogeneity of the relationship over time and across firms, we

have verified with sector and time fixed effects that the associated intercept estimates

are unreasonably large in magnitude. Scatter plots of the CDS-EDF relationship

also reveal a pronounced concavity at low levels of EDF. That is, the sensitivity of

credit spreads to a firm’s default probability seems to decline as default probabilities

increase. There is also apparent heteroskedasticity, with dramatically greater variance

for higher EDFs. The slope of the fit illustrated in Figure 7 is thus heavily influenced

by the CDS-to-EDF relationship for lower-quality firms.

In order to mitigate the effects of non-linearity and heteroskedasticity, we consid-

ered the log-log specification5

log Yi = α + β log Xi + zi, (1)

5We also examined the fit, by non-linear least squares, of the model, Yi = αXβ
i +ui, which differs

from (1) by having a residual that is additive in levels, rather than additive in logs. An informal
comparison shows that the non-linear least-squares model is somewhat preferred for lower-quality
firms.
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Figure 8: Scatter plot of EDF and CDS observations, logarithmic, and OLS fitted relationship.
Source: CIBC (CDS) and Moody’s KMV (EDF).

where (Yi, Xi) is the i-th observed matched pair of 5-year CDS rate and 5-year EDF for

the same firm on a given date, for coefficients α and β, and a residual zi. The fit, which

has an R2 of 0.69, is illustrated in Figure 8, showing much less heteroskedasticity.

(One notes granularity associated with integer variation in EDFs of extremely high-

quality firms.) One might have considered a model in which the CDS rate is fit to

both 5-year and 1-year EDF observations, given the potential for additional influences

of near-term default risk on CDS rates. We have found, however, that the 1-year and

5-year EDFs are extremely highly correlated. As might be expected, adding 1-year

EDFs to the regression has no major impact on the quality of fitted CDS rates, and

involves substantial noise in the slope coefficients.

We also control for changes in the CDS-to-EDF relationship across time and across

sectors. Appendix Table 10 presents the results of a regression of the logarithm of

the daily median CDS rate on the logarithm of the associated daily 5-year EDF

observation, including dummy variables for sectors and months. (The oil-and-gas

sector for December 2004 is the reference sector and month.) With an R2 of 74.4%,
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the fitted model for the oil-and-gas sector may be summarized as

log CDSi = 1.45 + 0.76 log EDFi +
∑

j,k

β̂j,kDj,k(i) + zi, (2)

(0.046) (0.015)

where β̂j,k denotes the estimate for the dummy multiplier for month j and sector

k, tabulated in Appendix Table 10, Dj,k(i) is 1 if observation i is from month j

and sector k and zero otherwise, and zi denotes the residual. The standard-error

estimates reported here and in Appendix Table 10 are “robust” to heteroskedasticity

and correlation of disturbances, using the usual generalized-least-squares estimator

for the covariance matrix of regressor coefficients for panel-data regressions, found,

for example, in Woolridge (2002), Section 7.8.4.

The standard error for (2) of approximately 0.52, and an assumption of normally

distributed disturbances, imply a one-standard-deviation confidence band for a given

CDS rate of between 59% and 169% of the fitted rate. While the CDS data are noisy in

this sense, the relationship between CDS and EDF is highly significant, and variation

in EDF on its own explains a large fraction (an R2 of about 69%, before controlling for

time and sector effects) of variation in CDS rates. For the reference sector and month,

oil and gas for December, 2004, five-year mean default rates of 10, 110, and 210 basis

points per year are associated6 with estimated CDS rates, assuming normality of

disturbances, of approximately 28, 161, and 283 basis points, respectively. While the

linear-in-logs model captures the apparent declining marginal impact of EDFs on CDS

rates, if one were to apply this model to sufficiently high EDFs (above our maximum

EDF observation of 2000 basis points), it would eventually imply risk-neutral default

probabilities that are below actual default probabilities. Indeed, Figure 8 seems to

illustrate a tendency for the linear-in-logs model to understate CDS rates at the

highest observed EDFs. A slightly more flexible non-linear model might be preferred.

Figure 9 shows, for each sector k, variation over month j of eβ̂j,k , an estimate of the

proportional variation over time of risk premia. That is, eβ̂j,k is the ratio of the fitted

default swap rate for a firm in sector k at month j, to that of an oil-and-gas firm with

the same default probability in December 2004. (The maximum of the standard errors

of the dummy-variable coefficients shown in Table 10 is 0.03, indicating a proportional

standard deviation in the estimate of eβ̂j,k of approximately 3% or lower.) Figure 9

indicates dramatic variation over time in risk premia. From August 2002 to December

2003, for a fixed default probability, the estimated reduction7 in CDS rates is 41% for

6For an EDF of 10 basis points, the model (2) implies a fitted CDS rate of e1.45+0.76×log 10+0.522/2,
accounting for the effect of normality of disturbances, and using the fact that E(eX) = evar(X)/2 for
a zero-mean normal random variable X .

7For example, for the oil and gas sector, the dummy coefficients for August 2002 and December
2003 are 0.278 and −0.245, respectively, for a proportionate change in fitted CDS rates at a given
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Figure 9: The multipliers for estimated 5-year CDS rates, over time and sector, at a fixed 5-year
EDF. These are the exponentials of the dummy coefficients in the log-CDS-to-log-EDF model (2).

the oil-and-gas sector, 69% for the broadcasting-and-entertainment sector, and 49%

for the healthcare sector. The broadcasting-and-entertainment sector, in particular,

shows dramatic reductions in risk premia from mid 2002 (around the times of default

of Adelphia and Worldcom) to late 2003. Section 5 provides additional evidence of

variation over time of default risk premia that is revealed through fitted time-series

models of actual and risk-neutral default intensities.

Some of the cross-sector differences in CDS rates may due to sectoral differences

in the behavior of loss given default. For example, assuming that the ratio of the risk-

neutral mean loss given default in the oil-and-gas sector to another sector is the same

as the ratio of the empirical average historical loss given default reported by Moody’s8

for 1982 to 2003, broadcasting-entertainment CDS rates would be approximately

62%/52% − 1 = 19% higher than those of the oil-and-gas sector, for equal risk-

neutral default probabilities. Similarly, healthcare spreads would be approximately

5-year EDF of e−0.245−0.278 − 1 = −0.41.
8 From the Moody’s sectoral data, the average recovery for the oil-and-gas sector is estimated

from the simple average of the of the Moody’s “Oil and Oil Services” and the “Utility-Gas” sectors,
at 48%. Broadcasting and Entertainment recoveries are estimated at the ‘Media Broadcasting and
Cable’ average of 38%, and Healthcare at 32.7%.
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67%/52%−1 = 29% higher than those of the oil-and-gas sector, for equal risk-neutral

default probabilities.

4 Default Intensity Time-Series Model

The default intensity of an obligor is the mean arrival rate of default, conditional on

all current information. To be slightly more precise, we suppose that default for a

given firm occurs at the first event time of a (non-explosive) counting process N with

intensity process λ, relative to a given probability space (Ω,F , P ) and information

filtration {Ft : t ≥ 0} satisfying the usual conditions. In this case, so long as the

obligor survives, we say that its default intensity at time t is λt. Under mild technical

conditions, this means that, conditional on survival to time t and all information

available at time t, the probability of default between times t and t+h is approximately

λth for small h. We also adopt the relatively standard simplifying doubly-stochastic,

or Cox-process, assumption, under which the conditional probability at time t, for a

currently surviving obligor, that the obligor survives to some later time T , is

p(t, T ) = E

(
e−

R T

t
λ(s) ds

∣∣∣∣ Ft

)
. (3)

For our analysis, we ignore mis-specification of the EDF model itself, by assuming

that 1 − p(t, t + 1) is indeed the current 1-year EDF. From the Moody’s KMV data,

then, we observe p(t, t + 1) at successive dates t, t + h, t + 2h, . . ., where h is one

month. From these observations, we estimate a time-series model of the underlying

intensity process λ, for each firm. (Econometrically, this is essentially the same as

estimating the time-series behavior of a short-term interest-rate process from one-year

zero-coupon bond prices in an economy with no interest-rate risk premia.)

After some preliminary diagnostic analysis of the EDF data set, we opted to specify

a model under which the logarithm Xt = log λt of the default intensity satisfies the

Ornstein-Uhlenbeck equation

dXt = κ(θ − Xt) dt + σ dBt, (4)

where B is a standard Brownian motion, and θ, κ, and σ are constants to be estimated.

The behavior for λ = eX is sometimes called a Black-Karasinski model.9 This leaves

us with a vector Θ = (θ, κ, σ) of unknown parameters to estimate from the available

monthly EDF observations of a given firm. We have 144 months of 1-year EDF

observations for most of the firms in our sample, for the period January, 1993, to

December, 2004.

9See Black and Karasinski (1991).
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In general, given the log-autoregressive form (4) of the default intensity, there is

no closed-form solution available for the 1-year EDF, 1 − p(t, t + 1), from (3).10 We

therefore rely on numerical lattice-based calculations of p(t, t + 1). We have imple-

mented the two-stage procedure for constructing trinomial trees proposed by Hull

and White (1994), as well as a more rapid algorithm, explained in the Appendix B,

based on approximation of the solution in terms of a basis of Chebyshev polynomials.

(Our current parameter estimates are for the trinomial-tree algorithm.)

The maximum likelihood estimator (MLE) Θ̂ of the parameter vector Θ is then

obtained, firm by firm, using a fitting algorithm described in the appendix. That is,

for a given firm, Θ̂ solves

sup
Θ

L ({1 − p(ti, ti + 1) : 1 ≤ i ≤ N}; 1 − p(t0, t0 + 1), Θ) ,

where t0, t1, . . . , tN are the N + 1 observation times for the given firm, and L denotes

the likelihood score of observed EDFs conditioned on the first observation and given

Θ. This is not a routine MLE for a discretely-observed Ornstein-Uhlenbeck model,

for several reasons:

1. Evaluation of the likelihood score requires a numerical differentiation of the

modeled EDF,

G(λ(t); Θ) = 1 − EΘ

(
e−

R t+1

t
λ(s) ds

∣∣∣∣ λ(t)

)
,

where EΘ denotes expectation associated with the parameter vector Θ.

