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1 Introduction

We provide an exact law of large numbers for independent random matching, under which there

is an almost-sure constant cross-sectional distribution of types in a large population. We address

both static and dynamic systems with random mutation, partial matching arising from search,

and type changes induced by matching. Based on a suitable measure-theoretic framework,

an exact law of large numbers is proved for each case under an independence assumption on

each of the randomization steps: matching, mutation, and matching-induced type changes.

The time evolution of the cross-sectional distribution of types is completely determined by the

agent-level Markov chain for type, with explicitly calculated transition matrices.

A deterministic (almost surely) cross-sectional distribution of types in independent ran-

dom matching models for continuum populations had been widely used in several literatures,

without a foundation. Economists and geneticists, among others, have implicitly or explicitly

assumed the law of large numbers for independent random matching in a continuum popu-

lation, by which we mean a non-atomic measure space of agents. This result is relied upon

in large literatures within general equilibrium theory (e.g. [21], [22], [39], [52]), game theory

(e.g. [4], [6], [9], [20], [27]), monetary theory (e.g. [12], [25], [28], [32], [33], [44], [49]), labor

economics (e.g. [11], [29], [41], [42], [43]), illiquid financial markets (e.g. [15], [16], [34], [50],

[51]), and biology (e.g. [7], [26], [38]). Mathematical foundations, however, have been lacking,

as has been noted by Green and Zhou [25].

We provide the exact law of large numbers for random pairwise matching1 by formulating

a suitable independence condition in types.2 In a companion paper [17], we prove the existence

of a joint agent-probability space satisfying the independence conditions that we require here.

For a simple illustration, suppose that each agent within a fraction p of a continuum

population has an item for sale, and that the agents in the remaining fraction q = 1 − p are

in need of the item. If the agents “pair off independently,” a notion that we formalize shortly,

then each would-be seller meets some would-be buyer with probability q. At such a meeting, a

trade occurs. One presumes that, almost surely, in a natural model, exactly a fraction q of the

seller population would trade, implying that a fraction qp of the total population are sellers

1Various versions of the exact law of large numbers for a continuum of random variables (also for a continuum
of stochastic processes or correspondences) have been provided in [45]-[48]. These results consider the average,
or the distribution (or finite-dimensional distributions) of a given family of random variables (or stochastic
processes).

2The independence condition we propose is natural, but may not be obvious. For example, a random matching
in a finite population may not allow independence among agents since the matching of agent i to agent j implies
of course that j is also matched to i, implying some correlation among agents. The effect of this correlation
is reduced to zero in a continuum population. A new concept, “Markov conditional independence in types,” is
proposed for dynamic matching, under which the transition law at each randomization step depends on only the
previous one or two steps of randomization.
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who trade, that the same fraction pq of the total population are buyers who trade, and that

the fraction of the population that would not trade is 1 − 2pq. Among other results, we show

that this presumption is correct in a suitable mathematical framework. In [17], moreover, we

prove that such a model exists.

Hellwig [28] is the first, to our knowledge, to have relied on the effect of the exact law of

large numbers for random pairwise matching in a market, in a study of a monetary exchange

economy.3 Much earlier reliance can be found in genetics. In 1908, G.H. Hardy [26] and W.

Weinberg (see [7]) independently proposed that with random mating in a large population, one

could determine the constant fractions of each allele in the population. Hardy wrote: “suppose

that the numbers are fairly large, so that the mating may be regarded as random,” and then

used, in effect, an exact law of large numbers for random matching to deduce his results.4 For a

simple illustration, consider a continuum population of gametes consisting of two alleles, A and

B, in initial proportions p and q = 1 − p. Then, following the Hardy-Weinberg approach, the

new population would have a fraction p2 whose parents are both of type A, a fraction q2 whose

parents are both of type B, and a fraction 2pq whose parents are of mixed type (heterozygotes).

These genotypic proportions asserted by Hardy and Weinberg are already, implicitly, based on

an exact law of large numbers for random matching in a large population. In order to consider

the implications for the steady-state distribution of alleles, suppose that, with both parents of

allele A, the offspring are of allele A, and with both parents of allele B, the offspring are of

allele B. Suppose that the offspring of parents of different alleles are, say, equally likely to be of

allele A or allele B. The Hardy-Weinberg equilibrium for this special case is a population with

steady-state constant proportions p = 60% of allele A and q = 40% of allele B. Provided that

the law of large numbers for random matching indeed applies, this is verified by checking that,

if generation k has this cross-sectional distribution, then the fraction of allele A in generation

k + 1 is almost surely 0.62 + 0.5 × (2 × 0.6 × 0.4) = 0.6. This Hardy-Weinberg Law, governing

steady-state allelic and genotypic frequencies, is a special case of our results treating dynamics

and steady-state behavior.

In applications, random-matching models have also allowed for random mutation of

agents, obviously in genetics, and in economics via random changes in preferences, productivity,

or endowments. Typical models are also based on “random search,” meaning that the time at

3Diamond [10] had earlier treated random matching of a large population with, in effect, finitely many
employers, but not pairwise matching within a large population. The matching of a large population with a
finite population can be treated directly by the exact law of large numbers for a continuum of independent
random variables. For example, let N(i) be the event that worker i is matched with an employer of a given
type, and suppose this event is pairwise independent and of the same probability p, in a continuum population
of such workers. Then, under the conditions of [48], the fraction of the population that is matched to this type
of employer is p, almost surely.

4Later in his article, Hardy did go on to consider the effect of “casual deviations,” and the issue of stability.
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which a given agent is matched is also uncertain. With random search, during each given time

period, some fraction of the agents are not matched. Finally, in some cases, it is important

that the impact of a match between two agents on their post-match types is itself random, as in

[33] and [42]. For instance, trade sometimes depends on a favorable outcome of a productivity

shock to the buyer, allowing the buyer to produce, or not, the output necessary to pay the

seller. In some models, once paired by matching, agents use mixed strategies for their actions,

causing another stage of random type changes. It is also often the case that one wishes not

only an (almost surely) deterministic cross-sectional distribution of types as a result of each

round of matching, but also a cross-sectional distribution of types that is constant over time,

as in the Hardy-Weinberg Equilibrium. It may also help if one knows the finite dimensional

time distributions of the cross-sectional type process almost surely. We provide a collection of

results treating all of these cases.

Our results include the potential for random birth and death, because we allow for ran-

dom mutation of types, which can include “alive” or “dead.” We do not, however, consider

population growth (or declines), which could be handled by relatively straightforward exten-

sions of the results here, that we leave for future work. It would also be straightforward to

extend our results in order to consider the effect of “aggregate shocks,” for example common

adjustments to the parameters determining speed of matching, according to a Markov chain,

as in the business-cycle effects on employer-worker matching studied by5 Mortensen and Pis-

sarides [42]. When we treat dynamic models, we take only the discrete-time case, although

continuous-time models of random matching are also popular (e.g. [15], [42], [49], [51]). We are

in the process of extending our results to the continuous-time setting, which requires different

methods.

We consider three basic issues. The first is a rigorous formulation of independent random

matching for a continuum population in a meaningful theoretical framework. The second is a

proof of the exact law of large numbers for a continuum population with general independent

random matchings. This involves the development of general results suitable for other applica-

tions involving independent random matching. The third issue is the existence of independent

random matchings in the general framework, which is reported here, but studied systematically

in a companion paper [17].

Since there are fundamental measurability problems associated with a continuum of

independent random variables,6 there has, up to now, been no theoretical treatment of the

exact law of large numbers for independent random matching among a continuum population.

5Ljungqvist and Sargent [35] present a discrete-time version of the Mortensen-Pissarides model, which is
further treated in discrete time by Cole and Rogerson [8] and by Merz [40].

6See, for example, [2], [13], [14], [18], [30] and discussions in [45] and [48].
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In [48], various versions of the exact law of large numbers and their converses are proved by

direct application of simple measure-theoretic methods in the framework of an extension of

the usual product probability space that retains the Fubini property.7 This paper adopts the

measure-theoretic framework of [48].

