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Abstract

Common Failings: How
Corporate Defaults are Correlated

We develop, and apply to data on U.S. corporations from 1987-2000, tests of the
standard doubly-stochastic assumption under which firms’ default times are corre-
lated only as implied by the correlation of factors determining their default intensities.
This assumption is violated in the presence of contagion or “frailty” (unobservable
covariates for default that are correlated across firms). Our tests do not depend on
the time-series properties of default intensities. The data do not support the joint
hypothesis of well specified default intensities and the doubly-stochastic assumption,
although we provide evidence that this may be due to mis-specification of the default
intensities, which do not include macroeconomic default-prediction covariates. De-
spite this rejection, there is no evidence of significant default clustering in excess of
that implied by the doubly-stochastic model and correlation of observable firm-specific
default covariates.
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1 Introduction

Why do corporate defaults cluster in time? Several explanations have been explored.
First, firms may be exposed to common or correlated risk factors whose co-movements
cause changes over time in conditional default probabilities that are correlated across
firms. Second, the event of default by one firm may be “contagious,” in that this event
itself can push other firms toward default. For example, there could be a “domino” or
cascade effect, under which corporate failures directly induce other corporate failures,
as with the collapse of Penn Central Railway in 1970. A third channel for default cor-
relation is learning from defaults. For example, the defaults of Enron and WorldCom
may have revealed accounting irregularities that could be present in other firms, and
thus may have had a direct impact on the conditional default probabilities of other
firms.

Our primary objective is to examine whether cross-firm default correlation via ob-
servable factors determining conditional default probabilities, that is, the first channel
on its own, is sufficient to account for the degree of time-clustering of defaults that
we find in the data.

Specifically, we test whether our data are consistent with the standard doubly-
stochastic model of default, under which, conditional on the path of risk factors de-
termining all firms’ default intensities, defaults are independent Poisson arrivals with
these (conditionally deterministic) intensity paths. This model is particularly conve-
nient for computational and statistical purposes, although its empirical relevance for
default correlation has been unresolved. We develop, and apply to default data for
U.S. corporations during the period 1987-2000, a new test of the doubly-stochastic
assumption. The data do not support the joint hypothesis of well specified default
intensities and the doubly-stochastic assumption, although we provide evidence that
this rejection may be due to mis-specification of the default intensities, which do not
include macroeconomic default-prediction covariates. These missing macroeconomic
covariates may be responsible for some clustering of defaults. Despite the rejection
based on goodness-of-fit tests, we do not find substantial evidence of default clustering
beyond that predicted by the doubly-stochastic model and our data.

Understanding how corporate defaults are correlated is particularly important
for the risk management of portfolios of corporate debt. For example, as backing
for the performance of their loan portfolios, banks retain capital at levels designed
to withstand default clustering at extremely high confidence levels, such as 99.9%.
Some banks do so on the basis of models in which default correlation is captured by
common risk factors determining conditional default probabilities, as in Gordy [2003]
and Vasicek [1987]. (Banks do, however, attempt to capture the effects of contagion
that arise from parent-subsidiary and other direct contractual links.) If defaults are
more heavily clustered in time than currently envisioned in these default-risk models,
however, then significantly greater capital might be required in order to survive default
losses at high confidence levels. An understanding of the sources and degree of default
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clustering is also crucial for the rating and risk analysis of structured credit products
that are exposed to correlated default, such as collateralized debt obligations (CDOs)
and options on portfolios of default swaps. The Bank of America has reported that
synthetic CDO volumes reached over $500 billion in 2003, an annual growth rate of
over 130%.

While there is some empirical evidence regarding average default correlation (Lu-
cas [1995] and deServigny and Renault [2002]) and correlated changes in corporate
default probabilities (Das, Freed, Geng, and Kapadia [2001]), there is relatively lit-
tle evidence regarding the presence of clustered defaults. In particular, there has
been no prior work on whether the degree of default clustering in the data can be
reasonably captured by doubly-stochastic models. Collin-Dufresne, Goldstein, and
Helwege [2003] and Zhang [2004] find that default events are associated with signifi-
cant increases in the credit spreads of other firms, consistent with a clustering effect
in excess of that suggested by the doubly-stochastic model, or at least a failure of the
doubly-stochastic model under risk-neutral probabilities. That is, their findings may
be due to default-induced increases in the conditional default probabilities of other
firms, or could be due to default-induced increases in default risk premia! of other
firms, as envisioned by Kusuoka [1999]. Both effects could be at play.

Explicitly considering a failure of the doubly-stochastic hypothesis, Collin-Dufresne,
Goldstein, and Helwege [2003], Giesecke [2004], Jarrow and Yu [2001], and Schénbucher
[2003] explore learning-from-default interpretations, based on the statistical modeling
of frailty, under which default intensities include the expected effect of unobservable
covariates. In a frailty setting, the arrival of a default causes, via Bayes’ Rule, a jump
in the conditional distribution of hidden covariates, and therefore a jump in the condi-
tional default probabilities of any other firms whose default intensities depend on the
same unobservable covariates. For example, the collapses of Enron and WorldCom
could have caused a sudden reduction in the perceived precision of accounting leverage
measures of other firms. Indeed, Yu [2004] finds that, other things equal, a reduction
in the measured precision of accounting variables is associated with a widening of
credit spreads. Lang and Stulz [1992] explore evidence of default contagion in equity
prices.

Banks and other managers of credit portfolios could in theory extend the doubly-
stochastic model if it were found to be seriously deficient. At this point, there are
few if any methods applied in practice to measure loan portfolio credit risk that
allow a role for contagion or frailty. For example, when applied in practice, the
Merton [1974] model and its variants imply that default correlation is captured by
co-movement in the observable default covariates (primarily leverage) that determine

LCollin-Dufresne, Goldstein, and Huggonier [2004] provide a simple method for incorporating
the pricing impact of failure, under risk-neutral probabilities, of the doubly-stochastic hypothesis.
Other theoretical work on the impact of contagion on default pricing includes that of Cathcart and
El Jahel [2002], Davis and Lo [2001], Giesecke [2004], Kusuoka [1999], Schonbucher and Schubert
[2001], Terentyev [2003], Yu [2003], and Zhou [2001].
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conditional default probabilities. Ratings-based transition models have sometimes
been applied to the task of credit portfolio risk management, again based on the
doubly-stochastic assumption that credit-ratings transitions intensities are based on
commonly observable covariates.

The doubly stochastic property, sometimes called “conditional independence,”
also underlies the standard econometric duration models used for event forecasting,
including default prediction models, such as Shumway [2001] and Duffie and Wang
[2003]. The property allows the likelihood function that is to be maximized when
estimating the coefficients of an intensity model to be expressed as the product of the
likelihood functions of each of the underlying events in the data. One of our objectives
is to provide a tool with which to check whether this tractability is achieved at the
expense of mis-specification associated with a failure of the doubly stochastic property.

Before describing our data, methods, and results in detail, we offer a brief synopsis.
Our data on actual default times and on monthly estimates of conditional probabilities
of default within one year (PDs) were provided to us by Moodys, and cover the period
January, 1987 to October, 2000. These data are described in Section 3, with further
details in Appendix A. After dropping firms for which we had missing data, we were
left with 241 individual issuer defaults among a total of 1,990 firms over 216,859
firm-months of data.

