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We scatter 661.6 keV gamma rays off NaI scintillators and use coincidence techniques to measure
the energies of the scattered photons and electrons as functions of scattering angle. We observe
results consistent with the kinematics of Compton scattering and obtain an estimate on the electron
rest mass of (552 ± 15rand. ± 74syst.) keV. By measuring count rates, we also observe deviation of
the differential cross section from the classical Thomson prediction in favor of the relativistic Klein-
Nishina formula. Finally, attenuation of the radiation using plastics yields an estimate on the total
cross section of (0.205 ± 0.002rand. ± 0.032syst.) b, also in preference of the relativistic prediction.

I. THEORY OF THE EXPERIMENT

I.1. Compton Scattering

Classically, electromagnetic radiation interacts with
charges by Thomson scattering, via dipole radiation.
However, at energies ∼ 1MeV, we instead observe Comp-
ton scattering, a relativistic interaction first discovered
in the 1920s by Arthur Compton as a wavelength shift
(“Compton effect”) in scattered x-rays.[1]

From early quantum theory, we can view light as a
“photon” with both momentum and energy. Suppose a
photon of energy E scatters off a free electron at rest.
Then viewing the photon as an ultrarelativistic particle
with momentum p = E/c, the scattered energy E′ follows
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E′
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E
=

1

mc2
(1− cos θ) (1)

where θ is the scattering angle and mc2 is the electron
rest mass energy. As a result of energy conservation, the
scattered kinetic energy Ee of the electron is E − E′, so
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Thus, from either Equations 1 and 2, measurements of Ee
and E′ due to Compton scattering of a known incident
source can be fit to a linear relationship, to yield mc2.[2]

I.2. Electron Cross Section

In a typical scattering experiment, an incident flux I0
of photons strike a target volume containing n electrons,
and the scattered photon is picked up by a detector sub-
tending a solid angle dΩ. Suppose events occur at this de-
tector with rate N . Then the “effective scattering area”
dσ of each electron is related by I0ndσ = N , so

dσ

dΩ
=

N

I0ndΩ
∝ N (3)

For small dΩ, the variation of dσ/dΩ as a function of θ
is defined to be the differential cross section.[3]
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Depending on our theoretical model of the scattering
process, predictions of the differential cross section can
be radically different. In Thomson scattering, a simple
analysis of dipole radiation gives

dσ

dΩ
= r20

(
1 + cos2 θ

2

)
(4)

where r0 is the classical electron radius. However, in or-
der to account for the quantum and relativistic behavior
of higher energy photons, we require the Klein-Nishina
formula[4] derived in quantum electrodynamics:
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= r20
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1 + cos2 θ

2

)
Γ(γ) (5)

where we define γ = E/mc2, and Γ(γ) to be[
1

1 + γ(1− cos θ)

]2 [
1 +

γ2(1− cos θ)2

(1 + cos2 θ)
(
1 + γ(1− cos θ)

)]

Note that at low energies, as γ → 0, Γ → 1 and agrees
Equation 4. In this experiment, we will compare our
results against these two predictions.

Finally, the total cross section σ is the “effective area”
of the electron when scattering into all angles and is
therefore defined as the integral of dσ/dΩ.

Alternatively, suppose we send a beam of photons with
flux I0 into a material, with the primary interaction be-
ing Compton scattering off electrons. Then if there are
ne electrons per unit volume of material, the linear at-
tenuation µ of the beam flux relates to σ by µ = σne,
and the attenuated flux is I(x) = I0e

−µx where x is the
depth of the material.[1] Now, I ∝ N , the count rate of
a detector measuring the attenuated beam. Letting N0

be the count rate corresponding to I0, we have

log
N0

N(x)
= −µx (6)

With µ, we can obtain σ = µ/ne. We will use this equiva-
lent formulation to measure the total cross section of the
electron due to Compton scattering, and compare the re-
sult against the integrated predictions of Thomson and
Klein-Nishina.
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II. EXPERIMENTAL SETUP

II.1. Apparatus and Coincidence

The setup consists of a 137Cs 661.6 keV (≈ 100 µCi)
gamma source in a height-adjustable lead howitzer and
two NaI detectors, labeled “target” and “scattering”, for
picking up recoiled electrons and scattered photons, re-
spectively. See Figure 1 below for the geometry. The
following discussion draws from [2].

FIG. 1. A top-down view of the table top setup. The scat-
tering detector (horizontal) is free to rotate by θ, while the
recoil detector (vertical) is fixed. The circular table also has
angles marked along the edge. Adapted from [2].

We set the howitzer height to align with the target
crystal. The distance from the source to the target is
about 25cm; to the scattering is another 25cm. The
scattering detector face subtends about 8◦. We use lead
blocks to minimize noise from multiple-scatterings.

