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We demonstrate experimental techniques in quantum information processing on two qubits using
liquid-state NMR spectroscopy of chloroform. We measure the J-coupling constant between the
H and C nuclei and determine the coherence times T1 and T ∗

2 . Using temporal averaging, we
demonstrate the creation of pseudo-pure states and use these states to confirm the classical truth
table of the two-qubit CNOT gate. We verify the correctness of the Deutsch algorithm and observe
the output and oscillatory behavior of the Grover algorithm. Calibrations and a technique for
quantifying signal quality based on measurement probabilities are discussed in detail.

I. INTRODUCTION AND THEORY

Quantum information is a generalization of the notion
of classical information given the existence of resources
such as quantum superposition. Quantum computation
involves the design of algorithms that utilize these re-
sources to solve problems faster than classically possible.

In the 1990s, liquid-state nuclear magnetic resonance
(NMR) became a popular testbed for such designs, due
to relatively long quantum coherence times and the ma-
turity of the field.[1] In the 8.13 lab Pulsed NMR, we have
already explored the fundamental concepts and tech-
niques behind liquid-state NMR, including spin dynam-
ics, pulsing, and the quantum coherence times T1 and T ∗2 .
In this lab, we extend these techniques to a two-spin sys-
tem with an eye towards studying quantum algorithms.

For two spins in a magnetic field B0ẑ, the Hamiltonian
is the sum of the individual Hamiltonians plus a coupling:

H =
~J
4

(σz ⊗ σz)− ~ω1(σz ⊗ I)− ~ω2(I ⊗ σz), (1)

where ω1 and ω2 are the Larmor frequencies of the first
and second spins (H and C in our case), and J is the
scalar coupling constant betweeen the two nuclei. If we
let the system evolve freely for a time τ = π/J , then the
system undergoes the transformation

Uτ = exp
(
−iπ

4
σz ⊗ σz

)
. (2)

In addition to this two-qubit gate, we also have ac-
cess to our typical one-qubit rotation gates. In this lab,
we will define 90◦ rotations about both x̂ and ŷ, given
respectively by

X = exp
(
−iπ

4
σx

)
; Y = exp

(
−iπ

4
σy

)
. (3)

We use subscripts to specify the nucleus we are applying
the gate to (e.g., X1 for H) and a bar to denote the
inverse, as in X = X†.
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Liquid-state NMR generally features a mixed quantum
state. Therefore, we make use of the density matrix for-
malism to describe our system. Let ρ =

∑
j pj |ψj〉〈ψj |

be the density matrix of a system composed of the states
|ψj〉 with (classical) probabilities pj . From quantum sta-
tistical mechanics,[2]

ρ =
e−H/kT

tr e−H/kT
' 1

4

(
I +

H

kT

)
for two spins in the high temperature limit kT � ~ω1.
(We can ignore the coupling energy, because J � ω1.)
Since ω1 ≈ 4ω2 from the gyromagnetic ratios of H and
C, the thermal state of our NMR system is[3]

ρ ≈ I

4
+

~ω1

16kT

5 0 0 0
0 3 0 0
0 0 −3 0
0 0 0 −5

 . (4)

If our density matrix is the diagonal matrix
diag(a, b, c, d), then it can be shown that the induced
signal after applying an X readout operator to the H or
C nucleus is[3]

V1(t) = V0

[
(a− c)ei(ω1−J/2)t + (b− d)ei(ω1+J/2)t

]
(5)

V2(t) = V ′0

[
(a− b)ei(ω2−J/2)t + (c− d)ei(ω2+J/2)t

]
(6)

where V0 and V ′0 are arbitrary amplification constants.
Of course, due to T ∗2 , the signals in Equations 5 and 6 are
exponentially damped, leading to a free induction decay
(FID), from which we can obtain information about ρ.

II. APPARATUS AND INTERFACE[3]

The apparatus we use is a Bruker Avance 200 NMR
spectrometer with a sample of 7% by weight 13CHCl3 dis-
solved in d6-acetone in a flame-sealed 5 mm glass tube.
The sample is placed into a bore in a large supercon-
ducting magnet providing a static field B0ẑ trimmed to
be uniform to better than one part in 109 over one cm3.
The sample is spun rapidly to even out inhomgeneities,
and additional coils are available to correct for higher
order effects (“shimming”).
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In the transverse plane, we have two coils that allow
us to apply RF pulses to each nucleus. After a pulse
sequence is complete, these coils then switch to feeding
the resulting FID to a sensitive pre-amplifier. Note that
because a different amplifier is used for H and C, the
relative signal strengths must be calibrated (see Section
III.4), and, furthermore, a single pulse sequence must be
run twice, taking the FID of H and C separately.