2. As indicated by Kurbat and Korbalev (2002), Moody’s KMV caps its 1-year

EDF estimate at 20%. Since this truncation, if untreated, would bias our estima-

tor, we explicitly account for this censoring effect on the associated conditional

likelihood, as explained in Appendix A.

3. Moody’s KMV also truncates the EDF below at 2 basis points. Moreover,

there is a significant amount of integer-based granularity in EDF data below

approximately 10 basis points, as indicated in Figure 8. We therefore remove

from the sample any firm whose sample-mean EDF is below 10 basis points.

This leaves us with a sample of 84 firms.

4. There were occasional missing data points. These gaps were also treated exactly,

10We explored more tractable affine jump-diffusion specifications, but the fitted short-horizon
conditional sample variances of changes in intensity varied in a manner much closer to linear in the
square of intensity than to constant-plus-linear in the level of intensity, as would be dictated by
affine models.
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assuming that the event of censoring is independent of the underlying missing

observation, as explained in Appendix A.

5. For a small number of firms, an exceptional 1-month fluctuation in the 1-year

EDF generated an obviously unrealistic estimate of the mean-reversion param-

eter κ for that company. We ignored Enron’s data point for December 2002,

the month it defaulted. Similarly, Magellan Health Services filed for protection

under Chapter 11 in March 2003 (we used the EDFs through February 2003),

and Adelphia Communications petitioned for reorganization under Chapter 11

in June 2002 (we used the EDFs through May 2002). For Forest Oil, we ignored

the outlier months of January and February 1993. Finally, we removed Dynergy

from our data set as its 1-year EDF is capped at 20% for most of 2002 and 2003.

Table 7 of Appendix A lists the firms for which we have EDF data, showing the

number of monthly observations for each as well as the number of EDF observations

that were truncated at 20%. The estimated parameter vector for each firm is provided

in Table 11, found in Appendix C. One notes significant dispersion across firms in the

estimated parameters. Our Monte-Carlo analysis revealed substantial small-sample

bias in the MLE estimators. (See Table 12 in Appendix C). We therefore obtain

sector-by-sector estimates for κ and σ, while allowing for a firm-specific long-run

mean parameter θ. Towards this end, we introduce a joint distribution of EDFs

across firms in a given industry sector by imposing joint normality of the Brownian

motions driving each firm’s EDFs, with a flat cross-firm correlation structure within

the sector. In particular, we generalize Equation (4) by assuming that the logarithm

X i
t = log λi

t of the default intensity of firm i satisfies the Ornstein-Uhlenbeck equation

dX i
t = κ

(
θi − X i

t

)
dt + σ

(√
ρ dBc

t +
√

1 − ρ dBi
t

)
, (5)

where Bc and Bi are independent standard Brownian motions, independent of {Bj}j 6=i,

and the constant pairwise within-sector correlation coefficient ρ is an additional pa-

rameter to be estimated. The sector-by-sector estimates of the extended parameter

vector

Θ = ({θi}, κ, σ, ρ)

obtained from an EM algorithm with Gibbs sampling11 are shown in Table 2 and in

Table 13 in Appendix C. The intensity λ is measured in basis points per year.

11Details are available from the authors upon request. The Matlab code can be downloaded from
the web site www.andrew.cmu.edu/user/aberndt/software/.
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Table 2: Sector EDF-implied default intensity parameters.

κ̂ σ̂ ρ̂ no. firms

Oil and Gas 0.470 1.223 0.243 40
Healthcare 0.421 1.231 0.124 25
Broadcasting and Entertainment 0.427 1.232 0.232 19

5 Risk-Neutral Intensity from CDS and EDF

This section explains our methodology for estimating a joint model of actual and

risk-neutral default intensities from CDS and EDF data. The basic idea of the model

is that the risk-neutral default intensity of a given firm is a function of its own

default intensity, a measure of aggregate default risk in the sector, and a latent

variable that captures variation in default risk premia not already captured by the

first two variables. Time-series variation in CDS rates, coupled with the behavior of

actual default intensities already estimated from the model described in the previous

section, is then used to estimate actual and risk-neutral dynamics, and to identify

the outcomes of the latent variables.

5.1 Default Swap Pricing

We begin with a simple reduced-form arbitrage-free pricing model for default swaps.

Under the absence of arbitrage and market frictions, and under mild technical con-

ditions, there exists a “risk-neutral” probability measure, also known as an “equiva-

lent martingale” measure, as shown by Harrison and Kreps (1979) and Delbaen and

Schachermayer (1999). In our setting, markets should not be assumed to be com-

plete, so the martingale measure is not unique. This pricing approach nevertheless

allows us, under its conditions, to express the price at time t of a security paying

some amount, say W , at some bounded stopping time τ > t, as

St = EQ

(
e−

R τ

t
r(u) du W

∣∣∣∣ Ft

)
, (6)

where r is the short-term interest-rate process12 and EQ denotes expectation with

respect to an equivalent martingale measure Q, that we fix. One may view (6) as

the definition of such a measure Q. The idea is that the actual measure P and the

12Here, r is a progressively measurable process with
∫ t

0
|r(s)| ds < ∞ for all t, such that there

exists a “money-market” trading strategy, allowing investment at any time t of one unit of account,

with continual re-investment until any future time T , with a final value of e
R

T

t
r(s) ds.
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risk-neutral measure Q differ by an adjustment for risk premia.

Under our earlier assumption of default timing according to a default intensity

process λ (under the actual probability measure P that generates our data), Artzner

and Delbaen (1992) show that there also exists a default intensity process λ∗ under

Q. Even though we have assumed the doubly-stochastic property under P , this

need not imply the same convenient doubly-stochastic property under Q as well.

Indeed, Kusuoka (1999) gave a counterexample. We will nevertheless assume the

doubly-stochastic property under Q. (Sufficient conditions are given in Duffie (2001),

Appendix N.) Thus, we have

Q(τ > T | Ft) = p∗(t, T ) = EQ

(
e−

R T

t
λ∗(u) du

∣∣∣∣ Ft

)
, (7)

provided the firm in question has survived to t.

For convenience, we assume independence, under Q, between interest rates on the

one hand, and on the other the default time τ and loss given default. We have verified

that, except for levels of volatility of r and λ∗ far in excess of those for our sample,

the role of risk-neutral correlation between interest rates and default risk is in any

case negligible for our parameters. This is not to suggest that the magnitude of the

correlation itself is negligible. (See, for example, Duffee (1998).) It follows from (6)

and this independence assumption that the price of a zero-coupon defaultable bond

with maturity T and zero recovery at default is given by

d(t, T ) = δ(t, T )p∗(t, T ), (8)

where δ(t, T ) = EQ
t

(
e−

R T

t
r(s) ds

)
is the default-free market discount factor, and

p∗(t, T ) is the risk-neutral conditional survival probability of (7). Extensions to the

case of correlated interest rates and default times were first treated by Lando (1998).

A default swap stipulates quarterly payments by the buyer of protection at a

stipulated annual rate of c, as a fraction of notional, until the default-swap maturity

or default, whichever is first. From (8), the market value of the payments by the

buyer of protection at the origination date of a default swap of unit notional size is

thus cg(t), where

g(t) =
1

4

n∑

i=1

δ(t, t(i))p∗(t, t(i)), (9)

for payment dates t(1), . . . , t(n). The market value of the potential payment by the
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seller of protection is

h(t, c) = EQ

(
δ(t, τ)W c

τ 1τ≤t(n)

∣∣∣∣ Ft

)
, (10)

where the payment W c
t at default, if default occurs at time t, is

W c
t = L∗

t − c

(
t − b4tc

4

)
, (11)

where bxc denotes the largest integer less than x, and where L∗
t denotes the risk-

neutral expected fractional loss of notional at time t, assuming immediate default.13

The second term in (11) is a deduction for accrued premium.

The current CDS rate is that choice C(t) for the premium rate c at which the

market values of the payments by the buyer and seller of protection are equal. That

is, C(t) solves

C(t)g(t) = h(t, C(t)). (12)

Noting that h(t, c) is linear with respect to c, this is a linear equation to solve for

C(t).

We turn to the calculation of h(t, c). By the doubly-stochastic property (see, for

example, Duffie (2001), Chapter 11), we first condition on (λ∗, L∗), and then use the

conditional risk-neutral density e−
R s

t
λ∗(u) duλ∗(s) of τ at time s to get

h(t, c) =

∫ t(n)

t

δ(t, s)EQ

(
e−

R s

t
λ∗(u) duλ∗(s)W c

s

∣∣∣∣ Ft

)
ds. (13)

We take L∗ to be constant and use, as a numerical approximation of the integral in

(13),

h(t, c) '
n∑

i=1

δ

(
t,

t(i) + t(i − 1)

2

)
[p∗(t, t(i − 1)) − p∗(t, t(i))]

(
L∗ − c

8

)
, (14)

which involves a time discretization of the integral in (13) that, in effect, approxi-

mates between quarter ends with a linear discount function and risk-neutral survival

function. Then C(t) is calculated from (12) using this approximation. The discount

factors δ(t, s) are fit from contemporaneous market LIBOR and swap rate data.

13A more precise definition of L∗
t is given on page 130 of Duffie and Singleton (2003).
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5.2 Model Specification

We now specify a parametric model of the risk-neutral default intensity process λ∗,i

of any given firm i. Motivated in part by the success of our linear-in-logarithms

regressions reported in Section 3, we suppose that

log λ∗,i
t = β0 + β1 log λi

t + β2 log vt + ui
t, (15)

where β0, β1, and β2 are constants, X i = log λi is as specified earlier by (5), and v

is the geometric average of default intensities {λi}i∈J , over a benchmark subset J of

large liquid firms in the industry group,14 in that

log vt =
1

|J |
∑

i∈J

X i
t . (16)

We suppose that

dui
t = κu(θu − ui

t) dt + σu
√

ρu dξc
t + σu

√
1 − ρu dξi

t, (17)

where θu, κu, and σu are constants, ρu is a constant correlation parameter, and where,

under the actual probability measure P , ξc and ξi are independent standard Brownian

motions, independent of the Brownian motions Bc and {Bj} of (5).

