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1 Introduction

This paper provides simple models and applications for the valuation and
simulation of contingent claims that depend on the time and identity of the
�rst to occur of a given list of credit events, such as defaults. Examples
include credit derivatives with a �rst-to-default feature, credit derivatives
signed with a defaultable counterparty, credit-enhancement or guarantees,
and other related �nancial positions.

2 Model Setting

We suppose there are n credit events to be considered. A credit event is
typically default by a particular entity, such as a counterparty, borrower, or
guarantor. There are interesting applications, however, in which credit events
may be de�ned instead in terms of downgrades, events that may instigate
(with some uncertainty perhaps) the default of one or more counterparties,
or other credit-related occurrences.2 The key to modeling the joint timing
of these credit events is a collection h = (h1; : : : ; hn) of stochastic intensity
processes, where hi is the intensity process of credit event i. In general, an
intensity process � for a stopping time � is characterized by the property
that, for N(t) = 1��t, a martingale is de�ned by

Nt �

Z t

0

(1�Ns)�s ds; t � 0:

For details, see Br�emaud (1980).3 With constant intensity �, the event has
a Poisson arrival at intensity �. More generally, for t before a stopping time

2At a presentation at the March, 1998 ISDA conference in Rome, Daniel Cunnigham
of Cravath, Swaine, and Moore reviwed the documentation of credit swaps, including
the speci�cation of credit event types such as \bankruptcy, credit event upon merger,
cross acceleration, cross default, downgrade, failure to pay, repudiation, or restructuring."
The credit event is to be documented with a notice, suported with evidence of public
announcement of the event, for example in the international press. The amount to be
paid at the time of the credit event is determined by one or more third parties, and based
on physical or cash settlement, as indicated in the con�rmation form of the OTC credit
swap transaction, a standard contract form with alternatives to be indicated.

3All random variables are de�ned on a �xed probability space (
;F ; P ). A �ltration
fFt : t � 0g of �-algebras, satisfying the usual conditions, is �xed and de�nes the informa-
tion available at each time. An intensity process � is assumed to be non-negative and pre-
dictable (a natural measurability restriction) and to satisfy, for each t > 0,

R t
0
�s ds < 1
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� with intensity process �, we may view �t as the conditional rate of arrival
of the event at time t, given all information available up to that time. In
other words, for a small time interval of length �, the conditional probability
at time t that the event occurs between t and t + �, given survival to t, is
approximately4 �t�:

Intensity processes h1; : : : ; hn for credit event times �1; : : : ; �n may in
some cases be derived from information concerning the incentives and abil-
ities of counterparties to meet their obligations, as in DuÆe and Lando
(1997), or might be �tted to market yield spreads, �rm-speci�c �nancial
ratios, sovereign risk indicators, or macroeconomic variables, as in Altman
(199?), Bijnen and Wijn (1994), McDonald and Van de Gucht (1996), and
Shumway (1996). We simply take a joint intensity process h = (h1; : : : ; hn)
for (�1; : : : ; �n) as given, as in the \reduced-form" defaultable term-structure
literature.5

3 First-Arrival Intensity

A simplifying and natural assumption is that there is zero probability that
more than one credit event occurs at the same time. Under this assumption,
the intensity associated with the �rst6 credit event is easily obtained.

Lemma 1. Suppose, for each i 2 f1; : : : ; ng, that event time �i has intensity
process hi. Suppose that, P (�i = �j) = 0 for i 6= j. Then h1 + � � �+ hn is an

intensity process for � = min(�1; : : : ; �n).

Proof: Let Ni denote the point process associated with �i, and N denote

almost surely. Some authors prefer to to describe \the" intensity as (1 � Ns)�s rather
than �s, and this indeed, under technical continuity conditions, allows for a uniqueness-
of-intensity property. Our de�nition is weaker and does not suggest uniqueness, but has
other de�nitional advantages, as in Lemma 1 and Proposition 1.

4This is true in the usual sense of derivatives if, for example, � is a bounded continuous
process, and otherwise can be interpreted in an almost-everywhere sense.

5Reduced-form models include those of Artzner and Delbaen (1995), DuÆe and Sin-
gleton (1995), DuÆe, Schroder, and Skiadas (1996), Jarrow and Turnbull (1996), Jarrow,
Lando, and Turnbull (1997), Lando (1993, 1997, 1998), Madan and Unal (1995), Martin
(1997), Nielsen and Ronn (1995), Pye (1974), Sch�onbucher (1997), and others.

6We may have �i =1 with positive probability, and we take the de�nition � =1 on
the event that �i =1 for all i.
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the point process associated with � . Then, because P (�i = �j) = 0,

N(t) = N1(t) + � � �+Nn(t); t � �:

By the de�nition of the intensities h1; : : : ; hn, martingales M1; : : : ;Mn are
de�ned by

Mi(t) = Ni(t)�

Z t

0

(1�Ni(s))hi(s) ds:

Let a process M be de�ned by

M(t) = N(t)�

Z t

0

(1�N(s))[h1(s) + � � �+ hn(s)] ds:

We have M(t) =M1(t) + � � �+Mn(t) for t � � , and M(t) = M(�) for t � � ,
so M is also a martingale. Thus h1 + � � �+ hn is, by de�nition, the intensity
process for � , as asserted.

We would next like to characterize the \survival" probability P (� � t),
for a given t. The jump �Y of a semi-martingale Y is de�ned by �Y (t) =
Y (t)�lims"t Y (s). The following proposition is likely to be well known among
specialists; a proof is in any case provided for completeness.

Proposition 1. Suppose � is a stopping time with a bounded intensity pro-

cess �. Fixing some time T > 0, let

Y (t) = E

�
exp

�
�

Z T

t

�u du

� ��� Ft

�
; t � T:

If the jump �Y (�) is zero almost surely, then

P (� � T j Ft) = Y (t); t < �;

almost surely.