From the time-series of PD data for each firm, we estimate default intensities
for each firm, using a simple time-series model of intensities. For this, we assume
that the default intensity process for each firm is a Feller diffusion (also known as
a Cox-Ingersoll-Ross process, or a square-root diffusion). The fitting procedure is
outlined in Section 3.2. The current intensity level measured from the one-year default
probability is relatively robust to mis-specification of the Feller diffusion model, since
intensities and one-year conditional default probabilities are relatively close for a wide
range of alternative intensity models and reasonable parameters. We rely on this
fitting procedure only for the levels of default intensities, and not for the associated
implied probability distributions of intensity movements.

We then exploit the following new result, developed in Section 2. Consider a
change of time scale under which the passage of one unit of “new time” coincides
with a period of calendar time over which the cumulative total of all firms’ default
intensities increases by one unit. (This is, roughly speaking, the calendar time pe-
riod that, at current intensities, would include one default, in expectation.) Under
the doubly-stochastic assumption, and under this new time scale, the cumulative
number of defaults to date defines a standard (constant mean arrival rate) Poisson
process. Thus, the doubly-stochastic property implies, once fixing any scalar ¢ > 0
and considering successive non-overlapping time intervals each lasting for ¢ units of
new time (corresponding to periods that include an accumulated total default inten-
sity, across all firms, of ¢), that the number of defaults in the successive time intervals
(X1 defaults in the first interval lasting for ¢ units, X5 defaults in the second interval,
and so on) are independent Poisson distributed random variables with mean ¢. This
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time-changed Poisson process is the basis of most of our tests, outlined as follows.

1. We apply a Fisher dispersion test for consistency of the empirical distribution
of the numbers Xi,..., X, ... of defaults in successive time bins of a given
accumulated intensity ¢, with the theoretical Poisson distribution of mean c
implied by the doubly-stochastic model. The null hypothesis that defaults arrive
according to a time-changed Poisson process is mildly rejected in some cases,
at traditional confidence levels.

2. We test whether the mean of the upper quartile of our sample X7, X, ..., Xk of
numbers of defaults in successive time bins of a given size c is significantly larger
than the mean of the upper quartile of a sample of like size drawn independently
from the Poisson distribution with parameter c. An analogous test is based on
the median of the upper quartile. These tests are designed to detect default
clustering in excess of that implied by the default intensities and the doubly-
stochastic assumption. We also extend this test so as to simultaneously treat a
number of bin sizes. For larger bin sizes, the null is rejected.

3. In order to avoid reliance on specific bin sizes, we provide the results of a test
due to Prahl [1999] for clustering of default arrival times (in our new time scale)
in excess of that associated with a Poisson process. In this case, the null is not
rejected.

4. Fixing the size ¢ of time bins, we test for serial correlation of Xi, Xs,... by
fitting an autoregressive model. The presence of serial correlation would imply
a failure of the independent-increments property of Poisson processes, and, if the
serial correlation is positive, could lead to default clustering in excess of that
associated with the doubly-stochastic assumption. For certain specifications,
the null is rejected at traditional confidence levels.

An appealing feature of these tests is that they do not depend on the joint prob-
ability distribution of the default intensity processes of the firms, including their cor-
relation structure, allowing both generality and robustness. We find the data broadly
consistent with a rejection of the joint hypothesis of correctly specified intensities
and the doubly-stochastic hypothesis, at standard confidence levels. In light of this,
we also test for the presence of missing covariates in the PD model, which was esti-
mated from only firm-specific covariates such as leverage, asset volatility, and credit
rating. We are especially concerned about missing default covariates that might be
associated with default clustering, such as business-cycle variables, which were not
included in the statistical model used by Moody’s to estimate our default probability
data. Indeed, we find evidence, in some tests, that certain macroeconomic business-
cycle variables should probably have been included as default-prediction covariates.
For example, the number of defaults in a given bin, in excess of its conditional mean,
is in theory uncorrelated with any variables in the information set of the observer
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before the time bin begins. Among other related results, however, we find some evi-
dence of correlation between X}, the number of defaults in bin &, and macroeconomic
variables such as GDP growth and industrial production (IP) that were observed be-
fore bin k begins. It is thus indeed plausible that missing covariates, rather than a
failure of the doubly-stochastic property, is responsible for the rejection of the joint
hypothesis that we test.

In order to gauge the degree of default correlation that is not captured by default
intensity correlation, we calibrate a standard version of the Gaussian copula model
of default correlation, estimating the amount of additional correlation that must
be added (in the sense of the Gaussian copula correlation parameter), on top of
the correlation already present in default intensities, in order to match the degree
of default clustering observed in the data. Consistent with our other results, this
incremental correlation estimate is relatively small, at most 2% depending on the
length of time window used.

The rest of the paper comprises the following. In Section 2, we derive the property
that the total default arrival process is a Poisson process with constant intensity un-
der a time rescaling based on aggregate default intensity accumulation. This provides
our testable implications. Section 3 describes our data, comprising default probabili-
ties and default times over a period of fourteen years. This section also describes the
conversion of default probabilities into intensities. Section 4 provides various tests of
the doubly-stochastic hypothesis, and Section 5.1 addresses the question of indepen-
dence of increments of the time-changed process governing default arrival. In Section
5.2, we test our default intensity data for missing macroeconomic covariates. (This
test does not depend on the doubly-stochastic property.) Section 6 concludes. The
appendices contain further details on the data and estimation procedures.

2 Time Rescaling for Poisson Defaults

In this section, we define the doubly-stochastic default property that rules out default
correlation beyond that implied by correlated default intensities, and we provide some
testable implications of this property.

We fix a probability space (2, F, P) and an observer’s information filtration {F; :
t > 0}, satisfying the usual conditions. This and other standard technical definitions
that we rely on may be found in Protter [2003]. We suppose that, for each firm
1 of n firms, default occurs at the first jump time 7; of a non-explosive counting
process NN; with stochastic intensity process A;. (Here, N; is (F;)-adapted and J; is
(F:)-predictable.)

The key question at hand is whether the joint distribution of, in particular any
correlation among, the default times 7, ..., 7, is determined by the joint distribution
of the intensities. Violation of this assumption means, in essence, that even after
conditioning on the paths of the default intensities A,..., A\, of all firms, the times
of default can be correlated.
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A standard version of the assumption that default correlation is captured by co-
movement in default intensities is the assumption that the multi-dimensional counting
process N = (Ny,...,N,) is doubly stochastic. That is, conditional on the path
{A = M1ty .-, Ane) £ > 0} of all intensity processes, as well as the information Fr
available at any given stopping time 7', the counting processes Nl, e Nn, defined by
N;(u) = Nj(u+T), are independent Poisson processes with respective (conditionally
deterministic) intensities Ay, ..., A, defined by A;(u) = A\;j(u+T). In this case, we also
say that (71, ..., 7,) is doubly-stochastic with intensity (A1, ..., A,). In particular, the
doubly-stochastic assumption implies that the default times 71, . . ., 7,, are independent
given the intensities.

We will test the following key implication of the doubly stochastic assumption.

Proposition. Suppose that (11, ..., 7,) is doubly stochastic with intensity (A1, ..., A\n).
Let K(t) = #{i : 7, < t} be the cumulative number of defaults by t, and let
Ut) = iy, i (1) 17, >0y du be the cumulative aggregate intensity of surviving firms,
to time t. Then J = {J(s) = K(U7Y(s)) : s > 0} is a Poisson process with rate pa-
rameter 1.

