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The phenomena of Johnson and shot noise in electrical circuitry are drawn (respectively) from
statistical and quantum physics, and so they are ultimately governed by the values of fundamental
physical constants. In a series of experiments, we measure the thermal Johnson noise of a resistor to
determine Boltzmann’s constant k and the centrigrade value T0 of absolute zero. We then measure
the quantum shot noise of a photodiode current to determine the electronic charge e. We find
k = (1.361± 0.026rand. ± 0.081syst.)× 10−23 J/K, T0 = (−274.3± 9.3) ◦C, and e = (1.870± 0.031)×
10−19 C. The general agreement between the behavior of the noise and their theoretical explanation
is indicative of their fundamental nature.

I. THE THEORIES OF FUNDAMENTAL
ELECTRONIC NOISE

I.1. Johnson-Nyquist Noise

In 1928, a remarkable pair of articles published in the
Physical Review by J. Johnson and H. Nyquist described
a link between electrical circuits and the atomic nature
of matter. Nyquist’s paper proposed a theory of how
thermal fluctuations in the electromagnetic field cause
voltage noise across a resistor, while Johnson devised
an experiment precisely exhibiting this noise. Together,
the two papers represent both a deepened understanding
of statistical physics as well as an experimental break-
through in determining its consequences.

Following Nyquist, consider two resistors of resistance
R attached together by wires. The current I and voltage
V in this circuit follows I = V 2/2R. The (differential)
average power is therefore d〈P 〉 = d〈V 2〉/4R.[1]

On the other hand, using the equipartition of energy
in the electromagnetic field at (absolute) temperature T ,
each mode of vibration with frequency f has an average
energy kT . Thus, the average power in a small frequency
band df of the electromagnetic field is d〈P 〉 = kT df .

Equating these two results for the circuit in question,
we arrive at Nyquist’s result that

d〈V 2〉 = 4kRT df. (1)

Integration over any frequency range thus relates the
mean square voltage to the thermal parameters k and
T . A slight modification is necessary for an RC circuit
with capacitance C—the resistance becomes

R(f) =
R

1 + (2πRCf)2
.

Taken with Equation 1, this governs the behavior of
Johnson noise in an RC circuit. In this lab, we relate
the amplified values of 〈V 2〉 in a filtered frequency band
to the values of R and T . See Section II.3 for the gov-
erning equation after amplification and filtering.
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I.2. Shot Noise

Millikan’s oil drop experiment in 1909 confirmed the
quantization of the electron charge e. Since electrons are
the principal charge carriers in electrical circuits, this im-
plies a fundamental noise due to the random event of an
electron “passing through” the circuit, termed shot noise
by Schottky. A complete treatment is difficult and unnec-
essary, so we present here a brief heuristic presentation
of the theory following [2].

Consider a photodiode circuit where the current is due
to emission of single electrons by photoelectric effect.
Suppose in a time interval T , N electrons are emitted, at
times tn. The current contribution due to this electron
will have a direct contribution as well as a fluctuating
component. We can expand the fluctuating component
Jn in a Fourier sum

Jn(t) =
2e

T

∞∑
m=1

cos
2πm(t− tn)

T
.

The alternating component I(t) of the total current
is yet another sum over all Jn(t). However, we are in-
terested in 〈I2〉, and it is evident that for large enough
N , the phases of the cosine terms are randomized (due
to the quantum nature of the photoelectric effect), and
so the average contribution of the square of each is 1/2.
Thus, each mode m contributes N ·2e2/T 2 to 〈I2〉. With
the frequency f = m/T , there are T df modes in a small
frequency band df , so

d〈I2〉 =
2e

T

(
Ne

T

)
T df = 2eI0 df,

where I0 = Ne/T is the average value of the DC compo-
nent of the total current. Thus, the (differential) mean
square AC voltage across a resistor R is

d〈V 2〉 = 2eV0R df, (2)

where V0 = I0R is the average DC voltage. In this lab, we
use an amplified, filtered photodiode circuit to measure
〈V 2〉 against V0. See Section II.3 for modifications to
Equation 2 due to amplification and filtering.
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II. EXPERIMENTAL SETUP

II.1. Johnson Noise Experiment

The first experiment we perform is of Johnson noise.
We use a prepared metal box labelled “Johnson #1”,
which has alligator clips for attaching a resistor and two
switches SW1 and SW2. SW2 connects the resistor to
bannana ports for resistance measurements using a digi-
tal voltmeter. SW1 shorts the resistor to allow measure-
ment of the line noise. Thus, for a typical measurement,
SW2 is off, while SW1 is alternately switched on and off.