Proof: Let Z be the martingale de�ned by

Zt = E

�
exp

�
�

Z T

0

�u du

� ��� Ft

�
; t � T:

Because

Y (t) = exp

�Z t

0

�u du

�
Zt;
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Ito's Formula implies that

dYt = �tYt dt+ exp

�Z t

0

�u du

�
dZt:

By de�nition of �, there is a martingale M such that

dNt = (1�Nt)�t dt+ dMt:

Let U be de�ned by Ut = Y (t)(1�Nt): By Ito's Formula,

dUt = �Y (t�) dNt + (1�N(t�)) dYt ��Y (t)�N(t):

By the assumption that �Y (�) = 0; we know that �Y (t)�N(t) = 0. Using
our expressions above for dYt and dNt,

dUt = �Y (t�) dMt + (1�N(t�)) exp

�Z t

0

�u du

�
dZt:

We thus �nd that U is a martingale with U(T ) = 1 � N(T ): Thus, for any
t < � ,

Y (t) = U(t) = E(1�NT j Ft) = P (� � T j Ft);

as claimed.

The assumption that � is bounded can be replaced with integrability
conditions, as usual.7

Remark 1: For any given predictable non-negative process � satisfying,

for each t,
R t
0
�s ds < 1, we can always de�ne a stopping time � with the

property that � is its intensity and with the property assumed in Proposition

1, that �Y (�) = 0 almost surely. This can be done, for example, by letting

7For U to be a martingale, we want
R
Y (t�) dMt and (1 �N(t�)) exp

�R t
0
�u du

�
dZt

to be martingales. The �rst is a martingale as Y is bounded. For the second, letting,

�(t) = exp
�R t

0 2�s ds
�
, it is enough that E

hR T
0 �(t) d[Z]t

i
<1, where [Z] is the \square-

brackets" process for Z. For details, see, for example, Protter (1990).
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� be an exponentially distributed random variable with mean 1, independent8

of Y , and by letting � = infft :
R t
0
�s ds = �g:

4 Formulation of Credit Events

If the hypotheses of Lemma 1 or Proposition 1 are not satis�ed, it may be
possible to re-formulate the de�nitions of the credit events so as to retain
these properties. For instance, their failures can occur because, at some
stopping time U , one or more designated credit events may perhaps occur
only with probabilities (conditional on the information FU� available just
before U) that are neither zero nor one. For example, the onset of default
by one counterparty can generate simultaneous default by another, perhaps
contractually connected, with a conditional probability that is between 0 and
1.

A generally recommended principle is to reduce to primitive credit events,
and to \build up" credit events derived from the primitives, by de�ning 0-
or-1 random variables that indicate whether or not a derived credit event is
instigated or not by the primitive event, as follows. The primitive event times
are denoted �1; : : : ; �n. These should, if possible, have the \good" properties
de�ned above. A derived event time �̂ is then modeled by taking its point
process N̂ (that is, N̂(t) = 1t��̂ ) to be of the form

dN̂(t) = (1� N̂(t�))
nX
i=1

A(i) dNit; (1)

where A(1); : : : ; A(n) are random variables valued in f0; 1g, with A(i) mea-
surable with respect to F�(i). We let ai denote a predictable process with
the property that, for t < � , ai(t) = E(A(i)jFt). The idea is that, at each
stopping time �i, if the credit-event time �̂ has not already occured, then

8In order to do this, it may be necessary to de�ne a new probability space fA;A; �g,
for example by letting A = 
 � [0;1) with the usual product �-algebra and product
measure � = P � �, where � is the distribution of an exponential density on [0;1). Then
a new �ltration fAtg is de�ned by letting At be the �-algebra generated by the union
of Ft and

S
s�tf! : �(!) � sg. In terms of arriving at a reasonable economic model

with a given intensity process, expanding the probability space and information in this
manner, if necessary, seems innocuous. Our construction of � allows for the possibility
that P (� =1) > 0:
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it occurs at �i with probability ai(�i�), conditional on the information F�i�

\just before" �i. If we let ĥ be de�ned by

ĥ(t) =
nX
i=1

ai(t)hi(t);

then, under the property that P (�i = �j) = 0 for i 6= j, it can be shown that

ĥ is an intensity process for �̂ . If, however, we let

Ŷ (t) = E

�
exp

�Z s

t

�ĥ(u) du

� ��� Ft

�
;

it is not generally true that Ŷ (t) = P (� > s j Ft) for t < �̂ , even if the \good"
hypotheses of Lemma 1 and Proposition 1 are satis�ed for each (�i; hi). In-
deed, Ŷ can jump at �̂ with positive probability, because ai(t) jumps to 0 or
1 at �i, with may turn out to be �̂ . Depending on the context, this failure
of good properties for �̂ may not bo so inconvenient, as one may have the
ability to model prices or probabilities in terms of the primitive credit events.

5 Valuation Modeling

This section presents our basic valuation models. Subsequent sections present
applications and calculation methods.

We take as given some bounded short-rate process9 r, and some associ-
ated equivalent martingale measure Q, de�ned, following Harrison and Kreps
(1979), as follows.