Proof: Let Sy =0 and S; = inf{s: J(s) > J(Sj_1)} be the jump times, in the new
time scale, of J. By Billingsley [1986], Theorem 23.1, it suffices to show that the
inter-jump times {Z; = S; — S;_1 : j > 1} are iid exponential with parameter 1. Let
T(j) =inf{t: K(t) > j}. By construction,

T
Zj = - Z )\Z(U)]_{Tz >u} du.
i-11=1

By the doubly-stochastic assumption, given {\; = (A, ..., An) : £ > 0} and Frpy,
we know that Nj = {N(u) = 37, Ni(u + Ti) iz, >y du, u > Ty} is a sum of
independent Poisson processes, and therefore itself a Poisson process, with intensity
N1 (w) = S0 Ni(u+ T) 1, >1;3 du. Thus Z;; is exponential with parameter 1.

In order to check the independence of Z;, Zs, ..., consider any integer k > 1 and
any bounded Borel functions fi,..., fr. By the doubly-stochastic property and the

law of iterated expectations, applied recursively,

E[fi(Z0)f(Z2) -+ fe-1(Zr-1) fx(Z1))]
= E[fi(Z1)f(Z2) - fr-1(Zx—1) E[fi(Z) [N, Fr L, ]

~ BIAZ)(Z) - fia(Zun)] [ Selz)e = dz

= Zf[l/ooo fi(z)e " dz.

Thus, Z;, Z; ... are indeed independent, and J is a Poisson process with parameter
1, completing the proof.
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Using this result, some of the properties of the doubly-stochastic assumption that
we shall test are based on the following characterization.

Corollary (Poisson property): Under the conditions of the proposition, for any
c > 0, the successive numbers of defaults per bin,

J(¢), J(2¢) — J(c), J(3¢) — J(2¢),. ..,

are 1.1.d. Poisson distributed with parameter c.

That is, by dividing our sample period into non-overlapping time “bins” that each
contain an equal cumulative aggregate default intensity of ¢, we can test the doubly
stochastic assumption by testing whether the numbers of defaults in the successive
bins are independent Poisson random variables with common parameter c. Other
tests based on the implications of the Proposition will also be applied.

3 Data

Our empirical tests are based on a dataset of default probabilities and default events,
both of which were developed by Moody’s Investor Services.

3.1 Description of the Data

The data on default probabilities consists of a monthly time series of estimated con-
ditional one-year default probabilities for public non-financial North American firms
over the period January, 1987 to October, 2000. These default probabilities are the
output of a logit model estimated from the history of firm-specific financial covariates
and default times. A key covariate is the ‘distance-to-default’ measure suggested by
the Merton [1974] model, which is an estimate of the number of standard deviations
of annual asset growth by which assets exceed a measure of book liabilities. Other
covariates include financial statement information and Moody’s rating, when avail-
able. Details of the model and its econometric fit and performance are described in
Sobehart, Stein, Mikityanskaya and Li [2000] and Sobehart Keenan and Stein [2000].
This database of estimated default probabilities was part of Moody’s RiskCalc sys-
tem. (Moody’s subsequently distributed a related default probability estimate, the
Moody’s KMV EDF, also based on distance to default.)

Key advantages of this PD dataset include: (i) it is relatively comprehensive,
and (i1) it is consistent with Moody’s database of historical defaults over the sample
period. In particular, the database that we use, extracted from Moody’s overall
database, covers 1,990 firms, and includes almost all firms that have been rated by
Moody’s over this period.

Using a separate database of defaults also obtained from Moody’s, we identify a
total of 241 defaults of the rated firms in our database. Much of the matching of
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Figure 1: Cross-sectional sample mean of one-year conditional default probabilities, and
the number of firms covered, January 1987 to October 2000.

firms across the two databases is done manually. In the end, there is a close match
between the mean number of defaults implied by the default probabilities and the
actual number of defaults. We discuss this in more detail in our analysis to follow.
Appendix A provides further details on the construction of the database.

Figure 1 shows a plot of the monthly cross-sectional sample mean of estimated
one-year conditional default probabilities. The plot shows evidence of positive corre-
lation of default intensities, in that the cross-sectional mean of one-year conditional
probabilities of default ranges from 0.69% to 3.11%, and increases markedly with the
U.S. recession that occurred around 2000-2001. The number of firms in our sample
at a given time increases from a low of 1,081 firms at the beginning of the sample
period in 1987 to a high of 1,554 firms in the second half of 1998. Figure 2 shows a
plot of the number of defaults over this period, month by month, ranging from 0 to
a maximum of 8 per month, as well as a plot of the total of the estimated default
intensities of all sampled firms. We turn next to the estimation of these intensities
from one-year conditional default probabilities.

3.2 From PDs to Default Intensities

In order to test the doubly-stochastic assumption using the new-time-scale Poisson

process described in the Proposition of Section 2, we estimate default intensities, firm

by firm, from the PD data of one-year conditional default probabilities, as follows.
For a given firm, the default intensity process ); is assumed to satisfy a stochastic
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differential equation of the form

AN = k(0 — N) dt + o\/\ dz, (1)
where z is a standard Brownian motion, and where k, 8, and o are positive numbers.

The doubly-stochastic assumption implies that the T-maturity survival probability
at time ¢, for a currently surviving firm, is

s(T) = E, lexp (— /t Y du) ‘ /\t] . )

Cox, Ingersoll, and Ross [1985] have provided the well-known solution:

si(T) = A(T) exp [-\:B(T)], (3)
where
B 2yelk+)T/2 %7
A0 = (Ermer—n7s) W
B(T) = e (5)

(k+~)(eT —1)+ 2y
v = Vk2+202 (6)

Inverting equation (3), we get, for any time horizon T,

W S [Stm]. (7)

A(T)

Our PD data are monthly observations of the one-year default probability, 1—s;(1).
We estimate the parameters {k, 0,0}, and the default intensities of each firm, by a
method-of-moments estimator provided in Appendix B. The estimator matches the
time-series behavior of \; implied by the Feller diffusion, using the relationship be-
tween default intensity and PD given by (7). Maximum likelihood estimation has
also been used in similar settings, and is efficient in large samples, but is notoriously
biased in small samples. Our method-of-moments estimator is robust and computa-
tionally efficient, usually able to fit a given firm’s default intensity model in a couple
of seconds. In any case, the fit is relatively robust to mis-specification of the time-
series model and to fitting error, as intensities are relatively close to one-year default
probabilities (except for cases of extreme volatility or drift parameters). We use this
fitting procedure only for the implied levels of default intensities, and not for the
associated probability transition distributions implied by the fitted Feller diffusion
parameters. Figure 2 shows the total of the estimated intensities of all firms, as well
as the monthly arrivals of defaults.



How corporate defaults are correlated 10

Intensity & Default

mmm Defaults
= A\gg Intensity

\Hm\Huummmumummmmm
A H A H H H T H H Y
0 W © © N~

(2B BN <> R e) )]
B L A R e A A A A A A A A A A A A -

mmmmmmmmg

Q QLN Q9D QDR 0D NQLQR

92
93
93
94 =
94
94

11/30,
4/30,
9/30.
2
7

12
5

10,

3
8
1
6

1
4
9
2
7

12,
5

10

Figure 2: Aggregate (across firms) default intensities and firm defaults from 1987-2000.