The risk-neutral distribution of (λ∗,i, λi) is specified by assuming that

√
ρ dBc

t +
√

1 − ρ dBi
t = −κ θi − κ̃ θ̃i

σ
dt − κ̃ − κ

σ
X i

t dt

+
√

ρ dB̃c
t +

√
1 − ρ dB̃i

t, (18)

and that

√
ρu dξc

t +
√

1 − ρu dξi
t = −κu θu

σu

dt − κ̃u − κu

σu

ui
t dt

+
√

ρu dξ̃c
t +

√
1 − ρu dξ̃i

t, (19)

where B̃c, B̃i, ξ̃c, and ξ̃i are independent standard Brownians motion under the risk-

neutral measure Q, independent of {B̃j}j 6=i and {ξ̃j}j 6=i, and where θ̃i, κ̃, and κ̃u

are constants. In addition to the parameter vector Θ, the model for λ∗ requires an

14This ignores the impact of a default event on the time-series properties of v, which is small
provided the influence of any one firm on the geometric average is small. In our data, J includes
those firms marked with “1” in Appendix C, which are essentially the largest and most liquidly
traded firms. As it happens, none of these defaulted during our sample period. Details are provided
in Table 14 in the appendix.
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estimator of the parameter vector

Θ∗ = (β0, β1, β2, {θ̃i}, κ̃, θu, κu, σu, ρu, κ̃u).

Since we have limited data with which to fit the parameters in Θ∗, we impose the

over-identifying restriction that κ̃ = κ and θ̃i = θi − γ, where γ is a constant, the

same for all firms in the sector. This model is overly restrictive with respect to the

potential for differences between actual and risk-neutral dynamics. As a result, our

ability to disentangle the various contributions to default risk premia is limited.

5.3 Estimation Strategy and Results

For any given sector, we estimate the parameters (Θ, Θ∗) for the joint model of actual

and risk-neutral intensity processes in a two-step procedure. First, we estimate the

sector EDF-implied parameter vector Θ of the actual intensity model λ, following

the procedure described at the end of Section 4. We also compute the time series

of quarterly market discount factors δ by bootstrapping the U.S. dollar-denominated

LIBOR-quality swap yield curve using 3-, 6-, 9- and 12-month LIBOR rates, and 2-, 3-,

4-, and 5-year swap yields that we obtain from Datastream. In a second step, treating

our estimate of Θ as though error-free, we estimate, sector by sector, the parameter

vector Θ∗ governing the risk-neutral intensity process λ∗. For this second step, our

data consist of weekly (Wednesday) observations of 1-year and 5-year default swap

rates and 1-year EDFs, from June 2000 through December 2004. As with the actual

default intensity model, this is not a routine MLE procedure since the evaluation of

the likelihood function requires a numerical differentiation of the modeled CDS rate

C(t) determined by (12), which we approximate using (14). At this point, we only

use transition between consecutive matched pairs of CDS-EDF observations for which

the EDF is not censored at 20%. This introduces a potential selection bias that we

are currently investigating, but do not expect to be significant.

We further break the estimation of the parameter vector Θ∗ into three parts,

in order to simplify the estimation procedure and to obtain more robust parameter

estimates. First, assuming that ui
t = 0, we determine β0, β1, β2, and γ so that

the sum of squared differences between the logarithm of the observed 1-year and 5-

year CDS rates and the logarithm of their model-implied counterparts is minimized.

Second, assuming that 5-year CDS rates are measured without error, we impose over-

identifying restrictions, in the form of moment conditions, by restricting Θ∗ so that

the model-implied stationary mean of exp(u) is 1, and so that the model-implied

stationary mean of u is equal to the model-implied sample mean across all firms in

a given sector. This improves the interpretability of the parameter estimates, and

facilitates comparison of the implied values for λ and λ∗. We also choose σu and κ̃u

so that the implied sample mean and sample standard deviation of the standardized
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innovations εi
t+h, ε

i
t+2h, . . . of ui

t, defined by

ui
t+h = θu + e−κuh(ui

t − θu) + σu

√
1 − e−2κuh

2κu

εi
t+h. (20)

are close (in terms of mean squared differences) to 0 and 1, respectively. Finally, we

find ρu so that the sector log-likelihood, using all previously determined parameters,

is maximized. In all cases, λ and λ∗ are measured in basis points per year. We

assume that the risk-neutral mean loss given default L∗ is 75% on average, across

the three industries used in our study, and that the sector-specific levels of L∗ are

proportionally adjusted by the sector-specific average recoveries reported in Footnote

8.

Sector-by-sector parameter estimates for the oil-and-gas, healthcare, and broadcasting-

and-entertainment industry are summarized in Table 3, and sector-by-sector sample

moments of the estimated risk premia, that is, the ratio of estimated risk-neutral to

estimated actual default intensities, are provided in Table 4. Summary statistics by

firm are listed in Table 14, Appendix C.

As an illustrative example, Figure 10 displays the estimated ratio of risk-neutral to

actual default probability for Disney, for each of several maturities. For the “instan-

taneous” maturity, this is the estimated jump-to-default risk premia, that is, the ratio

of λ∗ to λ. (The one-year risk-neutral and actual default probabilities are themselves

individually plotted in Figure 1.) Figure 11 shows the observed 5-year CDS rates of

Disney, as well as the contemporaneous CDS rates that would have been estimated

by our model in the absence of any risk premia. Figure 11 also shows the CDS rates

that would have applied in the absence of risk premia associated with non-default

mark-to-market risk, that is, assuming no market price of risk associated with ran-

dom fluctuations in the risk-neutral intensity processes, and taking all risk premia to

be those associated with jump to default risk. (This is equivalent to artificially taking

the risk-neutral distribution λ∗ to be equal to the estimated empirical distribution of

λ∗.)

Jarrow, Lando, and Yu (2005) provide conditions under which there are no jump-

to-default risk premia (λ = λ∗). A sufficient condition, for example, is that there

are infinitely many firms exposed to the same risk factors as the firm in question, all

defaulting independently conditional on those risk factors. If λ∗ = λ, then default risk

premia are entirely due to the market price of risk for uncertainty in the adjustment

of λ∗ over time. Collin-Dufresne, Goldstein, and Hugonnier (2004) provide a the-

ory for jump-to-default risk premia, based on a form of contagion. Collin-Dufresne,

Goldstein, and Helwege (2004) provide some related empirical evidence. Even with-

out contagion, jump-to-default risk premia can be large if it is difficult to hedge the

risk associated with the timing of default, and loss given default, of a particular firm
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Table 3: Sector CDS-implied risk-neutral default intensity parameter estimates

parameter Oil and Gas Healthcare Broadcasting and
estimates Entertainment

β̂0 0.829 0.576 -2.685

β̂1 0.537 0.522 0.400

β̂2 0.707 0.628 1.594
γ̂ 0.563 -0.175 -0.421

θ̂u -0.645 -0.258 -0.283
κ̂u 0.290 0.197 0.248
σ̂u 0.864 0.451 0.530
ρ̂u 0.335 0.212 0.479
ˆ̃κu 0.131 -0.200 -0.233

sector likelihood 0.851 1.436 1.388
L∗ 0.646 0.836 0.768

no. firms 33 16 13

(except of course by directly transferring those risks to another investor). Given our

assumption that the 1-year CDS rate is measured with noise, and given the relatively

short time horizon that we use to estimate the market prices of risk associated with

the Brownian motions driving risk-neutral intensities, we do not claim accuracy for

our estimated decomposition of CDS risk premia into the portion due to jump-to-

default risk (differences between λ∗ and λ) and that due to the market prices of risk

of factors driving changes over time in λ∗.

Consistent with the presence of market prices of risk associated with fluctuations

in λ∗, these multiplicative risk premia shown in Figure 10 are generally larger for

longer maturities. This term effect, associated with aversion to mark-to-market risk

associated with changes in credit spreads, apparently dominates, empirically, a coun-

tervailing “convexity effect.”15

For example, extracting from Table 3 the fit implied for the healthcare sector, we

have

log λ∗
t = 0.576 + 0.522 logλt + 0.628 log vt + ut,

15The risk-neutral survival probability EQ
(
e−

R

T

0
λ∗(t)dt

)
is larger by Jensen’s Inequality than

e−
R

T

0
EQ(λ∗(t)) dt. Suppose that λ(t) is constant for simplicity, and consider the natural assumption

that the unconditional variance of λ∗(t)/λ(t) grows with t. Then, even if EQ[λ∗(t)/λ(t)] does not
depend on t, the ratio of the risk-neutral to the actual probability of default by t would typically
decline with maturity. This effect, however, is apparently more than offset, empirically, for example
by trends in E(λ∗(t)) or by market prices of risk associated with random changes in λ∗.
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Figure 10: Estimated ratio of risk-neutral to actual default probabilities for Disney, by maturity.
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Figure 11: Disney: 5-year actual (market) CDS rates, and modeled CDS rates in the absence of
any risk premia (mean loss), and in the absence of non-default mark-to-market risk premia.
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Table 4: Sample moments for estimated jump-to-default risk premia, λ∗,i
t /λi

t.

mean median min max 1st quartile 3rd quartile

Oil and Gas 3.303 2.539 0.204 21.128 1.263 4.490
Healthcare 2.168 1.853 0.603 8.975 1.346 2.640
Broadcast.-E. 2.037 1.497 0.124 12.794 0.723 2.787
All 2.757 2.032 0.124 21.128 1.121 3.554

or equivalently,

λ∗
t = 1.779 λ0.522

t v0.628
t eut ,

where λt and λ∗
t are measured in basis points per year. So, for an actual default

intensity of 100 basis points, a geometric average of all default intensities in the

sector of 100 basis points, and ut = 0, we get a risk-neutral default intensity of

roughly 355 basis points. If the actual default intensity λi
t of firm i increases by 1%,

then, everything else being equal, the risk-neutral default intensity λ∗,i is estimated

to increase by roughly β1%. Similarly, if the default intensities for each firm in the

sector increase by 1%, λ∗,i increases by roughly (β1+β2)%. The estimated risk-neutral

distributions of λ and u are implied by the estimated model,

d log λt = 0.421 ((θ̂i + 0.175) − log λt) dt + 1.231 dB̃t,

d log ut = −0.200ut dt + 0.451 dξ̃t,

where θ̂i is reported in Table 11, Appendix C. The sample averages of the estimated

jump-to-default risk premia (that is, λ∗/λ) are 3.30, 2.17, and 2.04 for the oil-and-

gas, healthcare, and broadcasting-and-entertainment sector, respectively. Additional

sector-by-sector sample statistics of the estimated jump-to-default risk premia are

provided in Table 4.

