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Abstract

We examine the effects of errors and decoherence in the quantum Schur transformation. We uti-

lize the spectrum estimation protocol based on the Schur transformation and observe the effects of

various simple modifications to the basic circuit design, including rotation errors and decoherence.

We focus on defining quantities that characterize the quality of the estimation.
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I. INTRODUCTION

A distinct signature of many quantum algorithms and protocols is the exploitation of

nonlocal properties in a physical system in order to extract interesting information. Algo-

rithms based on the quantum Fourier transform are perhaps the most prominant examples,

where the inherent periodicity of a problem is stored nonlocally in a quantum register and

later extracted by the transform.

In quantum information, on the other hand, there are a number of quantum protocols,

such as universal quantum source coding, entanglement concentration, and density operator

spectrum estimation, for which the relevant nonlocal property is not periodicity but rather

the global statistics of the system. It turns out there is also a way utilize this information

in a local way, represented by the Schur transform, for which an efficient circuit is known.[1]

These techniques are unequivocally quantum mechanical, and it is precisely for this rea-

son that other characteristic quantum effects, like decoherence and noise, are particuarly

important to a full understanding of the protocols. The effects of approximation, noise and

decoherence in the quantum Fourier transform has been explored in [2], where the authors

show, surprisingly, that approximate and imperfect circuits can perform better than the

complete circuit in the face of decoherence, depending on the application at hand.

We present in this paper some approaches and preliminary results in understanding the

Schur transform in an analogous way. We first briefly how the Schur transform arises from

the formal notion of Schur duality before giving an overview of the circuits implementing

the Schur transform. We then introduce the technique of spectrum estimation, which we

ultimately use to study the effects of decoherence and noise on the performance of the Schur

transform. We examine a few special cases through simulation, looking at the effects of

faulty rotation gates and a simple model of decoherence.

II. SCHUR DUALITY AND THE SCHUR TRANSFORM

Schur duality deals with the representations of the unitary group Ud on d dimensions and

the symmetric group Sn on n elements. A representation of a group G is a vector space V

together with a homomorphism R : G→ End(V ), where End(V ) is the set of operators on

V . The group element g is represented by the operators R(g) on elements of V .
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To ground the discussion in physical terms, let us consider a system consisting of n d-

dimensional spins (so that d = 2 for qubits, for example). The vector space typically used

to describe this system is the Hilbert space H =
(
Cd
)⊗n

, with the spin rotation group SU(2)

represented by rotation operators R(θ). In order to obey the laws of quantum mechanics,

we require representations on H to be unitary; to allow quantum computation, we ask that

H be finite dimensional.

Our two main groups of interest, Ud and Sn, in fact have natural physical meaning in this

system—that of local unitary operations and permutation of spins. If u ∈ Ud and π ∈ Sn,

then we have the representations Q(u) and P(π), where

Q(u)|i1, i2, . . . , in〉 = u|i1〉 ⊗ u|i2〉 ⊗ . . .⊗ u|in〉 (1)

P(π)|i1, i2, . . . , in〉 = |iπ−1(1)〉 ⊗ |iπ−1(2)〉 ⊗ . . .⊗ |iπ−1(n)〉 (2)

It is possible to decompose H into invariant subspaces under Q(u) and P(π) which do

not mix for any u and π. That is, for some labels α and β, we can write(
Cd
)⊗n ∼= ⊕

α

Vα ∼=
⊕
β

Wβ (3)

under some appropriate bases. Similarly, the operators themselves decompose as

Q(u) ∼=
∑
α

q(u) and P(π) ∼=
∑
β

p(π) (4)

where qα(u) and pβ(π) act nontrivially only on Vα and Wβ, respectively. If the decomposi-

tions are minimal, meaning that Vα and Wβ are the smallest such invariant subspaces, then

along with pα and pβ they are called irreducible representations (irreps) of Ud and Sn.

Schur duality tells us that, for the unitary and symmetric groups, it is possible to choose

these irreps to coincide. For any d and n, there is a set of labels λ such that(
Cd
)⊗n ∼= ⊗

λ

Vλ ⊗Wλ and (5)

Q(u)P(π) ∼= |λ〉〈λ| ⊗
∑
λ

qλ(u)⊗ pλ(π) (6)

Specifying a state in H by giving the labels λ and (say) the eigenvalues qλ and pλ yields the

ket |λ, qλ, pλ〉, written in the Schur basis. The unitary change of basis Us into the Schur

basis is called the Schur transform. In terms of the computational basis states, we write

|λ, qλ, pλ〉 =
n∑
k=1

[Us]
λ,qλ,pλ
ik

|ik〉 (7)
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The set of λ can be described as partitions of n into ≤ d parts, and we can write

