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Schur Duality: Representations

Consider a system of n d-dimensional qudits. Schur duality deals
with the representations of the unitary group Ud and the
symmetric group Sn in H =

(
Cd
)⊗n

.

I Local Unitary Operations: Represented by operators Q(u)
where Q : Ud → End(H).

Q(u)|i1, i2, . . . , in〉 = u|i1〉 ⊗ u|i2〉 ⊗ . . .⊗ u|in〉

I Permutations of Qudits: Represented by operators P(π)
where P : Sn → End(H).

P(π)|i1, i2, . . . , in〉 = |iπ−1(1)〉 ⊗ |iπ−1(2)〉 ⊗ . . .⊗ |iπ−1(n)〉
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Schur Duality: Decomposition

I It is possible to decompose H into subspaces invariant under
the actions of Q(u) and P(π):(

Cd
)⊗n ∼= ⊕

α

Vα ∼=
⊕
β

Wβ

I For all u ∈ Ud and π ∈ Sn,

Q(u) ∼=
∑
α

qα(u) and P(π) ∼=
∑
β

pβ(π)

where qα(u) and pβ(π) act nontrivially only on Vα and Wβ.

I When subspaces are minimal, qα and pβ are the irreducible
representations of Ud and Sn in H.
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Schur Duality: Theorem

For any d and n, if qλ and pλ are irreps of Ud and Sn, then(
Cd
)⊗n ∼= ⊕

λ

Vλ ⊗Wλ and

Q(u)P(π) ∼=
∑
λ

|λ〉〈λ| ⊗ qλ(u)⊗ pλ(π)

where λ labels a partition of n into ≤ d parts.

This unitary change of basis US is the Schur transform:

|λ, qλ, pλ〉 =
n∑

k=1

[Us ]λ,qλ,pλik
|ik〉

I Example: For two spin-1/2 qubits, λ labels j ∈ {0, 1}, qλ
labels m ∈ {−j , . . . ,+j}, and pλ labels symmetry of
wavefunction.
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Application: Spectrum Estimation

A qubit is prepared in a mixed state with probabilities {p, 1− p} in
some unknown basis. Given n copies of the state following this
distribution, can we find p and 1− p?

I The partitions λ for Schur duality when d = 2 are

λ ∈ {(n, 0), (n − 1, 1), . . . , (dn/2e, bn/2c)}

I Perform Schur transform on ρ⊗n on H.

I Measure the λ label and determine the partition (λ1, λ2).
Estimate the spectrum by taking

(p, 1− p) ∼
(
λ1
n
,
λ2
n

)

I Will measure correct partition whp. Becomes exact as n→∞.
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Efficient Schur Transform: Clebsch-Gordan Circuit

I Schur transform for n = 2, d = 2 is elementary addition of
angular momentum for two qubits.

I State of just the first qubit is |j = 1/2,m = ±1/2, p = 0〉.
I Now add the second qubit |s〉. Use the CG transform:

|j ,m,+1/2〉 7→ cos θ |j , j + 1/2,m + 1/2〉
− sin θ |j , j − 1/2,m + 1/2〉

|j ,m,−1/2〉 7→ sin θ |j , j + 1/2,m − 1/2〉
+ cos θ |j , j − 1/2,m − 1/2〉

where we define

cos θ =

√
j + (m + s) + 1/2

2j + 1
sin θ =

√
j − (m + s) + 1/2

2j + 1



Efficient Schur Transform: Clebsch-Gordan Circuit

I Schur transform for n = 2, d = 2 is elementary addition of
angular momentum for two qubits.

I State of just the first qubit is |j = 1/2,m = ±1/2, p = 0〉.

I Now add the second qubit |s〉. Use the CG transform:

|j ,m,+1/2〉 7→ cos θ |j , j + 1/2,m + 1/2〉
− sin θ |j , j − 1/2,m + 1/2〉

|j ,m,−1/2〉 7→ sin θ |j , j + 1/2,m − 1/2〉
+ cos θ |j , j − 1/2,m − 1/2〉

where we define

cos θ =

√
j + (m + s) + 1/2

2j + 1
sin θ =

√
j − (m + s) + 1/2

2j + 1



Efficient Schur Transform: Clebsch-Gordan Circuit

I Schur transform for n = 2, d = 2 is elementary addition of
angular momentum for two qubits.

I State of just the first qubit is |j = 1/2,m = ±1/2, p = 0〉.
I Now add the second qubit |s〉. Use the CG transform:

|j ,m,+1/2〉 7→ cos θ |j , j + 1/2,m + 1/2〉
− sin θ |j , j − 1/2,m + 1/2〉

|j ,m,−1/2〉 7→ sin θ |j , j + 1/2,m − 1/2〉
+ cos θ |j , j − 1/2,m − 1/2〉

where we define

cos θ =

√
j + (m + s) + 1/2

2j + 1
sin θ =

√
j − (m + s) + 1/2

2j + 1



Efficient Schur Transform: Clebsch-Gordan Circuit

CG is a unitary operator. An efficient quantum circuit
implementation is1

1From D. Bacon, I.L. Chuang, A.W. Harrow, Phys. Rev. Lett. 97 (2006).



Efficient Schur Transform: The Schur Circuit

The full Schur circuit (for n qubits) is a cascade of CG operations2

The Ry (θ) gate is approximated in polylog(1/ε), so the full Schur
circuit is O(n polylog(1/ε)).

2From D. Bacon, I.L. Chuang, A.W. Harrow, Phys. Rev. Lett. 97 (2006).



Spectrum Estimation: Plots
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Introducing Noise into CG

I What happens if we introduce noise into CG circuit?

I Easiest point of entry is to replace rotation with Ry (θ + φ)
when we take φ� θ.

I Causes problems when j ′ < 0 and |m′| > j ′ obtain some
probabilities due to φ.

I Fix: Only apply φ when these cases do not apply.
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Noisy Spectrum Estimation: Plots



Additional Topics

I Need to verify that this effect is not artificial, by simulating
larger circuits and making noise larger.

I Can also introduce errors into the controlled-addition gate.

I More complexity and opportunity for approximate circuits for
d-dimensional qudit case.

I What about other applications? Universal quantum source
coding, entanglement concentration, collective decoherence. . .