4 Goodness-of-Fit Tests

Having estimated default intensities \;; for each firm i and each date ¢ (with \;; taken
to be constant within months), and letting 7(i) denote the default time of name
i, we let U(t) = f(f Yo Nisliz(s) >s) ds be the total accumulative default intensity
of all surviving firms. In order to obtain time bins that each contain ¢ units of
accumulative default intensity, we construct calendar times tg,t1, to,... such to = 0
and U(t;) — U(ti—1) = c. We then let X = >0 1gy, <r(i) <t,.,} be the number of
defaults in the k-th time bin. Figure 3 illustrates the time bins of size ¢ = 8 over the
last five calendar years of our data set.

Table 1 presents a comparison of the empirical and theoretical moments of the
distribution of defaults per bin, for each of several bin sizes.? The actual bin sizes vary
slightly from the integer bin sizes shown because of granularity in the construction
of the binning times t¢,ts,.... The approximate match between a bin size and the
associated sample mean (X + --- 4+ X )/K of the number of defaults per bin offers
some confirmation that the underlying PD data are reasonably well estimated, how-
ever this is somewhat expected given the within-sample nature of the estimates. For
larger bin sizes, Table 1 shows that the empirical variances are bigger than their the-
oretical counterparts under the null of correctly specified doubly-stochastic intensity

2Under the Poisson distribution, P(X; = k) = e;;,dc The associated moments of X}, are a mean
and variance of ¢, a skewness of ¢~9%, and a kurtosis of 3+ ¢~ 1.
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Figure 3: Aggregate intensities and defaults by month, 1996-2000, with time bin delimiters
marked for intervals that include a total accumulated default intensity of ¢ = 8 per bin.

model of defaults.

Figure 4 presents the observed default frequency distribution, and the associated
theoretical Poisson distribution, for bin sizes 2 and 8. For bins of size larger than 4,
there is a tendency for bi-modality (two peaks), as opposed to the unimodal theoreti-
cal Poisson distribution associated with the hypothesis of doubly-stochastic defaults.
To the extent that the measured intensities are based on an incomplete set of covari-
ates, one might suspect that violations of the Poisson distribution are larger for larger
bin sizes, because of the time necessary to build up a significant incremental impact
of the missing covariates on the probability distribution of the number of defaults per
bin.

4.1 Fisher’s Dispersion Test

Our first goodness-of-fit test of the hypothesis of correctly measured default intensities
and the doubly-stochastic property is Fisher’s dispersion test of the agreement of the
empirical distribution of defaults per bin, for a given bin size ¢, to the theoretical
Poisson distribution with parameter c.

Fixing the bin size ¢, a simple test of the null hypothesis that X, ..., X are in-
dependent Poisson distributed variables with mean parameter c is Fisher’s dispersion
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Table 1: Comparison of empirical and theoretical moments for the distribution of defaults
per bin. The number of bin observations is shown in parentheses under the bin size. The
upper-row moments are those of the theoretical Poisson distribution under the doubly-
stochastic hypothesis; the lower-row moments are the empirical counterparts.

Bin Size Mean Variance Skewness Kurtosis

2 2.00 2.00 0.71 3.50
(118) 2.04 1.89 0.71 3.52
4 4.00 4.00 0.50 3.25
(59) 4.07 4.00 0.41 2.06
6 6.00 6.00 0.41 3.17
(39) 6.08 8.07 0.41 2.19
8 8.00 8.00 0.35 3.12
(29) 8.14 13.12 0.26 2.07
10 10.00 10.00 0.32 3.10
(24) 10.04 15.43 0.82 2.25

test (Cochran [1954]). Under this null,

W=3 8)

is distributed as a x? random variable with K — 1 degrees of freedom. An outcome
for W that is large relative to a x? random variable of the associated number of
degrees of freedom would cause a small p-value, meaning a surprisingly large amount
of clustering if the null hypothesis of doubly stochastic default (and correctly specified
conditional default probabilities) applies. The p-values shown in Table 2 indicate that,
at standard confidence levels such as 95%, there is a borderline rejection of this null
hypothesis for bin sizes 8 and 10.

4.2 Upper tail tests

If defaults are more positively correlated than would be suggested by the co-movement
of intensities, then the upper tail of the empirical distribution of defaults per bin
could be fatter than that of the associated Poisson distribution. We use a Monte
Carlo bootstrap test of the “size” (mean or median) of the upper quartile of the
empirical distribution against the theoretical size of the upper quartile of the Poisson
distribution, as follows.

For a given bin size ¢, suppose there are K bins. We let M denote the sample mean
of the upper quartile of the empirical distribution of Xi,..., Xx. By Monte Carlo
simulation, we generated 10,000 data sets, each consisting of K iid Poisson random
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Table 2: Fisher’s dispersion test for goodness of fit of the Poisson distribution with mean
equal to bin size. Under the joint hypothesis that default intensities are correctly measured
and the doubly-stochastic property, W is y2-distributed with K — 1 degrees of freedom.

Bin Size K W p-value
2 118 110.5 0.65

4 59 58.0 0.47

6 39 51.2 0.07

8 29 46.0 0.02

10 24 355 0.05

Table 3: Tests of median and mean of the upper upper quartile of defaults per bin, against
the associated theoretical Poisson distribution. The last line in the table, denoted “All” is
the probability, under the hypothesis that time-changed default arrivals are Poisson with
parameter 1, that there exists at least one bin size for which the mean (or median) of
number of defaults per bin exceeds the corresponding empirical mean (or median).

Bin Mean of Tails p-value  Median of Tails  p-value

Size Data Simulation Data Simulation
2 3.62 3.63 0.58  3.00 3.18 0.25
4 6.71 6.25 0.21  6.00 5.90 0.17
6 10.00 8.81 0.05  9.50 8.42 0.07
8 12.75 11.12 0.03 12.50 10.69 0.03
10 16.00 13.71 0.02 16.50 13.26 0.00
All 0.70 0.44

variables with parameter ¢. We then compute the fraction p of the simulated data
sets whose sample upper-quartile size (mean or median) is above the actual sample
mean M. Under the null hypothesis that the distribution of the actual sample is
Poisson with parameter ¢, the expected p-value would be approximately 0.5.

The sample p-values presented in Table 3 suggest, for larger bin sizes, fatter upper-
quartile tails than those of the theoretical Poisson distribution. (That is, our one-sided
tests imply rejection of the null, for larger bins, at typical confidence levels.)

We corroborated these results with an analysis of the tail distributions using
the Pearson y? statistic for the theoretical tail distribution associated with the corre-
sponding theoretical Poisson distribution. The results (not reported) imply a rejection
of a Poisson-distributed upper-quartile distribution at standard confidence levels.



How corporate defaults are correlated 15

Table 4: Selected moments of the distribution of inter-default times. Under the joint hy-
pothesis of doubly-stochastic defaults and correctly measured default intensities, the inter-
default times in intensity-based time units are exponentially distributed. The inter-arrival
time empirical distribution is also shown in calendar time, after a linear scaling of time that
matches the first moment, mean inter-arrival time.

