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Using a spherical electromagnet, a velocity selector, and an Si diode detector, we measure the
velocities and kinetic energies of relativistic (∼ 0.8c) electrons emitted from a beta decay source. We
compare the data to classical and relativistic predictions, and use the relativistic model to obtain
estimates on the electron charge-to-mass ratio and (independently) the electron mass. We determine
e/m = (1.55 ± 0.008rand. ± 0.31syst.) × 1011 C/kg and mc2 = (612 ± 5rand. ± 170syst.) keV.

I. INTRODUCTION AND THEORY

According to the theory of special relativity proposed
by Albert Einstein in 1905, the postulate that the speed
of light c is a universal constant, together with the prin-
ciple of relativity, requires particles moving at velocities
close to c to exhibit non-classical relationships between
their velocity, momentum, and kinetic energy.

In Newtonian mechanics, the velocity v, momentum
p, and kinetic energy K of a particle with mass m are
related by

p = mv (1)

and

K =
1

2
mv2 =

p2

2m
. (2)

However, in special relativity, we are instead given

p = mγv, (3)

where γ = 1/
√

1− β2 for β = v/c. Furthermore, the
energy E of the particle is made up of E = K + mc2,
where mc2 is the rest mass energy, and E is related to p
by the relativistic dispersion equation

E2 = p2c2 +m2c4.

Using the dispersion relation and Eq. 3, we obtain

K = mc2 (γ − 1) ' pc, (4)

where the last approximation holds in the ultrarelativis-
tic limit of p� mc.[1]

In this experiment, electrons are accelerated by a mag-
netic field B in a circular path of radius ρ. The Lorentz
force yields the equation of motion

dp

dt
=

(
v

ρ

)
p =

evB

c
,

so p and B are related by

p =
(eρ
c

)
B. (5)
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At the end of the path, the electrons go through a
velocity selector. The electric field E across the selec-
tor plates necessary to cancel the Lorentz force and have
electrons pass through satisfies eE − evB/c = 0, or

β = E/B (6)

Therefore, B determines the momentum and measure-
ment of E for a given B yields the velocity.

II. EXPERIMENTAL SETUP

II.1. Apparatus Details

The experimental setup is shown schematically in
Fig. 1 below, including typical electron trajectories.

FIG. 1. A schematic of the apparatus. The velocity selector
is labelled VS, and the diode detetor PIN. Adapted from [2].

The main apparatus is located inside a spherical elec-
tromagnet, shown above with a circle. The top hemi-
sphere of the magnet can be lifted by a block and tackle
to reveal the vacuum chamber (∼ 10−5 torr) in the lower
half. The magnet itself consists of a stack of circular coils
connected in series. Current is provided by a Sorenson
power supply delivering up to 5.5 A and 200 V.

The 90Sr/90Y source decays by beta emission, with
electrons up to 2.27 MeV. These electrons are acceler-
ated into helical paths by the magnetic field, and a set of
baffles at the 90◦ position restricts the electrons to a cir-
cular stream towards a Bertran 7.5kV velocity selector.
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The source and the selector are located along the di-
ameter of the magnet, separated by (40.6± 0.4) cm. The
selector consists of two parallel aluminum blocks sepa-
rated by a distance (0.180 ± 0.003) cm, with a length
of 10 cm. The selector is powered by a Canberra high-
voltage power supply capable of delivering up to 5000 V.

After passing through the selector, the electrons hit
the Hamamatsu PIN Si diode detector. The detector is
biased with a battery voltage source at 67.5 V, and the
signal is sent through a Canberra preamp, an Ortec am-
plifier, and then into the multi-channel analyzer (MCA),
which bins the data in 2048 channels.

To measure the magnetic field, we use an RFL Hall
effect gaussmeter, which is zeroed each lab session with
calibration magnets and placed in the center of the mag-
net on top of the vacuum chamber. It is held in place by
a plastic block and oriented horizontally so as to obtain
a maximum field measurement.