First, there is a given collection of securities available for trade, with each
security de�ned by its cumulative dividend process D. This means that, for
each time t, the total cumulative payment of the security up to and including
time t is D(t). For our purposes, a dividend process will always be taken to
be of the form D = A� B, where A and B are bounded increasing adapted
right-continuous left-limits (RCLL) processes, and we suppose that there are
no dividends after a �xed time T > 0, in that D(t) = D(T ) for all t larger

9The probability measure Q is equivalent to P , in that the two measures have
the same events of probability zero. The process r is assumed to be predictable.
Most results go through without a bound on r, for example under conditions such as

EQ
h
exp

�
�
R T
0 rt dt

�i
<1 for all T .
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than T . The fact that Q is an equivalent martingale measure means that,
for any such security D, the ex-dividend price process S for the security is
given by

St = EQ

�Z T

t

exp

�
�

Z s

t

ru du

�
dDs

��� Ft

�
; 0 � t < T; (2)

where EQ denotes expectation under Q. The ex-dividend terminal price
S(T ) is of course zero. An example is a security whose price is always 1,
and paying the short-rate as a dividend, in that D(t) =

R t
0
rs ds: As pointed

out by Harrison and Kreps (1979) and Harrison and Pliska (1981), the exis-
tence of an equivalent martingale measure implies the absence of arbitrage
and, under technical conditions, is equivalent to the absence of arbitrage.
For weak technical conditions supporting this equivalence, see Delbaen and
Schachermeyer (1994, 1997).

In some cases, markets are incomplete, for example one may not be able
to perfectly hedge losses in market value that may occur at default, and this
would mean that there need not be a unique equivalent martingale measure.

Given an intensity process h for a default time � , Artzner and Delbaen
(1995, Appendix A1) show that there is also an intensity process � for the
same time � under the equivalent martingale measure Q, and show how to
obtain � in terms of h and Q. One should beware of the fact that even if
Proposition 1 applies under the original measure P , it may not apply under
an equivalent martingale measure Q, as the conjectured solution Y Q, de-
�ned by Y Q

t = EQ
�
exp

�R s
t
��u du

��
, for the process describing the survival

probability under Q may in fact jump at the event time � , even though the
corresponding process Y associated with the original measure P does not
not. Kusuoka (1998) provides such an example.

Fixing an equivalent martingale measure Q, let us consider the valuation
of a security that pays an amount Z at time T in the event that a given
credit event time � is after T , and otherwise pays an amount10 W at the
event time � .

The cumulative dividend process D of this security can therefore be de-
�ned by

dD(t) = W dNt; t < T;

10We take W to be a bounded F� -measurable random variable, and Z to be a bounded
FT -measurable random variable.
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and
D(T ) =WNT + (1�NT )Z;

where N = 1��t is the point process associated with � . We suppose that,
under Q, the event time � has a bounded intensity process �, so that

dNt = (1�Nt)�t dt+ dMN(t); (3)

where MN is a Q-martingale.
One can refer to Br�emaud (1980), for example, to see that

dDt = �t(1�Nt)f(t) dt+ dMD(t); t < T; (4)

for a Q-martingale MD, where f is the compensator for W , in the following
sense. If we let g = EQ(W j F��), we may think of g as the expected payment
conditional on all information up to, but not including, the time � of the
credit event. According11 to Dellacherie and Meyer (1978), Result IV.67(b),
there exists a predictable process f such that f(�) = g. For each �xed time
t, we may view f(t) as the risk-neutral expected payment, conditional on all
information up to but not including time t, and given no default before time
t, that would apply if default were to occur at time t.

As an example, one could take the amount paid at default to be W =
F (�), for an adapted process F . If F has continuous sample paths,12 then
f(t) = F (t). For another example, suppose that the amount paid is the
loss, relative to par, on a bond at default. Suppose that, until default, this
loss has a conditional distribution � (under Q) that is �xed, and given by a
statistically estimated distribution based on the history of losses of related
bonds, and perhaps some risk premia parameters. (For example, � could
be the empirical distribution for the seniority class of the bond, with an
assumption of no risk premia.) Then f is a constant on [0; T ], and simply
the mean (under Q) of this distribution �. Likewise, if the contractually
stipulated payment W is some bounded measurable function w : IR ! IR
of the loss 100 � Y (�) relative to par, given recovery Y . Under the same

11I am grateful to Freddy Delbaen for showing me this construction. Please note that
there is a typographical error in Dellacherie and Meyer (1978), Theorem IV.67(b), in
that the second sentence should read: \Conversely, if Y is an F0

T�-measurable: : :" rather
than \Conversely, if Y is an F0

T -measurable: : :," as can be veri�ed from the proof, or, for
example, from their Remark 68(b).

12If F is a semi-martingale with jumps only at non-predictable stopping times, then
f(t) = F (t�).
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independence assumption, we would have f a constant equal to the expected
payment

R
w(x) d�(x). For example, w(x) = max(x; 50) would stipulate a

payment of the loss or 50, whichever is greater.
If an issuer has multiple obligations with priorities de�ned by maturity or

subordination, then, for each obligation, f(t) changes over time based on the
prioritized allocation of assets to liabilities, in expectation (under Q), condi-
tional on survival to date. For example, if an issuer has one short-maturity
and one long-maturity bond, as t passes through the earlier maturity date,
the Q-expected default-contingent payment f(t) on the long-maturity bond
would jump, possibly downward if the two bonds are of equal priority and
assets are close in distribution to the level necessary to pay down the short-
maturity bond. Jumps at predictable times such as a maturity date cause
no diÆculty.

In general, the price process S of this security is given from (2) and (4)
by

St = EQ

�Z T

t

Æ rt;s(1�Ns)�sf(s) ds+ Æ rt;T (1�NT )Z
��� Ft

�
; t < T; (5)

where, for s � t and each predictable process � with
R T
0
j�tj dt <1 a.s.,

Æ�t;s = exp

�
�

Z s

t

�u du

�
:

This expression (5) for the price process S can in practice be diÆcult
to evaluate, as Nt appears directly. For example, brute-force simulation,
by discretization, of (Nt; rt; �t; ft) can be extrmely tedious, and relatively
precise estimates of the initial market value S0 may call for a large number
of independent scenarios if � is small, which is typical in practice. The
following result, along the lines of results found in DuÆe, Schroder, Skiadas
(1996), Lando (1997), and Sch�onbucher (1997), is more convenient.