Our interface to the hardware is through MATLAB.
To perform an experiment, we are allowed specification
of several parameters:

1. Phase References: Two “output” phases specify-
ing the global phase shifts to apply to all acquired
FIDs, which defines the x̂ and ŷ axes of our system
(see Section III.1).

2. 90◦ Pulse Widths: Two pulse times (on H and C)
for 90◦ rotations, as obtained in Section III.2.

3. Delay Times: A list of delay times to wait after
each pulse in the sequence, for applying Uτ , etc.

4. Pulse Sequence: Two lists (for H and C) of integer
values specifying for each pulse how many multiples
of the 90◦ pulse widths to apply.

5. Phases: Two lists (for H and C) specifying the “in-
put” phase of each RF pulse, which defines rotation
about the x̂, ŷ, −x̂, or −ŷ directions.

We write pulse programs specifying each of these pa-
rameters. We also set the total delay time before each
sequence to be 50 s, to allow for thermal relaxation.

After each pulse sequence is run, the MATLAB in-
terface saves a spectrum file containing the Fourier-
transformed FID spectrum sampled at 2048 points along
a relative range of [−250, 250] Hz about the center fre-
quency of the acquired nucleus (about 200 MHz for H
and 50 MHz for C). A single pulse sequence consists of
two such files, one for H and one for C.

III. CALIBRATION AND MEASUREMENTS

III.1. Phase References

The first calibration we perform is to define the x̂ and
ŷ axes of our system. We define a real FID spectrum (in
phase with the reciever) to be the result of applying X to
a spin initially along ẑ, and an imaginary FID spectrum
to be the result of applying Y .

This definition is represented by two global phases ref-
erences φ1 and φ2, which is applied as a post-acquisition
phase shift to all H and C FIDs, respectively. Since we
do not yet have precise 90◦ pulse widths, we perform an
X readout with a default pulse width of 5µs and neutral
phase references of 0◦ to obtain an H and C FID. To get
a statistical measure of the uncertainty, we repeat the
sequence ten times.

We apply a phase shift of eiφ to each FID and then
compute the total signal by integrating the left and right
peaks over a range of 100 Hz about their centers using
trapezoidal integration. We then compute the ratio R of
the imaginary to the real parts of the integral and find
the values of φ which minimizes R. Note that we also
pick φ ∈ [180, 270] degrees to obtain R > 0. A plot of
such a procedure is shown in Figure 1 below.

Repeating for all ten measurements, we take the aver-
age as our best determinations of the phase references,
with uncertainty given by the standard deviation over√

10. We find φ1 = 229.8◦± 0.2◦ and φ2 = 233.7◦± 0.3◦.

FIG. 1. R1 and R2 as a function of φ. Note that in the region
around the minimum, we use a sampling resolution 0.01◦.
This measurement yields φ1 = 229.45◦ and φ2 = 234.29◦

with R1 = 2.76× 10−5 and R2 = 6.55× 10−5.

III.2. 90◦ Pulse Widths

After obtaining the correct phase references, we pro-
ceed to determine the 90◦ pulse widths for H and C. To do
this, we apply a series of X readouts with varying lengths
and find the pulse length that maximizes the FID signal.
We pick the regions [7, 10.5] µs and [5.75, 10.5] µs for H
and C, respectively, both with step sizes of 0.25 µs. We
discard the first two points to ensure that all points are
taken with the same 50 s relaxation time.

To determine the size of the FID signal, we integrate
the left and right peaks using trapezoidal integration with
integration range 10 Hz and centered at relative frequen-
cies −108.0 Hz (left H), 106.9 (right H), −107.3 Hz (left
C), and 107.6 Hz (right C). Errorbars in the summation
are propagated from uniform errorbars on the FID, taken
by sampling the standard deviation of the leftmost 500
points of the background.

