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ture of credit spreads on corporate or sovereign bonds based on exogenous
fractional recovery of face value. One version of the model is based on \aÆne"
state variables. Another version is in the spirit of the Heath-Jarrow-Morton
model of forward rates.

1I am grateful to Jesper Andreason, Ken Hirsh, Jun Pan, Ken Singleton, and Wolfgang
Schmidt for stimulating conversations. I am also grateful for insightful research assistance
from Jun Pan. DuÆe is at GSB Stanford CA 94305-5015 (Phone: 650-723-1976; Fax:
650-725-7979; Email: duffie@baht.stanford.edu), and was supported in part by the
Financial Research Initiative and the Gi�ord Fong Associates Fund at The Graduate
School of Business, Stanford University.

1



Contents

1 Introduction 3

1.1 Reduced-Form Default Models . . . . . . . . . . . . . . . . . . 3

2 The Basic Approach 5

2.1 Ingredients and Assumptions . . . . . . . . . . . . . . . . . . . 5
2.2 Valuation with Discrete-Time Recovery . . . . . . . . . . . . . 6
2.3 Simpli�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Pricing with Continual Recovery . . . . . . . . . . . . . . . . . 9

3 Analytical Solutions in AÆne Settings 10

3.1 The AÆne State Process . . . . . . . . . . . . . . . . . . . . . 10
3.2 Discrete-Time Recovery Case . . . . . . . . . . . . . . . . . . 12
3.3 Continual Recovery Case . . . . . . . . . . . . . . . . . . . . . 12

4 Forward Rates with Partial Recovery of Par 13

4.1 Defaultable Forward Rate Behavior . . . . . . . . . . . . . . . 14
4.2 The Implied Default Time . . . . . . . . . . . . . . . . . . . . 15
4.3 The Forward Spread-Rate Process . . . . . . . . . . . . . . . . 16
4.4 Coupon-Strip Forward Curves . . . . . . . . . . . . . . . . . . 17

5 Default Swap Pricing 18

6 Appendix A { Risk-Neutral Measure 19

7 Appendix B { Forward Default Probability 20

8 Appendix C { Constructing Default Times 21

2



1 Introduction

This paper provides simple tractable models of the term structure of credit
spreads on corporate or sovereign bonds based on exogenously speci�ed frac-
tional recovery of face value at default. One version of the model is based on
\aÆne" state variables. Another version is in the spirit of the Heath-Jarrow-
Morton model of forward rates.

Such a model can be used for such industry applications as credit-swap
pricing or extracting implied risk-neutral default probabilities from credit
swap spreads, or for other risk-management, bond derivative, or credit deriva-
tive applications. An explicit term structure model is useful when calibrating
or estimating parameters.

1.1 Reduced-Form Default Models

\Reduced-form" defaultable term-structure models typically2 take as prim-
itives the behavior of default-free interest rates, the fractional recovery of
defaultable bonds at default, as well as a stochastic intensity process � for
default. The intensity �t may be viewed as the conditional rate of arrival of
default. For example, with constant �, default is a Poisson arrival.

These models are distinguished somewhat by the manner in which the
recovery at default is parameterized. Jarrow and Turnbull (1996) stipulated
that, at default, a bond would have a market value equal to an exogenously
speci�ed fraction of an otherwise equivalent default-free bond. DuÆe and
Singelton (1997) followed with a model that, when specialized to exogenous
fractional recovery of market value at default, allows for closed-form solutions
in a wider range of cases, by showing that cash 
ows can be discounted simply
at the short-term default-free rate plus the risk-neutral rate of expected loss
of market value due to default.

Some industry researchers, however, prefer a model in which bonds of the
same issuer, seniority, and face value have the same recovery at default, re-
gardless of remaining maturity. This is a relatively strict legal interpretation
of recovery that can be based, for example, on the assumption of absolute

2This class of models includes Artzner and Delbaen (1995), DuÆe and Singleton (1995),
DuÆe, Schroder, and Skiadas (1996), Jarrow and Turnbull (1996), Jarrow, Lando, and
Turnbull (1997), Lando (1993, 1997, 1998), Madan and Unal (1995), Martin (1997),
Nakazato (1997), Nielsen and Ronn (1995), Pye (1974), Sch�onbucher (1997), and oth-
ers.
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priority or liquidation at default. Under such an assumption of equal recovery
for equal face value, the DuÆe-Singleton or Jarrow-Turnbull models, special-
ized to a given deterministic fractional recovery parameters, could only be
viewed as approximations, and in any case call for care in specifying the de-
pendence of fractional recovery on coupon structure and remaining maturity.