N.B.: We note the jacks for SW2 are faulty—they re-
quire jiggling to obtain a stable measurement. This is
not much of an issue for the voltmeter, but it causes se-
vere problems when we attempt to use an LCR meter to
obtain the capacitance of the system. Values obtained
are erratic and sometimes negative—we extract the ca-
pacitance from the data instead (see Section IV.1).

The box is connected to an SRS SR560 preamplifier by
a twisted, foil-shielded pair of cables, into inputs A and
B, both on AC coupling. For a Johnson noise experiment,
the gain is set to 1000, with the low frequency bandpass
set to 300K, and the high frequency bandpass off (i.e.,
DC). We use the 6dB roll-off and set the gain mode to low
noise. When making changes to the setup, overloading
commonly occurs, which requires grounding the amplifier
and resetting the overload.

We take the 50Ω output of the amplifier and pass it
through a Kron-Hite 8-pole band-pass filter, with a fre-
quency range of ∼1kHz to ∼50kHz. We use the positive
input and cap the negative input.

The output of the filter is then fed into a Rigol digital
oscilloscope, on which we make our measurements. For a
Johnson noise measurement, we typically use 500µs time
divisions and ∼2.50mV voltage divisions. We turn on
bandwidth limit for the channel on which we measure
noise. The oscilloscope is positioned at least 5 feet from
the resistor, to prevent electrical interference.

N.B.: We note it is not advisable to use the RMS
“quick measure” option of the Rigol scope to measure
RMS voltages. It gives only 3 digits of precision and
seems to depend on the divisions in use. Thus, we in-
stead use a flash drive to record CSV scope traces, and
process the voltage data manually.

The only setup differences between the resistance and
temperature parts of the experiment (see Section III.2)
are in the placement of the box. For resistance measur-
ments, the box is kept upright and we cover the resistor
with a metal beaker to prevent electrical interference,
only removing it to change resistors.

For the temperature measurements, the beaker is re-
moved, and the box is inverted into an insulated bowl
of liquid nitrogen (for the low temperatures) or into an
oven (for the high temperature). The power supply to
the oven causes electrical interfence when its cord passes
across the box, but moving it away and below the lab
bench eliminates the problem. We also wrap the entire
length of the power supply cable in foil.

II.2. Shot Noise Experiment

The shot noise experiment uses another box, labelled
“Shot Noise #1”. This box contains a photodiode cir-
cuit with a variable-intensity light source, as well as an
amplifier circuit, capable of ∼10 gain. We are primarily
concerned with the voltage across a 475kΩ resistor due
to the photocurrent. The light source varies the intensity
of the photocurrent, while the amplifier circuit has two
stages, giving the DC voltage of the photocurrent and the
amplified voltage across the resistor, respectively. The
full circuit can be found in [2], but we will not need it.

On the box, there are three switches controlling the
(battery) power to the lightbulb, the photodiode, and the
amplifier circuit, as well as a (nonlinear) knob to adjust
the bulb intensity. The two stages of the amplifier circuit
end in BNC connectors. There are also two bananna plug
ports for checking the current across the bulb. The bulb
uses a current of approximately 87mA, and the ports are
shorted for a shot noise experiment. There is also a “test-
in” port for calibration signals (see Section III.1), and it
is shorted for shot measurements.

The stage 1 output is fed into an Agilent 61/2-digit
multimeter, set to measure the true RMS DC voltage.
The stage 2 output is fed into the SRS preamplifier, with
almost the same settings as before, except that we only
use channel A on AC coupling, and the gain is set to
100 instead of 1000. Out of the preamplifier, we feed the
signal through the filter, and then to both a multimeter
and the Rigol oscilloscope. We primarily take data off the
oscilloscope but use the multimeter for reference. Scope
settings are similar to those for Johnson noise, except the
voltage divisions are changed to about 250mV.

II.3. Signal Chain Gain and Filtering

Because the signal voltages are amplified, we modify
Equations 1 and 2 by changing df to g2(f) df , where we
define g(f) to be the ratio of the RMS voltage of a sine
wave of frequency f input to the signal chain against the
RMS voltage of the amplified, filtered sine wave at the
end of the signal chain. We define the gain integrals[3]

G1(R,C) =

∫ ∞
0

g2(f)

1 + (2πRCf)2
df

and G2 =
∫∞
0
g2(f) df for the Johnson and shot noise ex-

periments, respectively. To calcuate these integrals given
measured values of g(f), we integrate numerically (trape-
zoidal rule) over the range of the band-pass filter, after
which they are considered to be zero. Thus, integrating
the governing equations 1 and 2 under these considera-
tions, we obtain, respectively,