Despite a conventional cooling fan, the resistance in the
coils gradually changes due to heating by high currents.
For fields up to 120 G (∼ 5 A), this effect is alleviated
by setting the power supply to current limit, leading to
a time-variation in B for a typical 300 s acquisition of
only about 0.2 G. However, above 120 G, the power sup-
ply is on voltage limit and B varies by approximately
2 G over a typical aquisition. Spatial non-uniformities in
the magnetic field are also present, and testing the field
at various points around the trajectory of the electrons,
we find a deviation of about 1 G. In summary, all our
field measurements have an error of 0.5 G except for the
highest, centered at 124 G with an error of 1.5 G.

II.2. MCA Calibration

In order to use the MCA to obtain kinetic energy data,
we need to determine the gain due to the preamp and
amplifier. We use a 133Ba calibration source, which emits
gamma rays with known energies.[3]

The 133Ba source is placed next to the PIN diode and
left to acquire on the MCA overnight with the magnetic
field off. The resulting spectrum is shown in Fig. 2.

The notable features of the spectrum are 1) the 31 keV
electron-capture K-shell x-ray peak, 2) the photopeaks
of 133Ba, and 3) the associated Compton edges due to
scattering in the detector, with energy 2E2/(mc2 + 2E).
To determine the relationship between energies at the
detector and the MCA channel numbers, we do a linear fit
to the channel numbers of the identified features against
their published energy values, by

T = αn+ ε, (7)

where α is the amplification ratio, and ε is some possible
offset at channel 0.

We restrict our attention to the peaks, since they can
be identified with a much better precision (approx. ±3
channels), and the five photopeaks already provide an
excellent fit. We find α = (0.4546± 0.0014) keV/channel
and ε = (−0.2± 1.7) (i.e., no offset).

FIG. 2. The MCA spectrum of 133Ba, with counts on log
scale. Dotted lines mark the identified peaks, labelled by its
energy T as given in [3]. Arrows mark identified Compton
edges, also labelled by their associated T .

III. PROCEDURE AND DATA

III.1. Measurements of Velocity

According to Eq. 6, we can determine the electron ve-
locity for each B by measuring the voltage V0 on the
selector such that these electrons pass through. But be-
cause there is an inevitable spread in the velocities, we
observe appreciable electron counts throughout a range
on the order of 1 kV. Thus, to determine V0, we acquire
counts for at least five voltages in this range, and we fit
the variation in count rates to a Gaussian model in or-
der to find the voltage with maximum signal, which we
identify with V0.

For an acquisition time T , total count N , and trial
voltage V , we compute the count rate µ = N/T±

√
N/T .

The variation of µ with V is fit to a Gaussian model, and
the mean of the Gaussian is identified with V0, with an
error given by the error of the fit. Since the background is
relatively uniform throughout the values of B and V , we
include it in our analysis. These results are summarized
below in Table I.

TABLE I. Determinations of V0 and E by Gaussian fit. We
use E = V0/d, where d = (0.180± 0.003) cm is the separation
distance of the selector plates.

B Field (G) Voltage V0 (kV) E Field (G)
70 2.30 ± 0.02 42.6 ± 0.4
75 2.63 ± 0.02 48.8 ± 0.4
80 2.83 ± 0.03 52.4 ± 0.5
85 3.15 ± 0.02 58.3 ± 0.4
90 3.35 ± 0.02 62.2 ± 0.5
95 3.63 ± 0.02 67.3 ± 0.4
100 3.92 ± 0.02 72.6 ± 0.3
105 4.18 ± 0.02 77.5 ± 0.4
110 4.41 ± 0.03 81.8 ± 0.5
115 4.71 ± 0.04 87.3 ± 0.7
120 4.99 ± 0.03 92.4 ± 0.6
124 5.23 ± 0.04 96.9 ± 0.7
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N.B.: the measurements were taken over several ses-
sions, and the data sets were {120, 110, 100 G} using an
aquisition time of 300 s; {90, 80, 70 G} with 300 s; {124,
115, 105, 95 G} with 180 s; and {85, 75 G} with 180 s.
However, it was later determined the set {90, 80, and
70 G} yielded significant deviation from the trends in V0
established by the others (e.g., a break in monotonicity
for β). Because this was attributed to an error in the ze-
roing and placement of the gaussmeter, the data set was
retaken. Recalculation using the new data set removed
the deviation, so the data was replaced.