Here, we propose models with a parameterization based on an exoge-
nously speci�ed fractional recovery of face value. Recovery parameters in
this setting could be based on statistics provided by rating agencies, such as
Moody's, a recent summary of which are illustrated in Figure 1. The assump-
tion is that, at default, the holder of a bond of given face value receives a
�xed payment, irrespective of coupon level or maturity, and the same fraction
of face value as any other bond of the same seniority. Faced with the threat
of liquidation but the potential for re-organization, it is not clear that equal
fractional recovery of par (that is, absolute priority) would necessarily apply.
Bonds of di�erent maturities and coupon rates may su�er quite di�erently,
relative to each other, in a re-organization than they would in liquidation,
and their owners therefore may have di�erent bargaining positions that may
cause violations of absolute priority in re-organization. For a relevant theo-
retical approach, see Bergman and Callen (1991). No empirical research on
this issue was available at this writing.

To the author's knowledge, there had been no published term-structure
models providing explicit solutions, with exogenously speci�ed fractional re-
covery of face value, that allow stochastic default intensity that is correlated
with default-free interest rates.3 This stochastic intensity behavior is appar-
ent in bond yield-spread behavior. See, for example, Du�ee (1996).

We are able to obtain explicit pricing with fractional recovery of face
value in two settings.

In one of these, based on a state-vector with aÆne dynamics, there is a
simplifying assumption that payout of recovery is at the �rst possible date
among a list of discrete dates, such as coupon dates. With the alternative of
continual recovery (simultaneous with default), we show how to reduce the
calculation of defaultable discounts to a one-dimensional numerical integral,
which is not onerous.

The second class of models presented in this paper is based on specifying

3In a structural default model, Brennan and Schwartz (1980) speci�ed a given fractional
recovery of face value in an early model of convertible debt pricing, but again did not obtain
explicit solutions. Otherwise, there are few if any published models with explicit solutions
for term structure models based on exogenous recovery of par.
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the stochastic behavior of defaultable bond forward rates, with an exoge-
nously speci�ed fractional recovery of par, in the spirit of the term-structure
model of Heath, Jarrow, and Morton (1992).

2 The Basic Approach

This section contains the basic model. The following sections specialize to
obtain explicit results.

2.1 Ingredients and Assumptions

The model has several basic ingredients:

� A stopping time � for default of the given issuer. The stopping time is
assumed to have an intensity process �.4 With a constant intensity �,
for example, default has a Poisson arrival at intensity �. More generally,
for t before � , we may view �t as the conditional rate of arrival of
default at time t, given all information available up to that time. In
other words, for a small time interval of length �, the conditional
probability at time t that default occurs between t and t + �, given
survival to t, is approximately5 �t�:

� A bounded short-rate process r and equivalent martingale measure6 Q.

4All random variables are de�ned on a �xed probability space (
;F ; P ). A �ltration
fFt : t � 0g of �-algebras, satisfying the usual conditions, is �xed and de�nes the infor-
mation available at each time. An intensity process � is assumed to be non-negative and
predictable (a natural measurability restriction) and to satisfy, for each t > 0,

R t
0 �s ds <1

almost surely, with the property that, for N(t) = 1��t, a martingale is de�ned by

Nt �

Z t

0

(1�Ns)�s ds; t � 0:

Some authors prefer to to describe \the" intensity as (1�Ns)�s rather than �s, and this
indeed, under technical continuity conditions, allows for a uniqueness-of-intensity property.
For details, see Br�emaud (1980). Our de�nition is weaker and does not suggest uniqueness.

5This is true in the usual sense of derivatives if, for example, � is a bounded continuous
process, and otherwise can be interpreted in an almost-everywhere sense.

6See Appendix A for details.
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� Recovery at default given by a bounded random variable W , per unit
of face value. We will elaborate two versions of the model, one with
discrete-time recovery, and another with \continual recovery." Contin-
ual recovery means simply that W is measured and received precisely
at the default time � . With discrete-time recovery, W is measured
and recevied as of the �rst date after default among a pre-speci�ed
list T (1); T (2); : : : ; T (n) = T of times, with Ti < Ti+1, where T is ma-
turity. In application, it may be simple and adequate to take these
recovery times to be coupon dates, in that default may be e�ectively
revealed between coupon dates, but in fact only declared when coupon
or principle is due.7 It is not uncommon in practice to assume that
the recovery of coupons is zero, and to treat coupon and principal pay-
ments individually, as zero-coupon strips. The discrete-time recovery
assumption may also be viewed simply as an approximation, with the
virtue of explicit pricing, of the pricing that would apply with continual
recovery.

2.2 Valuation with Discrete-Time Recovery

We �rst give a general valuation formula, with discrete-time recovery, for
a given zero-coupon bond, which may itself be a coupon or principal strip,
maturing at T (n) = T . Typically, for a coupon strip, we would take W = 0
recovery.

