Noise and Approximations in the Quantum Schur Transform

Edwin Ng

MIT Department of Physics

May 16, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Schur Duality: Representations

Consider a system of *n d*-dimensional qudits. Schur duality deals with the representations of the unitary group \mathcal{U}_d and the symmetric group \mathcal{S}_n in $H = (\mathbb{C}^d)^{\otimes n}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Schur Duality: Representations

Consider a system of *n d*-dimensional qudits. Schur duality deals with the representations of the unitary group \mathcal{U}_d and the symmetric group \mathcal{S}_n in $H = (\mathbb{C}^d)^{\otimes n}$.

 Local Unitary Operations: Represented by operators Q(u) where Q : U_d → End(H).

$$\mathbf{Q}(u)|i_1,i_2,\ldots,i_n\rangle = u|i_1\rangle \otimes u|i_2\rangle \otimes \ldots \otimes u|i_n\rangle$$

Schur Duality: Representations

Consider a system of *n d*-dimensional qudits. Schur duality deals with the representations of the unitary group \mathcal{U}_d and the symmetric group \mathcal{S}_n in $H = (\mathbb{C}^d)^{\otimes n}$.

 Local Unitary Operations: Represented by operators Q(u) where Q : U_d → End(H).

$$\mathbf{Q}(u)|i_1,i_2,\ldots,i_n\rangle = u|i_1\rangle \otimes u|i_2\rangle \otimes \ldots \otimes u|i_n\rangle$$

Permutations of Qudits: Represented by operators P(π) where P : S_n → End(H).

$$\mathbf{P}(\pi)|i_1,i_2,\ldots,i_n\rangle = |i_{\pi^{-1}(1)}\rangle \otimes |i_{\pi^{-1}(2)}\rangle \otimes \ldots \otimes |i_{\pi^{-1}(n)}\rangle$$

Schur Duality: Decomposition

It is possible to decompose H into subspaces invariant under the actions of Q(u) and P(π):

$$(\mathbb{C}^d)^{\otimes n} \cong \bigoplus_{\alpha} V_{\alpha} \cong \bigoplus_{\beta} W_{\beta}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Schur Duality: Decomposition

It is possible to decompose H into subspaces invariant under the actions of Q(u) and P(π):

$$(\mathbb{C}^d)^{\otimes n} \cong \bigoplus_{\alpha} V_{\alpha} \cong \bigoplus_{\beta} W_{\beta}$$

For all $u \in \mathcal{U}_d$ and $\pi \in \mathcal{S}_n$,

$$\mathbf{Q}(u)\cong\sum_lpha \mathbf{q}_lpha(u) \hspace{0.3cm} ext{and} \hspace{0.3cm} \mathbf{P}(\pi)\cong\sum_eta \mathbf{p}_eta(\pi)$$

where $\mathbf{q}_{\alpha}(u)$ and $\mathbf{p}_{\beta}(\pi)$ act nontrivially only on V_{α} and W_{β} .

Schur Duality: Decomposition

It is possible to decompose H into subspaces invariant under the actions of Q(u) and P(π):

$$(\mathbb{C}^d)^{\otimes n} \cong \bigoplus_{\alpha} V_{\alpha} \cong \bigoplus_{\beta} W_{\beta}$$

• For all $u \in \mathcal{U}_d$ and $\pi \in \mathcal{S}_n$,

$$\mathbf{Q}(u)\cong\sum_lpha \mathbf{q}_lpha(u) \hspace{0.3cm} ext{and} \hspace{0.3cm} \mathbf{P}(\pi)\cong\sum_eta \mathbf{p}_eta(\pi)$$

where $\mathbf{q}_{\alpha}(u)$ and $\mathbf{p}_{\beta}(\pi)$ act nontrivially only on V_{α} and W_{β} .

When subspaces are minimal, q_α and p_β are the irreducible representations of U_d and S_n in H.