As a diagnostic check, we examine the behavior of the standardized innovations

εt+h, εt+2h, . . . of ut, defined in (20). Under the specified model, and under the actual

probability measure P , these innovations are standard normals. Table 5 lists the

sample mean and the sample standard deviation (SD) of the fitted versions of these

standardized innovations, for each of the three sectors. Figure 12 shows the associated

histogram of fitted εt, merging across all firms, plotted against the standard normal

density curve. The innovations are relatively symmetrically distributed and somewhat

leptokurtic.

Bearing in mind that our CDS rate observations are likely to be rather “noisy”

relative to what actual market transaction rates would have been, as explained in

Section 2, we undertook as a further robustness check an analysis of the implications of
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Figure 12: Estimated innovations ε across all sectors, and
the standard normal density.

Table 5: Sample moments for standardized innovations

Mean SD

Oil and Gas -0.034 0.982
Healthcare -0.046 0.938
Broadcasting and Entertainment -0.034 0.989
All -0.037 0.975

assuming that even the 5-year CDS rate is measured with error. This requires a filter

for the underlying state variable ui
t that, along with the observed EDF, determines

what the “true” CDS would be. For this purpose, we assumed that the measurement

noise of the CDS rate is such that the implied measurement noise for ui
t is normally

distributed, and iid. With this, because ui
t is modeled as an auto-regressive Gaussian

process, Kalman filtering applies. Some details of the main model were modified in

order to make estimation tractable in the presence of filtering.16 Even so, this is

not a simple procedure. (Details can be provided upon request.) Sector-by-sector

maximum-likelihood parameter estimates for this model specification are provided in

Table 15 in the appendix. For the healthcare and oil-and-gas sectors, the estimated

standard deviations of the measurement noise are approximately 5.5% and 5.8%,

16We replace the restriction that κ̃ = κ by the assumption that κ̃ = κ̃u. Moreover, we lift the
restriction of a constant market-price-of-risk parameter γ, and instead determine θ̃i for each firm i
so that the model-implied average 1-year CDS rate is equal to the observed average rate.
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respectively. (These translate into roughly similar proportional levels of measurement

noise for the associated CDS rates.) We do not yet have reliable measurement-noise

results for the broadcasting-and-entertainment sector. Observed CDS rates do seem

to best track sector-wide default risk in the broadcasting-and-entertainment sector.17

Measurement noise, when not treated in a simple autoregressive time-series model,

causes an upward bias in estimated mean reversion coefficients. (For example, given

an unusually large outcome of the current period’s measurement noise, the subsequent

period’s measurement noise, being independent, has conditional mean zero, inducing

an “extra” source of mean reversion in the observed time series.) Incorporating

measurement noise into our model specification indeed caused large reductions in the

estimated rates of mean reversion of ui in the modified model, for both the healthcare

and oil-and-gas sectors. In terms of the magnitudes and time variation of default risk

premia, however, the broad characterizations that we draw on the basis of our main

model are not dramatically affected.

6 Discussion and Conclusion

This section discusses some alternative explanations for the time variation in default

risk premia uncovered in our panel regression and time-series analyses. We will briefly

explore three potential influences:

• Mismeasurement of actual conditional default probabilities.

• Time variation in risk-neutral conditional expectation of loss given default.

• Changes in the supply of and demand for risk bearing, whose effects are exag-

gerated by some limits on the mobility of capital across segments of the capital

markets.

• The impact of principal-agency inefficiencies in the asset management industry.

We discuss these in order.

By construction, EDFs are unbiased estimates of default rates on average over

their in-sample period. Suppose, however, that, like ratings, Moody’s KMV EDFs

are “too smooth” over time, so that they are biased downward when true conditional

default probabilities are high, and biased upward when true conditional default prob-

abilities are low. (In fact, Table 2 shows substantial annualized volatility, about 122%,

for the default intensities implied by EDFs, belying the idea that EDFs vary little

over time.) If EDFs were excessively smooth over time, then our estimated default

17For this model specification, β̂2 = 0.546 for the broadcasting-and-entertainment sector, com-
pared to β̂2 = 0.169 and β̂2 = 0.077 for the healthcare and the oil-and-gas sectors, respectively.
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risk premia would vary more dramatically than would actual default risk premia.

Bohn, Arora, and Korablev (2005) report (in their Section 4.4) that EDFs did indeed

predict “too many” defaults in 2003, a year in which we estimate declining default

risk premia, as CDS rates came down faster than EDFs. For example, they estimate

that the model that produces Moody’s KMV EDFs would have placed a probability

of only 27.3% on the event that there would have been as few or fewer defaults in 2003

by firms in their study sample than the actual number of defaults.18 If credit market

participants had assigned lower default probabilities than the associated EDFs, then

actual default risk premia for 2003 would be higher than those that we have esti-

mated. On the other hand, the low number of realized defaults for 2003 could simply

have been a surprise (to anyone with accurate probability assignments). We are not

aware, in any case, that marginal investors in corporate debt had access to better

default probability estimates than those supplied by Moody’s KMV, but of course

this is hard to verify. For the other years in our sample, the incidence of defaults was

not especially “surprising” in this sense, relative to the EDF-predicted number of de-

faults. Bohn, Arora, and Korablev (2005) estimate the associated p-values for 2000,

2001, 2002, 2003, and 2004 at 46.1%, 61.8%, 47.9%, 27.3%, and 54.4%, respectively.

In particular, the “ex-post” p-values for 2002 and 2004 are similar, but our estimated

default risk premia are substantially higher in 2002 than in 2004. While our finding

that default risk premia varied significantly during our sample period could be at least

in part an artifact of mismeasured default probabilities, it is also not easy to make

a strong case that EDFs were biased relative to the conditional default probabilities

assigned by credit-market participants, time by time, in a manner that would largely

explain our results.

A weakness of the methodology that we used to measure default risk premia

is that it ignores correlation between the loss given default ` of an issuer and the

default time τ . From Moody’s data covering default and default recoveries for all

rated corporate debt from 1980 through 2004, a regression of cross-sectional average

default recovery rate Y on the average default rate X provides the OLS estimated

model Y = 0.57 − 0.076X, with an R2 of 0.46, showing a highly significant and eco-

nomically important negative relationship, in the aggregate, in recovery and default

rates. Further analysis of this relationship is provided by Altman, Brady, Resti, and

Sironi (2003). It might therefore be appropriate to assume that, for a given issuer,

the LGD ` and the indicator of default before maturity, 1τ<T , are positively corre-

lated, risk-neutrally. If so, then our modeled CDS rates would be too low, for the

risk-neutral mean default loss EQ(1τ<T `) is in that case larger than the product of

Q(τ < T ) = EQ(1τ<T ) and the risk-neutral mean LGD, L∗ = EQ(`). There are

18For this study, Bohn, Arora, and Korablev (2005) considered U.S. public firms with assets of
at least $300 million dollars. Out of the total sample of 1594 firms at the beginning of 2003, 12
defaulted.
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currently no reliable data bearing on the magnitude of this effect. If this covariance

effect is constant, one could scale the average effect of this covariance into the param-

eter assumed for the risk-neutral mean LGD. While the measured default risk premia

could be biased from this effect, it does not necessarily follow that this correlation

effect has a major impact on relative default risk premia at different times.

On the other hand, one might worry that the upward impact of this correlation on

CDS rates is not constant over time, but greatest when default risk is highest, which

could lead to an overstatement by our model (which ignores LGD-default correlation)

of the time variation of default risk premia. For example, consider the extreme case

in which there are no default risk premia (that is, Q = P ). Suppose that, as we have

found empirically, a default intensity λt is persistent over time. Let Wt denote the

recovery that would occur in the event of default at time t. That is, ` = 1 − Wτ .

Suppose that Wt = f(λt, ε), where ε is independent of the path of λ, and f(x, y) is

decreasing in x. Then, given persistence in λt, the conditional expectation Et(1−Wτ)

of the LGD that will occur at the default time τ is increasing in the current intensity

λt. The ratio of CDS rates to default probabilities would then be time-varying, and

higher when CDS rates are higher. A model that ignores LGD-default correlation

would misinterpret this as time variation in default risk premia.

Based on Moody’s data for 1980 to 2004,19 Figure 13 shows the sample correlation

between aggregate default rates in year t and average senior-unsecured debt recovery

rates K years later, as the lag K ranges from 0 (contemporaneous) to 5 years, the

maturity of our benchmark default swaps. Now, conditional on a default within the

5-year maturity, except for very low-quality firms, the expected time to default is

roughly 2.5 years.20 At least based on the data underlying this figure, there is no

obvious reason to conclude that the LGD-default correlation effect on 5-year CDS

rates is large. That said, there are almost no data bearing on the risk-neutral (as

opposed to actual) LGD-default correlation, which would be needed to deduce the

impact of recovery risk on CDS rates.

In order to gauge the general magnitude of the effect of risk-neutral LGD-default

correlation on CDS rates, we calculate the pricing impact in a simple example. Sup-

pose, given the current risk-neutral intensity λ∗
t , that any default recovery Wt that

occurs at time t is beta distributed21 with mean M(λ∗
t ) and standard deviation

0.2 − 0.4|0.5 − M(λ∗
t )|. We assume a log-normal risk-neutral default intensity (as

in our model), but for simplicity assume a 50% risk-neutral mean-reversion rate and

100% volatility. We set M(λ∗
t ) = ea−bλ∗

t , where a and b are chosen for an unconditional

risk-neutral mean LGD of 0.5 and a risk-neutral correlation of −0.5 between W2.5 and

19These data are available at moodys.com.
20The conditional mean default time converges to 2.5 years as the default probability converges

to zero, at a constant default intensity.
21Moody’s KMV uses the beta distribution for its modeled recovery distributions in its LossCalc

model.
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Figure 13: Correlation between default rate at year t and recovery rate at year t+K, for 1980-2004.
Data from Moody’s (2005).

λ∗
2.5. (Again, 2.5 years is roughly the time horizon that matters for 5-year CDS, if

one is to pick a particular time horizon.) At these parameters, an increase in default

intensity from 200 basis points to 1000 basis points reduces current risk-neutral mean

recovery from 50% to 25%. This is roughly the speculative-grade empirical experi-

ence from 1998 to 2001, a period during which average default recovery sank to an

extremely low level, relative to history. Even before considering idiosyncratic recovery

risk at the firm level that is partially washed out by aggregation, this represents a

substantial amount of LGD-default correlation, relative to our sample, most of which

is of investment-grade quality. Moving the risk-neutral intensity-LGD correlation

from 0 (the assumption in our CDS model) to 0.5 increases 5-year CDS rates from

100 basis points to about 118 basis points. This means that the risk-neutral default

probability that would be inferred by a model assuming no LGD-default correlation,

at an observed CDS rate of 118 basis points would be biased about 18% too high.