Moment Intensity time Calendar time Exponential

Mean 1.07 1.07 1.07
Variance 1.19 2.19 1.16
Skewness 2.13 3.87 2.00
Kurtosis 7.46 22.01 6.00

4.3 Prahl’s Test of Clustered Defaults

Fisher’s dispersion and our tailored upper-tail test, undertaken for each bin size, do
not exploit well the information available across all bin sizes. In this section, we apply
a test for “bursty” default arrivals due to Prahl [1999]. Prahl’s test is sensitive to
clustering of arrivals in excess of those of a theoretical Poisson process. This test
is particularly suited for detecting clustering of defaults that may arise from more
default correlation than would be suggested by co-movement of default intensities
alone. Prahl’s test statistic is based on the fact that the inter-arrival times of a
standard Poisson process are iid standard exponential. Under the null, Prahl’s test
is therefore applied to test whether, after the time change associated with aggregate
default intensity accumulation, the inter-default times Z, Z, ... are iid exponential
with parameter 1. (Because of data granularity, our mean is slightly larger than 1.)

The sample moments of inter-default times in the intensity-based time scale are
provided in Table 4. This table also presents the corresponding sample moments of
the un-scaled (actual calendar) inter-default times, after a linear scaling of time chosen
to match the mean of the inter-default time distribution to that of the intensity-based
time scale. A comparison of the moments indicates that conditioning on intensities
removes a large amount of default correlation, in the sense that the moments of the
inter-arrival times in the default-intensity time scale are much closer to the corre-
sponding exponential moments than are those of the actual (calendar) inter-default
times.

Letting C* denote the sample mean of 71, ..., Z,, Prahl shows that

M=t ¥ (1—5’;). ()

n {ZK<C*}

1

is asymptotically (in n) normally distributed with mean e™* —a/n and variance 3?/n,

where

a ~ 0.189
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B ~ 0.2427.

Using our data, for n = 240 default times,

M = 03681
1
w(M) = = -2 = 03671
e n
_ 8
(M) = = =0.0156.

vn

Because the test statistic M measured from our data is within one tenth of its stan-
dard deviation from the asymptotic mean associated with the null hypothesis of izd
exponential inter-default times (in the new time scale), this test provides no notable
evidence of default clustering in excess of that associated with the default intensities
under the doubly stochastic model.?

We conducted the same test for inter-arrivals of defaults in calendar time (as
opposed to intensity time). The test statistic is M = 0.4356, which is 4.38 standard
deviations from the mean expected value. Hence, defaults do indeed cluster to a
highly statistically significant extent, if one does not first “remove,” as we have in
our earlier tests, the correlation induced by co-movement of default intensities.

We also report a direct Kolmogorov-Smirnov test of goodness of fit of the ex-
ponential distribution of inter-default times in the new time scale. Figure 5 shows
the empirical distribution of inter-default times before and after scaling time change
by total intensity of defaults, compared to the exponential density implied by the
doubly-stochastic model. The associated K-S statistic is 1.8681 (this is y/n times
the usual D statistic, where n is the number of default arrivals), for a p-value of
only 0.002, leading to a rejection of the joint hypothesis of correctly specified con-
ditional default probabilities and the doubly-stochastic nature of correlated default.
(In calendar time, the corresponding K-S statistic is 2.0716, with a p-value of 0.0004.)

In summary, despite the rejection of overall fit implied by the K-S and our ear-
lier tests, Prahl’s test shows that after conditioning on intensities, defaults are not
significantly clustered.

4.4 Calibrating the residual copula correlation

Although Prahl’s test indicates no significant degree of clustering after conditioning
on default intensities, we have already seen some evidence of a lack of fit of the
doubly-stochastic assumption at the measured default intensities.

3Even if there is no clustering at the level of the economy, it is possible that there may be clustering
at the industry level. We implemented Prahls’ test, as above, within each sector, classifying firms
on the basis of their broad SIC code. We found no evidence of statistically significant clustering, in
intensity time, for any sector.
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Figure 5: The empirical distribution of inter-default times after scaling time change by
total intensity of defaults, compared to the theoretical exponential density implied by the
doubly-stochastic model. The distribution of default inter-arrival times is provided both in
calendar time and in intensity time.

In this section, we provide a rough estimate of the residual degree of correlation
in default arrivals after conditioning on default intensities, based on the intensity-
conditional copula approach of Schonbucher and Schubert [2001]. We estimate the
amount of copula correlation that must be added, after conditioning on the intensities,
to match the excess of the upper-quartile moments of the empirical distribution of
defaults per time bin. This measure of residual default correlation depends on the
specific copula model; we use the industry standard “flat Gaussian copula,” used for
example to price structured credit products such as collateralized debt obligations.

The magnitude of the calibrated Gaussian copula correlation, in the intensity time
scale, is a measure of the degree of correlation in default times that is not captured by
co-movement in default intensities. The calibrating algorithm, provided in Appendix
C, is applied to cumulative intensity bin sizes 2,4,6,8, and 10. The results are
reported in Table 5.

As anticipated by our prior results, the calibrated residual Gaussian copula cor-
relation r is non-negative in all cases. The largest estimate of r, for bin sizes 8 and
10, is close to 0.02. For the smaller bin sizes of 2 and 4, the estimate of r is close
to zero. Overall, these results indicate that, at least by this simple metric, default
arrivals are slightly more correlated than suggested by the co-movement across firms
of our estimated default intensities.
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Table 5: Residual Gaussian copula correlation. Using a Gaussian copula for intensity-
conditional default times, and equal pairwise correlation r for the underlying normal vari-
ables, we estimate by Monte Carlo the mean of the upper quartile of the empirical distribu-
tion of the number of defaults per bin, according to an algorithm described in Appendix C.
We set in bold the correlation parameter r at which the Monte-Carlo-estimated mean best
approximates the empirical counterpart. (Under the null hypothesis of correctly measured
intensity and the doubly stochastic assumption, the theoretical residual Gaussian copulation
7 is zero.)

Bin Mean of Mean of Simulated Upper Quartile
Size Upper Copula Correlation
quartile (data) r=0.00 r=0.01 r=0.02 r=0.03 r=0.04
2 3.62 3.83 4.09 4.22 4.43 4.52
4 6.71 6.58 7.01 7.32 7.62 7.86
6 10.00 8.97 9.80 10.38 10.84 11.34
8 12.75 11.49 12.44 12.99 13.76 14.77
10 16.00 13.82 14.69 15.86 16.69 17.39

5 Tests for Missing Default Covariates

We have documented violations of various degrees of severity of the joint hypothesis
of correctly specified default probabilities and the doubly stochastic property. We
now investigate a potential cause of these violations in the form of missing covariates
in the PD default-prediction model, a logit-based model that uses only firm-specific
covariates. In particular, the underlying Moodys PD default prediction model may
be missing covariates that would, if present, introduce more correlation across firms
in measured intensities. In general, adding more intensity covariates (that are not
spurious) increases the amount of default correlation that a doubly-stochastic model
can capture.

5.1 Testing for Independent Increments

Although all of the above tests depend to some extent on the independent-increments
property of Poisson processes, we will test specifically for serial correlation of the
numbers of defaults in successive bins. That is, under the null hypothesis of doubly-
stochastic defaults, fixing an accumulative total default intensity of ¢ per time bin,
the numbers of defaults X, X5, ... in successive bins are independent and identically
distributed. We test for independence by estimating an auto-regressive model for
X1, X5, ..., under which

X, =A+BX,_1+ ¢, (10)
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Table 6: Estimates of the auto-regressive model (10) of defaults in successive bins, for a
range of bin sizes (t-statistics are shown parenthetically).