λ = (λ1, . . . , λd) ∈ Zd where λ1 ≥ . . . ≥ λd and
∑

k λk = n. For example, when n = 3 and

d = 2, the only valid partitions are (3, 0) and (2, 1).[3]

It is useful to quote an example. We know from elementary quantum mechanics that

for two spin-1/2 particles, we can write the Hilbert space C2 ⊗ C2 as the direct sum of the

singlet and triplet subspaces, separated according to the total angular momentum quantum

number j. In fact, we can identify λ with j and qλ with the magnetic quantum number mj,

while pλ is the permutation sign of the wavefunction. The Schur basis for this system is

|λ = (1, 1), qλ = 0, pλ = 0〉

|λ = (2, 0), qλ = +1, pλ = 0〉

|λ = (2, 0), qλ = 0, pλ = 0〉

|λ = (2, 0), qλ = −1, pλ = 0〉

Note that λ = (2, 0) corresponds to j = 1 while λ = (1, 1) corresponds to j = 0 (we can, in

general, order λ to correspond to j). Also, since there is only one permutation symmetry

for each λ, we can reuse the label 0 for both symmetric and antisymmetric wavefunctions

(this will not be the case when n ≥ 3). The matrix for this Schur transform is familiar:

[Us] =


0 1/
√

2 −1/
√

2 0

1 0 0 0

0 1/
√

2 1/
√

2 0

0 0 0 1


III. CIRCUITS FOR THE SCHUR TRANSFORM

Efficient circuits for the quantum Schur transform were demonstrated by Bacon, Chuang,

and Harrow in 2006,[1] while the explicit mathematical details of the construction forms the

second half of Harrow’s thesis.[3]

The general design of the circuit for the Schur transform is iterative, which can be seen

from the recursive nature of addition of angular momenta. At the heart of the circuit is the

Clebsch-Gordan (CG) transform UCG, which is cascaded to form the Schur circuit. However,

for the case of d > 2, the CG circuit is notationally cumbersome to describe and involves the

use of the Wigner-Eckart theorem.[3] For the preliminary work done in this paper, we focus
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only on the n qubit case where d = 2, so that we can directly apply elementary quantum

mechanics to understand UCG.

Suppose we have the value of j and m for k − 1 spins and we want to add a new spin to

the system, to get new labels j′ and m′. Then the change of basis prescribed by addition of

angular momentum is

|j,m,+1/2〉 7→ cos θ |j, j + 1/2,m+ 1/2〉 − sin θ |j, j − 1/2,m+ 1/2〉 (8)

|j,m,−1/2〉 7→ sin θ |j, j + 1/2,m− 1/2〉+ cos θ |j, j − 1/2,m− 1/2〉 (9)

where we define

cos θ =

√
j + (m+ s) + 1/2

2j + 1
and sin θ =

√
j − (m+ s) + 1/2

2j + 1
(10)

Thus, at the output of the circuit, the first label is just j, the second label is j′ = j±1/2,

and the third label is m′ = m ± 1/2. In terms of the Schur basis, the first label can be

used to mark pλ, the second label can be used to mark λ, and the third label to mark qλ.

The recursive structure is now evident. After we are done with the kth spin, we take the

output j′ and m′ to use as new inputs to another CG circuit, along with a (k+ 1)th spin. A

schematic for this change of basis as quantum circuit is shown in Figure 1, but the change

of basis formula suffices for our needs. A schematic for the full Schur transformation based

on this procedure is shown in Figure 2

FIG. 1. A quantum circuit implementing the CG transform, mapping |j,m〉|s〉 to |j′,m′, p〉, ada-

pated from [1]. Here, the controlled-X operators add the control to the target, and likewise, the

rotation gate rotates the target as a function of the controls. Note that the convention in this

figure is slightly different from the one used in this paper. |p〉 is our |j〉, and since this label is our

first output, the last gate should have target and control reversed, with the output correspondingly

labelled |p〉, |m′〉, and |j′〉 from top to bottom.
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FIG. 2. A quantum circuit implementing the Schur transform as a cascade of CG transforms,

mapping |i1, i2, . . . , in〉 to |p1, . . . , pn〉|j〉|m〉, adapated from [1]. The value of |j〉 in the first iteration

is the initial value of j for a single spin, which would be |0〉 = |j = 1/2〉. Note again the notational

differences between using the top vs. bottom wires as the label for our |pk〉.

IV. SPECTRUM ESTIMATION

One relatively straightforward application of the Schur transform is the estimation of the

spectrum of a mixed state density operator.[4]. We will use this particular application as

the context in which to study the effects of noise and decoherence in the circuit.