The remainder of the paper is organized as follows. Section 2 is a user’s guide, going

immediately to the form and implications of the main results, and putting off most of the neces-

sary mathematical developments. In Section 3, we consider random full and partial matchings

in the static case after a brief introduction of the measure-theoretic framework (a Fubini exten-

sion of the usual product probability space) in Section 3.1. A random full matching is formally

defined in Section 3.2. A key point is to formulate the independence condition on the type

processes of agents being matched, rather than on the matching function itself.8 This allows a

simple application of the exact law of large numbers from [45] and [48], so as to obtain imme-

diately an exact law of large numbers for an independent random full matching in Theorem 1.

Random partial matchings (the case of search models) are considered in Section 3.3, where it

is shown in Theorem 2 that, almost surely, a deterministic proportion of agents of each type

are not matched, while the complementary portion are matched to other agents in proportion

to their presence in population.

Section 4 considers a dynamical system for agent types, allowing for random mutation,

partial matching, and match-induced random type changes. We introduce the condition of

Markov conditional independence to model the idea that at every time period, (1) an in-

dependent random mutation follows from the previous period, (2) it is then followed by an

independent random partial matching, (3) finally, there is independent random type changing

for matched agents. Markov conditional independence allows us to show that the individual

type processes of almost-all agents are essentially pairwise independent Markov chains. This

leads to a demonstration that there is an almost-sure constant cross-sectional distribution of

types in a large population (including stationarity of the cross-sectional distribution of agent

types), and moreover, that the time evolution of the cross-sectional distribution of types is (al-

most surely) completely determined as that of a Markov chain with known transition matrices.

All of these results are included in Theorem 3.

7It is easy to construct examples of a continuum of independent random variables whose sample means or
distributions are constant (see, for example, [2] and [24] and [30]). However, the difficulty is that one can also
construct other examples of a pathological process with a continuum of independent random variables whose
sample functions may not be measurable, or behave in a very “strange” way (such as being equal to any given
function on the continuum almost surely, as in [30] and [48]). By working with a Fubini extension of the usual
product probability space, one is able to obtain general results on the exact law of large numbers, as in [48],
without the possibility of constructing the type of pathological processes.

8We call this “independence in types,” meaning that for essentially every pair (i, j) of agents, the type of the
agent to be randomly matched with agent i is independent of the type of the agent to be randomly matched
with agent j.

4



Existence results for random matching, in static settings and in dynamic settings that

are (Markov conditionally) independent in types, are stated without proofs in Section 5. These

results are fully developed in a companion paper [17]. While the proofs for the exact law of large

numbers for the independent random matchings use only simple probabilistic manipulations,

the proofs of the existence results in [17] make extensive use of nonstandard analysis.9 The

existence result for the dynamic setting is particularly intricate because one must construct

a continuum of independent Markov chains that is derived from random mutation, random

partial matching and random type changing.

A brief discussion of the relevant literature is given in Section 6. Proofs of Theorems 1,

2 and 3 are given in the appendix.

Finally, we emphasize again that we must work with extensions of the usual product

measure spaces (of agents and states of the world), since a process formed by a continuum of

independent random variables is never measurable with respect to the completion of the usual

product σ-algebra, except in the trivial case that almost all the random variables in the process

are constants.10

2 User’s Guide

This section gives a simple understanding of some of the key results, without detailing most of

the definitions and arguments that we later use to formalize and prove these results.

We fix a probability space (Ω,F , P ) representing uncertainty, an atomless probability

space (I,I, λ) representing the set of agents,11 and a finite agent-type space S = {1, . . . ,K}.

One may take the set I of agents to be, for example, the unit interval [0, 1] (or, as noted in

[17], a set with cardinality of the continuum that can be constructed as an equivalence class of

a sequence of finite sets).

In order to discuss independent random matching, we consider a product probability

space (I × Ω,W, Q) such that W contains the product σ-algebra I ⊗ F , and such that the

marginals of Q on (I,I) and (Ω,F) are λ and P respectively. This extension (I × Ω,W, Q) of

the product of the two underlying spaces must have the basic Fubini property in order for the

following law-of-large numbers results to make sense.

A cross-sectional or probability distribution of types is an element of ∆ = {p ∈ R
K
+ :

9Note that the existence results themselves are stated in Section 5 using common measure-theoretic terms.
A reader interested only in applications of the exact law of large numbers for independent random matching
could rely on this paper. The companion paper [17] is accessible to those with some knowledge of nonstandard
analysis, which can be gained, for example, from the first three chapters of the book [37].

10See, for example, Proposition 1.1 in [46].
11A probability space (I, I, λ) is atomless if there does not exist A ∈ I such that λ(A) > 0, and for any

I-measurable subset C of A, λ(C) = 0 or λ(C) = λ(A).
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p1 + · · · + pK = 1}.

For each non-negative integer time n, some W-measurable αn : I × Ω → S specifies the

current type αn(i, ω) of agent i ∈ I in state of the world ω. The associated cross-sectional

distribution of types at time n is the ∆-valued random variable pn(ω) (also denoted by pn
ω)

defined by

pn
k(ω) = λ({i ∈ I : αn(i, ω) = k}).

The initial type function α0 : I → S is non-random.

For each time n, there is some random matching function πn : I × Ω → I ∪ {J}, where

{J} is a singleton representing ‘unmatched,’ that specifies either an agent j = πn(i, ω) 6= i in I

to whom i is matched in state ω, or specifies the outcome πn(i, ω) = J that i is not matched.

It must be the case that if i is matched to j, then j is matched to i. Specifically, for all ω,

i, and j, πn(i, ω) = j if and only if πn(j, ω) = i. Let gn be a W-measurable matching type

function on I × Ω into S ∪ {J}, such that gn(i, ω) is the type of the agent j = πn(i, ω) who

is matched with agent i in state of nature ω, or gn(i, ω) = J if πn(i, ω) = J . As usual, we let

gn
i and αn

i denote the random variables whose outcomes in state ω are gn(i, ω) and αn(i, ω),

respectively. There is also some W-measurable random mutation function hn : I ×Ω → S that

specifies a mutated type for agent i at state of nature ω. For a realized state of nature ω, hn
ω,

πn
ω, gn

ω and αn
ω denote, respectively, the realized mutation, matching, matching type and type

functions on I.

The parameters of a random matching model with type space S are

1. Some initial cross-sectional distribution p0 ∈ ∆ of types (the type distribution induced

by α0).

2. A K ×K transition matrix b fixing the probability bkl that an agent of type k mutates

to an agent of type l in a given period, before matching.

3. Some q ∈ [0, 1]S specifying, for each type k, the probability qk that an agent of type k is

not matched within one period. An agent who is not matched keeps her type in a given

period, but may mutate to another type at the beginning of next period.

4. Some ν : S × S → ∆ specifying the probability νkl(r) that an agent of type k who is

matched with an agent of type l will become, after matching, an agent of type r.

Fixing the parameters (p0, b, q, ν) of some random matching model, under a natural

definition of “Markov conditional independence for mutation, matching, and type changing”

which we provide later in this paper, one conjectures the following results.12

12Models with random full matching, or with deterministic match-induced type changing, or without random
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• At each time n ≥ 1, the realized cross-sectional type distribution pn(ω) is P -almost

surely (henceforth, “a.s.”) equal to the expected cross-sectional type distribution pn =
∫

Ω p
n(ω)dP (ω).

• After the random mutation step at time n, the fraction of the population of a given type

l is almost surely
∑K

k=1 p
n−1
k bkl, denoted by p

n−1/2
l .

• At each time n ≥ 1 and for any type k, the fraction of the population of type k that are

not matched13 at period n is

λ({i ∈ I : hn
ω(i) = k, gn

ω(i) = J}) = p
n−1/2
k qk a.s. (1)

For any types k, l ∈ S, the fraction of the population who are agents of type k that are

matched with agents of type l is

λ({i : hn
ω(i) = k, gn

ω(i) = l}) =
p

n−1/2
k (1 − qk)p

n−1/2
l (1 − ql)

∑K
r=1 p

n−1/2
r (1 − qr)

a.s. (2)

• At the end of each time period n ≥ 1 (after match-induced type changing), for each type

r, the new fraction of agents of type r is

pn
r (ω) = p n

r = p n−1/2
r qr +

K
∑

k,l=1

νkl(r)p
n−1/2
k (1 − qk)p

n−1/2
l (1 − ql)

∑K
t=1 p

n−1/2
t (1 − qt)

a.s. (3)

Using the fact that p
n−1/2
l =

∑K
k=1 p

n−1
k bkl, one has a recursive formula for p n in terms

of p n−1, and thus p n (and also pn) can be computed directly from p0.

