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Abstract

A brief survey of the role of fermions in quantum computation is presented, focusing on the

Terhal-DiVincenzo result for noninteracting fermions. Creation and annihilation operators are

used to formalize fermionic quantum computation, in order to derive in detail the relationship

between classical computation of the determinant and the simulation of noninteracting fermions.

Universal quantum computation using fermions is also discussed, including the use of interactions

and the addition of charge measurement to free-electron systems.
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I. INTRODUCTION AND OVERVIEW

Introductory treatments of quantum computation typically deal with qubits that are

distinguishable. That is, whatever their physical implementation may be, it is always pos-

sible to pick out a particular qubit and perform operations or make measurements upon it.

The advantage of this assumption is that the quantum states describing such particles take

on a particularly simple structure—that of a tensor product space—making the unitaries

governing the computation easier to understand.

Such implementations of qubits could use, for example, multiple nuclear spins each with

different nuclear masses or gyromagnetic ratios. Physically, such spins would be distinguish-

able as the particles are inherently different, and the total system would be described by a

(mixed) state in the tensor product of the Hilbert spaces describing each spin individually.

Using this physical assumption, we arrive at the familiar circuit model of quantum com-

putation, for which we know universal quantum computation with a small set of gates is

possible. This of course leads us directly to define the complexity class BQP corresponding

to this model of distinguishable particles.

But yet another fundamental concept of quantum mechanics—often not even mentioned

in an introductory treatment—is the notion of particle indistinguishability. Physically, par-

ticles of the same type (say, electrons or photons) within in a single quantum system are

indistinguishable. Classically, we might imagine tracking their trajectories as a means of

distinguishing otherwise identical particles. In quantum mechanics, however, this is not

possible even in principle—after specifying every single degree of freedom in the particles,

they remain indistinguishable. This remarkable fact can actually be derived from quantum

field theory where particles are identified with identical excitations of a field, but in nonrela-

tivistic quantum mechanics, it must be taken as an axiom. Far from being an isolated notion

in theoretical physics, the indistinguishability of particles plays a dominant role in atomic

physics and even in the consideration of some classical systems, as in the Gibbs paradox and

mixing paradoxes in the statistical mechanics of ideal gases.

More precisely, we define the exchange operator Pjk to be the operator that exchanges the

jth and kth qubits; its action on, say, two qubits would be P12|ψ〉|φ〉 = |φ〉|ψ〉. Then, particle

indistinguishability means that the only physically meaningful states are the eigenstates of

the exchange operator, for any pair of qubits. Since P 2
ij = I the identity, we deduce that the
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only possible eigenvalues are ±1, so that the states are either symmetric or antisymmetric

under particle exchange. Particles whose states obey symmetry are called bosons (e.g.,

photons), and particles whose states obey antisymmetry are called fermions (e.g., electrons).

It is another part of the axiom (alternatively, the spin-statistics theorem in quantum field

theory) that all particles are either one or the other.

The main point of interest here for quantum complexity theory is relatively clear: what

are the capabilities and limitations for a model of quantum computation based on a system

of identical particles? A particularly interesting consideration is the case of noninteract-

ing identical particles. Because identical particles obey special statistics (Bose-Einstein vs.

Fermi-Dirac) due to the structure of their wavefunctions, nontrivial effects like exchange

forces arise naturally in their physics, even in the absence of any coupling or external in-

teractions. Thus, this motivates the question of the sorts of computing power afforded by

restricting ourselves to measurements on noninteracting identical particles. It is relatively

clear that any computation involving indistinguishable particles can be simulated efficiently

by distinguishable qubits—this can be seen in the formalism we develop in the next section.

The harder question is under what conditions the other direction is possible.