Proposition 2. Let

V (t) = EQ

�Z T

t

Ær+�t;s �sf(s) ds+ Ær+�t;T Z
��� Ft

�
; t < T; (6)

and V (T ) = 0. If the jump �V (�) of V at � is zero almost surely, then

S(t) = V (t) for t < � .

10



The condition that �V (�) = 0 (analogous to �Y (�) = 0 in Proposition 1)
is not restrictive in settings for which there are no sudden (jump) surprises,
other than default, in the joint conditional distribution under Q of interest
rates, arrival intensities, and the payo� variables f and Z. For example, if
r; �, f , and Z are functions of some di�usion process13 then V is continuous
up to T , and thus �V (t) = 0 for any t < � . More generally, one can allow
jumps in V provided they cannot happen at default times. As provided in
Remark 1, for any such candidate value process V , one can always construct
a model with �V (�) = 0 and price process S = (1 � N)V . (In this case,
the arti�cially introduced random variable � of the Remark is de�ned to be
independent and exponential under Q.) If �V (�) need not be zero, a some-
what more complicated formula, provided in DuÆe, Schroder, and Skiadas
(1996), can be applied. DuÆe, Schroder, and Skiadas (1996) also extend the
model to treat cases in which the expected loss f(t) or the intensity � may
depend on V itself, under additional technical regularity.

Proof: The proof is an extension of that of Proposition 1. Let M be the
Q-martingale de�ned by

Mt = EQ

�Z T

0

Ær+�0;s �sf(s) ds+ Ær+�0;T Z
��� Ft

�
:

We have

Mt = Ær+�0;t Vt +

Z t

0

Ær+�0;s �sfs ds; t < T; (7)

and we may therefore write

Vt =

Z t

0

�V (s) ds+MV (t); t < T; (8)

where MV is a Q-martingale and, applying the fact that M is a martingale
to (7),

�V (t) = (rt + �t)Vt � �tft; t < T:

13That is, if �; r; f; and Z are measurable with respect to some process that is a d-
dimensional Brownian motion with respect to (
;F ; fFt : t � 0g; Q), then, on the time
interval [0; T ), V is an Ito process, and therefore has no jumps.
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We will complete the proof by showing that St = (1�Nt)Vt; which is true if
and only if H = J , where

Ht = (1�Nt)VtÆ
r
0;t +

Z t

0

Ær0;u dDu

and

Jt = StÆ
r
0;t +

Z t

0

Ær0;u dDu:

Because ST = VT = 0, we have JT = HT . Because �S(T ) = (1�NT )�V (T ) =
�D(T ) = (1 � NT )Z, we know that �H(T ) = �J(T ) = 0. We know from
(2) that J is a Q-martingale. It therefore suÆces to show that H is also a
Q-martingale. This follows from an application of Ito's Formula,14 (3), (4),
and (8):

dHt = �rtÆ
r
0;t(1�Nt)Vt dt� Vt�Æ

r
0;t dNt + (1�Nt�)Æ

r
0;t dVt + Ær0;t dDt

= �(rt + �t)Æ
r
0;t(1�Nt)Vt dt+ (1�Nt�)Æ

r
0;t�V (t) dt

+Ær0;t(1�Nt)�tft dt+ dMH(t)

= dMH(t); t < T;

where MH is the Q-martingale, de�ned by

dMH(t) = (1�Nt�)Æ
r
0;t dMV (t) + Vt�Æ

r
0;t dMN(t) + Ær0;t dMD(t); t < T:

(We used the assumption that �V (�) = 0 when disregarding the term
�V (t)�N(t).) The result therefore follows as stated.

We can reinterpret Proposition 2 so as to apply to the valuation of a loss
at a given default (or other credit event) that may be brought on, or not,
by a primitive credit events. That is, suppose a given credit event is derived
from � in the sense that its stopping time �̂ is modeled, as with, (1), by
N̂(t) = 1�̂�t with

dN̂(t) = AdN(t);

where Nt = 1��t is the indicator for a stopping time � with Q-intensity �, and
A is an F� -measurable random variable valued in f0; 1g indicating whether

14We use the fact that, for any bounded semi-martingale U , we have
R T
0
U(t) dt =R T

0
U(t�) dt almost surely, as U can have at most a countable number of jumps.
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or not the arrival of � causes the event in question to occur. We let � be
a process valued in [0; 1] such that, for t < � , we have �(t) = EQ(A j Ft).
Then a Q-intensity �̂ of �̂ is de�ned by �̂(t) = �(t)�(t). As noted earlier,
(�̂ ; �̂) may not have the \good" property exploited in Proposition 1. We
can nevertheless proceed by modeling in terms of (�; �). Suppose that Ŵ is
the amount paid at �̂ . (We assume that Ŵ is bounded and F� -measurable.)
Let W = AŴ and f be a predictable process such that, for t < � , we have
f(t) = E(W j Ft). It follows that, under the hypotheses of Proposition 2, the
market value of receiving Ŵ at �̂ (and Z at T if �̂ > T ) is given at any time
t < min(�; T ) by V (t) of (9), and at any time t � min(�; T ) by zero.

6 First-to-Default Valuation

Now we consider the valuation of a contingent claim that pays o� at � =
min(�1; : : : ; �n), the �rst of n credit events, a contingent amountWi if � = �i.
That is, the amount paid is explicitly dependent on the identity of the �rst
credit event to occur.15 We suppose that the n credit events have stopping
times �1; : : : ; �n with respective bounded intensity processes �1; : : : ; �n under
Q, and that �i 6= �j almost surely for i 6= j. By Lemma 1, the intensity
process of � under Q is � = �1 + � � � + �n. Our candidate security pays a
random variable16 Z at T if � > T . The dividend process D of this security
is therefore de�ned by

dD(t) = (1�Nt�)
X
i

Wi dNi(t); t < T;

dD(T ) = (1�NT )Z;

where Nt = 1��t. We let fi denote the predictable projection of a measure-
valued adapted process �i with the property that, for t < � , �i(t) is the
conditional distribution of Wi given Ft. Using the fact that

dDt = (1�Nt�)
X
i

�i(t)fi(t) dt+ dMD(t); t < T;

where MD is a Q-martingale, we have the following.