By the de�nition of Q as an equivalent martingale measure, the market
value of the bond at any time t before default is

Vt = V �(t) +
X

fi:t�T (i)�Tg

Vi(t);

where
V �(t) = EQ

h
Æ(r; t; T )1�>T

��� Ft

i
;

7If one prefers to view recovery as measured at the precise default date � , then, except
in extreme cases, a good approximation would be to assume that, conditional on default
during the interval (T (i); T (i+ 1)), recovery occurs at an expected time given by some
particular point, such as the mid-point of the interval, and then to approximate W as the
actual recovery at the default time, scaled up by the time value of money invested at the
default time until the end of the interval. Of course, W is assumed to be measurable with
respect to FT (�), where T (�) = minfT (i) : T (i) > �g.
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Vi(t) = EQ
h
1T (i�1)��<T (i)Æ(r; t; T (i))W

��� Ft

i
; (1)

and, for any predictable process 
 with
R T
0
j
sj ds <1, we let

Æ(
; t; s) = exp

�
�

Z s

t


u du

�
:

We have merely represented the value of a strip as the value contingent on
survival through maturity plus the sum of the values contingent on default
in each of the intervals (T (i); T (i+ 1)).

Because
1T (i�1)��<T (i) = 1��T (i�1) � 1��T (i);

we see that
Vi(t) = ViA(t)� ViB(t);

where
ViA(t) = EQ

h
1��T (i�1)Æ(r; t; T (i))W

��� Ft

i

and
ViB(t) = EQ

h
1��T (i)Æ(r; t; T (i))W

��� Ft

i
:

2.3 Simpli�cation

Artzner and Delbaen (1995) show that there is also an intensity process �Q

for � under the equivalent martingale measure Q, and show how to obtain
�Q in terms of � and Q.

In order to simplify the calculations in this discrete-time recovery setting,
we suppose that W is Q-independent of (r; �), and let w = EQ(W ): At a
cost in complexity, one could alternatively exploit conditioning information
regarding the dependence of recovery on the timing of default, as we shall in
the continual-recovery case to follow.

Based on previously available results,8 under technical conditions, for
t < � , we have V �(t) = Y �(t), ViA(t) = YiA(t), and ViB(t) = YiB(t), where

Y �
t = EQ

h
Æ(r + �Q; t; T )

��� Ft

i
; (2)

YiA(t) = wEQ
h
Æ(r + �Q; t; T (i� 1))Æ(r; T (i� 1); T (i))

��� Ft

i
;

8See DuÆe, Schroder, and Skiadas (1996) or Lando (1997).

7



and

YiB(t) = wEQ
h
Æ(r + �Q; t; T (i))

��� Ft

i
: (3)

The main condition is that Y �; YiA; and YiB do not jump at the default
time � . This is certainly true in the usual settings, for example when r; �Q

are determined by9 di�usion processes.
We can now apply the law of iterated expectations to write

YiA(t) = wEQ
h
Æ(r + �Q; t; T (i� 1))Ui

��� Ft

i
; (4)

where
Ui = EQ

h
Æ(r; T (i� 1); T (i))

��� FT (i�1)

i
;

which is the default-free zero-coupon bond price at T (i � 1) for maturity
T (i).

The idea now is to specialize the model so as to obtain a closed form
solution for Ui, and then explicit solutions for YiA; YiB; and Y �.

Before we do so, we summarize our technical progress. The proof is by the
above construction, combined with results that can be found, for example,
in DuÆe, Schroder, and Skiadas (1996) or Lando (1997).

Proposition 1. Suppose that r; �Q, and W are bounded, and that W is
Q-independent of (r; �). For t < T , let

Y (t) = Y �(t) +
X

fi:t�T (i)�Tg

(YiA(t)� YiB(t)); (5)

where Y �, YiA, and YiB are given by (2), (4), and (3), respectively. Suppose
that Y jumps10 at � with probability zero. Then V (t) = Y (t) for t < � .

9It is enough that (�Q; r) is predictable with respect to the �ltration generated by a
process that is a di�usion, or even a jump di�usion provided the state jumps at � with
probability zero. See, for example, DuÆe, Schroder, and Skiadas (1996) for more details.

10The jump of a right-continuous left-limits process X at time t is �X(t) = X(t) �
lims"tX(s) = 0. One says that X has no jump at � if �X(�) = 0.
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2.4 Pricing with Continual Recovery

As the inter-recovery periods [T (i); T (i� 1)) shrink in length to zero, we can
view the model as one with continual recovery.11 In such a model, for t < � ,
we have the continual-recovery market value

V c(t) = EQ(1��T Æ(r; t; T ) j Ft) + EQ(1�<T Æ(r; t; �)W j Ft):

For the candidate pre-default market value of recovery at default, we
de�ne

~Y (t; T ) =

Z T

t

�(t; s) ds; (6)

where
�(t; s) = EQ

h
Æ(r + �Q; t; s)�Q(s)W (s)

��� Ft

i
;

and where W is the risk-neutral compensator12 for W . Intuitively, W (t) is
the expected recovery given Ft and given that recovery occurs in the \next
instant." In applications, a common assumption is that the recovery com-
pensator W is deterministic.

