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Using pulsed NMR, we determine the gyromagnetic ratios of 1H and 19Fl nuclei, and utilize
spin echoes for measuring the spin-spin relaxation time for aqueous glycerin solutions and the spin-
lattice relaxation time for solutions of Fe3+. We find γ = (2.728 ± 0.016) × 108 s=1T=1 for 1H and
γ = (2.570 ± 0.015)× 108 s=1T=1 for 19Fl. We examine the dependence of the respective relaxation
times on glyercin viscosity and ion concentration, and confirm N. Bloembergen’s inverse linear
relationship between spin-spin relaxation time and viscosity in log-log space.[1]

I. THE THEORY OF NMR

Nuclear magnetic resonance (NMR) is a method for
exploring the structure of materials by measuring the ef-
fects of perturbing their internal magnetic dipoles, pio-
neered by Felix Bloch and Edward Purcell in the 1940s.
The following discussion draws from [2].

Classically, the magnetic moment µ of a charged rigid
body is related to its angular momentum S by µ = γS,
where γ is the gyromagnetic ratio. In a uniform magnetic
field B0, µ gyroscopically precesses about of B0 with the
Larmor frequency

ω0 = γB0. (1)

In quantum mechanics, atomic nuclei with an odd
number of nucleons possess an intrinsic spin angular mo-
mentum and hence also a magnetic moment and gyro-
magnetic ratio γ. Although the spin state of a single
nucleus is non-classical, Bloch showed that for an ensem-
ble of spins, the average magnetization M of the sample
(viz. the expectation of the sum of the nuclear magnetic
moments) obeys classical laws. Thus, when the sample
is placed in a field B0, M will, like µ, exhibit Larmor
precession according to Equation 1

In pulsed NMR, the sample is placed in a large mag-
netic field B0 = B0ẑ and a probe pulses the sample with
a perturbing radio frequency (RF) signal. The RF pulse
produces an alternating magnetic field B1 along x̂, with
B1 � B0. When the frequency of the RF signal is close
to the Larmor frequency ω0, the effect of the pulse is to
cause a secondary, slow precession of M about ŷ. The
rate of the slow precession is γB1/2, so an RF signal near
ω0 with duration π/(γB1) is called a 90◦ pulse—it rotates
a M initially aligned with ẑ into the transverse xy-plane.
After the 90◦ pulse, the spin rotates in the xy-plane due
to Larmor precession. Similarly, a pulse with twice this
duration is a 180◦ pulse and flips M.

Because of the ensemble nature of M, the application
of RF pulses perturbs the system away from equilibrium.
At the end of a 90◦ pulse, two effects are of interest.
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The first is the return to thermal equilibrium as M re-
gains its longitudinal magnetization along ẑ. The return
is exponential, characterized by a decay time called the
spin-lattice relaxation time T1. Longitudinal remagneti-
zation is caused by interaction of the nuclei with their
environment (the lattice) and the resulting dissipation of
the absorbed RF energy. For example, the presence of
paramagnetic ions in a sample strongly decreases T1 by
introducing microscopic magnetic fields that disperse the
energy absorbed by the spins in the RF pulse.[3] This lab
will use Fe3+ in studying such an effect.

The other effect is the loss of phase coherence in the
xy-plane, resulting in the exponential decrease of the
transverse magnetization, characterized by a time con-
stant T ∗2 . The dominant contribution to the decay is
nonuniformity in B0, causing nuclei in different parts of
the sample to precess at different rates. However, the
more interesting effect comes from spin-spin interactions
among the nuclei. We can write

1/T ∗2 = 1/T2 + γ∆H0

where ∆H0 measures the inhomogeneity of B0. Here,
T2 is the spin-spin relaxation time, which characterizes
the interactions among the spins of the sample. These
interactions cause the phases of the spins to decohere ir-
reversibly, leading to a decay of the transverse magneti-
zation. We explore in the effects of viscosity on spin-spin
relaxation in this lab.