15The random variables W1; : : : ;Wn are bounded, and Wi is measurable with respect
to F�(i).

16Again, we take Z to be bounded and FT -measurable.
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Proposition 3. Let

V (t) = EQ

"Z T

t

Ær+�t;s

nX
i=1

�i(s)fi(s) ds+ Ær+�t;T Z
��� Ft

#
; 0 � t < T; (9)

and V (T ) = 0. If the jump �V (�) of V at � is zero almost surely, then

St = Vt for t < � .

The proof is identical to that of Proposition 2. One merely exploits the fact
that dVt = �V (t) dt+ dMV (t), where MV is a Q-martingale and

�V (t) = Vt(rt + �t)�
X
i

fi(t)�i(t):

This implies that

ÆrtVt(1�Nt) +

Z t

0

Ærs(1�Ns)
X
i

�i(s)fi(s) ds; t < T;

is, under the given hypotheses, a Q-martingale, which leaves V (1�N) = S,
as with the proof of Proposition 2.

Kusuoka (1998) gives examples in which the timing risk-premium process
(loosely, the di�erence between the intensities of the default arrivals under
the original measure P and the equivalent martingale measure Q) may jump
unexpectedly at a default arrival. This would be the case, for example, if
default by one obligor causes a sudden re-assessment of the equilibrium risk
premium for another default by another obligor. In such cases, a somewhat
more complicated pricing formula arises, as in DuÆe, Schroder, and Skiadas
(1996).

7 Analytical Solutions in AÆne Settings

This section proposes parametric examples in which the �rst-to-default pric-
ing formula (9) can be computed either explicitly, or by numerically solving
relatively simple ordinary di�erential equations, in an \aÆne" setting. That
is, these examples are based on a a \state" process X valued in IRk that
(under Q) is a k-dimensional aÆne jump-di�usion, in the sense of DuÆe and
Kan (1996). That is, X is valued in some appropriate domain D � IRk, with

dXt = �(Xt) dt+ �(Xt) dBt + dJt;
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where B is a standard brownian motion in IRd, J is a pure jump process
with jump-arrival intensity f�(Xt) : t � 0g and jump distribution � on IRk,
and where � : D ! [0;1), � : D ! IRk; and C � (��>) : D ! IRk�d

are aÆne functions.17 We delete time dependencies to the coeÆcients for
notational simplicity only; the approach outlined below extends to that case
in a stragihtforward manner. A classical special case is the \multi-factor
CIR state process" X, for which X(1); X(2); : : : ; X(k) are independent (or
Q-independent, in a valuation context) processes of the \square-root" type18

introduced into term-structure modeling by Cox, Ingersoll, and Ross (1985).
For many other examples of aÆne models, see DuÆe, Pan, and Singleton
(1997).

We can take advantage of this setting if we suppose short rates, intensities,
and payo�s are of the aÆne19 form

r(t) = ar(t) + br(t) �Xt

�i(t) = a�(i; t) + b�(i; t) �Xt

fi(t) = exp (af (i; t) + bf (i; t) �X(t�))

Z = exp (aZ + bZ �XT ) ;

where aZ 2 IR and bZ 2 IRk are given constants and where, for each i in
f1; : : : ; ng:

� ar; a�(i; � ); and af (i; � ) are bounded measurable real-valued determin-
istic functions on [0; T ].

17The generator D for X is de�ned by

Df(x; t) = ft(x; t)+fx(x; t)�(x)+
1

2

X
ij

Cij(x)fxi xj
(x; t)+�(x)

Z
[f(x+z; t)�f(x; t)] d�(z):

One can add time dependencies to these coeÆcients. Conditions must be imposed for
existence and uniqueness of solutions, as indicated by DuÆe and Kan (1996).

18That is,

dX
(i)
t = �i(xi �X

(i)
t ) dt+ �i

q
X

(i)
t dB

(i)
t ;

for some given constants �i > 0, xi > 0, and �i.
19One can proceed in more or less the same fashion if one generalizes by allowing

quadratic terms for r(t) and the jump intensity �, subject of course to technical con-
ditions. In such cases, higher-order terms will appear in the solution polynomial. One can
also extend in a similar fashion to yet higher-order polynomials.
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� br; b�(i; � ); and bf (i; � ) are bounded measurable deterministic IRk-valued
functions on [0; T ].

Except in degenerate cases, the boundedness assumptions used in Proposi-
tions 1 through 3 do not apply, and integrability conditions must be assumed
or established. For the special case in which fi(t) represents the risk-neutral
expected loss (relative to par, say) on a 
oating-rate note (a typical applica-
tion in practice, say �rst-to-default swaps), one might reasonably take fi(t)
to be deterministic. (For this case, bf = 0.)

For analytical approaches based on the aÆne structure just described, one
can repeatedly use the following calculation, regularity conditions for which
are provided in DuÆe, Pan, and Singleton (1997).

