Fermions in Quantum Complexity Theory

Edwin Ng

MIT Department of Physics

December 14, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Occupation Number Formalism

Consider *n* identical particles in *m* modes. If there are x_j particles in the *j*th mode, the state is $|x_1, \ldots, x_m\rangle$, where $\sum_{j=1}^m x_j = n$.

Occupation Number Formalism

Consider *n* identical particles in *m* modes. If there are x_j particles in the *j*th mode, the state is $|x_1, \ldots, x_m\rangle$, where $\sum_{j=1}^m x_j = n$.

States of this form (*Fock states*) make up a subspace H_n , of states describing *n* particles in *m* modes. The full *Fock space* is given by

 $H = H_1 \oplus H_2 \oplus \cdots$

▶ For fermions, the sum ends at n = m, and dim $H_n = {m \choose n}$.

Occupation Number Formalism

Consider *n* identical particles in *m* modes. If there are x_j particles in the *j*th mode, the state is $|x_1, \ldots, x_m\rangle$, where $\sum_{j=1}^m x_j = n$.

States of this form (*Fock states*) make up a subspace H_n , of states describing *n* particles in *m* modes. The full *Fock space* is given by

$$H = H_1 \oplus H_2 \oplus \cdots$$

▶ For fermions, the sum ends at n = m, and dim $H_n = {m \choose n}$.

To go back to $H = H^{\otimes n}$, (anti-)symmetrize over all possible combinations giving x_j particles in mode j.

Start with the vacuum state $|0, ..., 0\rangle$. To add a particle to mode j, apply the *creation operator* a_j^{\dagger} . By Hermitian adjoint, a_j removes a particle from mode j (*destruction operator*).

Start with the vacuum state $|0, ..., 0\rangle$. To add a particle to mode *j*, apply the *creation operator* a_j^{\dagger} . By Hermitian adjoint, a_j removes a particle from mode *j* (*destruction operator*).

For fermions, $\{a_j, a_k^{\dagger}\} = \delta_{jk}$ and $\{a_j, a_k\} = \{a_j^{\dagger}, a_k^{\dagger}\} = 0$.

(a[†]_j)² = 0 gives Pauli exclusion principle and implies x_j ∈ {0,1} for any nonzero state |x₁,..., x_m⟩.

Start with the vacuum state $|0, ..., 0\rangle$. To add a particle to mode *j*, apply the *creation operator* a_j^{\dagger} . By Hermitian adjoint, a_j removes a particle from mode *j* (*destruction operator*).

For fermions, $\{a_j, a_k^{\dagger}\} = \delta_{jk}$ and $\{a_j, a_k\} = \{a_j^{\dagger}, a_k^{\dagger}\} = 0$.

- (a[†]_j)² = 0 gives Pauli exclusion principle and implies x_j ∈ {0,1} for any nonzero state |x₁,..., x_m⟩.
- A state of *n* fermions in modes j_1, \ldots, j_n is created by

$$\epsilon_{j_1\cdots j_n}\cdot a_{j_1}^{\dagger}\cdots a_{j_n}^{\dagger}|0,\ldots,0\rangle$$

where $\epsilon_{j_1 \cdots j_n}$ enforces sign convention.

Start with the vacuum state $|0, ..., 0\rangle$. To add a particle to mode *j*, apply the *creation operator* a_j^{\dagger} . By Hermitian adjoint, a_j removes a particle from mode *j* (*destruction operator*).

For fermions, $\{a_j, a_k^{\dagger}\} = \delta_{jk}$ and $\{a_j, a_k\} = \{a_j^{\dagger}, a_k^{\dagger}\} = 0$.

- (a_j[↑])² = 0 gives Pauli exclusion principle and implies x_j ∈ {0,1} for any nonzero state |x₁,..., x_m⟩.
- A state of *n* fermions in modes j_1, \ldots, j_n is created by

$$\epsilon_{j_1\cdots j_n}\cdot a_{j_1}^{\dagger}\cdots a_{j_n}^{\dagger}|0,\ldots,0\rangle$$

where $\epsilon_{i_1 \cdots i_n}$ enforces sign convention.

The number of particles in mode j is the eigenvalue of $N_j = a_j^{\dagger} a_j$.

Any unitary operator acting on H can be generated by the set of creation and destruction operators: $U = \exp(iH)$, where $H(a_1, a_1^{\dagger}, \ldots, a_m, a_m^{\dagger})$ is Hermitian.

Any unitary operator acting on H can be generated by the set of creation and destruction operators: $U = \exp(iH)$, where $H(a_1, a_1^{\dagger}, \ldots, a_m, a_m^{\dagger})$ is Hermitian.

If every term of H is quadratic, then operator involves noninteracting fermions.

Any unitary operator acting on H can be generated by the set of creation and destruction operators: $U = \exp(iH)$, where $H(a_1, a_1^{\dagger}, \ldots, a_m, a_m^{\dagger})$ is Hermitian.

- If every term of H is quadratic, then operator involves noninteracting fermions.
- H must have an even number of a_j and a[†]_j per term to give physical operators on fermions (preserves parity of fermions).