Suppose we are given n preparations of the single-qubit mixed state ρ, with a spectrum

{p, 1− p}, (take p > 0.5 for convention). We are not told the basis under which the ρ is

diagonal, but we wish to find the spectrum. One way to do this is to perform the Schur

transformation on the state ρ⊗n and measure the λ label, or, equivalently, the total angular

momentum. We then relate this to the partition λ = (λ1, λ2) and make the estimation

{p, 1− p} ≈
{
λ1
n
,
λ2
n

}
As n gets larger, the increasing number of partitions allow us to approximate p and 1− p

better. Furthermore, as n get larger, the probability that a measurement at the end of a

Schur transform yields the closest available answer becomes higher. Therefore, this spectrum

estimate is exact as n→∞.

A plot of the estimate p by observing the highest probability for various n is shown in

Figure 3, with the true spectrum p0 = 2/3. To take into account the fact that the closest

partition has only high but not unit probability, we plot in Figure 4 the “error” ratio δp/P ,

where we define the relative error δp = |p− p0|/p0 and P to be the P of obtaining p.
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FIG. 3. The spectrum estimation of n copies of a single-qubit mixed state prepared with a fixed

proportion p0 = 2/3 in the state |0〉 and 1 − p0 in the state |1〉. The value of p plotted is the

estimation using the partition λ (or equivalently, j) with the dominant measurement probability

taken as p. Note that the asymptotic approach to the correct answer is due to the increasing

number of partitions yielding closer integer approximations to p0.

FIG. 4. The error in the spectrum estimation in Figure 1, defined to be the relative error δp of the

dominant partition λ over the probability P of getting λ. Note that the asymptotic approach to

zero is due to both the partitions approximating the correct answer and to the probability of that

answer being more dominant.

V. ROTATION ERRORS

One simple attempt to change circuit is to examine the effects of adding a systematic

error to the rotation gate Ry(θ) in the CG transform, taking θ 7→ θ + φ for φ� θ. It turns

out that this leads to a serious problem where states with j < 0 or m > j grow to have
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non-zero probability. To circumvent this, we do not apply the effects of φ when either of

cos θ or sin θ are zero. The effects of this systematic error are shown in Figure 5 below for

various values of φ, given in terms of δp/P .

FIG. 5. The error in the spectrum estimation when introducing various systematic rotation errors

φ. The parameters are the same as in Figure 4.

Note that the answers p as a function of n do not change as a result of this systematic

offset. For each value of φ, the plot of the estimate p as a function of n is precisely the same

as in Figure 3, which suggests that spectrum estimation is robust. Of course, this is bad

news if we are interested in using the spectrum estimation to characterize changes in the

Schur circuit due to errors.

Also of immediate note is the fact that the ratio δp/P actually decreases as φ increases.

This is not the expected behavior of systematic errors, which should lead to overall poorer

behavior. Rather, we find that the probability of getting the closest partition λ actually

increases as φ increases. It is possible that this is due to the restriction on the states, where

we do not apply the systematic error to prevent obtaining nonphysical basis states. If this

is so, then the effect seen in Figure 5 is artificial and not of interest.

VI. DECOHERENCE

Following the approach of [2], we made an attempt to introduce a simple model of deco-

herence, which amounts to multiplying the components of the wavefunction by a random,

normally-distributed phase φ with mean 0. After the application of a single CG gate, we

apply eiφ for an independently generated φ to each component of the wavefunction, with the
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interpretation that the CG circuit takes some time to perform, and a heat bath introduces

random phases into the wavefunction, leading to decoherences.

However, the results of trying various standard deviations for φ are negative, in that no

deviation in either the p or in the error of estimate δp/P as a function of n were observed.

VII. CONCLUSIONS

The focus of this paper is to define an approach to studying noise and decoherence in the

quantum Schur transform. We use the spectrum estimation protocol as our model, with the

goal of examining the quality of the estimation as a result of various sources of errors and

noise in our circuit.

However, it appears that the spectrum estimation protocol is too robust for this kind of

analysis, in the sense that we obtain the same estimations with almost the same probabilities

regardless of errors in the Schur transform. This does not say anything about the robustness

of the Schur circuit itself, and it is suspected that the spectrum estimation method is a poor

indicator of the quality of the Schur circuit.

Other constraining factors are the efficiency of simulating the Schur circuit. Using a

simple approach, we are only able to simulate up to n = 30 qubits. It is not known whether

simulating more qubits will yield any different results.

Additional topics for future work are to examine other protocols, with the goal of finding

one sensitive enough to the Schur transform to be useful as a reliable indicator of the

robustness of the circuit itself. The topic of approximation becomes interesting in the case of

d > 2, which should yield much more complexity in behavior due to the classical calculation

of the CG transform circuits.
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