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States of this form (Fock states) make up a subspace Hp, of states
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» For fermions, the sum ends at n = m, and dim H, = (7).

To go back to H = H®", (anti-)symmetrize over all possible
combinations giving x; particles in mode j.
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Moving Between Subspaces

Start with the vacuum state |0,...,0). To add a particle to mode

J, apply the creation operator aJT-. By Hermitian adjoint, a; removes
a particle from mode j (destruction operator).

For fermions, {aj, aZ} =0jk and {aj,ac} = {aJT-, al} =0.

> (aJT-)2 = 0 gives Pauli exclusion principle and implies
xj € {0,1} for any nonzero state |x1,...,Xm).
» A state of n fermions in modes ji, ..., j, is created by

€jpoefn aj-l ce a;-[n|0, ce ,0)

where ¢j,...; enforces sign convention.

The number of particles in mode j is the eigenvalue of N; = aJTaj.
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Any unitary operator acting on H can be generated by the set of
creation and destruction operators: U = exp(iH), where

H(as, ai, .., am, aTn) is Hermitian.

> If every term of H is quadratic, then operator involves
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» H must have an even number of a; and a;[ per term to give
physical operators on fermions (preserves parity of fermions).

» H must have the same number of a; and a} per term to
preserve the number of particles.

Terhal and DiVincenzo (2002) showed quantum computation using
a system of noninteracting fermions can be simulated classically,
even with adaptive von Neumann measurements. Results were
equivalent to a subclass of Valiant's matchgates (2001).
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Noninteracting Fermions: Complexity

Consider special case where number of fermions is preserved. A
computation step acting between modes « and (3 is a unitary
U = exp(iH) generated by

H = haaal,ag + hggazgag + hagalag + hzﬁagaa
V' = exp(ih) is the single-particle unitary.
Suppose U acts on a non-vacuum state with one fermion:
Ual|0) = UalU'U|0) = Ua] U'|0)

where

UaTUJr Z kak
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Noninteracting Fermions: Complexity

Now calculate (y|U|x) for |x) = aJr . |0> (h<---<yi)and
y) =aj, -+l J0) (ka < ko).

Ulx) = Uaf UT- - Ua! UT|0)

= Z (VJ1 VJCJI) P1 'a;r?/|0>

P1;---5P1
so that
U) = 3o (VE o VP) (Olak, -+ aa, - a4 0)
PLyessPI
The braket is zero unless py,...p; is a permutation of kq,...,kj,

and sgn(o) if the permutation is o.
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Noninteracting Fermions: Complexity

Rewrite sum in terms of permutations:

(y|Ulx) = Z sgn(o kl : \/j‘/’(k’) = detV
o€S
where V is | x | a submatrix of V with selected rows J1,---,J; and
columns ky,..., k.

» This is the expression claimed in lecture. The probability
distribution is 2 and can be sampled efficiently in
classical polynomial time.

Quantum computation using noninteracting fermions and
preserving the number of particles can be efficiently simulated
classically.
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More generally, quantum computation involving
noninteracting fermions need not conserve particle number, as
long as it conserves particle parity.

The more general case uses creation and destruction operators
Cj =aj+a; and 1 = —i(aj — aj), satisfying

{Ck, C/} = 25kl-

Terhal and DiVincenzo proved this can also be classically
efficiently simulated.

Furthermore, complete von Neumann measurements also are

not sufficient to bring the sysem to full universality, but it is
for bosons—KLM (2007)
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Universal Fermionic Quantum Computation

A universal set for quantum computation using interacting
fermions was given by Bravyi and Kitaev (2000) for local fermion
modes, consisting of the following unitaries:

> exp (i%agao) (potential term)
> exp (i%(agal + aiao)> (tunnelling term)

> exp (i%(alao + aéa{)) (superconductor interaction term)

> exp (iﬁagaoaial) (two-particle interaction term)

Beenakker, DiVincenzo, Emary, and Kindermann in 2004 showed
that allowing for charge detection in noninteracting fermions gives
full quantum computation. Constucted a CNOT using
beamsplitters, charge detectors, and one ancilla.
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