The NaI detectors are Canberra Model 802, 2′′×2′′ NaI
scintillators, attached to photomultiplier tubes biased by
Canberra HV power supplies (3105 for target; 3002D for
scattering) at approximately 1000V. The signal is then
passed through a Canberrra preamplifier (2007, attached
to preamp for target; 805, separated for scattering), and
into Ortec amplifiers. Gain settings changed from day to
day, but settings of rough gain 4 and fine gain ≈ 7 are
typical. The output of the signal chain is captured by two
multichannel analyzers (MCAs), one for each detector,
which bin the voltage signals into 2048 channels each.

A key aspect of this lab is using coincidence techniques
to select out scattering events at angles of interest. The
incident photons interact with the target detector by
both photoelectric absorption and Compton scattering.
The former creates a photopeak, but in the latter, the
energy of the “recoiled” electron depends on the scat-
tering angle, so it can lie anywhere along the “Compton
continuum”. (See Figure 2.) On coincidence, the MCAs
only record signals when both detectors register simul-
taneously (within ∼ 1µs), so we “filter” the the recoil
spectrum, selecting for the part of the continuum corre-
sponding to a θ-scattering. This allows us to discern the
Ee and E′ peaks.

To implement coincidence, we feed the output of the
amplifier through Ortec inverters and into Canberra
Model 2126 constant fraction discriminators. Typical
settings we use for the threshold are 0.1. The output
of the discriminators are sent through an Ortec 418A co-
incidence. The output is then fed into a Ortec gate and
delay generator, outputting TTL pulses at 10 V, width
4 µs. These pulses are plugged into the gate inputs on
the MCAs, which use the pulses to gate the signals on
coincidence mode.

One important check on the signal chain is of the gate
and delay generator, to ensure the peaks of both coin-
cident signals fall under the gate. We note that, on oc-
casion, one of our two signals would appear outside the
gate. The effect is erratic and hard to capture with a
scope; it also seems to switch detectors across lab ses-
sions. Its effect on our data is unknown, but we suspect
it can affect the relative count rates of the two detectors.

FIG. 2. A recoil spectrum at 45◦. Because of false coinci-
dences, we see a suppressed photopeak at 661.6 keV and some
of the Compton continuum/noise. Note the distinguished re-
coil peak, due to coincidence.

II.2. Calibration

To determine the relation between the channel num-
bers and energy, we calibrate both signal chains each lab
session with 133Ba and 22Na, running the MCAs with
coincidence off and the calibration source placed halfway
between the two detectors for ∼ 300 s. We use the 81 keV
and 356 keV lines for 133Ba and 511 keV for 22Na.

We find the calibration peaks using the same fit proce-
dure described in Section III.1. We use Gaussian/linear
for 133Ba and Gaussian/exponential for 22Na. To re-
late energy T and channel n, we use the linear model
E = αn + ε, where α is the energy per channel and ε is
the energy offset at zero.

As an example, for 11/09, α = (0.460± 0.002) keV/ch
and ε = (−14.1±1.7) keV for scattering and α = (0.473±
0.002) keV/ch and ε = (−10.8± 1.7) keV for recoil.

N.B.: Interestingly, ignoring ε and redoing the analysis
in Sections III.1/IV.1 brings E′+Ee ≈ 670 keV for most
angles. However, we can not justify the approach, and
it also exaggerates the mc2 difference between recoil and
scattering estimates (e.g., 360 keV vs. 620 keV).
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III. PROCEDURE AND DATA

III.1. Angle Measurements

With coincidence on, we collect MCA acquisitions for
both detectors at various angles. On 11/09, we took data
for 45◦, 90◦, 120◦, 135◦, and 150◦, with a 30◦ overnight
run immediately following. We also took 60◦ data twice,
once on 11/07 and once on 11/14. Acquisition times were
∼ 1000 s, with the exception of the overnight run, which
lasted ∼ 55000 s (about 1000 s dead time). Adjustments
are made for each angle in order to reposition the lead
blocks and align the center of the detector with the angle
of interest, but otherwise, the setup remains constant.

Once MCA spectra are obtained, the next step is to fit
the data to extract the location of peaks. We capture the
peak behavior by considering a Gaussian, superimposed
on a background following either a linear or exponential
decay model. We use the linear background for θ < 90◦,
and the exponential otherwise. The functional forms are

y =
A√

2πσ2
exp

[
− (x− n)2

2σ2

]
+Bx+ C (7)

y =
A√

2πσ2
exp

[
− (x− n)2

2σ2

]
+Be−x/C (8)

In particular, we are interested in the photopeak of the
scattered spectrum, and the recoil peak of the target
spectrum. We choose our region of interest (ROI) around
the peak to be about 2σ in each direction, and we ex-
amine the residues of each plot to eliminate systematic
shifts of the peak. Using the amplification ratios and off-
sets from the appropriate calibration, we find the peak
energies E′ and Ee, which we summarize in Table I.

