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Occupation Number Formalism

Consider n identical particles in m modes. If there are xj particles
in the jth mode, the state is |x1, . . . , xm〉, where

∑m
j=1 xj = n.

States of this form (Fock states) make up a subspace Hn, of states
describing n particles in m modes. The full Fock space is given by

H = H1 ⊕ H2 ⊕ · · ·

I For fermions, the sum ends at n = m, and dimHn =
(m
n

)
.

To go back to H = H⊗n, (anti-)symmetrize over all possible
combinations giving xj particles in mode j .
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Moving Between Subspaces

Start with the vacuum state |0, . . . , 0〉. To add a particle to mode

j , apply the creation operator a†j . By Hermitian adjoint, aj removes
a particle from mode j (destruction operator).

For fermions, {aj , a†k} = δjk and {aj , ak} = {a†j , a
†
k} = 0.

I (a†j )2 = 0 gives Pauli exclusion principle and implies
xj ∈ {0, 1} for any nonzero state |x1, . . . , xm〉.

I A state of n fermions in modes j1, . . . , jn is created by

εj1···jn · a
†
j1
· · · a†jn |0, . . . , 0〉

where εj1···jn enforces sign convention.

The number of particles in mode j is the eigenvalue of Nj = a†j aj .
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Fermionic Quantum Computation

Any unitary operator acting on H can be generated by the set of
creation and destruction operators: U = exp(iH), where

H(a1, a
†
1, . . . , am, a

†
m) is Hermitian.

I If every term of H is quadratic, then operator involves
noninteracting fermions.

I H must have an even number of aj and a†j per term to give
physical operators on fermions (preserves parity of fermions).

I H must have the same number of aj and a†j per term to
preserve the number of particles.

Terhal and DiVincenzo (2002) showed quantum computation using
a system of noninteracting fermions can be simulated classically,
even with adaptive von Neumann measurements. Results were
equivalent to a subclass of Valiant’s matchgates (2001).
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Noninteracting Fermions: Complexity

Consider special case where number of fermions is preserved. A
computation step acting between modes α and β is a unitary
U = exp(iH) generated by

H = hααa
†
αaβ + hββa

†
βaβ + hαβa

†
αaβ + h∗αβa

†
βaα

V = exp(ih) is the single-particle unitary.

Suppose U acts on a non-vacuum state with one fermion:

Ua†j |0〉 = Ua†jU
†U|0〉 = Ua†jU

†|0〉

where

Ua†jU
† =

∑
k

Vjka
†
k
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Noninteracting Fermions: Complexity

Now calculate 〈y |U|x〉 for |x〉 = a†j1 · · · a
†
jl
|0〉 (j1 < · · · < jl) and

|y〉 = a†k1 · · · a
†
kl
|0〉 (k1 < · · · kl).

U|x〉 = Ua†j1U
† · · ·Ua†jkU

†|0〉

=
∑

p1,...,pl

(
V p1
j1
· · ·V pl

jl

)
a†p1 · · · a

†
pl
|0〉

so that

〈y |U|x〉 =
∑

p1,...,pl

(
V p1
j1
· · ·V pl

jl

)
〈0|akl · · · ak1a

†
p1 · · · a

†
pl
|0〉

The braket is zero unless p1, . . . pl is a permutation of k1, . . . , kl ,
and sgn(σ) if the permutation is σ.
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Noninteracting Fermions: Complexity

Rewrite sum in terms of permutations:

〈y |U|x〉 =
∑
σ∈Sl

sgn(σ)V
σ(k1)
j1

· V σ(kl )
jl

= det Ṽ

where Ṽ is l × l a submatrix of V with selected rows j1, . . . , jl and
columns k1, . . . , kl .

I This is the expression claimed in lecture. The probability
distribution is | det Ṽ |2, and can be sampled efficiently in
classical polynomial time.

Quantum computation using noninteracting fermions and
preserving the number of particles can be efficiently simulated
classically.
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Noninteracting Fermions: General Cases

I More generally, quantum computation involving
noninteracting fermions need not conserve particle number, as
long as it conserves particle parity.

I The more general case uses creation and destruction operators
c2j = aj + a†j and c2j+1 = −i(aj − a†j ), satisfying
{ck , cl} = 2δkl .

I Terhal and DiVincenzo proved this can also be classically
efficiently simulated.

I Furthermore, complete von Neumann measurements also are
not sufficient to bring the sysem to full universality, but it is
for bosons—KLM (2007)
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Universal Fermionic Quantum Computation

A universal set for quantum computation using interacting
fermions was given by Bravyi and Kitaev (2000) for local fermion
modes, consisting of the following unitaries:

I exp
(
i π4 a
†
0a0
)

(potential term)

I exp
(
i π4 (a†0a1 + a†1a0)

)
(tunnelling term)

I exp
(
i π4 (a1a0 + a†0a

†
1)
)

(superconductor interaction term)

I exp
(
iπa†0a0a

†
1a1
)

(two-particle interaction term)

Beenakker, DiVincenzo, Emary, and Kindermann in 2004 showed
that allowing for charge detection in noninteracting fermions gives
full quantum computation. Constucted a CNOT using
beamsplitters, charge detectors, and one ancilla.
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