Compton Scattering I:

Compton Kinematics and the Determination of mc^2

Edwin Ng | 28 November 2011

Theory: Compton Kinematics

 Wavelength shift is unexplained by classical theory of Thomson scattering

Theory: Compton Kinematics

Compton scattering relation:

$$\frac{1}{E'} - \frac{1}{E} = \frac{1}{mc^2} \left(1 - \cos\theta\right)$$

• Recoil electron energy: $E_e = E - E'$

$$\frac{1}{E_e} - \frac{1}{E} = \frac{mc^2}{E^2} \frac{1}{1 - \cos\theta}$$

Experimental Setup

Procedure

Calibrate amplifier and signal chain gain

- Obtain MCA spectra on coincidence at various angles
- Determine peaks
 - Scattering detector: Photopeak of scattered photons, at E'
 - Recoil detector: Portion of Compton continuum coinciding with scatter, at E_e

Fit Procedure

Fit to Scattering at 30 Degrees

Fit Procedure

Data

Angle	Detector	Energy (keV)	Theory (keV)
30	S	479.7 ± 3.2	563.8
30	R	167.7 ± 2.0	97.80
45	\mathbf{S}	465.3 ± 3.2	479.7
45	R	179.9 ± 2.1	181.9
60	\mathbf{S}	394.7 ± 16	401.6
60	R	243.1 ± 3.0	260.0
90	\mathbf{S}	295.5 ± 2.6	288.3
90	R	352.8 ± 2.6	373.3
120	\mathbf{S}	229.7 ± 2.2	224.9
120	R	414.5 ± 2.8	436.7
135	\mathbf{S}	211.6 ± 2.1	206.1
135	R	431.8 ± 2.9	455.5
150	\mathbf{S}	193.7 ± 2.1	193.7
150	R	448.4 ± 2.9	467.9

Analysis

Analysis

Conclusions

Verified Compton scattering formula

• Obtained a best estimate of mc^2 :

▶ (552 ± 15 ± 73) keV

Question and Answer

Þ