Johnson Noise:

Determinations of *k* and Absolute Zero

Edwin Ng | 12 December 2011

Nyquist's Theory of Johnson Noise

Johnson noise is thermal noise in circuits

Nyquist's Theory of Johnson Noise

Johnson noise is thermal noise in circuits

Two resistors R connected by a wire: $I = V^2/2R$

Nyquist's Theory of Johnson Noise

Johnson noise is thermal noise in circuits

- Two resistors R connected by a wire: $I = V^2/2R$
- By equipartition, each mode at frequency f has energy kT

$$\mathrm{d}\langle P\rangle = \frac{\mathrm{d}\langle V^2\rangle}{4R} = kT\mathrm{d}f$$

Theory of Johnson Noise (cont.)

For an RC circuit,

$R(f) = \frac{R}{1 + (2\pi f R C)^2}$

Theory of Johnson Noise (cont.)

For an RC circuit,

$$R(f) = \frac{R}{1 + (2\pi f R C)^2}$$

Governing formula for Johnson-Nyquist noise:

$$\mathrm{d}\langle V^2 \rangle = 4kTR\frac{\mathrm{d}f}{1+(2\pi fRC)^2}$$

Johnson Noise Setup

Johnson Noise Setup

Gain and Frequency Band Calibration

 Will measure RMS voltage through band pass filter (from ~IkHz to ~50kHz) Gain and Frequency Band Calibration

 Will measure RMS voltage through band pass filter (from ~IkHz to ~50kHz)

• Define gain ratio
$$g(f) = V_{out}(f)/V_{in}(f)$$

Gain and Frequency Band Calibration

 Will measure RMS voltage through band pass filter (from ~IkHz to ~50kHz)

• Define gain ratio
$$g(f) = V_{out}(f)/V_{in}(f)$$

• Integrate the Johnson noise with G(R, C) integral

$$\langle V^2 \rangle = 4kTR \int_0^\infty \frac{g^2(f)}{1 + (2\pi f CR)^2} \mathrm{d}f$$

Gain and Band Calibration (cont.)

Measuring RMS Voltages

Measuring RMS Voltages (cont.)

Resistance Measurements

• Measure RMS voltages of various resistors across $\sim I k\Omega$ to $\sim I000 k\Omega$ at $T = (23.6 \pm 0.2) \circ C$

Resistance Measurements

- Measure RMS voltages of various resistors across $\sim I k\Omega$ to $\sim I000 k\Omega$ at $T = (23.6 \pm 0.2) \circ C$
- Governing equation:

$$\frac{\langle V^2 \rangle}{4TG(R,C)} = kR$$

Resistance Measurements

- Measure RMS voltages of various resistors across $\sim I k\Omega$ to $\sim I000 k\Omega$ at $T = (23.6 \pm 0.2) \circ C$
- Governing equation:

$$\frac{\langle V^2 \rangle}{4TG(R,C)} = kR$$

Need to determine C

Determination of Capacitance

Determination of k with Resistances

Temperature Measurements

Measure RMS voltages of 500 kΩ resistors across temperature range -196°C to 150°C

Temperature Measurements

- Measure RMS voltages of 500 kΩ resistors across temperature range -196°C to 150°C
- Governing equation:

 $= k(T_c - T_0)$ $\overline{4RG(R,C)}$

Temperature Measurements

- Measure RMS voltages of 500 kΩ resistors across temperature range -196°C to 150°C
- Governing equation:

 $\frac{\langle V^2 \rangle}{4RG(R,C)} = k(T_c - T_0)$

• T_c measured in Celsius: T_0 is absolute zero

k and T₀ with Temperature

Conclusions

Best estimate on k

- $(1.361 \pm 0.026_{rand.} \pm 0.081_{syst.}) \times 10^{-23} \text{ J/K}$
- Correct value: 1.381 x 10⁻²³ J/K (≈ 1.5% error)
- Determination of absolute zero
 T₀ = (-274.3 ± 9.3) °C
 Correct value: -273.15 °C (≈ 2.0% error)
- Verified existence and behavior of Johnson-Nyquist noise

Question and Answer

Þ