• For λ-almost every agent i ∈ I, the type process α0
i , α

1
i , α

2
i , . . . is an S-valued Markov

chain,14 with a K ×K transition matrix zn specifying the probability of transition from

type k at time n− 1 to type l at time n (for n ≥ 1), given by

zn
kl = P (αn

i = l | αn−1
i = k) = qlbkl +

K
∑

r,t=1

νrt(l)bkr
(1 − qr)(1 − qt)p

n−1/2
t

∑K
r′=1(1 − qr′)p

n−1/2
r′

, (4)

provided the event {αn−1
i = k} has positive probability.

mutation, are special cases of our model. To avoid random mutation, one can simply take bkk to be one for all
k ∈ S. If qk = 0 for all k ∈ S, then an agent will be matched with probability one. For k, l ∈ S, if νkl(r) is one
for some r, then the match-induced type change is deterministic.

13We note that
PK

r=1
p n−1/2

r (1 − qr) is the fraction of population who are matched, while
“

p
n−1/2

l (1 − ql)
”

/
“

PK
r=1

p n−1/2

r (1 − qr)
”

is the relative fraction of the population who are matched agents

of type l among all matched agents.
14For a complete statement of what constitutes a Markov process, one must fix a filtration {F0,F1, . . .} of

sub-σ-algebras of F . For our purposes, it is natural, and suffices for this result, to take Ft to be the σ-algebra
generated by {αs

i : i ∈ I, s ≤ t}.
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• For P -almost every state of nature ω ∈ Ω, the cross-sectional type process α0, α1
ω, α

2
ω, . . .

is an S-valued Markov chain with the transition matrix zn at time n− 1 and initial type

distribution p0. Thus, the evolution of the fractions of each type is deterministic and

coincides with the evolution of the probability distribution of type for a given agent,

except for the initial distributions.15

Given the mutation, search and match-induced type chaning parameters (b, q, ν), one

also conjectures that, under the assumption of “Markov conditional independence,” there is

some steady-state constant cross-sectional type distribution p∗ in ∆, in the sense that, for

the parameters (p∗, b, q, ν) we have, almost surely, for all n ≥ 0, pn
ω = p∗. Moreover, the

Markov chains for the type process α0
i , α

1
i , α

2
i , . . . (for λ-almost every agent i ∈ I) and for

the cross-sectional type process α0, α1
ω, α

2
ω, . . . (for P -almost every state of nature ω ∈ Ω) are

time-homogeneous, and the latter has p∗ as a stationary distribution. That is, for some fixed

transition matrix z, we have zn = z for all n ≥ 1, and we have, for all ` in S,

K
∑

k=1

zkl p
∗
k = p∗` .

We will demonstrate all of the results stated above, based on the following version of

the exact law of large numbers, proved in Sun [45] and [48]. Given some W-measurable f :

I × Ω → X, where X is a finite set (we state the result for general X in Section 3.1), the

random variables {fi : i ∈ I}, defined by fi(ω) = f(i, ω), are said to be essentially pairwise

independent16 if for λ-almost all i ∈ I, the random variables fi and fj are independent for λ-

almost all j ∈ I. For brevity, in this case we say that f itself is essentially pairwise independent.

With the assumption of the Fubini property on (I × Ω,W, Q), the exact law of large numbers

in [45] and [48] (which is stated as Lemma 1 in Section 7.1, for the convenience of the reader)

says that if f is essentially pairwise independent, then the sample functions fω have essentially

constant distributions. Then, the notion of Markov conditional independence is used to derive

the essential pairwise independence of the n-th period mutation, matching and type processes

hn, gn and αn, as well as the essential pairwise independence of the Markov chains α0
i , α

1
i , α

2
i , . . .,

which imply all the results stated above.

15We do not take the initial probability distribution of agent i’s type to be p0, but rather the Dirac measure
at the type α0(i). See Footnote 25 for a generalization.

16This condition is weaker than pairwise independence since each agent is allowed to have correlation with
a null set of agents (including finitely many agents since a finite set is null under an atomless measure). For
example, the agent space I is divided into a continuum of cohorts, with each cohort containing a fixed number
L of agents (L ∈ N). If the agents across cohorts act independently (agents within each cohort may have
correlation), then the essential pairwise independence condition is satisfied.
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3 Exact law of large numbers for independent random matchings

In this section, we consider independent random matchings, full or partial, in a static setting.

Some background definitions are given in Section 3.1. Exact laws of large numbers for random

full and partial matchings are presented, respectively, in Sections 3.2 and 3.3, and their proofs

are given in the Appendix, Section 7.2.

3.1 Some background definitions

Let probability spaces (I,I, λ) and (Ω,F , P ) be our index and sample spaces respectively.17 In

our applications, (I,I, λ) is an atomless probability space that is used to index the agents. If

one prefers, I can be taken to be the unit interval [0, 1]. Let (I ×Ω,I ⊗F , λ⊗P ) be the usual

product probability space. For a function f on I × Ω (not necessarily I ⊗F-measurable), and

for (i, ω) ∈ I × Ω, fi represents the function f(i, · ) on Ω, and fω the function f( · , ω) on I.

In order to work with independent type processes arising from random matching, we

need to work with an extension of the usual measure-theoretic product that retains the Fubini

property. A formal definition, as in [48], is as follows.

Definition 1 A probability space (I × Ω,W, Q) extending the usual product space (I × Ω,I ⊗

F , λ ⊗ P ) is said to be a Fubini extension of (I × Ω,I ⊗ F , λ ⊗ P ) if for any real-valued Q-

integrable function g on (I × Ω,W), the functions gi = g(i, · ) and gω = f( · , ω) are integrable

respectively on (Ω,F , P ) for λ-almost all i ∈ i and on (I,I, λ) for P -almost all ω ∈ Ω; and

if, moreover,
∫

Ω gi dP and
∫

I gω dλ are integrable respectively on (I,I, λ) and on (Ω,F , P ),

with
∫

I×Ω g dQ =
∫

I

(∫

Ω gi dP
)

dλ =
∫

Ω

(∫

I gω dλ
)

dP . To reflect the fact that the probability

space (I ×Ω,W, Q) has (I,I, λ) and (Ω,F , P ) as its marginal spaces, as required by the Fubini

property, it will be denoted by (I × Ω,I � F , λ� P ).

An I � F-measurable function f will also be called a process, each fi will be called a

random variable of this process, and each fω will be called a sample function of the process.

We now introduce the following crucial independence condition. We state the definition

using a complete separable metric space X for the sake of generality; in particular, a finite

space or an Euclidean space is a complete separable metric space.

Definition 2 An I �F-measurable process f from I ×Ω to a complete separable metric space

X is said to be essentially pairwise independent if for λ-almost all i ∈ I, the random variables

fi and fj are independent for λ-almost all j ∈ I.18

17All measures in this paper are countably additive set functions defined on σ-algebras.
18Two random variables φ and ψ from (Ω,F , P ) to X are said to be independent, if the σ-algebras σ(φ) and

σ(ψ) generated respectively by φ and ψ are independent.
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3.2 An exact law of large numbers for independent random full matchings

We follow the notation in Section 3.1. Below is a formal definition of random full matching.

Definition 3 (Full matching)

1. Let S = {1, 2, . . . ,K} be a finite set of types, α : I → S an I-measurable type function

of agents. Let p denote the distribution on S. That is, for 1 ≤ k ≤ K and Ik = {i ∈ I :

α(i) = k}, let pk = λ(Ik) for each 1 ≤ k ≤ K.

2. A full matching φ is a bijection from I to I such that for each i ∈ I, φ(i) 6= i and

φ(φ(i)) = i.

3. A random full matching π is a mapping from I × Ω to I such that (i) πω is a full

matching for each ω ∈ Ω; (ii) let g be the type process α(π); then g is measurable from

(I × Ω,I � F , λ� P ) to S; (iii) for λ-almost all i ∈ I, gi has distribution p.

4. A random full matching π is said to be independent in types if the type process g is

essentially pairwise independent.

Condition (1) of this definition says that a fraction pk of the population is of type k.