TABLE I. MCA peak energies by angle and their sum. Note
that two measurements were made at 60◦, so its errors include
systematic disagreements.

θ E′ (keV) Ee (keV) E (keV)
30 479.7 ± 3.2 116.0 ± 2.3 595.7 ± 3.9
45 465.3 ± 3.2 179.9 ± 2.1 645.2 ± 3.8
60 394.7 ± 16. 243.1 ± 3.0 637.8 ± 16.
90 295.5 ± 2.6 352.8 ± 2.6 648.3 ± 3.7
120 229.7 ± 2.2 414.5 ± 2.8 644.2 ± 3.6
135 211.6 ± 2.1 431.8 ± 2.9 643.4 ± 3.6
150 193.7 ± 2.1 448.4 ± 2.9 642.1 ± 3.6

Also of interest in the angle measurements will be the
count rates at the scattering detector, in determining
the differential cross section. Here, we simply extract
the number of counts over all channels and divide by
the live time of acquisition. Hence, for N0 total counts,
N0 = M/T ±

√
N0/T . We also do not consider the 30◦

measurement for count rate purposes, because examina-
tion of the overnight spectrum reveals a ∼ 1000 s discrep-
ancy between the live times of the two detectors, suggest-
ing the scattering detector was possibly overwhelmed by
its proximity to the beam.

However, the count rates are not the whole story—we
have to correct for detector efficiencies. Using [5], we
determine the energy-dependent counting efficiencies η0
and peak-to-total ratios ηP-T. Suppose the scattering de-
tector is being irradiated with only E′ gamma rays. Then
η0 is the probability the gamma ray will interact with the
detector, while ηP-T is the probability that, given it in-
teracts, it does so via photoelectric effect (as opposed to
another Compton scattering). The corrected count rate
N ′ would therefore be N ′ = N/(η0ηP-T). We use the the-
oretical values of E′ in reading off η values. The results
are summarized in Table II below.

TABLE II. Count rates and efficiency-corrected count rates.

θ N (cps) ηP-T η0 N ′ (cps)
45 9.55 ± 0.08 0.66 0.83 17.43 ± 0.14
60 8.68 ± 0.08 0.72 0.89 13.55 ± 0.12
90 6.32 ± 0.07 0.85 0.96 7.75 ± 0.08
120 5.47 ± 0.07 0.95 0.99 5.82 ± 0.07
135 6.06 ± 0.08 0.97 1.00 6.25 ± 0.09
150 8.92 ± 0.10 1.00 1.00 8.92 ± 0.10

III.2. Total Cross Section Measurements

As suggested by the alternate definition of total cross
section in Section I.2, we send the beam through various
materials to determine the attenuation µ, from which we
obtain σ. We use three plastic materials, polycarbonate
(PC), polypropylene (PP), and polyvinyltoluene (PVT),
in the form of blocks (four each, except PVT, with five)
that we place in front of the howitzer. The block thick-
nesses are 1.20 cm, 2.45 cm, and 2.50 cm, respectively.

We remove the target detector and place the scatter-
ing detector at θ = 0 to intercept the beam. First, we
measure the unattenuated count rate N0, and then for
each material, we place successive blocks in front of the
howitzer for each measurement. We acquire for 100 s.

We fit the resulting peaks using the same techniques as
in Section III.1, using the Gaussian/exponential model,
Equation 8. We then subtract out Be−x/C (the back-
ground model) from the ROI, and sum the remaining
counts. To obtain N , we then divide by the time of ac-
quisition, and compute the error as before.

Finally, the trend of logN(x)/N0 against x, where x
is the total thickness used, is fit using Equation 6, and
the value of µ extracted. The number density of elec-
trons ne is determined by ne = Nρ〈Z/A〉, where N is
Avogadro’s number, ρ is the density, and 〈Z/A〉 is the
mean charge/mass number ratio. The results, along with
σ = µ/ne for each material, are given in Table III.

TABLE III. Attenuations and cross sections for plastics.

Material µ (10−2/cm) χ2
ν ne (cm=3) σ (b)

PC 9.8 ± 0.2 1.0 5.13 × 1023 0.191 ± 0.005
PP 7.9 ± 0.1 0.3 4.50 × 1023 0.175 ± 0.003

PVT 8.0 ± 0.1 1.4 3.35 × 1023 0.239 ± 0.003
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IV. ANALYSIS OF DATA

IV.1. Compton Kinematics

Using the reduced data in Table I, we can fit the values
of E′ and Ee against θ according to Equations 1 and 2.
The linear fit for the scattering is shown in Figure 3.

FIG. 3. Linear fit of 1/E′ vs 1 − cos θ according to Eq. 1.

