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» Permutations of Qudits: Represented by operators P ()
where P : S, — End(H).

P(W)‘il,llg,.. . ) = ‘I —1(1)> ® |I -1 >® e ® ‘I.ﬂ71(n)>
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» It is possible to decompose H into subspaces invariant under
the actions of Q(u) and P(r):

(C)*"=PVa=PWs
a g

» Foralluely and m € S,,

Q(u) =) d,(u) and P(r) =) pp(n)
o B
where q,,(u) and pg(7) act nontrivially only on V,, and Wp.

» When subspaces are minimal, q, and pg are the irreducible
representations of Uy and S, in H.
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where \ labels a partition of n into < d parts.
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» Example: For two spin-1/2 qubits, A labels j € {0,1}, g»
labels m € {—j,...,+j}, and p) labels symmetry of
wavefunction.
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» The partitions A for Schur duality when d = 2 are

A€ {(n0), (n—1,1),...,([n/2],|n/2])}

» Perform Schur transform on p®" on H.

» Measure the X label and determine the partition (A1, X2).
Estimate the spectrum by taking

(p,1=p)~ <A1A2>
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» Will measure correct partition whp. Becomes exact as n — ~c.
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Efficient Schur Transform: Clebsch-Gordan Circuit

» Schur transform for n =2, d = 2 is elementary addition of
angular momentum for two qubits.

» State of just the first qubitis |j = 1/2,m = £1/2,p =0).
» Now add the second qubit |s). Use the CG transform:
lj,m,+1/2) + cosf|j,j+1/2,m+1/2)
—sinflj,j —1/2,m+1/2)
lj,m,—1/2) —sin@|j,j+1/2,m—1/2)
+cosf|j,j—1/2,m—1/2)

where we define

s — J—I—(m—.i-S)—l-]./z Gind — _j—(m—.l-s)—{—]./Q
2j+1 2j+1



Efficient Schur Transform: Clebsch-Gordan Circuit

CG is a unitary operator. An efficient quantum circuit
implementation is’

) — X— |7
im) —— x| Im’)
s) Ry(6).m)) —— |p)

'From D. Bacon, I.L. Chuang, A.W. Harrow, Phys. -Rev. -Lett. 97 (2006).



Efficient Schur Transform: The Schur Circuit

The full Schur circuit (for n qubits) is a cascade of CG operations?

10) — Ip1)
li1) — Ucc E%f |p2)
- Mo %

cG
liz)

T |pn>
-+ " Uce E% /)
|i)z> ] |m>

The R, (0) gate is approximated in polylog(1/¢), so the full Schur
circuit is O(n polylog(1/e)).

2From D. Bacon, I.L. Chuang, A.W. Harrow, Phys. Rev. -Lett. 97 (2006).
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Introducing Noise into CG

» What happens if we introduce noise into CG circuit?

» Easiest point of entry is to replace rotation with R, (6 + ¢)
when we take ¢ < 0.

» Causes problems when j* < 0 and |m’| > j’ obtain some
probabilities due to ¢.

» Fix: Only apply ¢ when these cases do not apply.



Noisy Spectrum Estimation: Plots
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Additional Topics

> Need to verify that this effect is not artificial, by simulating
larger circuits and making noise larger.

» Can also introduce errors into the controlled-addition gate.
» More complexity and opportunity for approximate circuits for
d-dimensional qudit case.

» What about other applications? Universal quantum source
coding, entanglement concentration, collective decoherence. . .