We can use the results of DuÆe (1998) to obtain the following.

Proposition 2. Suppose r; �Q, and W are bounded, and �Q and W are
right-continuous. Let Y c(t) = ~Y (t; T ) + Y �(t), where ~Y is de�ned by (6). If
Y c does not jump at � almost surely, then V c(t) = Y c(t) for t < � .

We will now specialize to Markov or HJM-style 
avors of the model, in which
the defaultable term structure process is given explicitly, for given primitives.

11In this case, we take W to be a bounded non-negative F� -measurable variable.
12Let Ŵ = EQ(W j F��). From Dellacherie and Meyer (1978), Theorem IV.67(b), there

is a predictable process W such that W (�) = Ŵ . Then

EQ(Æ(r; t; �)W j Ft) = EQ

 Z T

t

Æ(r + �Q; t; s)�Qs W s ds

���� Ft

!
:

See DuÆe (1998) for details. Please note that there is a typographical error in Del-
lacherie and Meyer (1978), Theorem IV.67(b), in that the second sentence should read:
\Conversely, if Y is an F0

T�-measurable: : :" rather than \Conversely, if Y is an F0
T -

measurable: : :," as can be veri�ed from the proof, or, for example, from their Remark
68(b).
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3 Analytical Solutions in AÆne Settings

This section proposes parametric examples in which the pricing formulas
given by Propositions 1 and 2 can be computed either explicitly, or by numer-
ically solving relatively simple ordinary di�erential equations, in an \aÆne"
setting, characterized by a \state" process X valued in IRk that (under Q) is
a k-dimensional aÆne jump-di�usion, in the sense of DuÆe and Kan (1996).
Special cases including multi-factor Cox-Ingersoll-Ross (1985) state-variable
settings.

3.1 The AÆne State Process

We consider a Markov (under Q) process X valued in some appropriate
domain D � IRk, with

dXt = �(Xt) dt+ �(Xt) dB
Q
t + dJt;

where BQ is a standard brownian motion in IRd under Q, J is a pure jump
process with jump-arrival intensity f�(Xt) : t � 0g and jump distribution �

on IRk, and where � : D ! [0;1), � : D! IRk; and C � (��>) : D ! IRk�d

are aÆne functions.13 We ignore time dependencies in the coeÆcients for
notational simplicity only; the approach outlined below extends to that case
in a straightforward manner. A classical special case is the \multi-factor
CIR state process" X, for which X(1); X(2); : : : ; X(k) are independent (or
Q-independent, in a valuation context) processes of the \square-root" type14

introduced into term-structure modeling by Cox, Ingersoll, and Ross (1985).
Of course, Gaussian models of the sort considered by Vasicek (1977) and
Langetieg (1980) models are also special cases, as are certain combinations

13The generator D for X is de�ned by

Df(x; t) = ft(x; t)+fx(x; t)�(x)+
1

2

X
ij

Cij(x)fxi xj
(x; t)+�(x)

Z
[f(x+z; t)�f(x; t)] d�(z):

One can add time dependencies to these coeÆcients. Conditions must be imposed for
existence and uniqueness of solutions, as indicated by DuÆe and Kan (1996).

14That is,

dX
(i)
t = �i(xi �X

(i)
t ) dt+ �i

q
X

(i)
t dB

(i)
t ;

for some given constants �i > 0, xi > 0, and �i.
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of Gaussian and CIR models. For many other examples of aÆne models, see
Dai and Singleton (1997) and DuÆe, Pan, and Singleton (1997).

We can take advantage of this setting if we suppose that short rates and
risk-neutral default intensities are of the aÆne15 form

r(t) = ar(t) + br(t) �Xt

�Q(t) = a�(t) + b�(t) �Xt;

where

� ar and a� are bounded measurable real-valued deterministic functions
on [0; T ].

� br and b� are bounded measurable deterministic IRk-valued functions
on [0; T ].

Except in degenerate cases, the boundedness assumptions used in Proposi-
tions 1 and 2 do not apply, and integrability conditions must be assumed
or established. Of course, only a non-negative intensity process �Q makes
sense, so the model should be restricted so that a�(t) + b�(t) � x � 0 for all
t and all x in the state space D. Some, such as Aravantis, Gregory, and
Decamps (1998) and Nakazato (1997), have taken Gaussian models for �Q,
presumably viewing this as a convenient approximation.

For analytical approaches based on the aÆne structure just described, one
can repeatedly use the following calculation, regularity conditions for which
are provided in DuÆe, Pan, and Singleton (1997).