This bias would always be positive, but would (under our distributional assumptions)

be proportionately greater when CDS rates are high than when they are low. Such

a bias is likely to be responsible for some of the measured variation in default risk

premia reported in this paper. To repeat, whether the magnitude of the bias is large

is difficult to judge because there are essentially no empirical data bearing directly

on risk-neutral LGD-default correlation.
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A third explanation for the large time variation in estimated default risk premia

that we have uncovered in this paper may be based on the usual market-equilibrium

suspect: variations over time in the supply of, and demand for, risk bearing, po-

tentially exacerbated by limited mobility of capital across different classes of asset

markets. Along the lines of the explanation suggested by Froot and O’Connell (1999)

for time variation in catastrophe insurance risk premia, capital moves into and out

of the market for corporate credit in response to fluctuations in risk premia, but per-

haps not instantaneously so. Generally, when there are large losses or large increases

in risk in a particular market segment, if capital does not move immediately out of

other asset markets and into that segment, then risk premia would tend to adjust so

as to match the demand for capital with the supply of capital that is available to the

sector. Investors or asset managers with available capital take time to be found by

intermediaries, to be convinced (perhaps being unfamiliar with the particular asset

class) of the available risk premia, and to exit from the markets in which they are

currently invested. For the catastrophe risk insurance market, Froot and O’Connell

(1999) show that this process can take well over a year, in terms of the half-life of the

mean reversion of risk premia to long-run levels. Similar explanations, albeit with

shorter half-lives, have been offered by Gabaix and Krishnamurthy (2004) for varia-

tion of prepayment risk premia in the market for mortgage-backed securities, and by

Greenwood (2005) for the price impact of supply shocks in equity markets.

In order to explore the role of limited capital mobility in determining credit risk

premia, we replaced the time and sector dummies in the panel-regression (2) with

current stock-market volatility V (in percent), as measured by VIX (an index of

option-implied volatility of the S-and-P 500), and with the total face value D of U.S.

defaulted corporate debt over the prior 6 months, measured in billions of U.S. dollars.

(The defaulted debt data were provided by Moody’s.) As market volatility goes up, a

given level of capital available to bear risk represents less and less capital per unit of

risk to be borne. If replacement capital does not move into the corporate debt sector

immediately, the supply and demand for risk capital will match at a higher price per

unit of risk. (This effect would be present even with perfect capital mobility, but the

magnitude of the effect is increased with partially segmented markets.) Similarly, a

loss of capital through trailing defaulted debt, proxied by D, reduces the amount of

capital available to bear risk. The fitted model and “robust” standard errors (shown

parenthetically) are

log CDSi = 1.08 + 0.84 log EDFi + 1.18D + 0.011V + zi, (21)

(0.015) (0.003) (0.57) (0.00049)

where zi is the residual. The associated R2 is 0.71. The coefficients for trailing

defaulted debt and VIX are statistically significant at conventional confidence levels,
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particularly so for VIX, whose coefficient has a t-statistic of over 22. The EDF-

based default probability estimates already incorporate the impact of volatility on

default risk through an estimate of the contemporaneous volatility of each firm, so

the estimated effect of a change in VIX on CDS rates is on top of that implied by

the impact of a change in market volatility on estimated default probabilities.22 (It

is of course possible that volatility is not well estimated in the Moody’s KMV EDF

model.) The estimated coefficient for VIX implies that the reduction in S-and-P

500 volatility that occurred between August 2002 and the end of 2003, from 45% to

about 11%, is associated with a proportional reduction of about 44% in the credit

default swap rates assigned by the market at a given default probability. This is

plausible, in that the time fixed effects associated with (2) are, on average across

the three sectors, of similar magnitude. The role of trailing defaulted debt, while

statistically significant, is somewhat less pronounced in magnitude. In July 2002, for

example, trailing-6-month corporate debt increased over that of the previous month

by 3.4 billion dollars, which is responsible for an estimated proportional increase in

credit spreads of approximately 4%, holding all else equal. On the other hand, if the

EDF model is imperfect, a change in trailing defaulted debt could proxy for a change

in average default probabilities not captured by the EDF model. We cannot rule

this out. In light of the rather adverse market conditions of mid 2002, a behavioral

reaction by some market participants also cannot be ruled out.

On top of these effects, money managers may have been reluctant to place them-

selves in “harm’s way,” in terms of adverse inference by investors regarding the ability

or efforts of asset managers in light of prior losses through default. This principal-

agency effect may have reduced their willingness to load up on corporate credit risk,

despite the high risk premia offered. A related principal-agency explanation of declin-

ing risk premia during 2002-2004 is the propensity for fixed-income asset managers

to “reach for yield” when treasury market rates decline, as they did during 2002-

2004. That is, in order to offer their supposedly unsophisticated or poorly informed

investors “fixed-income” yields that do not decline markedly as treasury rates decline,

money managers are willing to take increasing credit risk for the same yield. While

reaching for yield is frequently mentioned anecdotally, we have no specific evidence

of its prevalence.

Yet another interpretation of the estimated role of market-wide volatility and

trailing defaulted debt is that these variables are proxies for an increase in default

correlation, for which we have not controlled. Variation over time in conditional

default correlation can be responsible for increases or reductions in the degree of

diversification available in the corporate bond market, and therefore could change

default risk premia. Capital immobility would magnify any such effect.

22Cao, Yu, and Zhong (2005) explore the ability of firm-level option-implied volatility to explain
CDS rate changes.
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Consistent with our conjecture that variation in default risk premia are partly

caused by sluggish movement in risk capital across sectors, Collin-Dufresne, Goldstein,

and Martin (2001) earlier showed that VIX is an important explanatory variable for

changes in credit spreads, after controlling, firm by firm, with equity returns. They

did not pin down an explanation for the role of VIX. For different data, the same

important role of VIX was confirmed by Schafer and Strebulaev (2004). Notably,

Collin-Dufresne, Goldstein, and Martin (2001) emphasize, and Avramov, Jostova,

and Philipov (2004), Schafer and Strebulaev (2004), and Yu (2005) confirm, that

a large fraction of the variation in a firm’s credit spreads is not explained by the

same firm’s equity returns. From the theoretical view that debt and equity can be

treated as derivatives written on the total market value of the underlying firm, per-

fect capital mobility between equity and debt markets would tend to lead debt and

equity returns to have strong common components, contrary to the results of these

studies. Consistent with our conjecture that there may be risk premia in the cor-

porate debt sector that are due to temporary fluctuations in the availability of risk

capital due to partially segmented markets, Collin-Dufresne, Goldstein, and Martin

(2001) find statistical evidence of a further common factor in corporate bond returns,

above and beyond equity returns, risk-free yields, and VIX, whose source was unex-

plained. Although Avramov, Jostova, and Philipov (2004) do not find support for

this “mysterious common factor,” Saita (2005) does.

The market did indeed respond over time to opportunities for insuring default risk.

Open interest in the default swap market has roughly doubled in each year for the

last several years. Investment banks and broker dealers in corporate credit markets

have increased their credit-derivatives staffs and market-making capacity significantly.

Among hedge funds that were newly established during the period 2002-2004, those

specializing in corporate credit risk were by far the most prevalent.

Our results on the average magnitude of default risk premia are comparable to

those available in the prior literature. Using the structural model of Leland and Toft

(1996), Huang and Huang (2003) calibrated parameters for the model determining

actual and risk-neutral default probabilities, by credit rating, that are implied from

equity-market risk premia, recoveries, initial leverage ratios, and average default fre-

quencies. All underlying parameters were obtained from averages reported by the

credit rating agencies, Moody’s and Standard and Poors, except for the equity-market

risk premia, which were obtained by rating from estimates by Bhandari (1999). At

the five-year maturity point, our calculation of the associated estimated ratios of an-

nualized risk-neutral to actual five-year default probabilities are reported in Table 6.

In magnitude, the results are also roughly consistent with those of Driessen (2005).

In both of these prior studies, risk premia are proportionately higher for highly-rated

firms, consistent with the results of our panel-regression model and time-series anal-

yses.
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Table 6: Five-year default risk premium implied by the structural-model results of Huang and
Huang (2003)

Initial Premium Q(τ < 5) P (τ < 5)
Rating (ratio) (percent) (percent)

Aaa 1.7497 0.04 0.02
Aa 1.7947 0.09 0.05
A 1.7322 0.25 0.15
Baa 1.4418 1.22 0.84
Ba 1.1658 9.11 7.85
B 1.1058 25.61 23.41
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Appendices

A MLE for Intensity from EDFs

This appendix shows our methodology for MLE estimation of the parameters of the

default intensity, including the effects of missing EDF data as well as censoring of

EDFs by truncation from above at 20%. Our data is the monthly observed EDF level

Yi at month i, for each of N + 1 month-end times t0, t1, . . . , tN .

From (4), for any time t and time step h (which is 1/12 in our application), the

discretely sampled log-intensity process X satisfies

Xt+h = b0 + b1Xt + εt+h, (A.1)

where b1 = e−κh, b0 = θ(1− b1), and εt+h, εt+2h, . . . are iid normal with mean zero and

variance σε = σ2(1 − e−2κh)/(2κ).

For a given firm, we initialize the search for the parameter vector Θ = (θ, κ, σ) as

follows. First, we regress log(Yi) on log(Yi−1), using only months at which both the

current and the lagged EDF are observed and not truncated at 20%. The associated

regression coefficient estimates, denoted by b̂0 and b̂1, are considered to be starting

estimates of b0 and b1, respectively. The sample standard deviation of the fitted

residuals, σ̂ε, is our starting estimate for σε. We then start the search for Θ = (θ, κ, σ)

at

κ0 = − log(b̂1)

h
,

θ0 =
b̂0

1 − b̂1

,

σ0 = σ̂ε

√
2κ0

1 − exp(−2κ0h)
.

If Θ is the true parameter vector, then Yi = G(λ(ti); Θ), where G is defined via (5).