Schur Duality: Theorem

For any *d* and *n*, if \mathbf{q}_{λ} and \mathbf{p}_{λ} are irreps of \mathcal{U}_d and \mathcal{S}_n , then

$$(\mathbb{C}^d)^{\otimes n} \cong \bigoplus_{\lambda} V_{\lambda} \otimes W_{\lambda}$$
 and
 $\mathbf{Q}(u)\mathbf{P}(\pi) \cong \sum_{\lambda} |\lambda\rangle\langle\lambda| \otimes \mathbf{q}_{\lambda}(u) \otimes \mathbf{p}_{\lambda}(\pi)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where λ labels a partition of *n* into $\leq d$ parts.

Schur Duality: Theorem

For any *d* and *n*, if \mathbf{q}_{λ} and \mathbf{p}_{λ} are irreps of \mathcal{U}_d and \mathcal{S}_n , then

$$\left(\mathbb{C}^{d}
ight)^{\otimes n}\cong igoplus_{\lambda} V_{\lambda}\otimes W_{\lambda} \quad ext{ and } \ \mathbf{Q}(u)\mathbf{P}(\pi)\cong \sum_{\lambda} |\lambda
angle \langle\lambda|\otimes \mathbf{q}_{\lambda}(u)\otimes \mathbf{p}_{\lambda}(\pi)$$

where λ labels a partition of *n* into $\leq d$ parts. This unitary change of basis U_S is the *Schur transform*:

$$|\lambda, q_{\lambda}, p_{\lambda}\rangle = \sum_{k=1}^{n} [\mathbf{U}_{s}]_{i_{k}}^{\lambda, q_{\lambda}, p_{\lambda}} |i_{k}\rangle$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Schur Duality: Theorem

For any *d* and *n*, if \mathbf{q}_{λ} and \mathbf{p}_{λ} are irreps of \mathcal{U}_d and \mathcal{S}_n , then

$$\left(\mathbb{C}^{d}
ight)^{\otimes n} \cong igoplus_{\lambda} V_{\lambda} \otimes W_{\lambda}$$
 and
 $\mathbf{Q}(u)\mathbf{P}(\pi) \cong \sum_{\lambda} |\lambda\rangle\langle\lambda| \otimes \mathbf{q}_{\lambda}(u) \otimes \mathbf{p}_{\lambda}(\pi)$

where λ labels a partition of *n* into $\leq d$ parts. This unitary change of basis U_S is the *Schur transform*:

$$|\lambda, q_{\lambda}, p_{\lambda}\rangle = \sum_{k=1}^{n} [\mathbf{U}_{s}]_{i_{k}}^{\lambda, q_{\lambda}, p_{\lambda}} |i_{k}\rangle$$

Example: For two spin-1/2 qubits, λ labels j ∈ {0,1}, q_λ labels m ∈ {−j,...,+j}, and p_λ labels symmetry of wavefunction.

A qubit is prepared in a mixed state with probabilities $\{p, 1 - p\}$ in some unknown basis. Given *n* copies of the state following this distribution, can we find *p* and 1 - p?

A qubit is prepared in a mixed state with probabilities $\{p, 1 - p\}$ in some unknown basis. Given *n* copies of the state following this distribution, can we find *p* and 1 - p?

• The partitions λ for Schur duality when d = 2 are

$$\lambda \in \{(n,0), (n-1,1), \ldots, (\lceil n/2 \rceil, \lfloor n/2 \rfloor)\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A qubit is prepared in a mixed state with probabilities $\{p, 1 - p\}$ in some unknown basis. Given *n* copies of the state following this distribution, can we find *p* and 1 - p?

• The partitions λ for Schur duality when d = 2 are

$$\lambda \in \{(n,0), (n-1,1), \ldots, (\lceil n/2 \rceil, \lfloor n/2 \rfloor)\}$$

• Perform Schur transform on $\rho^{\otimes n}$ on H.

A qubit is prepared in a mixed state with probabilities $\{p, 1 - p\}$ in some unknown basis. Given *n* copies of the state following this distribution, can we find *p* and 1 - p?