Condition (2) says that there is no self-matching, and that if i is matched to j = φ(i), then j is

matched to i. Condition (3) (iii) means that for almost every agent i, the probability that i is

matched to a type-k agent is pk, the fraction of type-k agents in the population. Condition (4)

says that for almost all agents i and j ∈ I, the event that agent i matched to a type-k agent is

independent of the event that agent j matched to a type-l agent, for any k and l in S.

Because agents of type k have a common probability pl of being matched to type-l agents,

Condition (4) allows the application of the exact law of large numbers in [45] and [48] (which

is stated as Lemma 1 in Section 7.1 below) in order to claim that the relative fraction of agents

matched to type-l agents among the type-k population is almost surely pl (or, intuitively,

frequency coincides with probability). This means that the fraction of the total population

consisting of type-k agents that are matched to type-l is almost surely pk · pl. This result is

formally stated in the following theorem, whose proof is given in Section 7.2.

Theorem 1 Let α : I → S be an I-measurable type function with type distribution p =

(p1, . . . , pK) on S. Let π be a random full matching from I × Ω to I. If π is independent in

types, then for any given types (k, l) ∈ S × S,

λ({i : α(i) = k, α(πω(i)) = l}) = pk · pl (5)

holds for P -almost all ω ∈ Ω.
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3.3 An exact law of large numbers for independent random partial matchings

We shall now consider the case of random partial matchings, starting with the formal definition.

Definition 4 Let α : I → S be an I-measurable type function with type distribution p =

(p1, . . . , pK) on S. Let π be a mapping from I × Ω to I ∪ {J}, where J denotes “no match.”

1. We say that π is a random partial matching with no-match probabilities q1, . . . , qK in

[0, 1] if (i) for each ω ∈ Ω, the restriction of πω to I − π−1
ω ({J}) is a full matching on

I −π−1
ω ({J});19 (ii) after extending the type function α to I ∪{J} so that α(J) = J , and

letting g = α(π), we have g measurable from (I × Ω,I � F , λ � P ) to S ∪ {J}; (iii) for

λ-almost all i ∈ Ik, P (gi = J) = qk and20

P (gi = l) =
(1 − qk)pl(1 − ql)
∑K

r=1 pr(1 − qr)
.

2. A random partial matching π is said to be independent in types if the process g (taking

values in S ∪ {J}) is essentially pairwise independent.21

The following result, proved in Section 7.2, generalizes Theorem 1 to the case of random

partial matchings.

Theorem 2 If π is an independent-in-types random partial matching from I × Ω to I ∪ {J}

with no-match probabilities q1, . . . , qK then, for P -almost all ω ∈ Ω:

1. The fraction of the total population consisting of unmatched agents of type k is

λ({i ∈ I : α(i) = k, gω(i) = J}) = pkqk. (6)

2. For any types (k, l) ∈ S2, the fraction of the total population consisting of type-k agents

that are matched to type-l agents is

λ({i : α(i) = k, gω(i) = l}) =
pk(1 − qk)pl(1 − ql)

∑K
r=1 pr(1 − qr)

. (7)

19This means that an agent i with πω(i) = J is not matched, while any agent in I − π−1

ω ({J}) is matched.
This produces a partial matching on I .

20Note that if an agent of type k is matched, its probability of being matched to a type-l agent should be
proportional to the type distribution of matched agents. The fraction of the population of matched agents
among the total population is

PK
r=1

pr(1 − qr). Thus, the relative fraction of type l matched agents to that of

all the matched agents is (pl(1 − ql))/
PK

r=1
pr(1 − qr). This implies that the probability that a type-k agent

is matched to a type-l agent is (1 − qk)(pl(1 − ql))/
PK

r=1
pr(1 − qr). When

PK
r=1

pr(1 − qr) = 0, we have
pk(1 − qk) = 0 for all 1 ≤ k ≤ K, in which case almost no agents are matched, and we can interpret the ratio
((1 − qk)pl(1 − ql))/

PK
r=1

pr(1 − qr) as zero.
21This means that for almost all agents i, j ∈ I , whether agent i is unmatched or matched to a type-k agent

is independent of a similar event for agent j.
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4 A dynamical system with random mutation, partial matching, and type

changing that is Markov conditionally independent in types

In this section, we consider a dynamical system with random mutation, partial matching and

type changing that is Markov conditionally independent in types. We first define such a dy-

namical system in Section 4.1. Then, we formulate in Section 4.2 the key condition of Markov

conditional independence in types, and finally present in Theorem 3 of Section 4.3 an exact

law of large numbers and stationarity for the dynamical system.

4.1 Definition of a dynamical system with random mutation, partial matching

and type changing

Let S = {1, 2, . . . ,K} be a finite set of types. A discrete-time dynamical system D with random

mutation, partial matching and type changing in each period can be defined intuitively as

follows. The initial distribution of types is p0. That is, p0(k) (denoted by p0
k) is the initial

fraction of agents of type k. In each time period, each agent of type k first goes through a

stage of random mutation, becoming an agent of type l with probability bkl. In models such as

[15], for example, this mutation generates new motives for trade. Then, each agent of type k

is either not matched, with probability qk, or is matched to a type-l agent with a probability

proportional to the fraction of type-l agents in the population immediately after the random

mutation step. When an agent is not matched, she keeps her type. Otherwise, when a pair of

agents with respective types k and l are matched, each of the two agents changes types; the

type-k agent becomes type r with probability νkl(r), where νkl is a probability distribution on

S, and similarly for the type-l agent. Under appropriate independence conditions, one would

like to have an almost-surely deterministic cross-sectional type distribution at each time period.

We shall now define formally a dynamical system D with random mutation, partial

matching and type changing. As in Section 3, let (I,I, λ) be an atomless probability space

representing the space of agents, (Ω,F , P ) a sample probability space, and (I×Ω,I�F , λ�P )

a Fubini extension of the usual product probability space.

Let α0 : I → S = {1, . . . ,K} be an initial I-measurable type function with distribution

p0 on S. For each time period n ≥ 1, we first have a random mutation that is modeled by a

process hn from (I×Ω,I�F , λ�P ) to S, then a random partial matching that is described by

a function πn from (I×Ω,I�F , λ�P ) to I∪{J} (where J represents no matching), followed by

type changing for the matched agents that is modeled by a process αn from (I×Ω,I�F , λ�P )

to S.

For the random mutation step at time n, given a K ×K probability transition matrix22

22Here, bkl is in [0, 1], with
PK

l=1
bkl = 1 for each k.

12



b, we require that, for each agent i ∈ I,

P
(

hn
i = l |αn−1

i = k
)

= bkl, (8)

the specified probability with which an agent i of type k at the end of time period n−1 mutates

to type l.

For the random partial matching step at time n, we let p n−1/2 be the expected cross-

sectional type distribution immediately after random mutation. That is,

p
n−1/2
k = p n−1/2(k) =

∫

Ω
λ({i ∈ I : hn

ω(i) = k}) dP (ω). (9)

The random partial matching function πn at time n is defined by:

1. For any ω ∈ Ω, πn
ω( · ) is a full matching on I − (πn

ω)−1({J}), as defined in Section 3.3.

2. Extending hn so that hn(J, ω) = J for any ω ∈ Ω, we define gn : I × Ω → S ∪ {J} by

gn(i, ω) = hn(πn(i, ω), ω),

and assume that gn is I � F-measurable.

3. Let q ∈ [0, 1]S . For each agent i ∈ I,

P (gn
i = J |hn

i = k) = qk,

P (gn
i = l |hn

i = k) =
(1 − qk)(1 − ql)p

n−1/2
l

∑K
r=1(1 − qr)p

n−1/2
r

. (10)

Equation (10) means that, for any agent whose type before the matching is k, the probability of

being unmatched is qk, and the probability of being matched to a type-l agent is proportional

to the expected cross-sectional type distribution for matched agents. When gn is essentially

pairwise independent (as under the Markov conditional independence condition used in Section

4.3 below), the exact law of large numbers in [45] and [48] (see Lemma 1 below) implies that the

realized cross-sectional type distribution λ(hn
ω)−1 after random mutation at time n is indeed

the expected distribution p n−1/2, P -almost surely.23

Finally, for the step of random type changing for matched agents at time n, a given

ν : S × S → ∆ specifies the probability distribution νkl = ν(k, l) of the new type of a type-k

agent who has met a type-l agent. When agent i is not matched at time n, she keeps her type

23As noted in Footnote 20, if the denominator in equation (10) is zero, then almost no agents will be matched
and we can simply interpret the ratio as zero.
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hn
i with probability one. We thus require that the type function αn after matching satisfies,

for each agent i ∈ I,

P (αn
i = r |hn

i = k, gn
i = J) = δr

k,

P (αn
i = r |hn

i = k, gn
i = l) = νkl(r), (11)

where δr
k is one if r = k, and zero otherwise.