Suppose, to pick an example of a censoring outcome from which the general case

can easily be deduced, that for months k + 1 through k̄ ≥ k + 1, inclusive, the EDFs

are truncated at ζ = 20%, meaning that the censored and observed EDF is 20%,

implying that the actual EDF was larger than or equal to 20%, and moreover that

the EDF data from month l + 1 > k̄ + 1 to month l̄ are missing. Let I = {i : k +1 ≤
i ≤ k̄} ∪ {i : l + 1 ≤ i ≤ l̄} denote the censored and missing month numbers. Then

the likelihood of the observed non-censored EDFs Y = {Yi : i 6∈ I} evaluated at

outcomes y = {yi : i 6∈ I}, using the usual abuse of notation for measures, is defined
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by

L(Y, I; Θ) dy =
k−1∏

n=0

P (Yn+1 ∈ dyn+1; Yn = yn, Θ)

× P (Yk+1 ≥ ζ, . . . , Yk̄ ≥ ζ, Yk̄+1 ∈ dyk̄+1; Yk = yk, Θ)

×
l−1∏

n=k̄+1

P (Yn+1 ∈ dyn+1; Yn = yn, Θ)

× P (Yl̄+1 ∈ dyl̄+1; Yl = yl, Θ)

×
N−1∏

n=l̄+1

P (Yn+1 ∈ dyn+1; Yn = yn, Θ),

where P ( · ; Yn = yn; Θ) denotes the distribution of {Yn+1, Yn+2, . . .} associated with

initial condition yn for Yn, and associated with parameter vector Θ. A maximum

likelihood estimator (MLE) Θ̂ for Θ solves

sup
Θ

L(Y, I; Θ). (A.2)

For z ∈ R, we let g(z; Θ) = G(ez; Θ), and let ZΘ
i = g−1(Yi; Θ) denote the logarithm

of the default intensity at time ti that would be implied by a non-censored EDF

observation Yi, assuming the true parameter vector is Θ. Letting Dg( · ; Θ) denote

the partial derivative of g( · ; Θ) with respect to its first argument, and using standard

change-of-measure arguments, we can rewrite the likelihood as

L(Y, I; Θ) =
k−1∏

n=0

P (ZΘ
n+1; Z

Θ
n , Θ)

(
Dg(ZΘ

n+1; Θ)
)−1

× P (Yk+1 ≥ ζ, . . . , Yk̄ ≥ ζ ; Yk = yk, Yk̄+1 = yk̄+1, Θ)

× P (ZΘ
k̄+1; Z

Θ
k , Θ)

(
Dg(ZΘ

k̄+1; Θ)
)−1

×
l−1∏

n=k̄+1

P (ZΘ
n+1; Z

Θ
n , Θ)

(
Dg(ZΘ

n+1; Θ)
)−1

× P (ZΘ
l̄+1; Z

Θ
l , Θ)

(
Dg(ZΘ

l̄+1; Θ)
)−1

×
N−1∏

n=l̄+1

P (ZΘ
n+1; Z

Θ
n , Θ)

(
Dg(ZΘ

n+1; Θ)
)−1

. (A.3)
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The second term on the right-hand side of (A.3) is equal to

q(Y ; Θ) = P (ZΘ
k+1 ≥ g−1(ζ ; Θ), . . . , ZΘ

k̄ ≥ g−1(ζ ; Θ) ;

ZΘ
k = g−1(yk; Θ), ZΘ

k̄+1 = g−1(yk̄+1; Θ), Θ).

In the remainder of this appendix, we describe how to compute q(Y ; Θ) by Monte

Carlo integration, and hence P (Yk+1 ≥ ζ, . . . , Yk̄ ≥ ζ ; Yk = yk, Yk̄+1 = yk̄+1, Θ). In

order to simplify notation we suppress Θ in what follows. We observe that for any

time t between times s and u, the conditional distribution of X(t) given X(s) and

X(u) is a normal distribution with mean M(t | s, u) and variance V (t | s, u) given by

M(t | s, u) =
1 − e−2κ(u−t)

1 − e−2κ(u−s)
M(t | s) +

e−2κ(u−t) − e−2κ(u−s)

1 − e−2κ(u−s)
M(t | u),

V (t | s, u) =
V (t | s)V (u | t)

V (u | s) ,

where, for times t before u, we let

M(u | t) = θ + e−κ(u−t)(X(t) − θ)

V (u | t) =
σ2

2κ
(1 − e−2κ(u−t))

M(t | u) = eκ(u−t)(X(u) − θ(1 − e−κ(u−t)))

denote the conditional expectation and variance, respectively, of X(u) given X(t), and

the conditional expectation of X(t) given X(u). As a consequence, letting Zk = X(tk),

we can easily simulate from the joint conditional distribution of (Zk+1, . . . , Zk̄) given

Zk and Zk̄+1, which is given by

P (Zk+1, . . . , Zk̄ |Zk, Zk̄+1) = P (Zk+1 |Zk, Zk̄+1)

×
k̄−(k+1)∏

j=1

P (Zk+j+1 |Zk+j, Zk̄+1).

We are now in a position to estimate the quantity in (A.4) by generating some “large”

integer number J of independent sample paths {(Zj
k+1, . . . , Z

j

k̄
); 1 ≤ j ≤ J} from the

joint conditional distribution of (Zk+1, . . . , Zk̄) given Zk and Zk̄+1, and by computing

the fraction of those paths for which Zj
i ≥ g−1(ζ) for all i in {k + 1, . . . , k̄}.
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Table 7: Number of observations of 1-year EDFs. Data: Moody’s KMV.

Ticker sector† not capped at total Ticker sector not capped at total
censored 0.02% 20% censored 0.02% 20%

253647Q B&E 55 18 0 73 IPG B&E 119 1 0 120
ABC H 113 0 0 113 JNJ H 26 118 0 144
ABT H 82 62 0 144 KMG O&G 123 21 0 144
ADELQ B&E 97 0 16 113 KMI O&G 142 2 0 144
AGN H 126 18 0 144 KMP O&G 139 3 0 142
AHC O&G 137 7 0 144 KRI B&E 70 50 0 120
AMGN H 36 108 0 144 L B&E 81 21 0 102
APA O&G 144 0 0 144 LH H 120 0 0 120
APC O&G 144 0 0 144 LLY H 101 43 0 144
BAX H 144 0 0 144 MCCC B&E 56 0 0 56
BC B&E 120 0 0 120 MDT H 39 105 0 144
BEV H 142 0 2 144 MGLH H 103 0 19 122
BHI O&G 144 0 0 144 MMM H 42 78 0 120
BJS O&G 144 0 0 144 MRK H 50 70 0 120
BLC B&E 115 5 0 120 MRO O&G 144 0 0 144
BMY H 54 90 0 144 NBR O&G 144 0 0 144
BR O&G 129 15 0 144 NEV O&G 137 0 0 137
BSX H 123 21 0 144 NOI O&G 97 0 0 97
CAH H 144 0 0 144 OCR H 131 13 0 144
CAM O&G 113 0 0 113 OEI O&G 124 0 0 124
CCU B&E 142 2 0 144 OMC B&E 120 0 0 120
CHIR H 144 0 0 144 OXY O&G 132 12 0 144
CHK O&G 130 0 13 143 PDE O&G 144 0 0 144
CHTR B&E 50 0 11 61 PFE H 36 84 0 120
CMCSA B&E 144 0 0 144 PHA H 77 23 0 100
CNG U 72 13 0 85 PKD O&G 144 0 0 144
COC O&G 45 0 0 45 PRM B&E 107 0 3 110
COP O&G 133 11 0 144 PXD O&G 144 0 0 144
COX B&E 116 0 0 116 RCL B&E 141 0 0 141
CVX O&G 39 105 0 144 RIG O&G 136 4 0 140
CYH H 97 0 0 97 SBGI B&E 113 0 0 113
DCX A 68 6 0 74 SGP H 61 59 0 120
DGX H 93 0 0 93 SLB O&G 85 35 0 120
DIS B&E 103 41 0 144 SUN O&G 120 0 0 120
DO O&G 97 10 0 107 THC H 144 0 0 144
DVN O&G 135 9 0 144 TLM O&G 126 18 0 144
DYN U 121 0 13 134 TRI H 67 0 0 67
EEP O&G 114 6 0 120 TSG B&E 94 3 0 97
ENRNQ O&G 105 1 1 107 TSO O&G 135 0 0 135
EP O&G 143 0 1 144 TWX B&E 144 0 0 144
EPD O&G 76 0 0 76 UCL O&G 117 3 0 120
F A 143 1 0 144 UHS H 120 0 0 120
FST O&G 142 0 0 142 UNH H 113 7 0 120
GDT H 115 2 0 117 VIA B&E 139 5 0 144
GENZ H 144 0 0 144 VLO O&G 144 0 0 144
GLM O&G 120 0 0 120 VPI O&G 144 0 0 144
GM A 144 0 0 144 WFT O&G 143 1 0 144
HAL O&G 144 0 0 144 WLP H 137 7 0 144
HCA H 140 4 0 144 WMB U 135 1 8 144
HCR H 120 0 0 120 WYE H 86 58 0 144
HMA H 95 25 0 120 XOM O&G 0 120 0 120
HRC H 131 0 4 135 XTO O&G 120 0 0 120
HUM H 142 0 0 142 YBTVA B&E 120 0 0 120
ICCI T 65 0 0 65

† A: Automobile; B&E: Broadcasting and Entertainment; H: Healthcare; O&G: Oil and Gas; R: Retail; T: Trans-

portation; U: Utilities.
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B Solution of Log-Normal Intensity Model

This appendix provides an algorithm, prepared for this project by Gustavo Manso,

for computing the survival probability of (3), and related expectations of the form

E(e−
R t

0
λ(s) dsF (λt)), for a well-behaved function F : [0,∞) → R. The algorithm al-

lows for a generalization of the log-normal intensity model to a model that is, in loga-

rithms, autoregressive with a mixture-of-normals innovation, allowing for fat tails and

skewness. Matlab code is downloadable at the web site www.stanford.edu/∼/manso/

numerical/.

Inputs: Parameters (k, m1, v1, p, m2, v2, m) and initial log-intensity x ∈ [a, b].