To eliminate the dominant effect of the field inhomo-
geneity, we use the phenomenon of spin echoes discovered
by Erwin Hanh.[4] At a time τ after the 90◦ pulse, we
apply a 180◦ pulse, which reverses the direction of pre-
cession for each part of the sample, so that at time 2τ ,
the transverse magnetization refocuses, leading to a spin
echo. The decay in the spin echo amplitude as a function
of τ is thus a direct measure of the decoherence due to
spin-spin relaxation, bypassing the field inhomogeneity.

II. EXPERIMENTAL SETUP

The following brief summary of the experimental setup
follows that given in [2], which also contains a labelled
photograph of the components mentioned below.
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The NMR samples are contained in sealed 10 mm test
tubes and inserted into a ten-turn coil of #18 copper
wire. The sample is placed along the x̂ direction between
two large permanent magnets with a field strength of
approximately 1700 G, directed along ẑ. In addition to
sending an RF pulse to the sample, the probe picks up
the induced emf due to rotation of M in the xy-plane.
The probe circuit itself contains a tunable capacitor we
can adjust to supply efficient power to the sample and is
impedance matched to 50 Ω at resonance.

There are three parts to the logic of the experimen-
tal setup. First, the RF signal is output by a function
generator and sent to the probe circuit, which delivers
the pulse to the sample. However, in order to effect 90◦

and 180◦ pulses, the signal is also gated by a digital pulse
programmer, which controls the timing of each RF pulse.
Finally, the induced emf picked up by the probe is com-
bined with the output of the function generator using a
phase detector and sent to an oscilloscope.

The RF signal is generated by an Agilent 15 MHz fre-
quency synthesizer outputting sine waves of amplitudes
around 1–2 V at 10 dBm. A 3 dB power splitter sends the
output to the probe circuit and the phase detector. The
former is gated by a double-balanced mixer controlled by
TTL pulses output by the pulse programmer. After the
gate, the pulse is sent through a 33 dBm power amplifier
capable of 2 W output and into the probe circuit.

The detected emf from the sample’s magnetization
goes into a Tron-Tech preamp and through a band pass
filter at 7.5 MHz. The output is sent into a Mini-Circuits
phase detector, which mixes the signal with the original
RF signal from the function generator, and outputs the
result to the oscilloscope.

Finally, the digital pulse programmer is a simple in-
terface on which we can set two pulse widths PW1 and
PW2 (units of 1µs), a time delay τ between the pulses
(units of 1 ms), and the repeat time between each pulse
sequence (units of 10 ms). We use these pulse widths to
set the 90◦ and 180◦ pulses.

The pulse programmer is capable of generating a num-
ber of sequences: (1) a single sequence of PW1 – τ – PW2;
(2) a repeated sequence of PW1 – τ – PW2; (3) a series
corresponding to the Carr-Purcell method, and finally;
(4) a PW2 – τ – PW1 – PW2 sequence for the “Three
Pulse” inversion recovery method. Of these, we are pri-
marily interested in the second and fourth, whose utilities
will be discussed in Section III. The pulse programmer is
also responsible for sending a trigger signal to the scope.

The oscilloscope monitors the output of the phase de-
tector, with typical values on the order of ∼ 10 mV. A
sample oscilloscope trace is shown in Figure 1, for a 90◦ –
τ – 180◦ sequence; it shows most of the salient features of
a phase detector signal when the RF frequency ω is near
(but off) resonance, ω ≈ ω0. The amplitude of the sig-
nal is proportional to the net transverse magnetization.
The decaying signal after a 90◦ pulse is called the free
induction decay (FID); it has a decay constant mostly
governed by T ∗2 .

FIG. 1. A scope trace of the phase detector signal following
a 90◦ – τ – 180◦ sequence on a 96% by weight glycerin sample.
This trace is averaged over 16 readings, at τ = 5ms with a
100ms repeat time. Note the FID clipping after each pulse.