For bosons, a result by Knill, Laflamme, and Milburn in 2000 states that noninteracting

bosons (in particular, photons in linear optics) with adaptive measurements are universal for

quantum computation.[1] It is not known whether noninteracting bosons with nonadaptive

measurements are universal, but it was shown in 2010 by Aaronson and Arkhipov that even

an efficient, approximate classical sampling of such a system would result in the collapse of

the polynomial hierarchy to the third level.[2]

This project, on the other hand, aims to survey the fundamental results along these

lines for the case of fermions. We first present the language used to describe the quantum

states of identical particles, in terms of creation and annihilation operators. Using this lan-

guage, we survey the results of Terhal and DiVincenzo’s 2002 paper that fermionic quantum

computation with adaptive measurements can be efficiently classically simulated.[3] We ex-

plicitly derive the simulation for the special case where particle number is conserved, as this

gives the key connection between classical computation of determinants, and noninteracting

fermion statistics. Finally, we discuss a few universality results, both by introducing inter-

action terms[4] and by adding charge measurements to noninteracting electrons; the latter

was shown to be universal by Beenakker, et al. in 2004.[5]
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II. FERMIONIC QUANTUM COMPUTATION

Suppose that for a single particle, there are m possible eigenstates it can take on (which

we will refer to as modes); these states span the m-dimensional Hilbert space H of that

particle. For a system of n distinguishable particles, their quantum state simply lies in the

2m-dimensional Hilbert space Hn = H⊗n, spanned by |k1〉|k2〉, for 1 ≤ k1, k2 ≤ m.

For identical particles, however, we are required to either symmetrize or antisymmetrize.

We note that this suggests a different way to describe the system: we need only say how

many particles occupy each eigenstate, and the symmetrization requirement will uniquely

dictate the valid state in the tensor-product representation.

Suppose there are n particles and m modes, and there are xj particles in the jth mode.

Our basis states in this representation take the form |x1, . . . , xm〉, where x1 + · · ·+ xm = n.

These states span a subspace Fn consisting of all allowed n-particle states. The full space

of indistinguishable particles, sometimes called Fock space, is given by a direct sum of these

n-particle states: F = F0⊕F1⊕ · · · . This is the setting in which indistinguishable particle

dynamics take place.

To build a quantum state in Fock space, we start with the vacuum state of no particles,

written as |0, . . . , 0〉, spanning F0. To move into the other subspaces, we introduce creation

and annihilation operators, a†j and aj respectively, which add and subtract a particle from the

jth mode. In general, these operators are neither Hermitian nor unitary, and for fermions,

their action is defined through the following anticommutation relations :

{aj, a†k} ≡ aja
†
k + a†kaj = δijI

{aj, ak} = {a†j, a
†
k} = 0

It is interesting to note that bosons follow the same relations, but with the commutator

[aj, a
†
k] ≡ aja

†
k − a

†
kaj. A state |ψ〉 with n fermions occupying modes j1, . . . , jn is obtained

by acting on the vacuum state:

|ψ〉 = εj1,...,jna
†
j1
· · · a†jn|0, . . . , 0〉

where εj1,...,jn is the alternating symbol, to enforce the anticommutation sign convention. In

this formalism, the number of particles in the jth mode is the eigenvalue of the number

operator Nj = a†jaj. Note that (a†j)
2 = 0, so that each mode contains exactly either zero or

one fermion, giving rise to the Pauli exclusion principle. Thus, dimFn =
(
m
n

)
.
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To obtain unitary operators on F , we can either build them out of m×m single-particle

unitaries V acting on F , or we can say that a unitary U is generated by a Hermitian

operator (sometimes called the Hamiltonian), which is solely a function of the creation and

annihilation operators. That is,

U = exp
[
iH(a†1, a1, . . . , a

†
m, am)

]
If H contains terms which are all quadratic (the product of at most two annihilation

or creation operators), then we say that the operator U involves noninteracting fermions.

Furthermore, if H contains the same number of aj and a†j for each j, the number of particles

is preserved. This is also not strictly physically necessary, what is required is that the parity

of the number of particles is presevered, which is satisfied if H contains an even number of

aj or a†j per term. We will also see in the next section an example of how this formulation

in terms of H relates to the single particle unitaries V .