Output: Let y(j) = λ(tj), for equally spaced times t0, t1, . . . , tm. The output is

S(0, x) = E

[
exp

(
−

m∑

j=1

y(j)

)
F (y(m))

]
,

where

log y(j) = −k log y(j − 1) + W (j) + Z(j),

log y(0) = x,

and W (j) is normal, mean m1, variance v1, Z(j) is, with probability p, equal to 0 (no

jump) and with probability 1 − p, normal with mean m2, variance v2. All W (j) and

Z(j) are independent.

Step 1 Compute K ≥ N + 1 Chebyshev interpolation nodes on [−1, 1]:

zk = − cos

(
2k − 1

2K
π

)
, k = 1, . . . , K.

Step 2 Adjust the nodes to the [a, b] interval:

xk = (zk + 1)

(
b − a

2

)
+ a, k = 1, . . . , K.

Step 3 Evaluate Chebyshev polynomials:

Tn(zk) = cos(n cos−1 zk), k = 1, . . . , K and n = 1, . . . , N.
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Step 4 Recursive Integration:

• Boundary condition: S(m, x) = F (exp(x)), for x ∈ [a, b].

• For j = m : −1 : 0,

1. Numerical Integration:

S(j, xk) = π− 1

2

I∑

i=1

ωi [pq(j + 1, ua(i, xk)) + (1 − p)q(j + 1, ub(i, xk))] ,

where

q(j, u) = S(j + 1, u) exp(− exp(u)),

ua(i, x) =
√

2v1φi + (m1 − kx),

ub(i, x) =
√

2(v1 + v2)φi + (m1 + m2 − kx),

and (ωi, φi), i = 1, . . . , I, are I-point Gauss-Hermite quadrature weights

and nodes.23

2. Compute the Chebyshev coefficients:

cn =

∑K
k=1 S(j, xk)Tn(zk)∑K

k=1 Tn(zk)2
for n = 0, . . . , N,

to arrive at the approximation for S(j, x), x ∈ [a, b]:

Ŝ(j, x) =
N∑

n=0

cnTn

(
2
x − a

b − a
− 1

)
.

C Additional Background Statistics

This appendix contains additional background statistics regarding the firms studied.

Section 2 contains the data regarding firms from the broadcasting-and-entertainment

industry. This appendix includes information regarding the firms studied from the

healthcare and the oil-and-gas industries.

23See Judd (1998), page 262, for a table with (ωi, φi).
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Table 8: Healthcare firms

Firm Name Median EDF Median Rating No. Quotes

Abbott Laboratories 4.0 A1 1,845
Allergan Inc 3.0 A3 2,137

Amerisource Bergen Corp 83.5 Ba3 437
Amgen Inc 2.0 A2 2,159

Baxter International Inc 32.0 Baa1 2,252
Beverly Enterprises Inc 1,086.0 B1 285
Boston Scientific Corp 5.0 Baa1 1,813

Bristol-Myers Squibb Co 22.0 A1 2,063
Cardinal Health Inc 15.0 Baa3 1,753

Chiron Corp 12.0 Baa2 1,920
Community Health Systems Inc 98.0 N/A 307

Eli Lilly & Co 3.0 Aa3 1,942
Genzyme Corp 24.0 N/A 1,657
Guidant Corp 5.0 Baa1 1,407

HCA Inc 23.0 Ba2 891
Health Management Associates Inc 10.0 N/A 2,222

Healthsouth Corp – N/A 318
Humana Inc 40.0 Baa3 1,925

Johnson & Johnson 2.0 Aaa 1,654
Laboratory Corp Of America Holdings 12.0 Baa3 1,635

Manor Care Inc 21.0 Baa3 1,168
Medtronic Inc 2.0 N/A 2,093

Merck & Co Inc 5.0 Aa2 1,516
Minnesota Mining & Manufacturing Co (3M) 2.0 Aa1 1,655

Pfizer Inc 2.0 Aaa 1,504
Pharmacia Corporation 9.0 Aaa 1,116

Quest Diagnostics 10.0 Baa2 1,230
Schering-Plough Corporation 25.0 Baa1 1,658

Tenet Healthcare Corporation 67.0 B3 –
Triad Hospitals Inc 148.0 B2 519

United Health Group Inc 2.0 A3 1,442
Universal Health Services Inc 33.5 Baa3 1,237

Wellpoint Health Networks – Baa1 1,580
Wyeth 17.0 Baa1 2,150
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Table 9: Oil and gas firms

Firm Name Median EDF Median Rating No. Quotes

Amerada Hess Corp 20.0 Ba1 1,284
Anadarko Petroleum Corp 43.0 Baa1 2,696

Apache Corp 11.0 A3 2,217
Baker Hughes Inc 15.0 A2 2,207

BJ Services Co 17.0 Baa2 1,588
BurlingtonResourcesInc 10.0 Baa1 2,056

Chesapeake Energy Corp 177.0 Ba3 1,152
Chevron Texaco Corp 3.0 N/A 1,897

Conoco Phillips Holding Co 15.5 A3 1,677
Cooper Cameron Corp 29.0 Baa1 1,518

XTO Energy Inc 6.0 Baa3 1,225
Diamond Offshore Drilling 25.0 Baa2 2,331

EL Paso Corp 1,000.0 Caa1 2,294
Exxon Mobil Corp 2.0 N/A 1,329

Forest Oil Corp 107.0 Ba3 367
Global Marine Inc 12.0 Baa1 1,401

Halliburton Co 86.0 Baa2 2,139
Kerr-Mc Gee Corp 38.0 Baa3 2,170

Kinder Morgan Energy Partners LP 12.0 Baa1 2,263
Kinder Morgan Inc 7.0 Baa2 2,003

National-Oilwell Inc 31.0 Baa2 1,201
Occidental Petroleum Corp 8.0 Baa1 2,581

Parker Drilling Co 446.5 B2 449
Conoco Phillips 6.0 A3 2,929

Pioneer Natural Resources Co 44.0 Baa3 1,001
Pride International Inc 113.5 Ba2 1,228

Shell Oil Co – Aa2 1,373
Sunoco Inc 7.5 Baa2 1,536

Talisman Energy Inc 5.0 N/A 1,425
Transocean Inc 71.5 Baa2 2,487

Unocal Corp 6.0 Baa2 1,441
Marathon Oil Corp 10.0 Baa1 2,024
Valero Energy Corp 35.5 Baa3 2,637

Vintage Petroleum Inc 229.0 Ba3 556
Weatherford International Ltd 35.0 Baa1 2,874

Enron Corp 51.5 WR 361
Devon Energy Corporation 19.0 Baa2 2,878

Enterprise Products Partners LP 5.0 N/A 1,439
Enbridge Energy Partners LP 6.0 N/A 1,192

Nabors Industries Ltd 41.0 N/A 2,594
Schlumberger Ltd 8.0 N/A 1,673

Schlumberger Technology Corp – A2 1,021
Duke Energy Field Services Llc – Baa2 1,004
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Table 10: Estimated log-CDS panel regression (2), using daily median CDS data.

Estimate† Std. Error Estimate† Std. Error Estimate† Std. Error

Number of CDS Samples 33,912
Intercept 1.448 0.047
Slope 0.760 0.015

Sector-month dummy Oil and Gas Broadcasting and E. Healthcare
Dec-00 0.124 0.006 0.256 0.007 0.204 0.011
Jan-01 0.425 0.011 0.562 0.009 0.360 0.008
Feb-01 0.605 0.004 0.481 0.010 0.111 0.007
Mar-01 0.621 0.005 0.458 0.010 0.326 0.009
Apr-01 0.389 0.009 0.495 0.013 0.478 0.009
May-01 0.260 0.012 0.502 0.019 0.618 0.009
Jun-01 0.280 0.014 0.223 0.014 0.075 0.008
Jul-01 -0.044 0.015 0.145 0.016 0.019 0.010
Aug-01 -0.075 0.021 0.085 0.014 0.144 0.005
Sep-01 0.174 0.032 0.254 0.020 0.582 0.005
Oct-01 0.256 0.019 0.316 0.019 0.641 0.008
Nov-01 0.416 0.015 0.406 0.014 0.128 0.008
Dec-01 and Jan-02 0.227 0.017 0.352 0.020 0.465 0.011
Feb-02 0.306 0.020 0.551 0.023 0.508 0.021
Mar-02 0.229 0.018 0.582 0.021 0.478 0.021
Apr-02 0.209 0.016 0.576 0.024 0.424 0.015
May-02 0.270 0.015 0.661 0.024 0.542 0.014
Jun-02 0.200 0.016 0.651 0.024 0.396 0.009
Jul-02 0.162 0.018 0.970 0.030 0.487 0.012
Aug-02 0.278 0.017 1.005 0.031 0.556 0.012
Sep-02 0.171 0.018 0.861 0.029 0.332 0.011
Oct-02 0.253 0.019 0.830 0.031 0.427 0.012
Nov-02 0.175 0.018 0.712 0.029 0.412 0.013
Dec-02 0.157 0.016 0.522 0.028 0.418 0.014
Jan-03 0.125 0.016 0.348 0.027 0.320 0.015
Feb-03 0.126 0.015 0.269 0.026 0.217 0.014
Mar-03 0.060 0.014 0.251 0.024 0.015 0.010
Apr-03 -0.048 0.014 0.232 0.021 -0.004 0.009
May-03 -0.019 0.014 0.202 0.020 0.009 0.006
Jun-03 0.004 0.012 0.219 0.018 0.062 0.006
Jul-03 -0.143 0.012 0.131 0.015 0.035 0.007
Aug-03 -0.132 0.010 0.095 0.013 -0.036 0.005
Sep-03 -0.188 0.010 -0.068 0.013 -0.070 0.004
Oct-03 -0.251 0.011 -0.109 0.013 -0.073 0.004
Nov-03 -0.340 0.010 -0.193 0.009 -0.179 0.004
Dec-03 -0.245 0.007 -0.293 0.007 -0.228 0.003
Jan-04 -0.115 0.006 0.041 0.006 -0.135 0.001
Feb-04 0.052 0.004 0.241 0.006 -0.044 0.000
Mar-04 0.089 0.003 0.193 0.006 0.023 0.001
Apr-04 0.053 0.003 0.144 0.005 0.022 0.001
May-04 0.106 0.002 0.144 0.005 0.116 0.001
Jun-04 0.134 0.002 0.100 0.006 0.106 0.001
Jul-04 0.156 0.002 0.102 0.006 0.056 0.002
Aug-04 0.130 0.001 0.224 0.006 0.131 0.002
Sep-04 0.123 0.001 0.176 0.006 0.072 0.002
Oct-04 0.069 0.002 0.141 0.005 0.066 0.003
Nov-04 0.045 0.001 -0.013 0.004 0.130 0.002
Dec-04 reference -0.175 0.004 -0.001 0.002
Sum of Squared Residuals 8,742.760
Total Sum of Squares 34,098.286
R2 0.744