Let X be an aÆne jump-di�usion. For a given time s, and for each t � s
let R(t) = aR(t) + bR(t) �X(t), for bounded measurable aR : [0; s] ! IR and

bR : [0; s]! IRk. For given coeÆcients a in IR, and b in IRk, let

g(Xt; t) = E

�
exp

�Z s

t

�R(u) du

�
ea+b�X(s)

��� Xt

�
: (10)

Under technical conditions, there are speci�ed ODEs for � : [0; s] ! IR and

� : [0; s]! IRk such that

g(x; t) = exp (�(t) + �(t) � x) ;

with boundary conditions �(s) = a and �(s) = b. In addition, for given A in

IR, and B in IRk, let

G(Xt; t) = E

�
exp

�Z s

t

�R(u) du

�
ea+b�X(s)(â+ b̂ �Xs)

��� Xt

�
: (11)

Then, under technical conditions, there are speci�ed ODEs for �̂ : [0; s]! IR
and �̂ : [0; s]! IRk such that

G(x; t) = e�(t)+�(t)�x(�̂(t) + �̂(t) � x);

with boundary conditions �̂(s) = â and �̂(s) = b̂.

Details, with illustrative numerical examples and empirical applications, can
be obtained in DuÆe, Pan, and Singleton (1997). For our application to
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(9), we would be assuming that X is an aÆne jump-di�usion under Q, and
the expectations in (10) and (11) would be under Q. With solutions for �,
�, �̂, and �̂ in hand, the pricing formula (9) reduces to a one-dimensional
numerical integral, which is a relatively fast exercise. Monte-Carlo based
approaches are illustrated in the following section.

For the special multi-factor CIR case, explicit closed-form solutions for
� and � can be deduced from Cox, Ingersoll, and Ross (1985) (for the case
a = â = 0 and b = b̂ = 0), and DuÆe, Pan, and Singleton (1997), who
also provide analytical solutions for the Fourier transforms of X in the gen-
eral aÆne setting, and related calculations that lead to analytical solutions
for option pricing via L�evy inversion of the transforms. The Fourier-based
option-pricing results can be applied in this setting for cases in which

fi(t) = [exp(af(i; t) + bf (i; t) �X(t�))�K]+ ;

for some exercise price K. Some explicit results for option pricing are avail-
able in certain cases, as shown by by Bakshi, Cao, and Chen (1996), Bakshi
and Madan (1997), Bates (1996), and Chen and Scott (1995). These results
can be applied in the present setting for valuation of defaultable options
with aÆne structure, or with recovery determined by collateralization with
an instrument whose price can be described in an exponential-aÆne form.
Collateralization with equities, foreign currency, or notes (in domestic or
foreign currency) would be natural examples for this.

8 Simulating The First to Default

In some cases, explicit solutions may be complicated, but Monte Carlo sim-
ulation may be straightforward. This section presents an algorithm for sim-
ulation based on explicit, or easily computed, distributions for the time to
the �rst credit event, and for the identity of that event. The setup is that of
Section 5.

That is, � = min(�1; : : : ; �n), and � =
P

i �i. For any t � 0 and s � t, we
let

Y (t; s) = EQ

�
exp

�
�

Z s

t

�u du

� ��� Ft

�
:

We suppose that the jump Y (�; s) � Y (��; s) is zero almost surely. From
Proposition 1,

Q(� � s j Ft) = Y (t; s); t < �;

17



almost surely.
Let us suppose that we have a e�ective method for computing Y (t; s),

for each s > t. A special case is deterministic intensities, for which Y (t; s)
is of course given explicitly or by numerical integration. More generally, the
aÆne structure proposed in Section 6 provides such a method. We may then
simulate a random variable R that is equivalent in distribution to � (to be
precise, equivalent in Ft-conditional distribution under Q) by independently
simulating a random variable U that is uniformly distributed on [0; 1], and
(provided Y (t; s) ranges from 1 to 0 as s ranges from t to1) by then letting
R be chosen20 so that Y (t; R) = U . In this case

Q(R � s j Ft) = Q(Y (t; R) � Y (t; s) j Ft) = Q(U � Y (t; s) j Ft) = Y (t; s):

If Y (t) = lims!1 Y (t; s) > 0, then we simply let R = 1 (the credit event
never happens) in the event that U � Y (t).

Having simulated the �rst arrival time � , we wish to simulate which of the
n events occured at that time. Given an outcome t for � , we will simulate a
random variable I with outcomes in f1; : : : ; ng, and with probability q(i; �) =
Q(I = i j �) for the outcome i equal to the conditional probability, under Q,
that �(i) = � given � .21 We apply the following calculation, relying on a
formal applications of Bayes' Rule:

q(i; t) = Q(� = �i j � 2 (t; t + dt)) =

(i; t) dt

Q(� 2 (t; t+ dt))
; (12)

where22


(i; t) dt = Q(� = �i and � 2 (t; t+ dt)): (13)

Because q(1; t) + � � �+ q(n; t) = 1, it is enough to calculate 
(i; t) for each i
and t, leaving

q(i; t) =

(i; t)


(1; t) + � � �+ 
(n; t)
: (14)

20As Y (t; � ) is continuous and monotone, some such measurable R is well de�ned. If
Y (t; � ) is not strictly monotone, any measurable selection of its inverse will suÆce for
choosing R(!) given U(!).

21To be precise, we are looking for a regular version q(i; � ) : [0;1) ! [0; 1] of this
conditional probability.