III.2. Measurements of Energy

To determine the electron kinetic energy for each B,
we locate the peak of an MCA spectrum taken at V0, and
determine the energy K of the peak.

We obtain 10-minute acquisitions at each value of B,
setting the velocity selector to V0 as calculated from Sec-
tion III.1 to obtain maximum signal. In general, the lo-
cation of the peak is not strongly dependent on the (sys-
tematic) error in V0, as long as the energy spectrum is
acquired reasonably close (within ∼ 0.1 kV) to V0. Nev-
ertheless, since we retook data for {70, 80, 90 G}, we
decided to replace the corresponding data for the energy
spectra as well. Thus, note that the data presented here
use the retaken spectra.

To find the peaks, Kevin Galiano developed the al-
gorithm of fitting the MCA spectra to the sum of a
Lorentzian with a linear background. The specific fit
function due to KG is

y =
C1 · |γ| /π

(x− n)2 + γ2
+ C2x+ C3

where y is the number of counts in channel x. We are
interested in n, which gives the peak of the spectrum,
along with its fit error. The results are summarized in
Table II below.

TABLE II. Determinations of channel number and K using
a Lorentzian fit with a linear background. The values for K
were calculated as K = αn+ ε, as given by Eq. 7.

B Field (G) Channel No. n Energy K (keV)
70 144.3 ± 1.0 317.3 ± 0.7
75 173.2 ± 1.0 380.9 ± 0.5
80 183.7 ± 1.0 403.8 ± 0.5
85 215.5 ± 1.1 473.9 ± 0.4
90 224.5 ± 1.1 493.7 ± 0.5
95 259.5 ± 1.2 570.7 ± 0.1
100 283.0 ± 1.2 622.2 ± 0.3
105 307.4 ± 1.3 675.9 ± 0.3
110 330.0 ± 1.3 725.8 ± 0.4
115 354.0 ± 1.4 778.6 ± 0.3
120 378.6 ± 1.5 832.7 ± 0.4
124 390.1 ± 1.5 857.8 ± 0.6

IV. ANALYSIS OF DATA AND ERRORS

IV.1. Momentum vs. Velocity and e/m

From Eq. 1 and 3, we have the classical and relativistic
relations between p and v. Using Eq. 5 and 6,

β =
E

B
=

e

m

( ρ
c2

)
B

classically, while relativistically,

βγ =
E/B√

1− (E/B)2
=

e

m

( ρ
c2

)
B.

Using the data in Table I, we plot β and γβ against
B in Fig. 3, along with their linear fits. We find the
relativistic model fits with χ2

10 = 0.99 (45%) and the
classical model with χ2

10 = 2.29 (1.1%).

FIG. 3. Relativistic and classical linear fits of velocity vs.
momentum data, from top to bottom. Note the dual axes,
with relativistic on the left and classical on the right.

From the fit parameters, we can also extract an estima-
tion of e/m using the slopes. Using ρ = (20.3 ± 0.2) cm
for the radius of curvature, the relativistic model predicts
e/m = (1.25±0.05)×1011 C/kg, while the classical model
predicts e/m = (4.38± 0.18)× 1010 C/kg.

We note, however, that the above fit procedure yields
y-intercept values which do not exist in either theories.
The offsets are likely due to a systematic shift in our
data, and to quantify the possible effects this might have
on our results, we turn to a different analysis technique.

In Fig. 4, we plot the ratios e/m = (βγ)/B ·c2/ρ for the
relativistic case, and e/m = β/B · c2/ρ for the classical.
This effectively eliminates the offset from consideration,
and so is essentially equivalent to fitting y = ax.