Any unitary operator acting on H can be generated by the set of creation and destruction operators: $U = \exp(iH)$, where $H(a_1, a_1^{\dagger}, \ldots, a_m, a_m^{\dagger})$ is Hermitian.

- If every term of H is quadratic, then operator involves noninteracting fermions.
- ► H must have an even number of a_j and a[†]_j per term to give physical operators on fermions (preserves parity of fermions).

► H must have the same number of a_j and a[†]_j per term to preserve the number of particles.

Any unitary operator acting on H can be generated by the set of creation and destruction operators: $U = \exp(iH)$, where $H(a_1, a_1^{\dagger}, \ldots, a_m, a_m^{\dagger})$ is Hermitian.

- If every term of H is quadratic, then operator involves noninteracting fermions.
- ► H must have an even number of a_j and a[†]_j per term to give physical operators on fermions (preserves parity of fermions).
- ► H must have the same number of a_j and a[†]_j per term to preserve the number of particles.

Terhal and DiVincenzo (2002) showed quantum computation using a system of noninteracting fermions can be simulated classically, even with adaptive von Neumann measurements. Results were equivalent to a subclass of Valiant's matchgates (2001).

Consider special case where number of fermions is preserved. A computation step acting between modes α and β is a unitary $U = \exp(iH)$ generated by

$$H = h_{\alpha\alpha}a^{\dagger}_{\alpha}a_{\beta} + h_{\beta\beta}a^{\dagger}_{\beta}a_{\beta} + h_{\alpha\beta}a^{\dagger}_{\alpha}a_{\beta} + h^{*}_{\alpha\beta}a^{\dagger}_{\beta}a_{\alpha}$$

 $V = \exp(ih)$ is the single-particle unitary.

Consider special case where number of fermions is preserved. A computation step acting between modes α and β is a unitary $U = \exp(iH)$ generated by

$$H = h_{\alpha\alpha}a^{\dagger}_{\alpha}a_{\beta} + h_{\beta\beta}a^{\dagger}_{\beta}a_{\beta} + h_{\alpha\beta}a^{\dagger}_{\alpha}a_{\beta} + h^{*}_{\alpha\beta}a^{\dagger}_{\beta}a_{\alpha}$$

 $V = \exp(ih)$ is the single-particle unitary.

Suppose U acts on a non-vacuum state with one fermion:

$$Ua_{j}^{\dagger}|0
angle=Ua_{j}^{\dagger}U^{\dagger}U|0
angle=Ua_{j}^{\dagger}U^{\dagger}|0
angle$$

where

$$Ua_j^{\dagger}U^{\dagger} = \sum_k V_{jk}a_k^{\dagger}$$

Now calculate $\langle y|U|x\rangle$ for $|x\rangle = a_{j_1}^{\dagger} \cdots a_{j_l}^{\dagger}|0\rangle$ $(j_1 < \cdots < j_l)$ and $|y\rangle = a_{k_1}^{\dagger} \cdots a_{k_l}^{\dagger}|0\rangle$ $(k_1 < \cdots k_l)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Now calculate $\langle y|U|x\rangle$ for $|x\rangle = a_{j_1}^{\dagger} \cdots a_{j_l}^{\dagger}|0\rangle$ $(j_1 < \cdots < j_l)$ and $|y\rangle = a_{k_1}^{\dagger} \cdots a_{k_l}^{\dagger}|0\rangle$ $(k_1 < \cdots k_l)$.

$$egin{aligned} U|x
angle &= Ua^{\dagger}_{j_1}U^{\dagger}\cdots Ua^{\dagger}_{j_k}U^{\dagger}|0
angle \ &= \sum_{p_1,\dots,p_l} \left(V^{p_1}_{j_1}\cdots V^{p_l}_{j_l}
ight)a^{\dagger}_{p_1}\cdots a^{\dagger}_{p_l}|0
angle \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Now calculate $\langle y|U|x\rangle$ for $|x\rangle = a_{j_1}^{\dagger} \cdots a_{j_l}^{\dagger}|0\rangle$ $(j_1 < \cdots < j_l)$ and $|y\rangle = a_{k_1}^{\dagger} \cdots a_{k_l}^{\dagger}|0\rangle$ $(k_1 < \cdots k_l)$.

$$\begin{aligned} U|x\rangle &= Ua_{j_1}^{\dagger}U^{\dagger}\cdots Ua_{j_k}^{\dagger}U^{\dagger}|0\rangle \\ &= \sum_{p_1,\dots,p_l} \left(V_{j_1}^{p_1}\cdots V_{j_l}^{p_l}\right)a_{p_1}^{\dagger}\cdots a_{p_l}^{\dagger}|0\rangle \end{aligned}$$

so that

$$\langle y|U|x\rangle = \sum_{p_1,\dots,p_l} \left(V_{j_1}^{p_1}\cdots V_{j_l}^{p_l}\right) \langle 0|a_{k_l}\cdots a_{k_1}a_{p_1}^{\dagger}\cdots a_{p_l}^{\dagger}|0
angle$$