III. SIMULATING NONINTERACTING FERMIONS

Here we discuss the central results of Terhal and DiVincenzo, where they showed that

quantum computation using noninteracting fermions can be simulated classically, even with

the addition of adaptive measurements. As they noted in their paper, their results turned out

to be equivalent to a unitary subclass of Valiant’s 2001 paper[6] on the classical simulation

of matchgates.

First, let us consider the simpler case where the number of fermions stays constant. In

this case, a computation step acting between modes α and β can be written as U = exp(iH),

generated by

H = hααa
†
αaβ + hββa

†
βaβ + hαβa

†
αaβ + h∗αβa

†
βaα

The matrix h is Hermitian, and it in fact generates V = exp(ih), the single-particle unitary.

For convenience, we consider it to be an n × n matrix instead, which is zero everywhere

except along modes α and β.

Suppose now that U acts on a state with one fermion in mode j. We can compute that

Ua†j|0, . . . , 0〉 = Ua†jU
†U |0, . . . , 0〉 = Ua†jU

†|0, . . . , 0〉 (1)
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since U does nothing acting on the vacuum. Furthermore, conjugation by U gives the

following linear superposition, seen from exponentiating h.

Ua†jU
† =

∑
k

Vjka
†
k (2)

We can now calculate, for arbitrary fermionic states |x〉 and |y〉 with the same number of

particles, the inner product 〈y|U |x〉. Suppose |x〉 has particles in modes j1, . . . , jl and |y〉 has

particles in modes k1, . . . , kl, so that |x〉 = a†j1 · · · a
†
jl
|0, . . . , 0〉 and |y〉 = a†k1 · · · a

†
kl
|0, . . . , 0〉.

Using Equations 1 and 2, the action of U is

U |x〉 = Ua†j1U
† · · ·Ua†jlU

†|0, . . . , 0〉

=
∑
p1,...,pl

(Vj1,p1 · · ·Vjl,pl) a†p1 · · · a
†
pl
|0, . . . , 0〉

Acting on the left with |y〉, we get

〈y|U |x〉 =
∑
p1,...,pl

(Vj1,p1 · · ·Vjl,pl) 〈0|akl · · · ak1a†p1 · · · a
†
pl
|0〉

We now see that because of the Pauli exclusion principle, the inner product is zero unless

p1, . . . , pl is a permutation of k1, . . . , kl. Once this is established, we can permute the anni-

hilation and creation operators until we obtain akla
†
kl
· · · ak1a

†
k1

, whose expectation value on

|0, . . . , 0〉 is one. However, we also pick up a number of minus signs equal to the sign of the

permtuation. Altogether, then,

〈y|U |x〉 =
∑
σ∈Sl

sgn(σ)Vj1,σ(k1) · · ·Vjl,σ(kl) = det Ṽ (3)

where Ṽ is an l × l submatrix of V consisting of rows j1, . . . , jl and columns k1, . . . , kl.

The determinant can, of course, be classically, in polynomial time in n, making the

calculation of the amplitudes 〈y|U |x〉 easy to simulate classically. Thus, noninteracting

fermions where the number of fermions is preserved is no stronger than classical computation.

Perhaps a more direct way of viewing the result is to see it as something like a deter-

minental point process, where we have a matrix V and we wish to sample a submatrix Ṽ

with probability given by | det Ṽ |2. Viewed in this light, the output of the sampling algo-

rithm would be a string of rows sampled, corresponding with |y〉; its probability would be

| det Ṽ |2 = |〈y|U |x〉|2, thus simulating the quantum algorithm.

An algorithm performing this sampling could be the following one.[7] We start with the

matrix V which we wish to sample from, and consider the rows of V to be vectors vj.
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1. Randomly pick a row k1 with probability ‖vk1‖2/l.

2. Set vj 7→ vj − (vk1 · vj)vk1 .

3. Sample k2 with probability ‖vk2‖/(l− 1), and repeat until l rows have been sampled.

Due to the geometric projection performed in Step 2, the output of this algorithm would

be the sampled rows k1, . . . , kl, each picked with probability equal to the square of the

determinant of the submatrix picked out. This is therefore a classical algorithm for sampling

noninteracting fermions with a constant number of particles.

