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Photons as Information Carriers 

• Information can be stored and transmitted in the 
physical properties of light 

• E.g.: polarization, frequency, time bins (pulses), 
spatial bins (pixels) 

• Messages are sent by modulating this property and 
sending the photon through a physical channel  

• E.g.: optical fiber, free space 

• What is the information capacity of a photon? 

Measures of Communication Efficiency 

• Photon Information Efficiency (PIE): Information in 
a detected photon (in bits/photon) 

• Spectral Efficiency (SE): Rate of information over 
limited bandwidth (in bits/s/Hz) 

• Can we get both high PIE and high SE? 

Spatial Pulse Position Modulation 

• Use multiple spatial modes to increase information 
without using more spectral bandwidth 

• Use fewer pulses (more SE), but use multiple 
spatial modes in each pulse (more PIE) 

• The message is a train of time-modulated symbols 

• The symbol is a grid of space-modulated pixels 

2-Spatial PPM on 4x4 Grid (CCD Image) 

Theoretical Possibilities [1] 

• With 1.55 µm light and 7 cm apertures, this gives 
10 bits/photon and 5 bits/s/Hz using 189 spatial 
modes and 200 MHz modulation 

• This gives 1 Gbit/s with only 12.8 pW of power! 

Requirements for Efficient Communication 

• Scalable transmitter design for transmitting single 
photons through large number of channels 

• Scalable free-space optics design to image spatial 
symbol from transmitter to detector 

• Scalable detector technology for large arrays that 
can detect single photons 

• Dynamic switching to perform time modulation 

• Error correcting codes to compensate for crosstalk, 
leakages, and loss 

Experimental Goals 

• Design transmitter and free-space optics 

• Characterize errors and crosstalk 

• Implement efficient codes with dynamic switching 

• Test communication efficiency against theoretical 
predictions using single-photon receivers 

Transmitter-side Design 
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f1 + f2 L1 f3 

• Assume source of many spatial modes 

• Telescope f1 + f2 demagnifies image by f1/f2 

• Lens f3 bends rays inwards to a point at f4; beams 
expand to fill aperture lens f4 

• At transmitter aperture lens f4, beams are large, 
centered, and overlapping, with different angles 

• Lens f4 sends output towards receiver 

• Adjustable length L1 used to adjust output 
collimation to focus at receiver 

Receiver-side Design 
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f5 f6 f7 f8 

f7 + f8 L2 

• Beams arrive at receiver aperture lens f5 separated 
and at different angles 

• Adjustable length L2 used to make beams parallel 

• Telescope f7 + f8 focuses symbol to detector  

Detector Array Technology 

• Need an array of efficient photon detectors to 
resolve spatial modes 

• Solution: superconducting nanowire single photon 
detector (SNSPD) arrays 

Generating Multiple Spatial Modes 
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1x2 Switch 
1x8 Switch 

Intensity 
Modulator 

1x8 Switch 

• In-fiber optical switching, then send to free space 
  using a fiber-coupled microlens array 

Fiber-coupled Laser 

Voltage Controls from 
Computer (NI DAQ) 

1x2 Switch 

4x4 Microlens Array 
1 mm pitch, 175 µm waist  

1x8 Switch 

CCD Camera for Imaging 

First Free-Space Lens f1 

Scalable Multi-Mode Systems 

• Fiber-coupled microlens arrays are effective but 
not scalable in cost for a large number of modes 

• Solution: digital micromirror devices (DMDs) 

• Each pass through a DMD doubles the modes 
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Routing Optics 

DLI 4130 
(0.7” XGA) 
 
Res: 1024 x 768 
Pitch: 13.6 µm 
Angle: ±12° 
92% fill factor 

Ongoing Research Goals 

• Design DMD-incorporated transmitter system 

• Implement FPGA dynamic control of switching 

• Implement error-correcting coding to correct for 
crosstalk, leakages 

• Perform bright-light testing of coding efficiency by 
simulating single-photon detection 

• Demonstrate free-space coupling between 
transmitter and SNSPD receiver with 32 spatial 
modes at the single photon level 

• Use two DMDs to go up to 64 spatial modes 
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Characterizing Crosstalk and Leakage 

• Use CCD camera as spatial 
power meter 

• Investigate tight packing of 
spatial modes: leakages 

Dynamic Switching 

• Control switch voltages using NI DAQ cards 

• Can operate at speeds up to 10K symbols/s 

10K symb/s 
Cycling Thru 
Channels 1–8 

Switch Crosstalk! 
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