Bin No. of A B R’
Size  Bins  (ta) (tg)

2 118 173 0.16 0.03
(7.66) (1.72)

1 59 272 034 0.12
(4.83) (2.73)

6 39 420 032 0.10
(3.97)  (2.01)

8 29 6.68 0.19 0.03
(3.83)  (0.96)

10 24 6.09 039 0.15

(2.75)  (1.93)

for coefficients A and B, and for iid innovations €, €5 . ... Under the joint hypothesis
of correctly specified default intensities and the doubly-stochastic property, A = c,
B = 0, and €, €y ... are 7id de-meaned Poisson random variables. A significantly
positive estimate for the auto-regressive coefficient B would be evidence of a failure
of the null hypothesis. Serial correlation for small bin sizes could lead, moreover, to
fat tails of the distribution of number of defaults in larger bin sizes, and thus could
be responsible for the rejections of the Poisson distribution in the larger bins that we
reported earlier. Such a result could reflect missing covariates, causing an appearance
of default clustering in excess of that implied by the doubly-stochastic property, even
if in fact the true multi-firm model of default times is doubly stochastic. For example,
if a business-cycle covariate should be included, but is not, and if the missing covariate
is persistent across time, then defaults per bin would be fatter tailed than the Poisson
distribution, and there would be serial correlation in defaults per bin.

Table 6 presents the results of this autocorrelation analysis. The estimated AR(1)
coefficient B is always positive, with t statistics indicating a degree of significance
that varies with the bin size.

5.2 Macro-economic covariates

A measured violation of the doubly-stochastic assumption that is due to frailty (unob-
servable covariates that are correlated across firms), could be caused by the existence
of default covariates that are in fact observable, but are not used to estimate inten-
sities. In other words, missing covariates play the same role in default correlation as
do unobservable covariates.

Prior work by Lo [1986], Lennox [1999], McDonald and Van de Gucht [1999], and
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Duffie and Wang [2003] suggests that macroeconomic performance is an important
explanatory variable in default prediction. Without controlling for firm-specific de-
fault covariates, for example, industrial production is a highly significant covariate
(McDonald and de Gucht [1999]). What matters in our empirical setting is whether
macro-economic covariates have significant explanatory power for default probabil-
ities after controlling for firm-specific covariates. Among the prior studies, Duffie
and Wang included distance to default, the key covariate in Moody’s PD model, and
found significant additional dependence of default intensities on U.S. personal income
growth, for the U.S. machinery and instruments sector for 1971 to 2001.

In this section, we explore the potential role of missing macroeconomic default co-
variates. In particular, we examine (i) whether the inclusion of these macroeconomic
variables helps explain default arrivals after controlling for the default covariates
used to estimate our default intensities, and if so, (i7) whether these variables can
potentially explain the violation of the doubly-stochastic assumption. We find that
industrial production and GDP growth rates do offer some explanatory power.

Under the null hypothesis of no mis-specification, fixing a bin size of ¢, the number
of defaults in a bin in excess of the mean, Y, = X —c, is the increment of a martingale,
and should therefore be uncorrelated with any variable in the information set available
prior to the formation of the k-th bin. Consider the regression,

Yk :Oé—i-ﬁlGDPk—}—ﬁQ[Pk—l—Ek, (11)

where GD Py, and I P are the growth rates of US gross domestic product and industrial
production observed in the quarter and month, respectively, immediately prior to the
beginning of the k-th bin. Under the null hypothesis of correct specification of the
default intensities, the coefficients «, (31, and (5 are in theory equal to zero. Table 7
reports estimated regression results for a range of bin sizes.

We report the results for the multiple regression as well as for each of the variables
separately. For all bin sizes, industrial production enters the regression with sufficient
significance to warrant its consideration as an additional explanatory variable in the
default intensity model. For bin sizes of both 2 and 10, the coefficient for GDP growth
rate is also significant at the 99% confidence level. For each of the bins, the signs
of the coefficients in the regressions are negative as one would expect under a mis-
specification of missing macroeconomic variables. That is, significantly more than
the number of defaults predicted by the PD model occur when GDP and industrial
production growth rates are lower than normal. Moreover, the explanatory power of
the regression is particularly high for the larger bin sizes, again consistent with the
hypothesis that the larger bins are especially affected by a missing macroeconomic
covariate. Overall, there is evidence of mis-specification. Given the persistence of
macroeconomic variables across time, these missing covariates may be responsible
for the presence of the apparent auto-correlation in X, Xs,... that we reported in
Section 5.1. We verified this by including lagged values of deviations Xj;_; in the
regression. We notice that for all bin sizes, both the intercept and the lagged value
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Table 7: Macroeconomic Variables and Default Intensities. For each bin size ¢, OLS-
estimated coefficients are reported for regression of the number of defaults in excess of
the mean, Y, = X — ¢, on the previous quarter’s GDP growth rate (annualized), and
the previous month’s growth in (seasonally adjusted) industrial production (/P). The
number of observations is the number of bins of size ¢. Standard errors are corrected for
heteroskedasticity; ¢-statistics are reported in parentheses.

Bin Size | No. Bins | Intercept | GDP IP R?
(%)
2 118 0.49 -14.13 5.65
(2.71) (-3.03)
0.18 -56.03 | 4.39
(1.13) (-2.29)
0.55 -11.99 | -44.29 8.27
(3.06) (-2.44) | (-1.77)
4 59 0.76 -21.16 5.74
(1.53) | (-1.76)
0.35 -101.53 | 8.06
(1.22) (-2.71)
0.90 -17.12 | -88.66 | 11.69
(1.86) (-1.48) | (-2.51)
6 39 1.26 -34.38 7.76
(1.45) (-1.58)
0.53 -165.04 | 9.46
(0.98) (-2.40)
1.43 -27.53 | -139.34 | 14.21
(1.83) | (-1.32) | (-2.14)
8 29 1.06 -28.33 2.93
(0.74) (-0.76)
1.04 -285.63 | 17.40
(1.43) (-2.69)
1.71 -21.02 | -276.08 | 18.99
(1.43) (-0.63) | (-2.64)
10 24 2.62 -71.47 19.00
(1.76) (-1.97)
1.59 -388.33 | 24.55
(1.39) (-2.49)
3.83 -64.67 | -360.47 | 39.98
(4.01) | (-2.36) | (-2.59)
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Xj_1 are not significant, implying that the use of macro-economic covariates appears
to account for some of the variation in excess defaults observed in the data.

It is also useful to examine the role of macro-economic factors when defaults are
much higher than expected. Table 8 provides the results of a test of whether the excess
upper-quartile number of defaults (the mean of the upper quartile less the mean of
the upper quartile for the Poisson distribution of parameter ¢) examined previously
in Table 3 are correlated with GDP and industrial production growth rates. We
report two sets of regressions, the first set based on the prior period’s macroeconomic
variables and the second set based on the growth rates observed within the bin period.*

We report results for those bin sizes, 2 and 4, for which we have a reasonable
number of observations. For each of these bins, previous or current period industrial
production is significant at typical confidence levels, and has the (negative) sign
consistent with the presence of mis-specification by failure to include macroeconomic
performance variables in prediction of default. GDP growth rate is not significant in
the single variable regressions.