We then fit a parabola y = ax2 + bx+ c to each peak’s
variation with pulse width, with the 90◦ pulse width de-
fined to be −b/2a. Theoretically, the left and right peaks
should agree; experimentally, we find a small discrepancy.
Thus, we average the two to obtain a final estimate of
the 90◦ pulse width, with half their difference added to
the statistical uncertainty. The fits for the left and right
peaks of H are shown in Figure 2. We find the 90◦ pulse
for H is (9.03± 0.05) µs; for C, we find (8.35± 0.11) µs.
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FIG. 2. Parabolic fits to left and right real peak integrals of
H as a function of pulse widths.

III.3. T1 Measurement

We measure the T1 thermal relaxation time using the
180◦–∆t–90◦ “inversion recovery” method. We invert the
thermal population and wait a variable delay time, dur-
ing which the spins will recover due to thermal relaxation;
we then apply a 90◦ pulse to measure the recovered mag-
netization. The FID signal should therefore follow

y = A
(

1− 2e−∆t/T1

)
. (7)

We pick ∆t from 1 to 30 s, in steps of one. For the same
reasons as in Section III.2, we discard the first point. We
also obtain our peak integrals in the same way.

We fit the left and right peaks to Equation 7; again we
find disagreement, so we average the results and add half
their difference to the statistical uncertainty. We find
T1 = (18.6± 0.4) s for H and T1 = (18.2± 0.6) s for C.

III.4. J, T ∗
2 , and Signal Calibration

Finally, we look at the thermal spectra for H and C,
obtained from applying an X readout. This reference
allows us to calibrate our signal strength to the physical
density matrix as given by Equation 4.

From Equations 5 and 6, the ratio between the H and
C peak integrals should be approximately 4. This is not
observed experimentally because different amplifiers are
used for the two nuclei. Thus, we want to renormalize all
C FIDs by a factor NC such that the thermal spectrum
follows this physical ratio. We find that the left and right
ratios are slightly different, at 10.4 and 9.9, so we first
average the left and right peaks of each nucleus and then
pick NC to be the ratio of the H peak to the C peak
divided by 4. Numerically, we find NC = 2.54± 0.03.

There is an additional normalization worth noting.
This is the ratio between the arbitrary units in our FIDs
to the physical unit ~ω1/16kT in Equation 4. Since the
H peak is expected to be 8 in the physical unit, we define
the ratio K to be the averaged H peak in our arbitary
units divided by 8. Numerically, K = (7.75±0.03)×106.
This factor is used in interpreting the results of the com-
putational stage of this lab (see Section IV).

We can also obtain the value of J and T ∗2 from the
thermal spectra. Since the FID is exponentially damped,
we expect the spectral lines in the frequency domain
are sharply peaked Lorentzians. The line width of the
Lorentzian is then inversely related to the coherence time
T ∗2 , while the difference between the peak locations give
J . We fit the spectra to a sum of Lorentzians of the form

y =
αΓ

i(x− ω0) + Γ
(8)

where α is a (possibly) complex number, Γ is a real line
width, and ω0 is the peak location. We therefore have
T ∗2 = 1/Γ (or 1/2πΓ, in Hz).

We show the fit for C in Figure 3 below. Note that
we restrict the fit to only the area around the peak,
to prevent the background from interfering. We choose
the fit ranges [−118,−104] ∪ [98, 116] Hz for H and
[−112.4,−102.4]∪ [102.5, 112.5] Hz for C, with errorbars
as described in Section III.2.

FIG. 3. Fit to the C thermal FID spectrum with the sum of
two Lorentzians. Note that we use the same widths for both
peaks but allow peak locations and amplitudes to vary; for
this fit χ2

73 = 1.08, with χ2 probability 30%. Errorbars are
drawn and visually make up much of the background “fuzz”.

Using the values of Γ from the fits, we find T ∗2 =
(0.180 ± 0.003) s for H and T ∗2 = (0.175 ± 0.003) s for
C. Although substantially shorter than T1, these values
are still much larger than the time scale of computation,
on the order of µs from 90◦ pulse widths.

Last, we can look also at the value of the J coupling
constant. However, we find slightly different values from
the H and C FID. Taking the average and adding half
their difference to the statistical uncertainty, we find J =
(214.93± 0.04) Hz.