III. TECHNIQUES AND PROCEDURE

Before making any measurements, it is necessary to
determine the durations corresponding to 90◦ and 180◦

pulses. We use the spin echo: when ω ≈ ω0, the echo am-
plitude is maximal following a 90◦ – τ – 180◦ pulse. Thus,
we vary PW1 while setting PW2 to twice PW1. We look
for values of PW1 which maximize the spin echo and take
the highest of any indistinguishable values. PW1 is thus
the duration of the 90◦ pulse, and PW2 the 180◦

When doing this measurement, we typically use a τ
and repeat time of approximately 5 ms and 100 ms, re-
spectively. The the 90◦ pulse varies according to the
nucleus and the RF amplitude; it also depends slightly
on the probe orientation. Hence, we redetermine it each
lab session and when switching to a different nucelus. We
usually find between 10 and 20 µs for the proton.

We present the following procedures in order of com-
plexity. Thus, we discuss the measurements of γ, T2, and
T1, in that order.

III.1. Gyromagnetic Ratios

According to Equation 1, we can obtain γ from mea-
suring B0 and ω0. We find ω0 by noting that after a
90◦ pulse, the FID frequency is the difference |ω − ω0|.
Hence, we adjust the RF frequency ω to decrease the FID
frequency to zero (the result is a critically damped FID).
This condition means ω = ω0, and we read off ω0 = ω.

We measure ω0 = (7.512 ± 0.001)MHz for the proton
and ω0 = (7.075 ± 0.001)MHz for the 19Fl nucleus. The
respective samples used are 100% glycerin by weight and
a test tube labelled “fluoropolymers”.

We also measure the field of the permanent magnets.
Using an RFL Hall effect gaussmeter zeroed using cali-
bration magnets, we find the field in the probe coils is
B0 = (1730± 10)G for both cases.

Thus, we can calculate the gyromagnetic ratios of γ =
(2.728± 0.016)× 108 s=1T=1 for the protons in glycerin,
and γ = (2.570± 0.015)× 108 s=1T=1 for the 19Fl nuclei
in the fluoropolymer sample.
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III.2. Spin-Spin Relaxation

We measure the spin-spin relaxation times using the
spin echo technique described in [2]. As discussed in Sec-
tion I, a spin echo occurs after a 90◦ – τ – 180◦ sequence
and directly measures T2; the governing equation is

V (τ) = V0e
−2τ/T2 (2)

where V0 is the initial amplitude of the FID after the 90◦

pulse (or equivalently, the spin echo amplitude at τ ≈ 0),
and V (τ) is the amplitude of the spin echo having waited
a delay time τ before the application of the 180◦ pulse.
For a sample of the output we expect, see Figure 1.

We measure the amplitude of the spin echo for approxi-
mately ten values of τ using the 90◦ – τ – 180◦ method for
each aqueous solution of glycerin, with samples labelled
by percent weight. In this lab, we use the sample set
{100%, 98%, 96%, 95%, 94%, 92%, 90%, 84%, 85%, 70%}.
The ranges of τ used were 3–12 ms in steps of 1 ms for
100% down to 84%; 1–10 ms in steps of ms for 80%; and
5–55 ms in steps of 5 ms for 70%.

To eliminate the background noise and obtain better
readings, we set the oscilloscope on averaging, with aver-
aging values of either 8 or 16, depending on the sample.
To determine the errors, we measure the maximum and
minimum amplitude of the spin echo signal at τ = 5ms
as the signal fluctuates with averaging off. Thus, assum-
ing a uniform distribution, the error bars on the data are
this fluctuation divided by

√
12 and by the square root of

the number of averagings. The data for the case of 96%
glycerin is shown in Figure 2.

FIG. 2. V vs τ for 96% glycerin. The solid line (bottom
left) is the fit according to Equation 2, while the dashed line
(upper right) is the fit to Equation 4 (see Section IV.1).