In addition to this important special case, Terhal and DiVincenzo also treat the cases

where we introduce adaptive measurements and allow for the particle number to change.

The idea is essentially the same—we permute the creation and annhilation operators until

we get an expression involving a classically efficiently computable function of some matrix,

which samples the quantum algorithm. We will not, however, go into the details, which are

given in the original paper in [3].

To handle the case of changing particle number, Terhal and DiVincenzo introduce the

Majorana fermion operators c2j = aj + a†j and c2j+1 = −i(aj − a†j), which obey the anti-

commutation relation {ck, cl} = 2δkl. A more involved computation is needed, however, to

obtain the analogue of Equation 2.

For intermediate measurements, it is important to restrict attention to complete mea-

surements, which reveal whether or not there is a fermion in a specific mode. Terhal and

DiVincenzo remark that a nondestructive eigenvalue measurement of the operator cjckcrcs

for modes j, k, r, s will, as shown in [4], be universal for quantum computation.

IV. UNIVERSALITY RESULTS

To obtain universal quantum computation with fermions, an obvious approach would

be to abandon noninteracting fermions and simply introduce an interaction term in the

Hamiltonians generating the gates. This was accomplished early on in 2000 by Bravyi and

Kitaev.[4] In their paper, they demonstrated that a universal set of gates for fermionic

quantum computation is{
exp

[
i
π

4
a†0a0

]
, exp

[
i
π

4

(
a†0a1 + a†1a0

)]
, exp

[
i
π

4

(
a1a0 + a†0a

†
1

)]
, exp

[
iπa†0a0a

†
1a1

]}
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The meaning of these terms are also offered: the first is the presence of an external

potential, the second describes tunnelling, the third is a superconductor-like interaction

term, and the last one, importantly, is a two-particle interaction. This set of unitary gates

are sufficient for universal quantum computation for fermions.

Perhaps a more surprising result for universality, however, was given by Beenakker, et

al. in 2004, where it was demonstrated that by introducing single-charge measurements to a

noninteracting fermionic system, it is possible to construct a CNOT gate, which then allows

free-electron quantum computation. A schematic of the main components of the gate are

shown in Figure 1 below.

(a) (b)

FIG. 1. Schematic of a deterministic CNOT designed from beamsplitters, single-charge detectors,

and ancilla qubits. Figure (a) gives the design for a spin parity measurement. Electrons a and

b pass through a polarizing beam splitter, which transmits spin up and reflects spin down. p

denotes a measurement of the charge. Figure (b) shows how to use two spin parity measurements

to implement a CNOT. H denotes a Hadamard gate. Correction Pauli operators are required to

complete the CNOT at the end. Figures adapted from [5].

A measurement of the charge in a given mode results in the number operator Nj. Since

this paper is concerned with both spatial and spin degrees of freedom, the possible occupation

numbers for a spatial degree of freedom are 0, 1, and 2, the latter being possible for electrons

with opposite spins occupying the same spatial mode.

The explicit calculation of the details behind the design are given in the appendix to [5].

Let us denote the control in with |x〉, the target in with |y〉, the control out with |x′〉 and

the target out with |y′〉. The procedure also involves the parity measurements p1, p2 and

the value of the ancilla out measured in the computational basis, z. The result of the circuit

8



in Figure 1 is

|x′〉|y′〉 = (−1)x(p2+1) |x〉|x+ y + z + p1 + 1〉

after dropping input-independent overall phases. Thus, if p2 = 0, we should apply X to the

control, and if z + p1 + 1 = 1, then we apply X to the target.

These results, as the figure designs indicate, are best suited for free-electron systems,

where interactions are minimal and we have access only to linear elements such as beam-

splitters. Since fermions that are close together typically strongly interact, pairwise inter-

action effects like those discussed above might be more convenient. Nevertheless, this result

demonstrates that the analogue of linear optics quantum computation with bosons can be

achieved with fermions as well, provided the addition of these charge measurements.
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