Thus, we have inductively defined a dynamical system D with random mutation, partial

matching, and match-induced type changing with parameters (p0, b, q, ν).

4.2 Markov conditional independence in types

In this section, we consider a suitable independence condition on the dynamical system D.

For n ≥ 1, to formalize the intuitive idea that given their type function αn−1, the agents

randomly mutate to other types independently at time n, and that their types in earlier periods

have no effect on this mutation, we say that the random mutation is Markov conditionally

independent in types if, for λ-almost all i ∈ I and λ-almost all j ∈ I,

P (hn
i = k, hn

j = l |α0
i , . . . , α

n−1
i ;α0

j , . . . , α
n−1
j ) = P (hn

i = k |αn−1
i )P (hn

j = l |αn−1
j ) (12)

holds for all types k, l ∈ S.24

Intuitively, the random partial matching at time n should depend only on agents’ types

immediately after the random mutation. One may also want the random partial matching to

be independent across agents, given events that occurred in the first n − 1 time periods and

the random mutation at time n. We say that the random partial matching πn is Markov

conditionally independent in types if, for λ-almost all i ∈ I and λ-almost all j ∈ I,

P (gn
i = c, gn

j = d |α0
i , . . . , α

n−1
i , hn

i ;α0
j , . . . , α

n−1
j , hn

j ) = P (gn
i = c |hn

i )P (gn
j = d |hn

j ) (13)

holds for all types c, d ∈ S ∪ {J}.

The agents’ types at the end of time period n should depend on the agents’ types im-

mediately after the random mutation stage at time n, as well as the results of random partial

matching at time n, but not otherwise on events that occurred in previous periods. This mo-

tivates the following definition. The random type changing after partial matching at time n

is said to be Markov conditionally independent in types if for λ-almost all i ∈ I and

λ-almost all j ∈ I, and for each n ≥ 1,

P (αn
i = k, αn

j = l |α0
i , . . . , α

n−1
i , hn

i , g
n
i ;α0

j , . . . , α
n−1
j , hn

j , g
n
j )

= P (αn
i = k |hn

i , g
n
i )P (αn

j = l |hn
j , g

n
j ) (14)

24We could include the functions hm and gm for 1 ≤ m ≤ n − 1 as well. However, it is not necessary to do
so since we only care about the dependence structure across time for the type functions at the end of each time
period.
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holds for all types k, l ∈ S.

The dynamical system D is said to be Markov conditionally independent in types

if, in each time period n, each random step (random mutation, partial matching, and type

changing) is so.

4.3 Exact law of large numbers and stationarity

With the goal of a stationarity result for the cross-sectional type distribution, we now define a

mapping Γ from ∆ to ∆ such that, for each p = (p1, . . . , pK) ∈ ∆, the r-th component of Γ is

Γr(p1, . . . , pK) = qr

K
∑

m=1

pmbmr +

K
∑

k,l=1

νkl(r)(1 − qk)(1 − ql)
∑K

m=1 pmbmk
∑K

j=1 pjbjl
∑K

t=1(1 − qt)
∑K

j=1 pjbjt
. (15)

We note that the second term of this expression for Γr(p1, . . . , pK) can be written as

K
∑

k=1

(1 − qk)
K

∑

m=1

pmbmk

∑K
l=1 νkl(r)(1 − ql)

∑K
j=1 pjbjl

∑K
l=1(1 − ql)

∑K
j=1 pjbjl

,

which is less than or equal to
∑K

l=1(1 − ql)
∑K

j=1 pjbjl. This means that one can define

Γr(p1, . . . , pK) to be qr
∑K

m=1 pmbmr when
∑K

l=1(1 − ql)
∑K

j=1 pjbjl = 0, in order to have con-

tinuity of Γ on all of ∆.

We let pn(ω)k = λ({i ∈ I : αn
ω(i) = k}) be the fraction of the population of type k at the

end of time period n in state of nature ω, and let p n
k be it’s expectation. That is,

p n
k =

∫

Ω
pn(ω) dP (ω) =

∫

I
P (αn

i = k) dλ(i), (16)

where the last equality follows from the Fubini property.

The following theorem provides an exact law of large numbers and shows the stationarity

for a dynamical system D with random mutation, partial matching, and type changing that is

Markov conditionally independent in types. Its proof is given in Section 7.3.

Theorem 3 Let D be a dynamical system with random mutation, partial matching and type

changing whose parameters are (p0, b, q, ν). If D is Markov conditionally independent in types,

then:

1. For each time n ≥ 1, the expected cross-sectional type distribution is given by p n =

Γ(p n−1) = Γn(p0), and p
n−1/2
k =

∑K
l=1 blkp

n−1
l , where Γn is the composition of Γ with

itself n times, and where p n−1/2 is the expected cross-sectional type distribution after the

random mutation (see equation (9)).
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2. For λ-almost all i ∈ I, {αn
i }

∞
n=0 is a Markov chain with transition matrix zn time n− 1

defined by

zn
kl = qlbkl +

K
∑

r,j=1

νrj(l)bkr

(1 − qr)(1 − qj)p
n−1/2
j

∑K
r′=1(1 − qr′)p

n−1/2
r′

. (17)

3. For λ-almost all i ∈ I and λ-almost all j ∈ I, the Markov chains {αn
i }

∞
n=0 and {αn

j }
∞
n=0

are independent (which means that the random vectors (α0
i , . . . , α

n
i ) and (α0

j , . . . , α
n
j ) are

independent for all n ≥ 0).

4. For P -almost all ω ∈ Ω, the cross-sectional type process {αn
ω}

∞
n=0 is a Markov chain with

transition matrix zn at time n− 1.

5. For P -almost all ω ∈ Ω, at each time period n ≥ 1, the realized cross-sectional type

distribution after the random mutation λ(hn
ω)−1 is its expectation p n−1/2, and the realized

cross-sectional type distribution at the end of period n, pn(ω) = λ(αn
ω)−1, is equal to its

expectation p n, and thus, P -almost surely, pn = Γn(p0).

6. There is a stationary distribution p∗. That is, with initial cross-sectional type distribution

p0 = p∗, for every n ≥ 1, the realized cross-sectional type distribution pn at time n is

p∗ P -almost surely, and zn = z1. In particular, all of the relevant Markov chains are

time-homogeneous with a constant transition matrix having p∗ as a fixed point.25

5 Existence of random matching models that are independent in types

In this section, we state three existence results for independent random matching models in

static and dynamic settings. These results are fully developed in a companion paper [17].

Propositions 1, 2 and 3 below are Theorems 2.4, 2.6 and 3.1 in [17] respectively.

The first result shows the existence of an independent random full matching model that

satisfies a few strong conditions that are specified in Footnote 4 of McLennan and Sonnenschein

[39], and is universal in the sense that it does not depend on particular type functions.26 Note

25Our initial type function α0 is assumed to be non-random. It is easy to generalize to the case in which α0

is a function from I × Ω to S such that for λ-almost all i ∈ I , j ∈ I , α0

i and α0

j are independent. Let p 0 be the
expected cross-sectional type distribution. Then, all the results in Theorem 3 remain valid. In the case that for
λ-almost all i ∈ I , α0

i has distribution p 0, the evolution of the fractions of each type is essentially deterministic
and coincides exactly with the evolution of the probability distribution of type for almost every given agent (in
comparison with Footnote 15).