Let X be an aÆne jump-di�usion. For a given time s, and for each t � s

let R(t) = aR(t) + bR(t) �X(t), for bounded measurable aR : [0; s] ! IR and
bR : [0; s]! IRk. For given coeÆcients a in IR, and b in IRk, let

g(Xt; t) = EQ

�
exp

�Z s

t

�R(u) du

�
ea+b�X(s)

��� Xt

�
: (7)

Under technical conditions, there are speci�ed ODEs for � : [0; s] ! IR and
� : [0; s]! IRk such that

g(x; t) = exp (�(t) + �(t) � x) ;

15One can proceed in more or less the same fashion if one generalizes by allowing
quadratic terms for r(t) and the jump intensity �, subject of course to technical con-
ditions. In such cases, higher-order terms will appear in the solution polynomial.
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with boundary conditions �(s) = a and �(s) = b. In addition, for given â in
IR, and b̂ in IRk, let

G(Xt; t) = EQ

�
exp

�Z s

t

�R(u) du

�
ea+b�X(s)(â+ b̂ �Xs)

��� Xt

�
: (8)

Then, under technical conditions, there are speci�ed ODEs for �̂ : [0; s]! IR

and �̂ : [0; s]! IRk such that

G(x; t) = e�(t)+�(t)�x(�̂(t) + �̂(t) � x);

with boundary conditions �̂(s) = â and �̂(s) = b̂.

The ODEs in question are Ricatti equations if X has no jumps. Details, with
illustrative numerical examples and empirical applications, can be obtained
in DuÆe and Kan (1996) and DuÆe, Pan, and Singleton (1997).

3.2 Discrete-Time Recovery Case

For computation of the term-structure of defaultable bond prices in the
discrete-time recovery model, we proceed as follows. First, for each i, a so-
lution for the default-free discount Ui is obtained from (7), using a = 0 and
b = 0 and R(t) = r(t); leaving Ui = exp(ai + bi �X(T (i� 1)), for computed
constants ai 2 IR and bi 2 IRk.

Next, for each i, we can obtain YiA from (7) using a = ai; b = bi; and
R(t) = �Q(t) + r(t). Likewise, we obtain YiB for each i, using a = 0; b = 0
and R(t) = �Q(t) + r(t). We then calculate Y �(t) from (7), taking a = 0;
b = 0, and R(t) = �Q(t) + r(t). Finally, we can insert the results for Y �; YiA
and YiB into the total pre-default valuation formula (5) for Y (t).

3.3 Continual Recovery Case

For the continual-recovery case, we can take the recovery compensator W to
be of the form

W (t) = exp(a(t) + b(t) �X(t�));

which includes the special case of deterministic W (t). We can then calculate
�; �; �̂, and �̂ with

�(t; s) = exp(�(t; s) + �(t; s) �X(t�))(�̂(t; s) + �̂(t; s) �X(t�)):
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With solutions for �, �, �̂, and �̂ in hand, the pricing formula (6) is reduced
to a numerical integral, which is a relatively fast exercise.

For the special multi-factor CIR case, there are explicit closed-form solu-
tions for �, �, �̂ and �̂.16 We then have an explicit solution for the derivative
�(t; s) of the recovery value ~Y (t; s) with respect to s. Then �(t; s) can be
integrated numerically with respect to s in order to obtain the total market
value ~Y (t; T ) of default recovery. This value is added to survival-contingent
value Y �(t) to get the the total price Y c(t) of the bond, for t < � .

Monte-Carlo based approaches are explained in DuÆe (1998).

4 Forward Rates with Partial Recovery of Par

This section exploits the continual-recovery formulation, and an HJM-style
model of forward rates. The key results are the implied risk-neutral default
intensity and the risk-neutral drift resriction on forward rates or forward
spreads for defaultable debt. This extends results in DuÆe and Singleton
(1996) to the case of fractional recovery of face value.

16These are from Cox, Ingersoll, and Ross (1985) (for the case a = â = 0 and b = b̂ = 0),
and DuÆe, Pan, and Singleton (1997) for the general case. DuÆe, Pan, and Singleton
(1997) also provide analytical solutions for the Fourier transforms of X in the general
aÆne setting. Related calculations that lead to analytical solutions for option pricing via
L�evy inversion of the transforms. The Fourier-based option-pricing results can be applied
in this setting for cases in which

W (t) =
�
exp(a(t) + b(t) �X(t�))�K

�+
;

for some \exercise price"K. Some explicit results for option pricing are available in certain
cases, as shown by by Bakshi, Cao, and Chen (1996), Bakshi and Madan (1997), Bates
(1996), and Chen and Scott (1995). These results can be applied in the present setting
for valuation of defaultable options with aÆne structure, or with recovery determined by
collateralization with an instrument whose price can be described in an exponential-aÆne
form. Collateralization with equities, foreign currency, or notes (in domestic or foreign
currency) would be natural examples for this.
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4.1 Defaultable Forward Rate Behavior

We suppose that a defaultable zero-coupon bond maturing at s has a price
at time t (assuming default has yet to occur) of the form

q(t; s) = exp

�
�

Z s

t

f(t; u) du

�
; (9)

where, for each �xed s, we suppose that f( � ; s) is an Ito process,17 satisfying

df(t; s) = �f(t; s) ds+ �f (t; s) dB
Q
t ; (10)

where BQ is a standard Brownian motion in IRd under Q, and �f and �f
satisfy technical conditions.