〈V 2〉 = 4kRTG1(R,C) (3)

〈V 2〉 = 2eV0RG2 (4)

These two equations describe the behavior of Johnson
and shot noise for our particular experimental setup.
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III. PROCEDURES AND DATA

III.1. Calibration of Signal Chain

For the Johnson noise experiment, we calibrate the sig-
nal chain by removing the box and feeding in 20mV RMS
sine waves from an Agilent function generator through a
Kay attenuator set to 26dB and into channel A of the
preamplifier, switching off channel B. We also feed the
attenuated signal into CH2 of the scope to measure the
RMS voltage of the signal into the chain; we then take
the output of the filter and feed that into CH3 of the
scope, to measure the signal out of the chain.

We use the frequency set {0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0,
15, 25, 35, 45, 50, 55, 60, 65, 70, 75, 80, 90, 100} kHz. We
take two scope traces at each frequency and average the
RMS values to obtain the input and output RMS volt-
ages, from which we compute g(f). A plot of g(f) is
shown in Figure 1.

For the shot noise experiment, we use nearly the same
setup, except the input to the signal chain now goes to the
“test-in” port of the box, and we cap the stage 1 output.
We use the same frequency and test signals, as well as
attenuator settings. The gain values are generally slightly
lower than that for Johnson (about 0.9 the amplification),
but has the same shape (i.e., filtering behavior).

FIG. 1. The gain ratio for Johnson noise calibration. Note
the sharp cutoff after 50kHz, which allows us to integrate over
just this range. Error bars are present but are very small.

III.2. Measurements of Johnson Noise

There are two parts to the Johnson noise experiment.
In the first part, we work at room temperature and vary
the resistors used. In the second part, we work with the
same (500kΩ) resistor and vary the temperature. We
measure temperature and resistance using a digital volt-
meter (the former in conjunction with a thermocouple).

In the first part, we pick the resistor set {10, 51, 100,
200, 500, 729, 880, 1000} kΩ (errors range from 0.01 to 1
kΩ). The 1000kΩ resistor was formed from two 500kΩ
resistors in series. We measure room temperature during
this experiment to be T = (23.6± 0.3) ◦C.

As an illustration of this procedure, we provide one of
the scope traces of the Johnson noise in Figure 2.

For each resistance, we take five scope traces of the
resistor, alternating with five of the box set to shorted.
Although we do not present the explicit RMS voltages
obtained, we note they ranged from about 2.9mV for the
10kΩ resistor to about 7.3mV for the 1000kΩ. The RMS
voltages of the shorted box remained constant through-
out, averaging about 1.3mV.

In the second part, we invert the box into a bowl of liq-
uid nitrogen, immersing the resistor and doing the same
pattern of measurements. The thermocouple does not
work at liquid nitrogen temperature, so we simply take
this value to be 196.0◦C.

Next, we use the oven to attain temperatures up to
150◦C. The interior of the oven is lined with foil, and the
box is inverted into the oven, preventing air flow. We
insert the thermocouple into the oven and dial the power
supply to sweep around temperatures of interest.

We pick the target temperature set {23, 50, 70, 100,
125, 150} ◦C and record the temperature each measure-
ment. The average temperature is used, with its associ-
ated error. The RMS voltages ranged from about 4.3mV
for liquid nitrogen up to about 9.4mV at 150◦C. The
RMS voltage of the shorted box was again constant, av-
eraging about 1.5mV. The temperature variation was
typically about 1◦C.

FIG. 2. A scope trace of Johnson noise across a 500kΩ re-
sistor at 125◦C. The trace of shorted line noise has smaller
magnitude, indicating this signal is indeed Johnson noise.

III.3. Measurements of Shot Noise

To measure shot noise, we use various bulb intensity
settings and measure the DC voltage from stage 1 (twelve
single samples) and take about five scope traces from
stage 2. The average value of the DC voltage is then
taken to be V0.

If we measure the knob settings from 0 to 100, we ap-
proximately used the measurement set {0, 40, 50, 55, 60,
70, 75, 80, 85, 90, 95}, which correspond to DC voltages
of about {0.002, 0.01, 0.05, 0.1, 0.4, 1, 2, 3, 5, 7}V, respec-
tively. We note a small downward drift in the DC cur-
rents, due to unknown reasons, and although we take
it into account, it does not affect our results much. The
RMS voltages range from about 120mV to about 280mV.