• The partitions λ for Schur duality when d = 2 are

$$\lambda \in \{(n,0), (n-1,1), \ldots, (\lceil n/2 \rceil, \lfloor n/2 \rfloor)\}$$

- Perform Schur transform on $\rho^{\otimes n}$ on H.
- Measure the λ label and determine the partition (λ₁, λ₂).
 Estimate the spectrum by taking

$$(p,1-p)\sim\left(\frac{\lambda_1}{n},\frac{\lambda_2}{n}\right)$$

A qubit is prepared in a mixed state with probabilities $\{p, 1 - p\}$ in some unknown basis. Given *n* copies of the state following this distribution, can we find *p* and 1 - p?

• The partitions λ for Schur duality when d = 2 are

$$\lambda \in \{(n,0), (n-1,1), \ldots, (\lceil n/2 \rceil, \lfloor n/2 \rfloor)\}$$

- Perform Schur transform on $\rho^{\otimes n}$ on H.
- Measure the λ label and determine the partition (λ₁, λ₂).
 Estimate the spectrum by taking

$$(p,1-p)\sim\left(\frac{\lambda_1}{n},\frac{\lambda_2}{n}\right)$$

• Will measure correct partition whp. Becomes exact as $n \to \infty$.

Schur transform for n = 2, d = 2 is elementary addition of angular momentum for two qubits.

Schur transform for n = 2, d = 2 is elementary addition of angular momentum for two qubits.

• State of just the first qubit is $|j = 1/2, m = \pm 1/2, p = 0\rangle$.

- Schur transform for n = 2, d = 2 is elementary addition of angular momentum for two qubits.
- State of just the first qubit is $|j = 1/2, m = \pm 1/2, p = 0\rangle$.
- Now add the second qubit $|s\rangle$. Use the CG transform:

$$\begin{split} |j,m,+1/2\rangle &\mapsto \cos\theta \, |j,j+1/2,m+1/2\rangle \\ &\quad -\sin\theta \, |j,j-1/2,m+1/2\rangle \\ |j,m,-1/2\rangle &\mapsto \sin\theta \, |j,j+1/2,m-1/2\rangle \\ &\quad +\cos\theta \, |j,j-1/2,m-1/2\rangle \end{split}$$

where we define

$$\cos \theta = \sqrt{rac{j + (m + s) + 1/2}{2j + 1}}$$
 $\sin \theta = \sqrt{rac{j - (m + s) + 1/2}{2j + 1}}$

CG is a unitary operator. An efficient quantum circuit implementation $\ensuremath{\mathsf{is}}^1$

¹From D. Bacon, I.L. Chuang, A.W. Harrow, Phys. Rev. Lett. **97** (2006).

Efficient Schur Transform: The Schur Circuit

The full Schur circuit (for n qubits) is a cascade of CG operations²

The $R_y(\theta)$ gate is approximated in $\text{polylog}(1/\epsilon)$, so the full Schur circuit is $O(n \operatorname{polylog}(1/\epsilon))$.

²From D. Bacon, I.L. Chuang, A.W. Harrow, Phys. Rev. Lett. **97** (2006).

Spectrum Estimation: Plots

Spectrum Estimation: Plots

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

What happens if we introduce noise into CG circuit?

- What happens if we introduce noise into CG circuit?
- ► Easiest point of entry is to replace rotation with $R_y(\theta + \phi)$ when we take $\phi \ll \theta$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- What happens if we introduce noise into CG circuit?
- ► Easiest point of entry is to replace rotation with $R_y(\theta + \phi)$ when we take $\phi \ll \theta$.

► Causes problems when j' < 0 and |m'| > j' obtain some probabilities due to φ.

- What happens if we introduce noise into CG circuit?
- Easiest point of entry is to replace rotation with R_y(θ + φ) when we take φ ≪ θ.

- ► Causes problems when j' < 0 and |m'| > j' obtain some probabilities due to φ.
- Fix: Only apply ϕ when these cases do not apply.

Noisy Spectrum Estimation: Plots

Additional Topics

- Need to verify that this effect is not artificial, by simulating larger circuits and making noise larger.
- Can also introduce errors into the controlled-addition gate.
- More complexity and opportunity for approximate circuits for d-dimensional qudit case.
- What about other applications? Universal quantum source coding, entanglement concentration, collective decoherence...