Fermions in Quantum Complexity Theory

Edwin Ng

MIT Department of Physics

December 14, 2012

Occupation Number Formalism

Consider *n* identical particles in *m* modes. If there are x_i particles in the *j*th mode, the state is $|x_1,\ldots,x_m\rangle$, where $\sum_{j=1}^m x_j = n$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Occupation Number Formalism

Consider *n* identical particles in *m* modes. If there are x_i particles in the *j*th mode, the state is $|x_1,\ldots,x_m\rangle$, where $\sum_{j=1}^m x_j = n$.

States of this form (Fock states) make up a subspace H_n , of states describing *n* particles in *m* modes. The full *Fock space* is given by

 $H = H_1 \oplus H_2 \oplus \cdots$

KORKAR KERKER EL VOLO

For fermions, the sum ends at $n = m$, and dim $H_n = \binom{m}{n}$.

Occupation Number Formalism

Consider *n* identical particles in *m* modes. If there are x_i particles in the *j*th mode, the state is $|x_1,\ldots,x_m\rangle$, where $\sum_{j=1}^m x_j = n$.

States of this form (*Fock states*) make up a subspace H_n , of states describing *n* particles in *m* modes. The full *Fock space* is given by

 $H = H_1 \oplus H_2 \oplus \cdots$

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

For fermions, the sum ends at $n = m$, and dim $H_n = \binom{m}{n}$.

To go back to $H=H^{\otimes n}$, (anti-)symmetrize over all possible combinations giving x_i particles in mode j.

Start with the vacuum state $|0, \ldots, 0\rangle$. To add a particle to mode *j*, apply the *creation operator a* $_j^\dagger$. By Hermitian adjoint, a_j removes a particle from mode j (destruction operator).

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

Start with the vacuum state $|0, \ldots, 0\rangle$. To add a particle to mode *j*, apply the *creation operator a* $_j^\dagger$. By Hermitian adjoint, a_j removes a particle from mode j (destruction operator).

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

For fermions, $\{a_j, a_k^{\dagger}\}$ $\{ \phi_k^{\dagger} \} = \delta_{jk}$ and $\{ a_j, a_k \} = \{ a_j^{\dagger}$ $_{j}^{\dagger},$ a $_{k}^{\dagger}$ $\binom{1}{k} = 0.$

 \blacktriangleright (a[†] $j_j^{\dagger})^2=0$ gives *Pauli exclusion principle* and implies $x_i \in \{0, 1\}$ for any nonzero state $|x_1, \ldots, x_m\rangle$.

Start with the vacuum state $|0, \ldots, 0\rangle$. To add a particle to mode *j*, apply the *creation operator a* $_j^\dagger$. By Hermitian adjoint, a_j removes a particle from mode j (destruction operator).

For fermions, $\{a_j, a_k^{\dagger}\}$ $\{ \phi_k^{\dagger} \} = \delta_{jk}$ and $\{ a_j, a_k \} = \{ a_j^{\dagger}$ $_{j}^{\dagger},$ a $_{k}^{\dagger}$ $\binom{1}{k} = 0.$

- \blacktriangleright (a[†] $j_j^{\dagger})^2=0$ gives *Pauli exclusion principle* and implies $x_i \in \{0, 1\}$ for any nonzero state $|x_1, \ldots, x_m\rangle$.
- A state of n fermions in modes j_1, \ldots, j_n is created by

$$
\epsilon_{j_1\cdots j_n}\cdot a_{j_1}^\dagger\cdots a_{j_n}^\dagger|0,\ldots,0\rangle
$$

where $\epsilon_{j_1\cdots j_n}$ enforces sign convention.

Start with the vacuum state $|0, \ldots, 0\rangle$. To add a particle to mode *j*, apply the *creation operator a* $_j^\dagger$. By Hermitian adjoint, a_j removes a particle from mode j (destruction operator).

For fermions, $\{a_j, a_k^{\dagger}\}$ $\{ \phi_k^{\dagger} \} = \delta_{jk}$ and $\{ a_j, a_k \} = \{ a_j^{\dagger}$ $_{j}^{\dagger},$ a $_{k}^{\dagger}$ $\binom{1}{k} = 0.$

- \blacktriangleright (a[†] $j_j^{\dagger})^2=0$ gives *Pauli exclusion principle* and implies $x_j \in \{0, 1\}$ for any nonzero state $|x_1, \ldots, x_m\rangle$.
- A state of n fermions in modes j_1, \ldots, j_n is created by

$$
\epsilon_{j_1\cdots j_n}\cdot a_{j_1}^\dagger\cdots a_{j_n}^\dagger|0,\ldots,0\rangle
$$

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

where $\epsilon_{j_1\cdots j_n}$ enforces sign convention.