† Regressions are based on CDS data for the period December 2000 through December 2004.
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Table 11: Fitted parameters of actual default intensity models

Ticker θ̂ κ̂ σ̂ Ticker θ̂ κ̂ σ̂
253647Q † – – IPG 4.547 0.169 1.007
ABC 4.061 1.980 2.521 JNJ † – –
ABT † – – KMG 2.231 0.239 0.910
ADELQ 5.869 0.539 1.541 KMI 1.593 1.670 2.753
AGN 1.284 0.366 0.902 KMP 2.537 0.383 1.041
AHC 2.215 0.574 1.116 KRI † – –
AMGN † – – L 3.225 0.269 1.086
APA 2.211 0.298 0.909 LH 2.216 0.169 1.307
APC 2.033 0.238 0.855 LLY † – –
BAX 2.360 0.649 1.148 MCCC 6.124 1.034 1.522
BC 2.761 0.377 1.082 MDT † – –
BEV 4.740 0.586 1.424 MGLH 6.636 0.125 1.059
BHI 1.850 0.202 0.793 MMM † – –
BJS 2.897 0.730 1.310 MRK † – –
BLC 2.316 0.248 1.073 MRO 2.232 0.359 0.897
BMY † – – NBR 2.936 1.080 1.559
BR 1.897 0.401 0.994 NEV 4.562 0.274 0.955
BSX 1.813 0.701 1.822 NOI 3.571 1.196 1.900
CAH 2.183 0.595 1.293 OCR 2.445 0.245 1.311
CAM 3.167 0.592 1.101 OEI 4.192 0.331 1.227
CCU 2.445 0.390 1.483 OMC 2.755 1.209 1.769
CHIR 2.575 0.617 1.222 OXY -0.378 0.078 0.696
CHK 3.261 0.167 1.265 PDE 4.234 0.811 1.533
CHTR 11.718 0.116 1.062 PFE † – –
CMCSA 3.317 0.528 0.972 PHA † – –
CNG † – – PKD 5.741 0.141 1.201
COC 2.702 1.959 1.965 PRM 6.693 0.054 1.142
COP † – – PXD 3.777 0.437 1.311
COX 2.345 0.647 1.387 RCL 2.661 0.382 1.210
CVX † – – RIG 2.216 0.313 1.377
CYH 4.285 0.957 1.478 SBGI 5.183 0.677 1.500
DCX 3.502 0.680 1.353 SGP 2.861 0.149 0.571
DGX 0.408 0.154 0.856 SLB 1.846 0.289 0.871
DIS 1.773 0.360 0.879 SUN 2.452 0.307 0.933
DO 1.882 0.298 1.437 THC 3.526 0.393 1.002
DVN 2.274 0.335 1.392 TLM 1.886 0.278 1.200
DYN ‖ – – TRI 4.189 0.656 0.842
EEP 1.657 0.194 0.867 TSG 3.678 0.241 1.255
ENRNQ ‡ – – TSO 4.097 0.544 1.299
EP 5.014 0.264 1.040 TWX 3.253 0.296 1.097
EPD 1.731 1.377 2.666 UCL 1.506 0.188 0.833
F 2.568 0.401 1.127 UHS 3.039 0.880 1.168
FST 4.478 0.825 1.345 UNH 1.786 0.302 1.235
GDT 1.618 0.562 1.083 VIA 2.133 0.657 1.452
GENZ 2.309 0.817 1.486 VLO 2.682 0.281 1.038
GLM 2.283 0.307 1.025 VPI 4.047 0.751 1.547
GM 3.008 0.974 1.358 WFT 2.132 0.189 1.102
HAL 2.967 0.407 1.457 WLP 2.646 0.740 1.469
HCA 2.004 0.427 1.740 WMB 3.699 0.211 1.258
HCR 2.679 0.361 1.016 WYE 1.812 0.536 0.875
HMA 2.115 0.259 0.961 XOM † † †
HRC 4.033 0.398 1.668 XTO 2.299 0.155 0.978
HUM 3.936 0.370 1.390 YBTVA 5.440 0.793 1.535
ICCI 6.164 0.610 1.402

† No estimates provided; the sample mean of the 1-year EDF is less than 10 basis points.

‡ No estimates within admissible parameter region; the estimate for the mean-reversion parameter κ is negative.

‖ Firm removed from data set.
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Table 12: MC distribution of default intensity parameter estimates

θ̂ κ̂ σ̂

“true parameters” 4.00 0.50 1.00

10 years of data
mean 3.95 0.87 1.21
std. dev. (0.50) (0.40) (0.26)

50 years of data
mean 3.98 0.58 1.04
std. dev. (0.21) (0.15) (0.09)

Table 13: Fitted parameters of default intensity models

Oil and Gas Healthcare Broadcasting and E.

Ticker θ̂ Ticker θ̂ Ticker θ̂

AHC 2.093 ABC 4.544 ADELQ 5.862
APA 2.864 AGN 1.778 BC 3.063
APC 2.411 BAX 2.292 BLC 2.248
BHI 2.675 BEV 4.706 CCU 2.485
BJS 3.230 BSX 1.978 CHTR 6.359
BR 1.708 CAH 2.322 CMCSA 3.436
CAM 3.430 CHIR 2.767 COX 2.479
CHK 5.378 DGX 3.930 DIS 1.503
COC 2.861 GDT 2.191 IPG 3.338
DO 2.632 GENZ 2.548 L 2.175
DVN 2.588 HCA 2.781 MCCC 5.943
EEP 2.095 HCR 2.809 OMC 2.883
ENRNQ 1.915 HMA 2.063 PRM 4.417
EP 3.647 HRC 4.032 RCL 3.219
EPD 2.530 HUM 3.670 SBGI 5.021
FST 4.863 LH 3.922 TSG 2.915
GLM 3.174 MGLH 5.796 TWX 3.278
HAL 3.261 OCR 2.965 VIA 2.289
KMG 2.199 SGP 1.404 YBTVA 5.324
KMI 2.329 THC 3.462
KMP 2.460 TRI 4.711
MRO 2.728 UHS 2.091
NBR 3.169 UNH 2.932
NEV 4.450 WLP 3.621
NOI 3.942 WYE 3.305
OEI 3.890
OXY 2.490
PDE 4.514
PKD 4.364
PXD 3.891
RIG 2.897
SLB 1.805
SUN 2.743
TLM 2.191
TSO 4.377
UCL 3.288
VLO 2.301
VPI 3.021
WFT 4.137
XTO 1.461
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Table 14: Summary statistics by firm for risk-neutral default intensity models

Oil and Gas Healthcare Broadcasting and Entertainment
Ticker in J ? mean(λ∗/λ) median (λ∗/λ) Ticker in J ? mean (λ∗/λ) median(λ∗/λ) Ticker in J ? mean(λ∗/λ) median(λ∗/λ)

AHC 1 4.978 5.042 AGN 1 3.885 3.800 BC 0 1.084 1.096
APA 1 1.809 1.760 BAX 1 1.254 0.879 BLC 0 2.561 2.479
APC 1 1.516 1.362 BSX 1 2.755 2.741 CCU 1 2.164 1.635
BHI 1 1.250 0.963 CAH 1 1.823 1.817 CMCSA 1 3.139 1.491
BJS 1 2.028 1.006 CHIR 1 1.784 1.751 COX 0 3.673 3.327
BR 1 3.933 3.848 DGX 0 1.695 1.827 DIS 1 2.097 1.852
CAM 1 0.595 0.544 GDT 0 2.697 2.518 IPG 0 0.915 0.865
CHK 1 2.637 2.733 GENZ 0 3.397 2.092 L 0 2.112 1.495
COC 0 4.769 4.791 HCR 0 1.674 1.606 OMC 0 1.481 1.459
DO 1 1.927 1.763 HMA 0 2.515 2.523 RCL 0 2.128 1.819
DVN 1 4.119 3.263 HUM 1 1.083 1.045 TSG 0 0.496 0.296
EEP 0 6.696 6.899 LH 0 1.780 1.781 TWX 1 0.914 0.610
EP 0 2.673 1.837 SGP 0 1.240 1.078 VIA 1 2.351 1.924
EPD 0 14.622 14.599 UHS 0 1.272 1.252
GLM 0 1.184 1.104 UNH 0 4.222 3.944
HAL 1 3.375 2.185 WYE 1 1.915 1.812
KMG 1 2.790 2.590
KMI 1 8.009 7.280
KMP 0 3.564 3.342
MRO 0 2.396 2.431
NBR 1 1.162 0.896
NOI 0 0.535 0.451
OXY 0 5.169 5.108
PDE 1 4.712 4.450
PXD 1 7.650 8.328
RIG 0 1.188 1.104
SLB 0 1.659 1.560
SUN 0 3.257 3.072
TLM 1 5.707 5.407
UCL 0 2.741 2.701
VLO 1 4.761 3.883
WFT 1 0.828 0.765
XTO 0 7.523 7.542
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Table 15: Sector CDS-implied Kalman-filter-based risk-neutral default intensity parameter esti-
mates for the model specification with measurement noise for both 1-year and 5-year CDS

parameter Oil and Gas Healthcare Broadcasting and
estimates† Entertainment

β̂0 3.083 1.296 1.469

β̂1 0.164 0.424 0.133

β̂2 0.077 0.169 0.546
κ̂u 0.423 1.052 0.761
σ̂u 1.198 1.991 1.860
ρ̂u 0.394 0.248 0.688

mean ˆ̃θi 3.769 1.451 2.456
ˆ̃κ = ˆ̃κu 0.350 0.377 0.350
SD (measurement noise) 0.058 0.055 0.000

sector likelihood 1.090 0.797 0.825
L∗ 0.646 0.836 0.768

no. firms 33 16 13

† The parameters are estimated using MLE. We assume that κ̃ = κ̃u, and restrict γ and θu to be zero. For each

firm i, we determine θ̃i so that the model-implied average 1-year CDS rate equals the observed average rate.
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