Quantum Information Processing:

Deutsch Algorithm and Grover Search

Edwin Ng | 2 May 2012

The Computational Basis

- > The computational basis states of the molecule are $|00\rangle, |01\rangle, |10\rangle, |11\rangle$
- These correspond to the classical bits

 NMR quantum computation manipulates superpositions of these basis states to solve problems faster than classical algorithms

The Computational Basis: FIDs

The Computational Basis: FIDs

- If the state is measured in the computational basis, what is the probability of each state?
- After normalization, the proton and carbon FIDs gives V_1^H , V_2^H , V_1^C , V_2^C
- They represent the following system:

$$V_1^H = (\rho_{11} - \rho_{33}) - i(\rho_{31} + \rho_{13})$$
$$V_2^H = (\rho_{22} - \rho_{44}) - i(\rho_{24} + \rho_{42})$$
$$V_1^C = (\rho_{11} - \rho_{22}) - i(\rho_{21} + \rho_{12})$$
$$V_2^C = (\rho_{33} - \rho_{44}) - i(\rho_{43} + \rho_{34})$$

Basis Probabilities (Cont.)

ρ_{jj} represents probability of measuring the *j*-th basis element

• We do not need the imaginary elements

System is rank-deficient: add normalization

$$\rho_{11} + \rho_{22} + \rho_{33} + \rho_{44} = 1$$

Basis Probabilities (Cont.)

Simple Quantum Gates: One-Qubit

NMR is based on single-qubit rotation gates:

$$X = \exp\left(-i\frac{\pi}{4}\sigma_x\right), \quad Y = \exp\left(-i\frac{\pi}{4}\sigma_y\right)$$

- These rotate the spin by $\pi/2$ about x, y axis of the NMR system ($\pi/2$ pulses).
- X^2 and Y^2 are π pulses; we also have $-\pi/2$

$$\overline{X} = X^{\dagger}, \quad \overline{Y} = Y^{\dagger}$$

Simple Quantum Gates: Two-Qubits

- In two-qubit NMR, the two nuclei couple together through J-coupling constant
- This yields spin-spin interaction operator

$$U_{\tau} = \exp\left(-i\frac{\pi}{4}\sigma_z \otimes \sigma_z\right)$$

 Achieved by letting system freely evolve for time τ = 1/2J The Controlled-NOT (CNOT) Gate

• Defined by $C|i
angle|j
angle=|i
angle|i\oplus j
angle$

Classical Truth Table:

The first bit is the control, the second bit is the target. CNOT flips target iff control is 1.

The CNOT Gate: Circuit

Quantum CNOT is a two qubit-circuit

There is also a much simpler near-CNOT gate, disregarding phases

The CNOT Gate: FIDs

The CNOT Gate: FIDs

The CNOT Gate: Probabilities

The Deutsch Algorithm: Question

• Given a function $f: \{0,1\}
ightarrow \{0,1\}$

Constant $f_1(b)$ \boldsymbol{b} $f_0(b)$ b f_0 and f_3 VS. $f_{2}(b)$ b b <u>†</u>3(b) Balanced \bullet f_1 and f_2

The Deutsch Algorithm: Setup

- Classical approach: Ask for both f(0) and f(1)
- Quantum approach: Ask for only one thing, but need to choose that one thing carefully

$$D|b_1\rangle|b_2\rangle = |b_1\rangle|f(b_1)\oplus b_2\rangle$$

- D is a unitary operator: *i.e.*, a quantum gate
- Goal is to query D at most one time, which would beat classical case

The Deutsch Algorithm: Solution

The following quantum circuit solves the Deutsch problem in one query of D:

Measuring gives 00 if constant, 10 if balanced

The Deutsch Algorithm: FIDs

The Deutsch Algorithm: FIDs

The Deutsch Algorithm: Probabilities

The Grover Algorithm: Question

- Given a set X of N items and $g: X \to \{0, 1\}$
- Exactly one element x_0 is marked I
- Goal: Find x_0

- Classical approach is to just search all of X
 This takes time O(N)
- Quantum approach indexes X using states
 - Ultimately takes time $O(\sqrt{N})$

The Grover Algorithm: Setup

- Instead of querying g, ask for an oracle instead
- O is a unitary operator on basis bitstrings x:

$$O|x\rangle = (-1)^{g(x)}|x\rangle$$

Marks the answer using a "phase kickback"

How to phrase the oracle query?

The Grover Algorithm: Setup (Cont.)

A single query consists of the Grover iterate

The Grover Algorithm: Solution

Goal: Use as few Grover iterates as possible

- Measuring at the end of $k = O(\sqrt{N})$ iterations gives x_0 with high probability
- Will also get x_0 after $k+k_0$, $k+2k_0$, ... iterations

The Grover Algorithm: Implementation

 Ignoring global phases and simplifying, we get a pulse sequence for each Grover iterate

 $G_0 = \overline{X}_1 \overline{X}_2 Y_1 Y_2 U_\tau \overline{X}_1 \overline{X}_2 Y_1 Y_2 U_\tau$ $G_1 = \overline{X}_1 \overline{X}_2 Y_1 Y_2 U_\tau X_1 \overline{X}_2 Y_1 Y_2 U_\tau$ $G_2 = \overline{X}_1 \overline{X}_2 Y_1 Y_2 U_\tau \overline{X}_1 X_2 Y_1 Y_2 U_\tau$ $G_3 = \overline{X}_1 \overline{X}_2 Y_1 Y_2 U_\tau X_1 X_2 Y_1 Y_2 U_\tau$ $\bullet \text{ The Hadamard is } H = Y X^2$

The Grover Algorithm: FIDs

The Grover Algorithm: FIDs

The Grover Algorithm: Probabilities

Conclusions

- Introduced a way to calculate the probabilities of each basis element after a computation
- Demonstrated the preparation of basis states
- Obtained a CNOT gate with correct classical outputs
- Verified the correctness of the Deutsch algorithm
- Observed the correctness and oscillatory behavior of the Grover search algorithm
- Also available:
 - Classical truth table for near-CNOT gate
 - Near-CNOT, CNOT, Deutsch using carbon control

Question and Answer

Þ