In our setup, we align the center of the detector on the
angle θ of interest. However, as we know from the theory
of differential cross section, the strongest signal at that
position does not come from photons scattered through θ,
but from an angle slightly to the left or right, depending
on the gradient of dσ/dΩ. Hence, there is a systematic
error on the angle determination, which depends on the
differential cross section in addition to the geometry of
the setup. For a conservative estimate on this error, we
use its upper bound due to the detector width. Since the
scattering detector subtends an angle 8◦, we bound this
source of systematic error by ±4◦.

The result of the fit for the scattering detector yields
an estimate on mc2 = (564 ± 15) keV, with a χ2

5 = 1.59
(16%). The value of χ2 is rather high, and this com-
pounds with the fact that our estimate on the error on
θ is high to begin with. Nevertheless, the dependence of
the energy on angle is manifestly Compton.

We do a similar fit for the recoil detector using again
the values in Table I. On this one, we fit 1/Ee against
(1−cos θ)−1, as dictated by Equation 2. The resulting fit
to y = ax+ b yields a = (1.14± 0.12)× 10−3 keV=1 and
b = (1.65±0.09)×10−3 keV=1, so that mc2 = (418±50).
We also get χ2

5 = 0.87 (50%).
Taking these two results and averaging, we find our

best estimate of mc2 = (552± 15) keV with a systematic
error given by half the difference, which is ±74 keV.

IV.2. Differential Cross Section

We plot the corrected count ratesN ′ in Table II against
θ according to Equation 3 to obtain the differential cross
section profile. To sidestep possible errors that come out
of trying to estimate the value of the experimental con-
stant I0n, we multiply it into the overall scale on Equa-
tions 4 and 5 when doing our fit. The shape of the curve

itself should not change, and we can check the scale af-
terwards to ensure it is sensible. The fits for Thomson
(Eq. 4) and Klein-Nishina (Eq. 5) are shown in Figure 4.

FIG. 4. Fit of N ′ = I0n(dσ/dΩ) against θ. Note that for
reasons given in Section III.1, 30◦ is omitted.

Although neither fit is satisfying, we see that the
Thomson prediction is overwhelmingly bad, as compared
to the Klein-Nishina formula: the value of reduced χ2 are
1690 and 177, respectively. It is clear the error estimates
on the data points are heavily underestimated. There are
certainly systematic errors on the angles, in addition to
difficulty in correcting for the detector efficiencies, which
are not very well documented (see for example [5]).

What is more encouraging is the overall scale factor on
the Klein-Nishina fit. The algorithm gives A = (36.24±
0.59) cps. Since A = I0nr

2
0 dΩ where r0 is the classical

electron radius, we can perform a useful, independent
order-of-magnitude calculation, due to KG.

The 137Cs source is rated at 500µCi in 1991. Since
137Cs has a half-life of about 30 yr, we expect the ra-
dioactivity to be about 300 µCi, which translates to a
flux of I0 ' 1000 s=1/cm=2 (using 30 cm as the target to
detector radius—see Section II.1). In the volume of the
NaI crystal (face diameter and height 5 cm), n ' 1026.
Lastly, we find dΩ ' 0.01 sr. Putting this all together,
we estimate r0 ' 2× 10−13 cm which, compared to the
correct value of 2.87× 10−13 cm is remarkable, especially
since the Thomson prediction is off by a factor of two.

IV.3. Total Cross Section

From the values presented in Table III, we can work
out an average value for the total cross section. This
yields a best estimate of σ = (2.05 ± 0.02) × 10−25cm2,
or (0.205 ± 0.002)b. We take the systematic error to be
half the difference, or ±0.032b.

In general the reduced χ2 values on the fits for Equa-
tion 6 are good. However, we note that while Equation 6
has zero slope intercept, the fits that resulted had small
but not completely negligible intercepts, on the order of
0.02 on the largest one, corresponding to a disagreement
on N0 of 2%.
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V. CONCLUSIONS

In general, measurements of the scattered energies of
both photons and electrons as functions of scattering
angle show agreement with the predictions of Compton
kinematics. From this, we are able to derive an estimate
on the electron rest mass of (552± 15rand. ± 74syst.) keV,
which is about a 2% error (though with 14% uncertainty).

Furthermore, measuring count rate as a function of
scattering angle yielded the differential cross section pro-
file of the electron, which agrees at least qualitatively
with the Klein-Nishina formula from quantum electro-

dynamics, and deviates significantly from the classical
Thomson prediction. The data gives a correct order of
magnitude estimate for the classical electron radius, at
2× 10−13 cm.

Finally, we measure the total electron cross section to
be (0.205±0.002rand.±0.032syst.) b. The theoretical value
due to the Klien-Nishina formula is 0.257 b, while the
Thomson prediction is 0.665 b. Our result agrees with
the relativistic value to about 1.5σ, and shows a clear
preference for the correctness of the quantum theory of
electrodynamics.
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