4

IV. ANALYSIS OF DATA

IV.1. Johnson Noise Experiment

Before jumping into the analysis, we describe how
to obtain the capacitance C. As indicated in Section
II.1, measurement of capacitance is not possible, so we
want to extract the value from the data instead. To
do this, we note that according to Equation 3, k =
〈V 2〉/4RTG1(R,C) should yield a constant for the re-
sistance data. Hence, we look for the value of C which
minimizes ∆k/〈k〉 (the standard deviation over mean).
Testing values of C across the pF range, we find the min-
imum occurs at C = (65.6 ± 0.6) pF. We therefore take
this to be the capacitance of our Johnson setup.

In the following plots, the error bars represent errors
propagated from the RMS voltage determinations, the
constant parameter (T or R for temperature or resis-
tance measurements), and in the gain integrals, with the
majority of the error from the RMS voltages.

For the resistance measurements, we fit the 〈V 2〉 values
(after subtracting that due to the line noise) obtained
from squaring the RMS voltages against R according to

〈V 2〉
4TG1(R,C)

= kR (5)

as given by Equation 3. (Note that we have to assume
the correct value of absolute zero to plot this, as T is
an absolute temperature.) The resulting data and fit is
shown in Figure 3.

FIG. 3. Linear fit to Johnson noise against resistances.

From the fit, we find k = (1.299± 0.033)× 10−23J/K.
The fit also suggests acceptable agreement with the
model, with a reduced χ2

6 = 0.55 (77% confidence).
We also note the intercept is zero, at b = (−4 ± 8) ×
10−21J-Ω/K, as required by Equation 5.

For the temperature measurements, we fit the 〈V 2〉
values obtained from squaring the RMS voltages against
Tc according to the model

〈V 2〉
4RG1(R,C)

= k(Tc − T0) (6)

as given by Equation 3. Here, Tc denotes the temperature
measured in Celsius and T0 the value of absolute zero in
Celsius. The resulting data and fit is shown in Figure 4.

FIG. 4. Linear fit to Johnson noise against temperatures.

From the fit, we find k = (1.460± 0.041)× 10−23J/K.
At the same time, we also obtain an estimate of T0 =
−b/a = (−274.3 ± 9.3)◦C. The fit is also reasonably
linear, with a reduced χ2

5 = 1.46 (20% confidence).
Because we have two different experiments yielding es-

timations on k, we take as our best estimate the aver-
age value k = (1.361 ± 0.026) × 10−23J/K, with a sys-
tematic uncertainty given by the half the difference, at
±0.081× 10−23J/K.

IV.2. Shot Noise Experiment

In the shot noise experiment, we fit the measured val-
ues of 〈V 2〉 against the DC voltage V0, according to

〈V 2〉/2RG2 = eV0 (7)

as given by Equation 4. Again, we propagate the errors
in the RMS voltages and the gain integral. We also ex-
amined the error in V0 (including the systematic effect of
the drift noted in Section III.3); however these are very
small. We plot the data and fit in Figure 5 below.

FIG. 5. Linear fit to shot noise against DC voltages.

From the fit, we obtain an estimate e = (1.870 ±
0.031)×1019C. The reduced χ2

9 = 0.99 (36% confidence).
Although the fit is good, we note there is a slight offset
b, which is about a tenth of the scale. This suggests a
source of systematic error. We have examined the possi-
bility of a DC offset to the AC RMS voltages, but did not
find any. The source of the slight offset remains difficult.
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V. CONCLUSIONS

In general, the variation of Johnson noise with resis-
tance and temperature is in agreement with Nyquist’s
theoretical predictions. From this, we are able to ob-
tain an estimate of Boltzmann’s constant of k = (1.361±
0.026rand. ± 0.081syst.) × 10−23 J/K. Compared to the
correct value of 1.381 × 10−23J/K, this is about a 1.5%
error (although with a 5.8% uncertainty). We also es-
timated the value of absolute zero quite well, at T0 =
(−274.3 ± 9.3) ◦C, which is a 0.4% error (although with
a 3.4% uncertainty).

The shot noise experiment is slightly more off the
mark. Although the agreement with the model is quite
good, the estimated value of e = (1.870±0.031)×10−19C
compared with the actual value e = 1.602×10−19C repre-
sents a 17% error. This, together with a slight systematic
offset of the data, suggests a small source of noise we have
not accounted for.

Nevertheless, these results demonstrate remarkable
agreement with theory for such sensitive experiments.
The fact that we can measure these fundamental physical
constants with a table-top experiment is a clear demon-
stration of the role that even noise plays in connecting
the macroscopic and microscopic realms of physics.
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