6 Conclusions and Discussion

Defaults cluster in time both because firms’ default intensity processes are corre-
lated and also perhaps because, even after conditioning on these intensities, default
occurrence is correlated through additional channels such as contagion and frailty
(unobserved covariates that are correlated across firms). The latter channels are not
admitted in a doubly-stochastic setting with intensities that are based on all avail-
able information. The doubly-stochastic assumption forms the current basis of risk
management practice, yet to date, no test of its validity has been undertaken. This
paper makes the following contributions:

1. We introduce a time-change technique that reduces the process of cumulative
defaults to a standard Poisson process under the doubly-stochastic hypothe-
sis. Based on this, we provide newly developed tests of the joint hypothesis
that default intensities are correctly measured and that the doubly-stochastic
property holds. We are particularly interested in whether defaults are indeed
independent after conditioning on intensities.

2. Using various tests, we reject (at traditional confidence levels) the null of cor-
rectly measured intensities and the doubly-stochastic property. The Fisher dis-
persion test and our upper quartile test address the question by each bin size,
whereas the test by Prahl (1999) enables a test across all bin windows.

3. There is only mild evidence, however, that defaults are more tightly clustered
in time than would be suggested by simultaneous increases in their default

4The within-period growth rates are computed by compounding over the daily growth rates that
are consistent with the reported quarterly growth rates.
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Table 8: Upper-tail regressions. For each bin size ¢, OLS-estimated coefficients are shown
for regression of the number of defaults observed in the upper quartile less the mean of
the upper quartile of the theoretical distribution (with Poisson parameter equal to the
bin size) on the previous and current GDP and industrial production (IP) growth rates.
The number of observations is the number K of bins.

Standard errors are corrected for

heteroskedasticity; ¢-statistics are reported in parentheses.

Bin Size | K | Intercept | Previous Qtr GDP | Previous Month IP | R?2
(%)
2 40 -0.10 3.47 1.26
(-0.75) (0.84)
0.11 -60.21 14.24
(0.64) (-2.50)
-0.07 8.56 -75.57 20.98
(-0.55) (1.99) (-2.79)
4 17 0.67 -8.30 9.64
(2.52) (-1.48)
0.49 -35.11 4.67
(2.24) (-1.16)
0.66 -7.13 -18.57 10.76
(2.37) (-1.15) (-0.57)
Bin Size | K | Intercept | Current Bin GDP Current Bin IP R?
(%0)
2 40 -0.09 3.13 0.97
(-0.63) (0.59)
0.03 -23.60 2.05
(0.21) (-1.21)
-0.16 -10.32 -57.99 8.24
(-0.95) (1.19) (-1.58)
4 17 0.55 -4.26 2.02
(2.42) (-0.68)
0.51 -28.05 10.00
(2.61) (-2.14)
0.43 3.82 -35.63 10.90
(1.96) (0.45) (-1.92)
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intensities. Introducing a measure of residual Gaussian copula correlation, after
controlling for default intensities, we find that the default clustering in our data
can be matched by injecting as little as 2% extra copula correlation. Thus,
as a practical matter, simulation models that rely on the doubly stochastic
assumption may be useful for certain types of corporate debt risk management
applications.

4. We explore further whether default intensities are well-specified. We present
evidence that business-cycle covariates offer some explanatory power for default
prediction after controlling for standard firm-specific covariates.

These results address the ability of commonly applied credit risk models to capture
the tails of the probability distribution of portfolio default losses, and may therefore
be of particular interest to bank risk managers and bank regulators. For example,
the level of economic capital necessary to support levered portfolios of corporate debt
at high confidence levels is heavily dependent on the degree to which the doubly
stochastic property that we have tested actually applies in practice. This may be
of special interest with the advent of more quantitative portfolio credit risk analysis
in bank capital regulations, arising under the proposed Basel II (BIS) accord on
regulatory capital (see Gordy [2003], Allen and Saunders [2003], and Kashyap and
Stein [2004]).
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Appendices

A Moody’s Data on Defaults

This appendix provides some details of the creation of the data set used in this paper. Our
source of data are two separate databases, one containing default probabilities and the other
containing information of defaults. For the empirical work in this paper, we need to account
for all the defaults that occur over our sample of firms for which we have PDs. Below, we
describe how we link the two databases, and create a clean set of data for our analysis.

In its default database, Moody’s records 626 US and Canadian defaults of non-financial
firms in the period 1/87 to 10/2000. A few firms default twice over this time period (Grand
Union defaulted three times). The defaults in the database are indexed by Moody’s Issuer
Number (MIN). Although some of these firms are linked to a Cusip or a Bloomberg ticker,
many of the firms do not have a link to any external identifier. However, the name of the
defaulted firm is provided, as well as some information regarding the nature of default.
Moody’s database of default probabilities is created using accounting and equity price data,
and is limited to firms that had available data in the sample period. Our sample period is
January 1987 to October 2000. This data is indexed by the Gvkey.

The defaulted firms that have a Cusip are matched to the PD database using the Gvkey-
Cusip link of the combined Compustat-CRSP database. For the remaining firms, we do a
manual match using the company name. Some of these firms do not have Gvkeys because
they are either subsidiaries, or related to the primary public firm that has defaulted. For
example, on 7 April 1987, Texaco Capital, Texaco Capital N.V., Texaco Corporation and
Texaco Operations Europe are listed as four separate defaults. Of these, only Texaco
Corporation is counted in our sample.

For our empirical investigation, we focus only on defaults among the 1,990 rated firms
that are represented in our PD database (firms that have accounting and price information
over this period and were rated over the sample period of 1987-2000). Of these firms, we
count a total number of 241 incidents of defaults over 216,859 firm-months of data. This
comprises our final PD and default dataset.

B Estimation of Default Intensities from PDs

This appendix provides the algorithm for our iterative estimator of default intensities.
1. First, we obtain starting coefficient estimates values from the regression, for h = 1/12,
sian(1) — s:(1) = a4 Bs:(1) + e, (12)

where a and 3 are the ordinary-least-squares (OLS) estimators and e; denotes the
residual. From this regression, we get initial estimates of the three parameters as:

ko= -2 (13)
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where V'(e;) denotes the sample standard deviation of the residual e;.

. Given starting values of {k, 0, 0}, we obtain an initial estimate of the default intensity
At, for each observation time ¢, using equation (7).

. Next, we estimate by OLS,
)‘H-h — )\t =a-+ b)\t -+ wy. (16)

New parameter estimates are then given by
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. =—= =V 17
h7 b) g ( ﬁh}\t)’ ( )

where, again, V() denotes sample standard deviation.”?

e

. Given these updated estimates of the parameters {k, 6,0}, we return to Steps 2 and
3, and iterate to numerical convergence.

. For firms with very few observations (usually < 48), or with minimal variation in
PDs, convergence is not guaranteed; in these cases, PDs are converted to intensities
using a simpler (constant over 1 year) intensities model.

C Residual Guassian Copula Correlation

We estimate the residual Gaussian copula correlation by the following algorithm.

1. For name 7, cumulative intensity bin size ¢, and a given bin k, we calculate the total

cumulative intensity C; * for name 1, in this bin. The intensity for this name stays
at zero until name ¢ appears, and the cumulative intensity stops growing after name
1 disappears, whether by default or otherwise.

. For a flat Gaussian copula with correlation parameter r, let X; be the standard normal
for name ¢ in this bin, let F'(X;) be the standard normal CDF, and set U; = F(X;)
to be the associated uniform. We set corr(X;, X;) = r for all (7,5). Under the
conditional-copula model, name ¢ defaults in this bin if U; > exp[—C} ’k], that is, if
the uniform exceeds the survival probability.