The model does not actually say anything about the pricing of forward
contracts per se, at least without some convention for how a forward contract
on a bond would settle in the event of default of the underlying bond before
delivery. Instead, the model takes the prices of defaultable bonds of the same
issuer and recovery quality to have the convenient behavior speci�ed by (9)
and (10).

First we consider the special case of the principal strip curve, assuming
that an exogenously speci�ed fraction W of par is recovered at default, re-
gardless of maturity. By the de�nition of Q, for each s, the discounted gain
process G de�ned by the strip maturing at s is a Q-martingale. This gain
process is de�ned by

Gt = Æ(r; 0; t)q(t; s)(1�Nt) +

Z t

0

Æ(r; 0; u)W dN(u);

where N(t) = 1��t. The �rst term is the discounted price (which is zero after
default); the second term is the discounted payment of recovery at default.

Under technical conditions, one can apply Ito's Lemma and Fubini's The-
orem for stochastic integrals18 and arrive at

dG(t) = Æ(r; 0; t)q(t; s)'(t; s) dt+ dMG(t);

where MG is a Q-martingale and

'(t; s) = f(t; t)� rt + �
Q
t

�
W (t)

q(t; s)
� 1

�
�

Z s

t

�(t; u) du

+
1

2

�Z s

t

�(t; u) du

�
�

�Z s

t

�(t; u) du

�
:

17One can add jumps to the model for f , and extend the calculations easily.
18See, for example, Protter (1990).
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Let us suppose that r(t), f(t; t), �Q(t), and W (t) depend continuously
on t, and that W (t) < 1 for all t. Then, for each �xed s, because '( � ; s) is
continuous, G is a Q-martingale, and Æ(r; 0; t)q(t; s) is strictly positive, we
have '(t; s) = 0 for all t � s. Taking s = t, we have '(t; t) = 0, leaving the
implied risk-neutral default intensity

�Q(t) =
f(t; t)� rt

1�W (t)
; (11)

which has continuous dependence on t as assumed. For the special case of
zero recovery, which is the conventional standard for coupons, this gives the
usual implication that the short credit spread is the default intensity.

We can substitute this expression (11) for �Q back into '(t; s): Then,
because, for each �xed t, we know that '(t; s) = 0 for all s � t, it must be
that @

@s
q(t; s) = 0, and we obtain the risk-neutral defaultable principal-strip

forward-rate drift restriction

�f(t; s) = �f (t; s) �

Z s

t

�f (t; u) du+ �Q(t)W (t)
f(t; s)

q(t; s)
: (12)

With this approach, one can exogenously specify forward-rate dynamics
for principal strips with any model for the volatility process �f , the recovery
compensator W , the initial forward rate f(0; s) for each s up to some �nal
maturity T , and the short-rate process r, subject to the non-negative-spread
condition that f(t; t) � r(t) for all t almost surely. Conditions for non-
negative spreads are given directly on forward-spread-rate behavior in the
Section 4.3.

4.2 The Implied Default Time

With a model for (f; r;W ) in place, one can de�ne a stopping time � such
that (f; r;W ; �) has the \correct" joint distribution, and in particular such
that � has the risk-neutral intensity �Q, given by (11), that is implied by
(f; r;W ).

One method for this is to construct � in terms of (f; r;W ) as follows.
First, one can let Z be exponentially distributed under Q with parameter

1, and Q-independent19 of f; r; and W . Given Z; f; r; and W , one can then

19The independence condition can always be met, by, if necessary, enlarging the proba-
bility space and �ltration, as explained in DuÆe (1998).
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let

� = inf

�
t :

Z t

0

�Q(s) ds = Z

�
; (13)

where �Q is given by (11). Then the intensity20 of � is indeed �Q.
In principle, this allows for joint simulation of defaultable forward rates

and default times.

4.3 The Forward Spread-Rate Process

Given an HJM model for default-free forward rates, one could instead set up a
model directly for the credit forward-spread-rate process, given assumed ini-
tial spreads and processes for spread volatilities, correlations between spreads
and default-free rates, and recoveries, as follows.