26When (I, I, λ) is taken to be the unit interval with the Borel algebra and Lebesgue measure, property (1)
(iii) of Proposition 1 can be restated as “for P -almost all ω ∈ Ω, λ(A1 ∩ π−1

ω (A2)) = λ(A1)λ(A2) holds for any
A1, A2 ∈ I” by using the fact that the countable collection of rational intervals in [0, 1] generates the Borel
algebra. Footnote 4 of [39] shows the non-existence of a random full matching π that satisfies (i)-(iii) of part
(1). As noted on page 252 of [19], this also implies the non-existence of a random full matching model that is
universal, similar to the non-existence result for a countable population considered earlier in Proposition 4 of
[5].
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that condition (1) (ii) below implies that for any i, j ∈ I, P (πi = j) = 0 since λ({j}) = 0,

which means that the probability that agent i is matched with a given agent j is zero.

Proposition 1 There exists a Fubini extension (I × Ω,I � F , λ � P ) of the usual product

probability space with an atomless probability measure λ and a random full matching π from

(I × Ω,I � F , λ� P ) to I such that

1. (i) for each ω ∈ Ω, λ(π−1
ω (A)) = λ(A) for any A ∈ I, (ii) for each i ∈ I, P (π−1

i (A)) =

λ(A) for any A ∈ I, (iii) for any A1, A2 ∈ I, λ(A1 ∩ π
−1
ω (A2)) = λ(A1)λ(A2) holds for

P -almost all ω ∈ Ω;

2. π is independent in types with respect to any given type function α from I to any finite

type space S.

Next, we consider a model for independent random partial matchings. Since the case of

no-matching is type-dependent, it is not possible to produce a universal matching model for

random partial matchings as in the case of full matchings.

Proposition 2 There is an atomless probability space (I,I, λ) of agents such that for any given

I-measurable type function β from I to S, and for any q ∈ [0, 1]S , (1) there exists a sample space

(Ω,F , P ) and a Fubini extension (I × Ω,I � F , λ � P ) of the usual product probability space;

(2) there exists an independent-in-types random partial matching π from (I ×Ω,I �F , λ�P )

to I with q = (q1, . . . , qK) as the no-match probabilities.

Finally, we present a result on the existence of a dynamical system with random mutation,

partial matching and type changing that is Markov conditionally independent in types.

Proposition 3 Fixing any parameters p0 for initial cross-sectional type distribution, b for mu-

tation probabilities, q ∈ [0, 1]S for no-match probabilities, and ν for match-induced type-change

probabilities, there exists a Fubini extension of the usual product probability space on which is

defined a dynamical system D with random mutation, partial matching and type changing that

is Markov conditionally independent in types with these parameters (p0, b, q, ν).

The static and dynamic matching models described in Propositions 1, 2, and 3 satisfy the

respective conditions in Theorems 1, 2, and 3. Thus, the respective conclusions in Theorems

1, 2 and 3 also hold for these matching models.
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6 Discussion

As noted in the introduction, this is the first theoretical treatment of the exact law of large

numbers for independent random matching among a continuum population (modeled by an

atomless, countably additive probability measure space). All three basic issues concerning

independent random matching for a continuum population, namely, mathematical formulation

of the analytic framework, proof of general results on the exact law of large numbers for

independent random matching, and existence of independent random matching with the desired

properties, are addressed for both static and dynamic systems. Our results on a dynamical

system with random mutation, random partial matching, and random type changing provide

an understanding of the time evolution of the cross-sectional type process, identifying it as a

Markov chain with known transition matrices.

McLennan and Sonnenschein showed, in Footnote 4 of [39], the non-existence of a random

full matching π that satisfies a few strong conditions when (I,I, λ) is taken to be the unit

interval with the Borel algebra and Lebesgue measure. As noted in Footnote 26, our Proposition

1 shows that the conditions of McLennan and Sonnenschein can be satisfied in our framework.

There are also several negative results in the settings of [5, Proposition 4] and [19, Corollary 3.2]

on the impossibility of finding a universal random matching that does not depend on particular

type functions. Proposition 1, however, shows that a universal random full matching does exist

in our framework.

Based on the classical asymptotic law of large numbers, Boylan constructed an example

of random full matching for a countable population in [5, Proposition 2] with the properties

that an individual’s probability of matching a type-k agent is the fraction pk of type-k agents in

the total population, and that the asymptotic fraction of type-k agents matching type-l agents

in a realized matching approximates pkpr almost surely.27 A repeated matching scheme is then

considered in [5] for the dynamic setting.

An ad-hoc example of random full matching is also constructed in [19, Theorem 4.2] for

a given type function on the population space [0, 1] by rearranging intervals in [0, 1] through

measure-preserving mappings. For repeated matching schemes with an infinite number of time

periods, it is recognized in [19, page 262] that one may run into problems when the matching

in the next period follows from the type function in a previous period.28 It is then proposed

to arbitrarily rearrange agents with the same types into half-open intervals. Aside from the

question of a natural interpretation of this rearrangement of agents’ names using intervals,

27It is not clear whether this example satisfies the kind of condition, independence in types, considered by us.
28In the dynamic random matching model defined in the proof of our Proposition 3 in [17], every step of

randomization uses the realized type function generated in the step of randomization immediately before.

18



the random full matching considered in [19] does not satisfy the intuitive idea that agents

are matched independently in types. That is, this example is not a model for independent

random matching. It is made clear in [19, page 266] that “This paper should not be viewed

as a justification for the informal use of a law of large numbers in random matching with a

continuum of agents.”

In comparison with the particular examples of a random full matching with some match-

ing properties in [5] and [19], we prove the exact law of large numbers for general independent

random matchings,29 which can be applied to different matching schemes. Our existence result

in Proposition 1 also has stronger properties than those in [5, Proposition 2] and [19, Theorem

4.2]. Also, random mutation, random partial matching and random type changing induced by

matching are not considered in [5] and [19].

Gilboa and Matsui [23] constructed a particular example for a matching model of two

countable populations with a countable number of encounters in the time interval [0, 1), where

the space N of agents is endowed with a purely finitely additive measure µ extending the usual

density. They showed that their matching model satisfies a few desired matching properties in

their setting, including the fact that an agent is matched exactly once with probability one.

Their matching model is quite different from ours. As they also point out, a disadvantage of

their approach is that the underlying state of the world is “drawn” according to a purely finitely-

additive measure. In addition to the fact that a purely finitely-additive measure-theoretic

framework does not allow the use of analytic tools involving limits, it has no basic properties,

such as Radon-Nikodym derivatives, and the property that everywhere positive, integrable

functions having positive integrals.30 In short, one cannot use probabilistic arguments in such

a framework. Moreover, as in Section 6.2 of [48], absurd results can be obtained in a purely

finitely additive settings. For example, for an iid sequence of random variables defined on a

purely finitely additive measure space, one can say that the arithmetic averages of almost all

sample sequences diverge (or converge to any given value).

As emphasized earlier, we have shown in Theorem 3 that the cross-sectional type process

defined on our agent space (I,I, λ) (which is a countably additive atomless probability space) is

a Markov chain with known transition matrices almost surely. It would not make sense to have

such a result when the space of agents is N endowed with a purely finitely additive measure

µ. Note that a Markov chain {ψn}
∞
n=0 on S in general induces an atomless countably additive

29It is important to distinguish an ad hoc example without independence from a general result in the setting
of law of large numbers. For example, one can take a sequence of bounded random variables {φn}

∞
n=1 with mean

zero. When all the odd terms in the sequence equal φ1 and even terms equal −φ1, then (
Pn

k=1
φk)/n converges

to zero almost surely. Such kind of result will not be useful at all in situations that require the use of the law of
large numbers.

30In some sense, the weights for a purely finitely additive measure may be concentrated at an imaginary
infinity; see [3].
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measure on S∞, which cannot be induced by any mapping from N with the measure µ to S∞.

7 Appendix

7.1 Exact law of large numbers for a continuum of independent random variables

The following general version of the exact law of large numbers is shown by Sun in [45] and

[48], and is stated as a lemma here for the convenience of the reader.31

Lemma 1 Let f be a process from (I × Ω,I � F , λ� P ) to a complete separable metric space

X. Assume that the random variables fi are essentially pairwise independent.

1. For P -almost all ω ∈ Ω, the sample distribution λf−1
ω of the sample function fω is the

same as the distribution (λ� P )f−1 of the process.32

2. For any A ∈ I with λ(A) > 0, let fA be the restriction of f to A × Ω, λA and λA
� P

the probability measures rescaled from the restrictions λ and λ� P to {D ∈ I : D ⊆ A}

and {C ∈ I � F : C ⊆ A × Ω} respectively. Then for P -almost all ω ∈ Ω, the sample

distribution λA(fA)−1
ω of the sample function (fA)ω is the same as the distribution of

(λA
� P )(fA)−1 of the process fA.