The value of J is actually hardcoded into the MATLAB
interface (for use in temporal averaging) as 214.9613 Hz,
which is within our uncertainty. For consistency, there-
fore, we use the hardcoded value for our Uτ gates instead
of the measured value.
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IV. BASIS STATES AND CNOT

It is not obvious how quantum computation, which
relies on manipulating pure states, can be carried out on
a mixed thermal state like Equation 4. The answer is
that this is not possible; instead, we rely on a technique
called temporal averaging to produce effective “pseudo-
pure” states. We note that if we begin with a diagonal
density matrix ρ = diag(a, b, c, d), permute the diagonal
elements ρ to diag(a, c, d, b) and diag(a, d, b, c) (via some
unitary transforms), and then add all three matrices, we
obtain a new matrix[2]

ρ = (1− a)I + (4a− 1)|00〉〈00|,

since b + c + d = 1 − a. This is not a physical density
matrix; nevertheless, performing operations and readouts
on ρ (i.e., performing operations and readouts on the
three permuted matrices and adding together the FIDs)
will give results exactly as if we were working with the
pure state |00〉〈00| (up to the normalization).

To complete the picture, we should take care of the
normalization factor. Since a = 1/4 + 5 · ~ω1/kT from
Equation 4, we need to multiply the results of temporal
averaging by N = 1/20K to obtain the normalized ele-
ments of the pseudo-pure density matrix. Numerically,
N = (6.45± 0.03)× 10−9.

For convenience, let us now use a, b, c, and d to refer
to the diagonal terms of the pseudo-pure density matrix
(the second term of ρ, without the normalization), so
that a = 1 and b = c = d = 0 represents the state |00〉,
for example. This is exactly the peak integrals measured
by Equations 5 and 6 after temporal averaging and renor-
malization by Nc and N .

IV.1. Computational Basis States

The first test of temporal averaging is the prepara-
tion and measurement of the computational basis states.
We apply four different sequences: I1I2, X2

1I2, I1X
2
2 and

X2
1X

2
2 , which take the initial |00〉 state to the four basis

elements. This is shown for H in Figure 4; comparing to
Equation 5 verifies they are correct.

We can quantify the quality of these basis states by
going one step further: we have access to all four peak
integrals V 1

H , V 2
H , V 1

C , and V 2
C . Thus, we can set up the

system of equations

V 1
H = a− c V 2

H = b− d
V 1
C = a− b V 2

C = c− d

and solve for a, b, c, and d. These are of interest because
for a generic density matrix ρ, 〈j|ρ|j〉 tells us the proba-
bility of measuring the basis element |j〉. (We ignore the
imaginary parts of the peak integrals, since they corre-
spond to off-diagonal terms.) Since the system is rank-
deficient, we eliminate one of the equations and add the
normalization requirement a+ b+ c+d = 1. To estimate

FIG. 4. H FID spectra of the four basis states after an X read-
out. The states are (a) |00〉, (b) |01〉, (c) |10〉, (d) |11〉. Real
partis shown in solid blue; imaginary part is dashed red. The
gray bars represent the integration region defined in Section
III.2 and used throughout the following analysis.

the systematic uncertainty, we eliminate each of the four
equations in turn and average the solutions, adding the
standard deviation to the statistical uncertainty. Table I
shows these probabilities for the basis elements.

a b c d
|00〉 0.62 ± 0.04 0.18 ± 0.04 0.08 ± 0.04 0.11 ± 0.04
|01〉 0.21 ± 0.04 0.54 ± 0.04 0.14 ± 0.04 0.11 ± 0.04
|10〉 0.13 ± 0.05 0.13 ± 0.05 0.58 ± 0.05 0.17 ± 0.05
|11〉 0.16 ± 0.05 0.14 ± 0.05 0.21 ± 0.05 0.50 ± 0.05

TABLE I. Populations for the basis elements.