For this, the forward-rate spread at t for maturity date s is denoted
S(t; s) = f(t; s) � F (t; s), where F (t; s) is the default-free forward rate at t
for maturity s, given by

dF (t; s) = �F (t; s) dt+ �F (t; s) dB
Q
t ;

where BQ is the same Brownian motion in IRd underlying the defaultable
forward rate process f , and where �F and �F satisfy the usual technical
conditions for a forward-rate process.21 Under these conditions, we have the
usual HJM risk-neutral default-free forward rate drift restriction

�F (t; s) = �F (t; s) �

Z s

t

�F (t; u) du: (14)

Our model for the short rate process r is then de�ned by r(t) = F (t; t).
Suppose we specify that, for each s,

dS(t; s) = �S(t; s) dt+ �S(t; s) dB
Q
t ;

for a given IRd-valued \volatility process" �S( � ; s). From (12) and (14), we
have

�S(t; s) = �S(t; s) �

Z s

t

�F (t; u) du+ �F (t; s) �

Z s

t

�S(t; u) du

+
�Q(t)W (t)f(t; s)

q(t; s)
;

20For the details, see Appendix C.
21See, for example, Carverhill (199?).
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where, from (11), we take

�Q(t) =
S(t; t)

1�W (t)
: (15)

The \instantaneous correlation" process �SF between spreads and default-
free forward rates is de�ned, for each s and t � s, is de�ned by

�SF (t; s) =
�S(t; s) � �F (t; s)

k�S(t; s)k k�F (t; s)k;
;

assuming non-zero volatilities. Alternatively, one could take the total spread
volatility process vS, de�ned by vS(t; s) = k�S(t; s)k, and the correlation
process �SF as inputs, satisfying technical conditions, and from these deter-
mine22 a consistent process for �S.

Given the default-free forward-rate process F , the spread volatility pro-
cess �S, the initial spread curve S(0; � ), and the recovery compensator W ,
the model for the defaultable forward rate process f is determined, again
under technical regularity.

Of course, one wants restrictions under which S(t; s) remains non-negative
for any non-negative initial spread curve. Roughly speaking, it is enough
that �S(t; u) = 0; t � u � s; whenever S(t; s) is zero. Then, from the risk-
neutral drift restriction given above for �S(t; s), for each �xed s, we have
�S(t; s) � 0 whenever S(t; s) = 0, so 0 is a natural boundary for S( � ; s),
giving the desired non-negativity. There are of course technical conditions,
including existence.23

4.4 Coupon-Strip Forward Curves

As for the coupon-strip forward curves, there is a consistency condition given
by equating the implied intensity from the principal curves to the implied
intensity from the coupon curves, which are assumed to be associated with
zero recovery. The condition is then that the short spread sC(t) on coupon

22Provided the Brownian motion BQ is of dimension d > 1, one can alsways con-
struct an IRd-valued process �S with k�S(t; s)k = vS(t; s) and �S(s; t) � �F (s; t) =
�SF (t; s)vS(t; s)k�F (t; s)k:

23See Miltersen (1995) for technical conditions for the analogous non-negativity of
default-free forward rates.
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strips is given in terms of the spread sP (t) = f(t; t)� rt on principal strips
by

sC(t) =
sP (t)

1�W (t)
:

Alternatively, one can start with the coupon-strip forward-rate dynamics,
distinguished by the zero-recovery assumption W = 0. This is particuarly
convenient for default swap pricing and calibration, as shown in the next
section.

If the coupon spread forward rates and the default-free forward rates have
zero correlation (that is, �SF = 0), then the coupon-spread forward rate
process is equal to the process for risk-neutral forward default probability
rates, as shown by the de�nition of, and drift restriction on, forward default
probability rates given in Appendix B. With either non-zero correlation or
non-zero recovery (or both), however, the processes for spread rates and risk-
neutral forward rates of default probabilities are not generally the same.

5 Default Swap Pricing

In its simplest form, a default swap requires payment of an annuity at a �xed
coupon rate C at speci�ed coupon dates until default or the stated maturity
of the swap, whichever is �rst. If default is before maturity, then the annuity
payer receives at default the di�erence between face value and recovery on
the underlying issue.

We let T (1); : : : ; T (n) denote the coupon dates, where T = T (n) is the
maturity date of the default swap (which may be di�erent than that of the
underlying bond). For simple pricing purposes, we suppose that the payment
of 1�W in the event of default occurs on the �rst coupon date after default,
and that recovery W is risk-neutrally independent of default-free interest
rates and the default time � . We let w = EQ(W ). The market value at time
zero of the default swap with maturity T , is then

K(t) = (1� w)J(t; T )� CA(t; T );

where

� A(t; T ) is the price at t of an annuity until the earlier of � or T , given
by

A(t; T ) =
X

t<T (i)�T

qC(t; T (i));
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� qC(t; T (i)) is the price of a contract that pays 1 unit of account at
coupon date T (i); provided � > T (i). We can therefore take qC(t; T )
to be the defaultable coupon-strip (zero-recovery) discount at t for ma-
turity T .

� J(t; T ) is the price of a claim paying one unit of account on the �rst
coupon date after default, which, under the regularity conditions of
Proposition 1, is given by

J(t; T ) =
X

fi: t<T (i)�Tg

(YiA(t)� YiB(t));

where YiA and YiB are de�ned by (4) and (3), respectively.