. For each of 5,000 independent scenarios, we draw one of the bins at random (equally
likely), draw X (i) for each name i, with correlation r, and draw a default for each i
or not according to Step 2. Note that name i cannot default if C; k= 0.

5In the current version of our results, we use V (w;/V 0h) in place of the sample standard deviation
shown in (17), although our tests indicate that this causes minimal distortion in the estimated

intensities.
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4. From Step 3, we calculate the empirical distribution of the number of defaults per
bin. If the empirical distribution (see Table 3) has the same upper-quartile mean
number of defaults per bin as the actual mean upper quartile that we calculated in
the simulation, then r is calibrated.

References

[2003] Allen, L. and A. Saunders (2003) “A Survey of Cyclical Effects in Credit Risk
Measurement Models,” BIS Working Paper 126, Basel Switzerland.

[1986] Billingsley, Patrick (1986). Probability and Measure, Second Edition, New
York: Wiley.

[2002] Cathcart, L. and L. El Jahel (2002) “Defaultable Bonds and Default Correla-
tion,” Working Paper, Imperial College.

[1954] Cochran, W.G. (1954) “Some Methods of Strengthening x? Tests,” Biometrics
v10, 417-451.

[2003] Collin-Dufresne, Pierre, Goldstein, Robert, and Jean Helwege (2003) “Is Credit
Event Risk Priced? Modeling Contagion via the Updating of Beliefs,” Working
Paper, Haas School, University of California, Berkeley.

[2004] Collin-Dufresne, Pierre, Goldstein, Robert, and Julien Huggonier (2004) “A
General Formula for Valuing Defaultable Securities,” Econometrica, v72, 1377-
1407.

[1985] Cox, John, Jon Ingersoll, and Steven Ross (1985) “A Theory of the Term
Structure of Interest Rates,” Fconometrica v53, 385-407.

[2001] Das, Sanjiv., Laurence Freed, Gary Geng, and Nikunj Kapadia (2001). “Cor-
related Default Risk,” working paper, Santa Clara University.

[2001] Davis, Mark, and Violet Lo (2001) “Infectious Default,” Quantitative Finance,
v1, 382-287.

[2002] deServigny, Arnaud, and Olivier Renault (2002) “Default Correlation: Empir-
ical Evidence,” Working Paper, Standard and Poors.

[2003] Dulffie, Darrell., and Ke Wang (2003). “Multi-Period Corporate Failure Pre-
diction with Stochastic Covariates,” working paper, Stanford University.

[2004] Giesecke, Kay (2004) “Correlated Default with Incomplete Information,” Jour-
nal of Banking and Finance, v28, 1521-1545.



How corporate defaults are correlated 28

[2003] Gordy, Michael (2003) “A Risk-Factor Model Foundation for Ratings-Based
Capital Rules,” Journal of Financial Intermediation, v12, 199-232.

[2001] Jarrow, Robert., and Fan Yu (2001). “Counterparty Risk and the Pricing of
Defaultable Securities,” Journal of Finance v56, 1765-1800.

[2005] Jarrow, Robert., David Lando, and Fan Yu (2005). “Default Risk and Diver-
sification: Theory and Applications,” Mathematical Finance, v15(1), 1-26.

[2004] Kashyap, Anil., and Jeremy Stein (2004) “Cyclical Implications of the Basel-11
Capital Standards,” Working Paper, Graduate School of Business, University of
Chicago.

[1999] Kusuoka, Shigeo (1999) “A Remark on Default Risk Models,” Advances in
Mathematical Economics v1, 69-82.

[1994] Lando, David (1994). “Three essays on contingent claims pricing,” Ph.D. the-
sis, Cornell University.

[1998] Lando, David (1998). “On rating transition analysis and correlation,” Credit
Deriwatives: Applications for Risk Management, Investment and Portfolio Opti-
mization, Risk Publications, 147-155.

[2002] Lando, D. and T. Skgdeberg (2002). Analyzing Rating Transitions and Rating
Drift with Continuous Observations. Journal of Banking and Finance v26, 423-
444.

[1992] Lang, Larry and Rene Stulz (1992), “Contagion and competitive intra-industry
effects of bankruptcy announcements, Journal of Financial Economics v32, 45-
60.

[1999] Lennox, C. (1999) “Identifying Failing Companies: A reevaluation of the Logit,
Probit, and DA Approaches,” Journal of Economics and Business, vb1, 347-364.

[1986] Lo, Andrew (1986) “Logit versus Discriminant Analysis: Specification Test and
Application to Corporate Bankruptcies,” Journal of Econometrics, v31, 151-178.

[1995] Lucas, Douglas. J. (1995). “Default Correlation and Credit Analysis,” The
Journal of Fized Income, March, 76-87.

[1999] McDonald, Cynthia and Linda M. Van de Gucht (1999). “High Yield Bond
Default and Call Risks.” Review of Economics and Statistics, v81, 409-419.

[1974] Merton, Robert C. (1974). “On the Pricing of Corporate Debt: The Risk
Structure of Interest Rates,” The Journal of Finance, v29, 449-470.



How corporate defaults are correlated 29

[2004] Norden, Lars and Martin Weber (2004). “Informational Efficiency of Credit
Default Swap and Stock markets: The Impact of Credit Rating Announcements,”
Working Paper, Department of Banking and Finance, University of Mannheim.

[1999] Prahl, Juergen. (1999) “A Fast Unbinned Test on Event Clustering in Poisson
Processes,” Working Paper, University of Hamburg, submitted to Astronomy
and Astrophysics.

[2003] Protter, Philip (2003). Stochastic Integration and Differential Equations, Sec-
ond Edition (New York: Springer).

[2003] Schonbucher, Philipp (2003) “Information Driven Default Contagion,” Work-
ing Paper, ETH, Zurich.

[2001] Schonbucher, Philipp, and D. Schubert (2001) “Copula Dependent Default
Risk in Intensity Models,” Working Paper, Bonn University.

[2001] Shumway, Tyler (2001) “Forecasting Bankruptcy More Accurately: A Simple
Hazard Model,” Journal of Business v74, 101-124.

[2000] Sobehart, J., R. Stein, V. Mikityanskaya, and L. Li, (2000). “Moody’s Public
Firm Risk Model: A Hybrid Approach To Modeling Short Term Default Risk,”
Moody’s Investors Service, Global Credit Research, Rating Methodology, March.

[2000] Sobehart, J.R., Keenan, S.C. and Stein, R.M. (2000), “Benchmarking Quan-
titative Default Risk Models: A Validation Methodology,” Technical Report,
Moody’s Risk Management Services.

[2003] Terentyev, S. (2004) “Asymmetric Counterparty Relations in Default Model-
ing,” Working Paper, Department of Statistics, Stanford University.

[1987] Vasicek, Oldrich (1987) “Probability of Loss on Loan Portfolio,” Working Pa-
per, KMV Corporation.

[2003] Yu, Fan (2003) “Default Correlation in Reduced Form Models,” University of
California, Irvine.

[2004] Yu, Fan (2004) “Accounting Transparency and the Term Structure of Credit
Spreads,” University of California, Irvine.

[2004] Zhang, Gaiyan (2004) “Intra-Industry Credit Contagion: Evidence from the
Credit Default Swap Market and the Stock Market,” Working paper, University
of California, Irvine.

[2001] Zhou, Chunsheng (2001) “An Analysis of Default Correlation and Multiple
Defaults,” Review of Financial Studies, Vol. 14, pp. 555-576.