3. If there is a distribution µ on X such that for λ-almost all i ∈ I, the random variable

fi has distribution µ, then the sample function fω (or (fA)ω) also has distribution µ for

P -almost all ω ∈ Ω.

By viewing a discrete-time stochastic process taking values in X as a random variable

taking values in X∞, Lemma 1 implies the following exact law of large numbers for a contin-

uum of discrete-time stochastic processes, which is formally stated in Theorem 5.8 in [45] and

Theorem 3.13 in [48] respectively.33

31This result was originally stated on Loeb measure spaces in [45] (Theorem 5.2). However, it is noted in [48]
that the result can be proved for an extension of the usual product with the Fubini property (Theorem 3.5);
see also Chapter 7 in [37] (and in particular, Section 7.5), written by Sun. Theorem 3.5 of [48] actually shows
that the statement in (2) here is equivalent to the condition of essential pairwise independence, which simply
presents Theorem 7.6 in the earlier paper [45] in the Loeb space framework to the setting of a Fubini extension
of the usual product probability space.

32Here, (λ� P )f−1 is the distribution ν on X such that ν(B) = (λ� P )(f−1(B)) for any Borel set B in X;
λf−1

ω is defined similarly.
33For any given two Loeb spaces (I, I, λ) and (Ω,F , P ) as in [36] and [37], Anderson noted in [1] that the

Loeb product space (I × Ω, I � F , λ � P ) is an extension of the usual product (I × Ω, I ⊗ F , λ ⊗ P ). Keisler
proved in [31] (see also [37]) that the Fubini property still holds on (I×Ω, I�F , λ�P ). Thus, the Loeb product
space is a Fubini extension of the usual product probability space. In addition, it is shown in Theorem 6.2 of
[45] that when both λ and P are atomless, (I × Ω, I � F , λ � P ) is rich enough to be endowed with a process
h whose random variables are essentially pairwise independent and can take any variety of distributions (and
in particular the uniform distribution on [0, 1]). A countable infinite product of Loeb transition probabilities
(which is not a Loeb product space) is used in [17] to construct a continuum of independent Markov chains that
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Corollary 1 Let f be a mapping from I ×Ω×N to a complete separable metric space X such

that for each n ≥ 0, fn = f(·, ·, n) is an I�F-measurable process. Then, for λ-almost all i ∈ I,

{fn
i }

∞
n=0 is a discrete-time stochastic process. Assume that the stochastic processes {fn

i }
∞
n=0, i ∈

I are essentially pairwise independent, i.e., for λ-almost all i ∈ I, λ-almost all j ∈ I, the

random vectors (f0
i , . . . , f

n
i ) and (f0

j , . . . , f
n
j ) are independent for all n ≥ 0. Then, for P -almost

all ω ∈ Ω, the empirical process fω = {fn
ω}

∞
n=0 has the same finite-dimensional distributions

as that of f = {fn}∞n=0, i.e. (f0
ω, . . . , f

n
ω ) and (f0, . . . , fn) have the same distribution for any

n ≥ 0.

7.2 Proofs of Theorems 1 and 2

Proof of Theorem 1: If pk = 0, equation (5) is automatically satisfied. Consider pk > 0. Let

Ik = {i ∈ I : α(i) = k} and g = α(π). Since the random variables gi are essentially pairwise

independent, Lemma 1 (3) implies that the sample function (gIk)ω on Ik has distribution p on

S for P -almost all ω ∈ Ω. This means that λ({i ∈ Ik : gω(i) = l})/pk = pl for P -almost all

ω ∈ Ω. Hence equation (5) follows.

Proof of Theorem 2: The proof is similar to that of Theorem 1; we adopt the same notation

and consider only pk > 0. Lemma 1 says that for P -almost all ω ∈ Ω, the sample function gIk
ω

on Ik has the same distribution as gIk on Ik × Ω. Hence for P -almost all ω ∈ Ω,

λIk
(

(gIk
ω )−1({J})

)

=
(

λIk � P
) (

(gIk)−1({J})
)

,

which means that

λ({i ∈ I : α(i) = k, gω(i) = J}) =

∫

Ik

∫

Ω
1(gi=J)dPdλ =

∫

Ik

qkdλ = pkqk;
34

and also for any 1 ≤ l ≤ K,

λ(Ik ∩ g−1
ω ({l})) = (λ� P )((Ik × Ω) ∩ g−1({l})) =

∫

Ik

∫

Ω
1(gi=l)dPdλ

=

∫

Ik

(1 − qk)pl(1 − ql)
∑K

r=1 pr(1 − qr)
dλ =

pk(1 − qk)pl(1 − ql)
∑K

r=1 pr(1 − qr)
.

Thus, equations (6) and (7) follow.

7.3 Proof of Theorem 3

Before proving Theorem 3, we need to prove a few lemmas. The first lemma shows how to

compute the expected cross-sectional type distributions p n and p n−1/2.

is derived from random mutation, random partial matching and random type changing. This means that though
a Loeb product space is already very rich, we still need to work with the more general Fubini extension in some
cases.

34For a set C in a space, 1C denotes its indicator function.
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Lemma 2 (1) For each n ≥ 1, p n = Γ(p n−1), and hence p n = Γn(p0), where Γn is the

composition of Γ with itself n times.

(2) For each n ≥ 1, the expected cross-sectional type distribution p n−1/2 immediately

after random mutation at time n, as defined in equation (9), satisfies p
n−1/2
k =

∑K
l=1 blkp

n−1
l =

∑K
l=1 blkΓ

n−1(p0).

Proof. Equations (8) and (9) and the Fubini property imply that

p
n−1/2
k =

∫

I
P (hn

i = k) dλ(i) =

∫

I

K
∑

l=1

P (hn
i = k, αn−1

i = l) dλ(i)

=

∫

I

K
∑

l=1

P (hn
i = k |αn−1

i = l)P (αn−1
i = l) dλ(i)

=

K
∑

l=1

∫

I
blkP (αn−1

i = l) dλ(i) =

K
∑

l=1

blkp
n−1
l . (18)

Then, we can express p n in terms of p n−1/2 by equations (10) and (11).

p n
r =

∫

I
P (αn

i = r) dλ(i)

=

∫

I

K
∑

k=1

[

P (αn
i = r, hn

i = k, gn
i = J) +

K
∑

l=1

P (αn
i = r, hn

i = k, gn
i = l)

]

dλ(i)

=

∫

I

K
∑

k=1

[P (αn
i = r |hn

i = k, gn
i = J)P (gn

i = J |hn
i = k)P (hn

i = k)

+

K
∑

l=1

P (αn
i = r |hn

i = k, gn
i = l)P (gn

i = l |hn
i = k)P (hn

i = k)

]

dλ(i)

= p n−1/2
r qr +

K
∑

k,l=1

νkl(r)p
n−1/2
k (1 − qk)p

n−1/2
l (1 − ql)

∑K
t=1 p

n−1/2
t (1 − qt)

. (19)

By combining equations (18) and (19), it is easy to see that p n = Γ(p n−1), and hence that

p n = Γn(p0), where Γn is the composition of Γ with itself n times. Hence, part (1) of the

lemma is shown. Part (2) of the lemma follows from part (1) and equation (18).

The following lemma shows the Markov property of the agents’ type processes.

Lemma 3 Suppose the dynamical system D is Markov conditionally independent in types.

Then, for λ-almost all i ∈ I, the type process for agent i, {αn
i }

∞
n=0, is a Markov chain with

transition matrix zn at time n− 1, where zn
kl is defined in equation (17).

Proof. Fix n ≥ 1. Equation (12) implies that for λ-almost all i ∈ I, λ-almost all j ∈ I,

P (hn
i = kn, h

n
j ∈ S |α0

i = k0, . . . , α
n−1
i = kn−1;α

0
j ∈ S, . . . , αn−1

j ∈ S)

= P (hn
i = kn |α

n−1
i = kn−1)P (hn

j ∈ S |αn−1
j ), (20)
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holds for any (k0, . . . , kn) ∈ Sn+1. Thus, for λ-almost all i ∈ I,

P (hn
i = k |α0

i , . . . , α
n−1
i ) = P (hn

i = k |αn−1
i ) (21)

holds for any k ∈ S. By grouping countably many null sets together, we know that for λ-almost

all i ∈ I, equation (21) holds for all k ∈ S and n ≥ 1.