One could adjust the model to continual recovery by replacing (1�w)J(t; T )
with Z T

0

EQ
�
Æ(r + �Q; 0; t)�Q(t)W (t)

�
dt:

analogously with the results in Section 2.4.
The market default-swap spread C�(t) is de�ned by K(t) = 0, leaving

C�(t) =
(1� w)J(t; T )

A(t; T )
:

One can compute J(t; T ) and A(t; T ) using our earlier results.

6 Appendix A { Risk-Neutral Measure

An equivalent martingale measure is a probability measure Q equivalent
to P , in that the two measures have the same events of probability zero.
The default-free short rate process r is assumed to be predictable. For
general theoretical pricing, we assume that r is bounded. Most results
go through without a bound on r, for example under conditions such as

EQ
h
exp

�
�
R T
0
rt dt

�i
< 1 for all T . A standard reference is Harrison and

Kreps (1979). A given collection of securities available for trade, with each
security de�ned by its cumulative dividend process D. This means that, for
each time t, the total cumulative payment of the security up to and including
time t is D(t). For our purposes, a dividend process will always be taken to
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be of the form D = A� B, where A and B are bounded increasing adapted
right-continuous left-limits (RCLL) processes, and we suppose that there are
no dividends after a �xed time T > 0, in that D(t) = D(T ) for all t larger
than T . The fact that Q is an equivalent martingale measure means that,
for any such security D, the ex-dividend price process S for the security is
given by

St = EQ

�Z T

t

exp

�
�

Z s

t

ru du

�
dDs

��� Ft

�
; 0 � t < T; (16)

where EQ denotes expectation under Q. The ex-dividend terminal price
S(T ) is of course zero. An example is a security whose price is always 1,
and paying the short-rate as a dividend, in that D(t) =

R t
0
rs ds: As pointed

out by Harrison and Kreps (1979) and Harrison and Pliska (1981), the exis-
tence of an equivalent martingale measure implies the absence of arbitrage
and, under technical conditions, is equivalent to the absence of arbitrage.
For weak technical conditions supporting this equivalence, see Delbaen and
Schachermeyer (1994). In some cases, markets are incomplete, for example
one may not be able to perfectly hedge losses in market value that may occur
at default, and this would mean that there need not be a unique equivalent
martingale measure.

7 Appendix B { Forward Default Probability

It may be convenient in certain applications to suppose that default inten-
sities are determined by a forward-default-probability model, in the spirit
of an HJM model for default-free discounts. A risk-neutral forward default
probability model, based on discrete trees, was suggested by Litterman and
Iben (1991).

For our continuous time model, the conditional probability at time t for
survival from t to s, given survival to t and Ft, is assumed to be of the form

p(t; s) = exp

�
�

Z s

t

h(t; u) du

�
;

where, for each �xed s, we suppose that h( � ; s) is an Ito process,24 satisfying

dh(t; s) = �h(t; s) ds+ �h(t; s) dB
P
t ;

24One can add jumps to the hazard-rate model, and extend the calculations easily.
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where BP is a standard Brownian motion in IRd under the \actual" proba-
bility measure P , and �h and �h satisfy technical conditions. By virtue of
the same arguments25 used by HJM, we can calculate that

�(t; s) = �(t; s) �

Z s

t

�(t; u) du:

Coming out of martingale property of the conditional survival probability
is the implied intensity process �, given by

�(t) = h(t; t):

One can likewise model risk-neutral forward default probabilities and in-
tensities.

8 Appendix C { Constructing Default Times

This appendix provides calculations justifying the construction of the default
time � given by (13). Basically, we want to show that � has the speci�ed
intensity �Q.

Of course, the intensity of � depends on the �ltration. We can take
any convenient �ltration fGtg for purposes of constructing the processes r; f;
and W , provided Z is orthogonal under Q to Gt. For example, it would be
natural to take fGtg to be the standard �ltration of a Brownian motion in IRd

underlying models for (f; r;W ). Then we can de�ne �Q by (11), construct �
by (13), and �nally let Ft be the �-algebra generated by the union of Gt and
�(f1��s : s � tg). From our construction, whenever t < � , we have

Q(� > s j Ft) = Q(Z > y(s) jZ > y(t);Gt);

where y(s) =
R s
0
�Q(u) du: Because Z is orthogonal to Gt, and because of its

exponential distribution, this leaves

Q(� > s j Ft) = EQ

�
exp

�
�

Z s

t

�Q(u) du

� ��� Ft

�
:

Because this expression does not jump at � , almost surely, it characterizes
�Q as the fFtg-intensity of � , as desired.

25One uses the fact that 1�>tp( � ; s) must be a martingale, and applies Ito's Formula, as
in Protter (1990). The implied intensity process � is then given, under technical conditions,
by �(t) = h(t; t) A related calculation is given in DuÆe and Singleton (1995).
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