Now calculate $\langle y|U|x\rangle$ for $|x\rangle = a_{j_1}^{\dagger} \cdots a_{j_l}^{\dagger}|0\rangle$ $(j_1 < \cdots < j_l)$ and $|y\rangle = a_{k_1}^{\dagger} \cdots a_{k_l}^{\dagger}|0\rangle$ $(k_1 < \cdots k_l)$.

$$U|x\rangle = Ua_{j_1}^{\dagger}U^{\dagger}\cdots Ua_{j_k}^{\dagger}U^{\dagger}|0\rangle$$

= $\sum_{p_1,\dots,p_l} \left(V_{j_1}^{p_1}\cdots V_{j_l}^{p_l}\right)a_{p_1}^{\dagger}\cdots a_{p_l}^{\dagger}|0\rangle$

so that

$$\langle y|U|x\rangle = \sum_{p_1,\dots,p_l} \left(V_{j_1}^{p_1}\cdots V_{j_l}^{p_l}\right) \langle 0|a_{k_l}\cdots a_{k_1}a_{p_1}^{\dagger}\cdots a_{p_l}^{\dagger}|0
angle$$

The braket is zero unless p_1, \ldots, p_l is a permutation of k_1, \ldots, k_l , and sgn(σ) if the permutation is σ .

Rewrite sum in terms of permutations:

$$\langle y|U|x
angle = \sum_{\sigma\in\mathcal{S}_l} \mathrm{sgn}(\sigma) V_{j_1}^{\sigma(k_1)}\cdot V_{j_l}^{\sigma(k_l)} = \det\widetilde{V}$$

where \widetilde{V} is $l \times l$ a submatrix of V with selected rows j_1, \ldots, j_l and columns k_1, \ldots, k_l .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Rewrite sum in terms of permutations:

$$\langle y|U|x
angle = \sum_{\sigma\in \mathcal{S}_l} \operatorname{sgn}(\sigma) V_{j_1}^{\sigma(k_1)} \cdot V_{j_l}^{\sigma(k_l)} = \det \widetilde{V}$$

where \widetilde{V} is $l \times l$ a submatrix of V with selected rows j_1, \ldots, j_l and columns k_1, \ldots, k_l .

► This is the expression claimed in lecture. The probability distribution is | det V
², and can be sampled efficiently in classical polynomial time.

Rewrite sum in terms of permutations:

$$\langle y|U|x
angle = \sum_{\sigma\in \mathcal{S}_l} \operatorname{sgn}(\sigma) V_{j_1}^{\sigma(k_1)} \cdot V_{j_l}^{\sigma(k_l)} = \det \widetilde{V}$$

where \widetilde{V} is $I \times I$ a submatrix of V with selected rows j_1, \ldots, j_l and columns k_1, \ldots, k_l .

► This is the expression claimed in lecture. The probability distribution is | det V
², and can be sampled efficiently in classical polynomial time.

Quantum computation using noninteracting fermions and preserving the number of particles can be efficiently simulated classically.

Noninteracting Fermions: General Cases

- More generally, quantum computation involving noninteracting fermions need not conserve particle number, as long as it conserves particle parity.
- The more general case uses creation and destruction operators $c_{2j} = a_j + a_j^{\dagger}$ and $c_{2j+1} = -i(a_j a_j^{\dagger})$, satisfying $\{c_k, c_l\} = 2\delta_{kl}$.

 Terhal and DiVincenzo proved this can also be classically efficiently simulated.

Noninteracting Fermions: General Cases

- More generally, quantum computation involving noninteracting fermions need not conserve particle number, as long as it conserves particle parity.
- The more general case uses creation and destruction operators $c_{2j} = a_j + a_j^{\dagger}$ and $c_{2j+1} = -i(a_j a_j^{\dagger})$, satisfying $\{c_k, c_l\} = 2\delta_{kl}$.
- Terhal and DiVincenzo proved this can also be classically efficiently simulated.
- Furthermore, complete von Neumann measurements also are not sufficient to bring the sysem to full universality, but it is for bosons—KLM (2007)

Universal Fermionic Quantum Computation

A universal set for quantum computation using interacting fermions was given by Bravyi and Kitaev (2000) for local fermion modes, consisting of the following unitaries:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Universal Fermionic Quantum Computation

A universal set for quantum computation using interacting fermions was given by Bravyi and Kitaev (2000) for local fermion modes, consisting of the following unitaries:

Beenakker, DiVincenzo, Emary, and Kindermann in 2004 showed that allowing for charge detection in noninteracting fermions gives full quantum computation. Constucted a CNOT using beamsplitters, charge detectors, and one ancilla.

References

S.B. Bravyi and A.Y. Kitaev. "Fermionic quantum computation." quant-ph/0003137 (2000).

B.M. Terhal and D.P. DiVincenzo. "Classical simulation of noninteracting-fermion quantum circuits". *Phys. Rev. A* **65**, 032325 (2002). quant-ph/018010.

C.W.J. Beenakker, D.P. DiVincenzo, C. Emary, M. Kindermann. "Charge detection enables free-electron quantum computation". *Phys. Rev. Lett.* **93**, 020501 (2004). quant-ph/0401066.