III.3. Spin-Lattice Relaxation

We measure the spin-lattice relaxation times using the
“three pulse sequence” described in [2], which consists
of the sequence 180◦ – τ – 90◦ – 180◦. The initial pulse
inverts the spin population, causing the magnetization
M to point in the −ẑ direction. During the time delay
τ , the spins return to thermal equilibrium by giving off

energy to the surrounding lattice, and M recovers its
+ẑ component. Thus, the magnitude of M starts out
large, crosses zero and then grows again. The governing
equation is

M(τ) = M0

(
1− 2e−τ/T1

)
ẑ

where M0 = |M(τ ≈ 0)| is the magnitude of the intial
magnetization. To actually find the magnetization, we
use the 90◦ pulse to place M in the transverse plane; the
intial amplitude V (τ) of the second FID is a measure of
M(τ) = |M(τ)|. If the sequence ended here, measure-
ment of V (τ) is just the “population inversion method”.

However, in the three pulse sequence, the pulse pro-
grammer waits a short amount of time ε (on the order
of 1 ms; the exact value is not well documented) before
applying a 180◦ pulse, with the goal of measuring V (τ)
with a spin echo. The technique is motivated by the dif-
ficulty in measuring the initial amplitude of an FID—the
circuitry clips about 1 ms of the signal after each pulse.
Since ε is small compared to T2 for a Fe3+ solution, we do
not introduce any confounding spin-spin effects. Hence,
measuring the amplitude of the spin echo effectively mea-
sures V (τ), and the expected model is, with V0 = V (0),

V (τ) = V0

∣∣∣1− 2e−τ/T2

∣∣∣ (3)

We measure the spin echo amplitudes for about 10 val-
ues of τ for each sample of Fe3+ solution. The samples
come from a serial dilution starting at 8.30× 10−2 M for
solution #1 and 1.66× 10−2 M for solution #2; subse-
quent odd and even solutions are 1/10 the concentration
of the preceding solution of the same parity. For this lab,
we use the sample set {#2,#3,#4,#5,#6}. The ranges
of τ used were 2–7 ms in steps of 1 ms for #2; 2–12 ms
in steps of 1ms for #3 and #4 (including 13ms for #4);
5–135 ms in steps of 10ms for #5; and 5–550 ms in steps
of 50ms for #6.

As with T2, we use averaging to reduce noise, and we
measure error the same way. The raw voltage amplitude
data for solution #5 is shown in Figure 3.

FIG. 3. V vs τ for Fe3+ solution #5. The solid line (bottom
right) is the fit according to Equation 3, while the dashed line
(upper left, right) is the fit to Equation 5 (see Section IV.2).
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IV. ANALYSIS OF DATA

IV.1. Spin-Spin Relaxation

Using the table at [5], with an estimated room temper-
ature of 20 ◦C, we can find the viscosity η of the glycerin
samples. This allows us to determine the relationship
between viscosity and T2. These results are tabulated in
Table I below.

However, for low viscosity, the spin echo technique for
determining T2 suffers from the effects of diffusion. If,
during the delay τ , the components of the sample diffuse
from one field strength to another, the result is a residual
effect of the field inhomogeneity in spite of the spin echo
approach. According to [2], considerations of diffusion
changes Equation 2 to

V (τ) = V0 exp

(
−2τ

T2
− 2

3
γ2G2Dτ3

)
(4)

where G is the gradient of the inhomogeneous field and
D the diffusion constant. This model predicts that when
viscosity is low, the echo ampltitude V is further sup-
pressed by a term exponential in τ3.

Using this alternative model, we obtain another esti-
mation T ′2 of the spin-spin relaxation time, which are also
presented in Table I. As expected, T ′2 deviates more from
T2 for lower viscosities (and higher values of τ used), sug-
gesting diffusion does affect the measured spin echo.

TABLE I. Estimations of T2 for various glycerin samples.