22That is, 
(i; � ) is the density of the measure �i on [0;1) de�ned by �i(A) = Q(� =
�i and � 2 A):
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Now, for bounded and right-continuous (�1; : : : ; �n) and using dominated
convergence and the assumption that �i 6= �j a.s.,


(i; t) = lim
�#0

1

�
�(t; i; �); (15)

where

�(t; i; �) = Q(� � t� � and �i � t): (16)

Next, we calculate that

�(t; i; �) = EQ[1��t�� 1�(i)�t]

= EQ[1��t�� E
Q[1�(i)�t j Ft��]]

= EQ

�
1��t��

�
1� 1�(i)�t��E

Q

�
exp

�Z t

t��

��i(s) ds

� ��� Ft��

���

= EQ

�
1��t��

�
1� EQ

�
exp

�Z t

t��

��i(s) ds

� ��� Ft��

���
:

By dominated convergence, the assumption that �i is bounded and right-
continuous (which can be weakened), and the fact that, letting H(x) =
1� e�Æx, for a given constant Æ, we have H 0(0) = Æ, it then follows that


(t; i) = EQ

�
lim
�#0

1��t�� lim
�#0

1

�

�
1� EQ

�
exp

�Z t

t��

��i(s) ds

� ��� Ft��

���
= EQ [1��t�i(t)] :

Finally, we can apply Proposition 2 to see that, under our usual \no-jump-
at-�" regularity,23


(t; i) = EQ

�
exp

�
�

Z t

0

�(s) ds

�
�i(t)

�
:

For the aÆne structure described earlier, we have an eÆcient method for
computing 
(i; t), and thereby q(i; t). Simulation of the �rst to default, both
the time � and the identity I(�) of the �rst to default, is therefore straight-
forward in an aÆne setting, including of course deterministic intensities.

23Letting


(t; i; s) = EQ

�
exp

�
�

Z t

0

�(s) ds

�
�i(t)

���� Fs

�
;

we would impose the hypothesis that, for each �xed t and i, 
(t; i; �) � 
(t; i; ��) = 0
almost surely.
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9 Simulating with Mortality for Discounts

This section shows how to compute the market value of the �rst to default,
including the e�ect of discounting for interest rates. In order to do this, we
will introduce a �ctitious event with \risk-neutral" arrival intensity �0 = r,
the short rate. (For this section, we assume that r is non-negative.) The
contingent payment at the associated24 stopping time �0 is W0 = 0. The
�rst-to-arrive event time, now including �0, is �

� = min(�0; �1; : : : ; �n), with
Q-intensity process �� = �0 + �1 + � � �+ �n. Then, under the hypotheses of
Proposition 3, we have the price of the �rst to default given by

Y0 = EQ

"Z T

0

exp

�Z t

0

�(rs + �s) ds

� nX
i=1

�itfit dt

#

= EQ

"Z T

0

exp

�Z t

0

���s ds

� nX
i=0

�itfit dt

#

= EQ[1���TWI�];

where I� is the random variable valued in f0; 1; : : : ; ng that is the identity of
the credit event that happens at � �. That is, � � = �I� .

By our previous calculations, we can estimate Y0 by simulation of � � and
then I�. We can draw � � by simulating a uniformly distributed random vari-
able and then, as above, using the inverse cumultative distribution function
for � �, de�ned, under the hypotheses of Proposition 1 (under Q) by

Q(� � � t) = EQ

�Z T

0

exp

�Z t

0

���s ds

��
:

As for I�, once we have the outcome t of � �, we simulate a number from
f0; 1; : : : ; ng, drawing i with probability

q�(i; t) =

�(i; t)


�(0; t) + 
�(1; t) + � � �+ 
�(n; t)
; (17)

where


�(i; t) = EQ

�
exp

�
�

Z t

0

��(s) ds

�
�i(t)

�
: (18)

24In order to complete the story, we could introduce a standard (unit intensity) Poisson
process �, independent under Q, of all previously de�ned variables, and let �0 = infft :

�
�R t

0 rs ds
�
= 1g. There is of course no need to actually construct such a process.
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Again, aÆne dynamics (including deterministic intensities) make computa-
tions straightforward.

Finally, given the outcomes of � � and I�, we would let F = 0 if � � > T
and otherwise let F = fI�(�

�). Let F1; F2; F3; : : : denote an iid sequence of
random variables, all (simulated, in practice) with the distribution of F . We
have, by the law of large numbers,

lim
N!1

1

N

NX
n=1

Fi = Y0 a:s:; (19)

giving us the desired price, or an approximation for a large number N of
draws. This procedure is certainly e�ective for deterministic fi( � ), or, for the
case in which fi(t) = gi(Xt), if we can compute the conditional distribution
of X(� �) given � � and I�, to which we next turn.

10 Conditional State Distribution at Events

In a state-space setting such as the aÆne setting described earlier, we will
now focus on the conditional distribution of the state X(�) given the �rst
event time � . This can be applied, for example, to the computation of the
conditional expected projected payo� EQ[fi(�) j � ], or to the simulation of
X(�) conditional on � , which is in turn useful for simulating event times
after � . In some cases, we are interested in the joint distribution of X(�)
and I (the identity of the �rst credit event), after conditioning on � . We will
begin by working under the measure P , but after re-formulation, the results
can be applied under Q.

Suppose the state process X is valued in some domain D � IRk. We are
looking for some � : D � [0; T ] ! [0;1) with the property that, for any
bounded measurable F : D ! IR, we have

E[F (X(�)) j � ] =

Z
D

F (x)�(x; �) dx a:s:

We begin by supposing that � has intensity process fH(Xt) : t � 0g,
where H is bounded, continuous, and strictly positive. We adopt the hy-
pothesis of \no jumping at �" for conditional expectations, wherever called
for. Again, by a formal application of Bayes's Rule, one �nds that, for each
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t,

E[F (X(�)) j � = t] =
F �(X(t); t)

E
h
exp

�R t
0
�H(Xs) ds

�
H(Xt)

i ;
where

F �(Xt; t) = E

�
exp

�Z t

0

�H(Xs) ds

�
H(Xt)F (Xt)

�
:

We have

F �(x; t) =

Z
D

F (x)H(x)��(x; t) dx;

where �� is the fundamental solution of

Dg(x; t)�H(x)g(x; t) = 0; (20)

for D the in�nitesimal generator associated with X. Under regularity, it
follows that

�(x; t) =
��(x; t)H(x)

p(t)
; (21)

where p is the density of � , given by

p(t) = E

�
exp

�Z t

0

�H(Xs) ds

�
H(Xt)

�
:

There are several special cases of the aÆne models, for aÆne H( � ), for
which the fundamental solution �� is known explicitly, including the multi-
factor CIR model and the model of Chen (1994). (Such �� are sometimes
called \Green's functions.") As for p(t), it can be readily computed in an
aÆne setting, as discussed previously.