IV.2. The CNOT Gate

The CNOT gate is used in many quantum algorithms
and is defined on the computational basis by

C|i〉|j〉 = |i〉|i⊕ j〉,

where ⊕ denotes addition modulo 2. That is, CNOT
flips the second “target” qubit if and only if the first
“control” qubit is 1. The CNOT gate with H control is
implemented by the pulse sequence[4]

C = (Y1X1Y 1)(Y 2UτY2)X2. (9)

Applying this pulse sequence to each of the basis states
yields the probabilities in Table II below, which confirm
the classical truth table for CNOT.

a b c d
C|00〉 0.59 ± 0.03 0.18 ± 0.03 0.10 ± 0.03 0.14 ± 0.03
C|01〉 0.22 ± 0.03 0.52 ± 0.03 0.14 ± 0.03 0.12 ± 0.03
C|10〉 0.16 ± 0.03 0.09 ± 0.03 0.25 ± 0.03 0.50 ± 0.03
C|11〉 0.08 ± 0.03 0.16 ± 0.03 0.51 ± 0.03 0.25 ± 0.03

TABLE II. Populations for the CNOT gate.
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V. THE DEUTSCH ALGORITHM

Suppose we are given a function f : {0, 1} → {0, 1}.
There are four possibilities:

f0(0) = 0 f1(0) = 0 f2(0) = 1 f3(0) = 1

f0(1) = 0 f1(1) = 1 f2(1) = 0 f3(1) = 1

We want to know whether f is constant (f0 and f3) or
balanced (f1 and f2). Clearly, classical approach needs
to evaluate both f(0) and f(1).

To solve the problem with a quantum algorithm, sup-
pose we are given instead an oracle D representing f . A
“query” is actually the application of one of the oracles:

D0 = I1I2 D1 = C D2 = CX2 D3 = X2

where C is the CNOT gate. If we can solve the problem
with only one application of D, then we beat the classical
case. The solution is given by the Deutsch algorithm,
which consists of the pulse sequence

U(Dj) = Y 1Y2DjY1Y 2. (10)

Applying U(Dj) on the state |00〉 gives |fj(0)⊕fj(1)〉|0〉,
so measuring the output gives |00〉 if fj is constant and
|10〉 if balanced, with only one query.

Table III below summarizes the outputs of the Deutsch
algorithm on each oracle. Note that the dominant prob-
ability is indeed what we expect.

a b c d
D0 0.62 ± 0.04 0.19 ± 0.04 0.08 ± 0.03 0.11 ± 0.03
D1 0.09 ± 0.14 0.14 ± 0.04 0.61 ± 0.04 0.16 ± 0.04
D2 0.11 ± 0.03 0.13 ± 0.03 0.60 ± 0.03 0.17 ± 0.03
D3 0.61 ± 0.03 0.19 ± 0.03 0.09 ± 0.03 0.11 ± 0.03

TABLE III. Populations for the Deutsch algorithm.

VI. THE GROVER SEARCH ALGORITHM

Suppose we are given a set X of N items and a function
g : X → {0, 1}, which marks one item x0 with a 1 and
the rest with 0. Given X and g, we want to search for
x0. Classically, this requires O(N) queries to g.

In the quantum version, we let X to be our set of basis
elements (so that N = 4 in our case) and replace g by the
Grover iterate. The four grover iterates can be simplified
(up to overall phases) into the pulse sequences[2]

G0 = X1X2Y1Y2UτX1X2Y1Y2Uτ

G1 = X1X2Y1Y2UτX1X2Y1Y2Uτ

G2 = X1X2Y1Y2UτX1X2Y1Y2Uτ

G3 = X1X2Y1Y2UτX1X2Y1Y2Uτ

The solution to the search problem is then given by the
Grover search algorithm, with the pulse sequence

U(Gj , k) = GkjX
2
1X

2
2Y1Y2, (11)

where k is an integer specifying how many iterations of
Gj to apply. It turns out that applying k = O(

√
N) gives

the state corresponding to x0 with high probability, and
furthermore, the algorithm is periodic; this means that
for some k0, k+ 2k0, k+ 3k0, and so on also give x0 with
high probability. The results are shown in Figure 5.

FIG. 5. Probabilities of correct answer as a function of k for
Grover iterates (a) G0, (b) G1, (c) G2, and (d) G3.

VII. CONCLUSIONS

We characterize the NMR system by calibrating for
phase references, 90◦ pulse, J , and signal strengths; we
also measure the coherence times T1 and T ∗2 to be long
enough for quantum information processing. We demon-
strate the preparation of basis states by temporal averag-
ing and the classical truth table of the CNOT gate. We
verify the correctness of the Deutsch algorithm and the
Grover search algorithm, and observe the later’s oscilla-
tory behavior. We also provide a method for quantifying
contamination of the computation by looking at the pop-
ulations of the density matrix.
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