The *number of particles* in mode j is the eigenvalue of $N_j = a_j^\dagger$ $\int j$ a_j.

Any unitary operator acting on H can be generated by the set of creation and destruction operators: $U = \exp(iH)$, where $H(a_1, a_1^\dagger)$ $\vert_1^{\dagger},\ldots,a_m,a_m^{\dagger})$ is Hermitian.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Any unitary operator acting on H can be generated by the set of creation and destruction operators: $U = \exp(iH)$, where $H(a_1, a_1^\dagger)$ $\vert_1^{\dagger},\ldots,a_m,a_m^{\dagger})$ is Hermitian.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

If every term of H is quadratic, then operator involves noninteracting fermions.

Any unitary operator acting on H can be generated by the set of creation and destruction operators: $U = exp(iH)$, where $H(a_1, a_1^\dagger)$ $\vert_1^{\dagger},\ldots,a_m,a_m^{\dagger})$ is Hermitian.

- If every term of H is quadratic, then operator involves noninteracting fermions.
- \blacktriangleright H must have an even number of a_j and a_j^\dagger $_{j}^{!}$ per term to give physical operators on fermions (preserves parity of fermions).

KORKAR KERKER EL VOLO

Any unitary operator acting on H can be generated by the set of creation and destruction operators: $U = \exp(iH)$, where $H(a_1, a_1^\dagger)$ $\vert_1^{\dagger},\ldots,a_m,a_m^{\dagger})$ is Hermitian.

- If every term of H is quadratic, then operator involves noninteracting fermions.
- \blacktriangleright H must have an even number of a_j and a_j^\dagger $_{j}^{!}$ per term to give physical operators on fermions (preserves parity of fermions).

KORKAR KERKER EL VOLO

 \blacktriangleright H must have the same number of a_j and a_j^\dagger $\frac{1}{J}$ per term to preserve the number of particles.

Any unitary operator acting on H can be generated by the set of creation and destruction operators: $U = exp(iH)$, where $H(a_1, a_1^\dagger)$ $\vert_1^{\dagger},\ldots,a_m,a_m^{\dagger})$ is Hermitian.

- If every term of H is quadratic, then operator involves noninteracting fermions.
- \blacktriangleright H must have an even number of a_j and a_j^\dagger $_{j}^{!}$ per term to give physical operators on fermions (preserves parity of fermions).
- \blacktriangleright H must have the same number of a_j and a_j^\dagger $\frac{1}{J}$ per term to preserve the number of particles.

Terhal and DiVincenzo (2002) showed quantum computation using a system of noninteracting fermions can be simulated classically, even with adaptive von Neumann measurements. Results were equivalent to a subclass of Valiant's matchgates (2001).

Consider special case where number of fermions is preserved. A computation step acting between modes α and β is a unitary $U = \exp(iH)$ generated by

$$
H=h_{\alpha\alpha}\mathsf{a}^\dagger_\alpha\mathsf{a}_\beta+h_{\beta\beta}\mathsf{a}^\dagger_\beta\mathsf{a}_\beta+h_{\alpha\beta}\mathsf{a}^\dagger_\alpha\mathsf{a}_\beta+h_{\alpha\beta}^*\mathsf{a}^\dagger_\beta\mathsf{a}_\alpha
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

 $V = \exp(ih)$ is the single-particle unitary.

Consider special case where number of fermions is preserved. A computation step acting between modes α and β is a unitary $U = \exp(iH)$ generated by

$$
H=h_{\alpha\alpha}\mathsf{a}^\dagger_\alpha\mathsf{a}_\beta+h_{\beta\beta}\mathsf{a}^\dagger_\beta\mathsf{a}_\beta+h_{\alpha\beta}\mathsf{a}^\dagger_\alpha\mathsf{a}_\beta+h_{\alpha\beta}^*\mathsf{a}^\dagger_\beta\mathsf{a}_\alpha
$$

 $V = \exp(ih)$ is the single-particle unitary.