From (25), we are in a position to \re-start" the state process at a simu-
lated �rst-credit-event time � , by simulating the re-started state X(�) with
density �( � ; t).

Simulation of X(�), conditional on � , might be simpler if the coordi-
nate processes X(1); : : : ; X(k) were independent, as with the multi-factor CIR
model. Even if this is true, however, it is not generally true after conditioning
on � , as can be seen from the form of the joint density �( � ; t), which is not
of a product form because of the appearance of H(x) in (25).
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Simpli�cation is possible, however, in the case that X(1); : : : ; X(k) are
independent and H(x) = �(xj) for some �( � ) and some particular j 2
f1; : : : ; ng. In this case,

�(x; t) =
��j (x; t)�(xj)

p(t)

Y
i6=j

��i (xi; t);

where, for i 6= j, ��i ( � ; t) is the fundamental solution of

Dig(xi; t) = 0; (22)

for Di the in�nitesimal generator associated with X(i), and where ��j ( � ; t) is
the fundamental solution of

Djg(xj; t)� �(xj)g(xj; t) = 0; (23)

for Dj the in�nitesimal generator associated with X(j). Here, one can simu-
late X(�) given � by simulating, given � , fX(i)(�) : 1 � i � ng conditionally
independently, with � -conditional density ��i ( � ; �) for i 6= j and, for i = j,
with � -conditional density ��j ( � ; �)�( � )=p(�), based on simulating n indepen-
dent uniform-[0,1] variables.

As for the distribution of X(�) given both � = min(�1; : : : ; �n); and the
identity I of the �rst of n credit event times �1; : : : ; �n, we take again a
setting in which �i has intensity process fHi(Xt) : t � 0g, for Hi bounded
and continuous, and with H =

Pn

i=1Hi strictly positive. We suppose that
P (�i = �j) = 0 for i 6= j, and continue to assume the principal of \no jumping
at �" of the appropriate conditional expectations, wherever called for.

We have the calculation of � : D � [0; T ]� f1; : : : ; ng ! [0;1) with the
property that, for any bounded measurable F : D ! IR, we have

E[F (X� ) j �; I ] =

Z
D

F (x)�(x; �; I) dx a:s:

By a formal application of Bayes's Rule, one �nds that, for each t and i,

E[F (X� ) j � = t; I = i ] =
F �(X(t); t; i)

E
h
exp

�R t
0
�H(Xs) ds

�
Hi(Xt)

i ;
where

F �(Xt; t) = E

�
exp

�Z t

0

�H(Xs) ds

�
Hi(Xt)F (Xt)

�
:
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We have

F �(x; t) =

Z
D

F (x)Hi(x)�
�(x; t) dx;

where �� is again the fundamental solution of (20). Under regularity, it
follows that

�(x; t; i) =
��(x; t)Hi(x)

pi(t)
; (24)

where

pi(t) = E

�
exp

�Z t

0

�H(Xs) ds

�
Hi(Xt)

�
:

Explicit or straightforward calculation of �( � ; t; i) is possible in certain
aÆne settings, as explained above. As shown by DuÆe, Pan, and Singleton
(1997), we can always re-sort to analytical methods for computing the Fourier
transform of the distribution of X(�) given (�; I), and many calculations can
be done \on the Fourier side."

Now, for example, in order to compute V0 of Proposition 3, for the case
in which fi(t) = G(Xt; i) for some G that does not allow a solution entirely
by analytical methods, it suÆces to proceed as follows, in an aÆne setting
(under Q) for the state vector X, the short rate r = �(X), and, for each i, the
intensity �i = �i(X). Under the no-jump-at-� condition on the candidate
value process V of Proposition 3, the estimated price V0 at time 0 of a
payment of Wi at � in the event that min(�; T ) = �i is given by (19), where
F1; F2; : : : ; are independently generated with a distribution equivalent to F ,
simulated by the following algorithm:

1. Let aR(t) + bR(t) �Xt = rt + �1(t) + � � �+ �n(t):

2. Simulate a uniform-[0,1] random variable U , and note that a random
variable R with the Q-distribution of � � is obtained by25 letting R(!)
satisfy

EQ

"
exp

 Z R(!)

0

�[aR + bR �Xt] dt

!#
= U(!);

taking R(!) =1 if there is no solution.

3. If R(!) > T , let F (!) = 0, and stop.

25That is, R has the distribution under Q of a stopping time with intensity aR+ bR �Xt.
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4. Otherwise, simulate � from f0; 1; : : : ; ng by drawing i with probability
q�(i; t) given by (17) and (18). These probabilities are, in an aÆne
setting, either explicitly computed or obtained by numerical solution
of ODEs, as indicated previously.

5. If �(!) = 0, let F (!) = 0, and stop.

6. Otherwise, if �(!) = i, let

�Q(x; t; i) =
��Q(x; t)�i(x)

q�(i; t)
; (25)

where ��Q is the fundamental solution of

DQg(x; t)� [aR + bR � x]g(x; t) = 0;

and DQ denotes the in�nitesimal generator associated with X under
Q.

7. Let

F (!) =

Z
D

�Q(x;R(!); �(!))G(x;R(!); �(!)) dx; (26)

estimated by numerical methods if necessary, and stop. One should
bear in mind that the Fourier transform of ��Q�i can be computed by
relatively straightforward methods, or in several cases explicitly, as ex-
plained in DuÆe, Pan, and Singleton (1997), and approximate Fourier
methods may be more eÆcient than direct numerical integration of
(26).
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