% by Weight η (cP) T2 (ms) T ′2(ms)
100 1410 14.30 ± 0.26 13.57 ± 0.66
98 939 19.07 ± 0.50 18.1 ± 1.3
96 624 23.02 ± 0.32 20.58 ± 0.77
95 523 24.76 ± 0.50 21.5 ± 1.2
94 437 30.18 ± 0.43 27.7 ± 1.1
92 310 36.07 ± 0.92 31.3 ± 2.3
90 219 43.93 ± 0.10 41.05 ± 0.29
84 109 66.3 ± 2.5 52.5 ± 4.0
80 60.1 96.9 ± 4.3 141 ± 24
70 22.5 89.5 ± 1.2 100.6 ± 3.4

Finally, we combine the results of the two models by
taking the error weighted average, and also use as our
systematic error the difference between the two models.
Following N. Bloembergen’s thesis,[1] we plot these final
values of T2 against η in a log-log plot, observing a linear
trend in the data. We fit a linear model y = ax + b to
the log-log data, and obtain the parameters a = −0.49±
0.03 and b = 2.75 ± 0.08 with a chi-squared value χ2

8 =
1.29(24%). This plot of the final results, along with the
fit, is shown in Figure 4.

IV.2. Spin-Lattice Relaxation

Using the serial dilution, we know the concentration
[Fe3+] of ions in the solutions. This allows us to deter-
mine the relationship between T1 and paramagnetic ion
concentration. The results are tabulated in Table II.

FIG. 4. Best estimates of T2 vs η on log-log scale for samples
of glyercin, with a linear fit to the data.

As apparent in Figure 3, however, there appears to be
a systematic shift in the two different portions of the fit.
To explore the implications, we introduce another model,
splitting the data into two sets based on the τ0 value of
magnetization turning point.

V (τ) =

{
−V0

(
1− 2e−τ/T2

)
τ < τ0

V0
(
1− 2e−τ/T2

)
τ > τ0

(5)

The estimations on T1 given by the two pieces are av-
eraged together and labelled T ′1. The results are also
tabulated in Table II.

TABLE II. Estimations of T1 for various paramagnetic ion
samples. Note that no τ0 was found for solution #2.

Solution No. [Fe3+] (M) T1 (ms) T ′1(ms)
2 0.0830 0.86 ± 0.02 —
3 0.0166 3.36 ± 0.01 3.47 ± 0.01
4 0.00830 5.57 ± 0.02 6.29 ± 0.03
5 0.00166 51.7 ± 0.6 59.0 ± 0.3
6 0.000830 347 ± 18 382 ± 7

We combine T1 and T ′1 in the same way as with T2.
However, plotting the results on a log-log plot is not par-
ticularly illuminating. The data is roughly linear, but
the error bars appear to be heavily underestimated. The
resolution of this problem remains difficult. The final re-
sults, as well as an attempted fit, is given in Figure 5.

FIG. 5. Best estimates of T1 vs [Fe3+] on log-log scale for
Fe3+ solutions, with a linear fit to the data.
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V. CONCLUSIONS

We determined the gyromagnetic ratios of the proton
and 19Fl nucleus to be γ = (2.728± 0.016)× 108 s=1T=1

and γ = (2.570± 0.015)×108 s=1T=1. This is a fractional
difference from published values of 2.17% and 1.98%,
both overestimates. Interestingly, the discrepancy is very
similar in both cases, and should be attributable to a sys-
tematic error in the determination of B0.

Furthermore, we examined spin-spin relaxation in

aqueous glycerin solutions and spin-lattice relaxation in
paramagnetic ion solutions. We observed a trend in the
data in log-log space, with a noticeably inverse linear re-
lationship for glycerin, as claimed by N. Bloembergen.
This suggests a power function dependence of relaxation
on viscocity and concentration, the physical nature of
which inspires investigation.

Most importantly, we confirm the use of spin echo tech-
niques and pulsed NMR spectroscopy in general as a lab-
oratory tool in exploring material properties.
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