Suppose U acts on a non-vacuum state with one fermion:

$$
Ua_j^\dagger|0\rangle=Ua_j^\dagger U^\dagger U|0\rangle=Ua_j^\dagger U^\dagger|0\rangle
$$

where

$$
Ua_j^{\dagger}U^{\dagger}=\sum_k V_{jk}a_k^{\dagger}
$$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Now calculate $\langle y|U|x\rangle$ for $|x\rangle = a^{\dagger}_k$ $j_1^\dagger \cdots a_{j_l}^\dagger$ $\frac{1}{j_l} |0\rangle$ $(j_1 < \cdots < j_l)$ and $|y\rangle = a_k^{\dagger}$ $\begin{matrix} \dagger & \cdots & a_k^{\dagger} \end{matrix}$ $\vert_{k_1}\vert 0\rangle$ $(k_1 < \cdots k_l)$.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Now calculate $\langle y|U|x\rangle$ for $|x\rangle = a^{\dagger}_k$ $j_1^\dagger \cdots a_{j_l}^\dagger$ $\frac{1}{j_l} |0\rangle$ $(j_1 < \cdots < j_l)$ and $|y\rangle = a_k^{\dagger}$ $\begin{matrix} \dagger & \cdots & a_k^{\dagger} \end{matrix}$ $\vert_{k_1}\vert 0\rangle$ $(k_1 < \cdots k_l)$.

$$
U|x\rangle = U a_{j_1}^{\dagger} U^{\dagger} \cdots U a_{j_k}^{\dagger} U^{\dagger} |0\rangle
$$

=
$$
\sum_{p_1, ..., p_l} \left(V_{j_1}^{p_1} \cdots V_{j_l}^{p_l} \right) a_{p_1}^{\dagger} \cdots a_{p_l}^{\dagger} |0\rangle
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Now calculate $\langle y|U|x\rangle$ for $|x\rangle = a^{\dagger}_k$ $j_1^\dagger \cdots a_{j_l}^\dagger$ $\frac{1}{j_l} |0\rangle$ $(j_1 < \cdots < j_l)$ and $|y\rangle = a_k^{\dagger}$ $\begin{matrix} \dagger & \cdots & a_k^{\dagger} \end{matrix}$ $\vert_{k_1}\vert 0\rangle$ $(k_1 < \cdots k_l)$.

$$
U|x\rangle = U a_{j_1}^{\dagger} U^{\dagger} \cdots U a_{j_k}^{\dagger} U^{\dagger} |0\rangle
$$

=
$$
\sum_{p_1, ..., p_l} \left(V_{j_1}^{p_1} \cdots V_{j_l}^{p_l} \right) a_{p_1}^{\dagger} \cdots a_{p_l}^{\dagger} |0\rangle
$$

so that

$$
\langle y|U|x\rangle = \sum_{p_1,\ldots,p_l} \left(V_{j_1}^{p_1}\cdots V_{j_l}^{p_l}\right) \langle 0|a_{k_l}\cdots a_{k_1}a_{p_1}^{\dagger}\cdots a_{p_l}^{\dagger}|0\rangle
$$

Now calculate $\langle y|U|x\rangle$ for $|x\rangle = a^{\dagger}_k$ $j_1^\dagger \cdots a_{j_l}^\dagger$ $\frac{1}{j_l} |0\rangle$ $(j_1 < \cdots < j_l)$ and $|y\rangle = a_k^{\dagger}$ $\begin{matrix} \dagger & \cdots & a_k^{\dagger} \end{matrix}$ $\vert_{k_1}\vert 0\rangle$ $(k_1 < \cdots k_l)$.

$$
U|x\rangle = Ua_{j_1}^{\dagger} U^{\dagger} \cdots Ua_{j_k}^{\dagger} U^{\dagger} |0\rangle
$$

=
$$
\sum_{p_1,\ldots,p_l} \left(V_{j_1}^{p_1} \cdots V_{j_l}^{p_l}\right) a_{p_1}^{\dagger} \cdots a_{p_l}^{\dagger} |0\rangle
$$

so that

$$
\langle y|U|x\rangle = \sum_{p_1,\ldots,p_l} \left(V_{j_1}^{p_1}\cdots V_{j_l}^{p_l}\right) \langle 0|a_{k_l}\cdots a_{k_1}a_{p_1}^{\dagger}\cdots a_{p_l}^{\dagger}|0\rangle
$$

The braket is zero unless $p_1, \ldots p_l$ is a permutation of $k_1, \ldots, k_l,$ and sgn(σ) if the permutation is σ .

KORK ERKER ADE YOUR

Rewrite sum in terms of permutations:

$$
\langle y|U|x\rangle = \sum_{\sigma \in S_l} \operatorname{sgn}(\sigma) V_{j_1}^{\sigma(k_1)} \cdot V_{j_l}^{\sigma(k_l)} = \det \widetilde{V}
$$

where \widetilde{V} is $l \times l$ a submatrix of V with selected rows j_1, \ldots, j_l and columns k_1, \ldots, k_l .

Rewrite sum in terms of permutations:

$$
\langle y|U|x\rangle = \sum_{\sigma \in S_i} \operatorname{sgn}(\sigma) V_{j_1}^{\sigma(k_1)} \cdot V_{j_i}^{\sigma(k_i)} = \det \widetilde{V}
$$

where V is 1×1 a submatrix of V with selected rows j_1, \ldots, j_l and columns k_1, \ldots, k_l .