Similarly, equations (13) and (14) imply that for λ-almost all i ∈ I,

P (gn
i = c |α0

i , . . . , α
n−1
i , hn

i ) = P (gn
i = c |hn

i )

P (αn
i = k |α0

i , . . . , α
n−1
i , hn

i , g
n
i ) = P (αn

i = k |hn
i , g

n
i ) (22)

hold for all k ∈ S, c ∈ S ∪ {J} and n ≥ 1. A simple computation shows that for λ-almost

all i ∈ I, P (αn
i = k |α0

i , . . . , α
n−1
i ) = P (αn

i = k |αn−1
i ) for all k ∈ S and n ≥ 1. Hence, for

λ-almost all i ∈ I, agent i’s type process {αn
i }

∞
n=0 is a Markov chain; it is also easy to see that

the transition matrix zn from time n− 1 to time n is

zn
kl = P (αn

i = l |αn−1
i = k)

=
K

∑

r=1

∑

c∈S∪{J}

P (αn
i = l |hn

i = r, gn
i = c)P (gn

i = c |hn
i = r)P (hn

i = r |αn−1
i = k). (23)

Then, equations (8), (10) and (11) imply that the formula for zn
kl in equation (17) holds.

Now, for each n ≥ 1, we view each αn as a random variable on I × Ω. Then {αn}∞n=0 is

a discrete-time stochastic process.

Lemma 4 Assume that the dynamical system D is Markov conditionally independent in types.

Then, {αn}∞n=0 is also a Markov chain with transition matrix zn at time n−1 given by equation

(17).

Proof. We can compute the transition matrix of {αn}∞n=0 at time n − 1 as follows. For any

k, l ∈ S, we have

(λ� P )(αn = l, αn−1 = k) =

∫

I
P (αn

i = l |αn−1
i = k)P (αn−1

i = k) dλ(i)

=

∫

I
zn
klP (αn−1

i = k) dλ(i)

= zn
kl · (λ� P )(αn−1 = k), (24)

which implies that (λ� P )(αn = l |αn−1 = k) = zn
kl.

Next, for any n ≥ 1, and for any (a0, . . . , an−2) ∈ Sn−1, we have

(λ� P ) ( (α0, . . . , αn−2) = (a0, . . . , an−2), αn−1 = k, αn = l)
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=

∫

I
P ((α0

i , . . . , α
n−2
i ) = (a0, . . . , an−2), αn−1

i = k, αn
i = l) dλ(i)

=

∫

I
P (αn

i = l |αn−1
i = k)P ((α0

i , . . . , α
n−2
i ) = (a0, . . . , an−2), αn−1

i = k) dλ(i)

= zn
kl · (λ� P )((α0, . . . , αn−2) = (a0, . . . , an−2), αn−1 = k), (25)

which implies that (λ � P )(αn = l | (α0, . . . , αn−2) = (a0, . . . , an−2), αn−1 = k) = zn
kl. Hence

the discrete-time process {αn}∞n=0 is indeed a Markov chain with transition matrix zn at time

n− 1.

To prove that the agents’ type processes are essentially pairwise independent in Lemma

6 below, we need the following elementary lemma.

Lemma 5 Let φm be a random variable from (Ω,F , P ) to a finite space Am, for m = 1, 2, 3, 4.

If the random variables φ3 and φ4 are independent, and if, for all a1 ∈ A1 and a2 ∈ A2,

P (φ1 = a1, φ2 = a2 |φ3, φ4) = P (φ1 = a1 |φ3)P (φ2 = a2 |φ4), (26)

then the two pairs of random variables (φ1, φ3) and (φ2, φ4) are independent.

Proof. For any am ∈ Am, m = 1, 2, 3, 4, we have

P (φ1 = a1, φ2 = a2, φ3 = a3, φ4 = a4)

= P (φ1 = a1, φ2 = a2 |φ3 = a3, φ4 = a4)P (φ3 = a3, φ4 = a4)

= P (φ1 = a1 |φ3 = a3)P (φ2 = a2 |φ4 = a4)P (φ3 = a3)P (φ4 = a4)

= P (φ1 = a1, φ3 = a3)P (φ2 = a2, φ4 = a4). (27)

Hence, the pairs (φ1, φ3) and (φ2, φ4) are independent.

The following lemma is useful for applying the exact law of large numbers in Corollary

1 to Markov chains.

Lemma 6 Assume that the dynamical system D is Markov conditionally independent in types.

Then, the Markov chains {αn
i }

∞
n=0, i ∈ I, are essentially pairwise independent. In addition, the

processes hn and gn are also essentially pairwise independent for each n ≥ 1.

Proof. Let E be the set of all (i, j) ∈ I × I such that equations (12), (13) and (14) hold for

all n ≥ 1. Then, by grouping countably many null sets together, we obtain that for λ-almost

all i ∈ I, λ-almost all j ∈ I, (i, j) ∈ E, i.e., for λ-almost all i ∈ I, λ(Ei) = λ({j ∈ I : (i, j) ∈

E}) = 1.

24



We can use induction to prove that for any fixed (i, j) ∈ E, (α0
i , . . . , α

n
i ) and (α0

j , . . . , α
n
j )

are independent, so are the pairs hn
i and hn

j , and gn
i and gn

j . This is obvious for n = 0. Suppose

that it is true for the case n − 1, i.e., (α0
i , . . . , α

n−1
i ) and (α0

j , . . . , α
n−1
j ) are independent, so

are the pairs hn−1
i and hn−1

j , and gn−1
i and gn−1

j . Then, the Markov conditional independence

condition and Lemma 5 imply that (α0
i , . . . , α

n−1
i , hn

i ) and (α0
j , . . . , α

n−1
j , hn

j ) are independent,

so are the pairs (α0
i , . . . , α

n−1
i , hn

i , g
n
i ) and (α0

j , . . . , α
n−1
j , hn

j , g
n
j ), and (α0

i , . . . , α
n−1
i , hn

i , g
n
i , α

n
i )

and (α0
j , . . . , α

n−1
j , hn

j , g
n
j , α

n
j ). Hence, the random vectors (α0

i , . . . , α
n
i ) and (α0

j , . . . , α
n
j ) are

independent for all n ≥ 0, which means that the Markov chains {αn
i }

∞
n=0 and {αn

j }
∞
n=0 are in-

dependent. It is also clear that for each n ≥ 1, the random variables hn
i and hn

j are independent,

so are gn
i and gn

j . The desired result follows.

Proof of Theorem 3: (1), (2) and (3) of the theorem are shown in Lemmas 2, 3, and 6

respectively.

By the exact law of large numbers in Corollary 1, we know that for P -almost all ω ∈ Ω,

(α0
ω, . . . , α

n
ω) and (α0, . . . , αn) (viewed as random vectors) have the same distribution for all

n ≥ 1. Since, as noted in Lemma 4, {αn}∞n=0 is a Markov chain with transition matrix zn at

time n− 1, so is {αn
ω}

∞
n=0 for P -almost all ω ∈ Ω. Thus (4) is shown.

Since the processes hn and gn are essentially pairwise independent as shown in Lemma

6, the exact law of large numbers in Lemma 1 implies that at time period n, for P -almost all

ω ∈ Ω, the realized cross-sectional distribution after the random mutation, pn(ω) = λ(hn
ω)−1 is

the expected cross-sectional distribution p n−1/2, and the realized cross-sectional distribution

at the end of period n, pn(ω) = λ(αn
ω)−1 is the expected cross-sectional distribution p n. Thus,

(5) is shown.

To prove (6), note that Γ is a continuous function from ∆ to itself. Hence, Brower’s

Fixed Point Theorem implies that Γ has a fixed point p∗. In this case, p n = Γn(p∗) = p∗,

zn
kl = z1

kl for all n ≥ 1. Hence the Markov chains {αn
i }

∞
n=0 for λ-almost all i ∈ I, {αn}∞n=0,

{αn
ω}

∞
n=0 for P -almost all ω ∈ Ω are time-homogeneous.
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