 \triangleright This is the expression claimed in lecture. The probability distribution is $|\det V|^2$, and can be sampled efficiently in classical polynomial time.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Rewrite sum in terms of permutations:

$$
\langle y|U|x\rangle = \sum_{\sigma \in S_i} \operatorname{sgn}(\sigma) V_{j_1}^{\sigma(k_1)} \cdot V_{j_i}^{\sigma(k_i)} = \det \widetilde{V}
$$

where \widetilde{V} is 1×1 a submatrix of V with selected rows j_1, \ldots, j_l and columns k_1, \ldots, k_l .

 \triangleright This is the expression claimed in lecture. The probability distribution is $|\det V|^2$, and can be sampled efficiently in classical polynomial time.

Quantum computation using noninteracting fermions and preserving the number of particles can be efficiently simulated classically.

Noninteracting Fermions: General Cases

- \triangleright More generally, quantum computation involving noninteracting fermions need not conserve particle number, as long as it conserves particle parity.
- \blacktriangleright The more general case uses creation and destruction operators $c_{2j} = a_j + a_j^{\dagger}$ j^\dagger and $c_{2j+1}=-i(a_j-a_j^\dagger)$ $\frac{1}{J}$), satisfying ${c_k, c_l} = 2\delta_{kl}$.

 \triangleright Terhal and DiVincenzo proved this can also be classically efficiently simulated.

Noninteracting Fermions: General Cases

- \triangleright More generally, quantum computation involving noninteracting fermions need not conserve particle number, as long as it conserves particle parity.
- \triangleright The more general case uses creation and destruction operators $c_{2j} = a_j + a_j^{\dagger}$ j^\dagger and $c_{2j+1}=-i(a_j-a_j^\dagger)$ $\frac{1}{J}$), satisfying ${c_k, c_l} = 2\delta_{kl}$.
- \triangleright Terhal and DiVincenzo proved this can also be classically efficiently simulated.
- \blacktriangleright Furthermore, complete von Neumann measurements also are not sufficient to bring the sysem to full universality, but it is for bosons—KLM (2007)

KORKAR KERKER EL VOLO

Universal Fermionic Quantum Computation

A universal set for quantum computation using interacting fermions was given by Bravyi and Kitaev (2000) for local fermion modes, consisting of the following unitaries:

\n- $$
\exp\left(i\frac{\pi}{4}a_0^{\dagger}a_0\right)
$$
 (potential term)
\n- $\exp\left(i\frac{\pi}{4}(a_0^{\dagger}a_1 + a_1^{\dagger}a_0)\right)$ (tunnelling term)
\n- $\exp\left(i\frac{\pi}{4}(a_1a_0 + a_0^{\dagger}a_1^{\dagger})\right)$ (superconductor interaction term)
\n- $\exp\left(i\pi a_0^{\dagger}a_0a_1^{\dagger}a_1\right)$ (two-particle interaction term)
\n

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Universal Fermionic Quantum Computation

A universal set for quantum computation using interacting fermions was given by Bravyi and Kitaev (2000) for local fermion modes, consisting of the following unitaries:

\n- $$
\exp\left(i\frac{\pi}{4}a_0^\dagger a_0\right)
$$
 (potential term)
\n- $\exp\left(i\frac{\pi}{4}(a_0^\dagger a_1 + a_1^\dagger a_0)\right)$ (tunnelling term)
\n- $\exp\left(i\frac{\pi}{4}(a_1a_0 + a_0^\dagger a_1^\dagger)\right)$ (superconductor interaction term)
\n- $\exp\left(i\pi a_0^\dagger a_0 a_1^\dagger a_1\right)$ (two-particle interaction term)
\n

Beenakker, DiVincenzo, Emary, and Kindermann in 2004 showed that allowing for charge detection in noninteracting fermions gives full quantum computation. Constucted a CNOT using beamsplitters, charge detectors, and one ancilla.

References

S.B. Bravyi and A.Y. Kitaev. "Fermionic quantum computation." quant-ph/0003137 (2000).

B.M. Terhal and D.P. DiVincenzo. "Classical simulation of noninteracting-fermion quantum circuits". Phys. Rev. A 65, 032325 (2002). quant-ph/018010.

C.W.J. Beenakker, D.P. DiVincenzo, C. Emary, M. Kindermann. "Charge detection enables free-electron quantum computation". Phys. Rev. Lett. **93**, 020501 (2004). quant-ph/0401066.

4 D > 4 P + 4 B + 4 B + B + 9 Q O