The values of e/m that result are the error-weighted
average of the trend.[4] For the relativistic case, we get
e/m = (1.562±0.008)×1011 C/kg, while for the classical
case, we get e/m = (1.062± 0.003)× 1011 C/kg.

Observing the χ2 values from the first analysis method,
as well as the trends in e/m in the second method, we
conclude the relativistic model is more self-consistent
than the classical one. We therefore decide to use the
relativistic model to obtain a best estimate of e/m.
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FIG. 4. Estimates of e/m for varying values of B. The rela-
tivistic case is on top and the classical below. For reference,
the true value of e/m is plotted on top.

Taking the error-weighted average from the two ap-
proaches, we find e/m = (1.554±0.008)×1011 C/kg. By
considering the differences between the two methods, we
arrive at an estimation of the lower bound on the sys-
tematic error on e/m of approximately 0.31× 1011C/kg.

IV.2. Velocity vs. Energy and mc2

From Eq. 2 and 4, we have the classical and relativistic
relations between K and v. Using Eq. 5 and 6, we have

K =
1

2
mc2(E/B)2 =

1

2
mc2β2

classically, and, in special relativity,

K = mc2
(

1/
√

1− (E/B)2 − 1
)

= mc2(γ − 1).

Using the data in Table II, we perform a linear fit to
K against γ − 1 and β2. (We do not show the plot here,
but it is analogous to Fig. 3 from Section IV.1. See also
KG’s lab report for a plot of the inverted fit.)

Using the model y = ax + b, the fit parameters for
the relativistic case are a = 771± 28 and b = −64 ± 11,
with a χ2

10 = 0.60 (82%). For the relativistic case, we get
a = 1077± 39 and −276± 20, with a χ2

10 = 1.93 (3.7%).
From the fit parameters, we can also extract an esti-

mation of mc2 using the slopes. Hence, the relativistic
model predicts mc2 = (771± 28) keV, while the classical
model predicts mc2 = (2150± 76) keV.

Again, we note a systematic offset evident in the linear
fits. We therefore take the same approach as in Section
IV.1, and examine the trend of mc2 for various B as
predicted by the relativistic and classical models.

In Fig. 5, we plot the ratios K/(γ−1) for the relativistic
case and 2K/β2 for the classical. This effectively elimi-
nates the offset from consideration, and so is essentially
equivalent to fitting y = ax.

The values of mc2 that result are the error-weighted
average of the trend.[4] For the relativistic case, we get
mc2 = (607± 5) keV, while for the classical case, we get
e/m = (1016± 5) keV.

FIG. 5. Estimates of mc2 for varying values of B. The clas-
sical case is on top and the relativistic below. For reference,
the true value of mc2 is plotted on the bottom.

Observing the χ2 values from the first analysis method,
as well as the trends in e/m in the second method, we
conclude again that the relativistic model is more self-
consistent than the classical one. Thus, we again use the
relativistic model to obtain a best estimate of mc2.

Taking the error-weighted average from the two ap-
proaches, we find mc2 = (612 ± 5) keV. By considering
the differences between the two methods, we arrive at an
estimation of the lower bound on the systematic error on
mc2 of approximately 164 keV.

IV.3. Systematic Error

The systematic offset observed above was explored in
terms of the possibility of a scaling factor for the B field
measurements due to calibration error. It was found the
∼ 0.1 kV shifts in V0 values from predicted can be roughly
explained by a factor of 0.95 (Note that at these fields,
V0 is essentially linear in B.)

Nevertheless, the final offset remains anomalous, since
the effect is not simply a down-shift, but rather a non-
linear rescaling of γ at high B fields, causing a “tilt”
in the slope of the linear fits. This is readily seen in the
slight but monotonic variations in the relativistic e/m es-
timates in Fig.4 and Fig.5. Determining the exact source
of the systematic error remains difficult.

V. CONCLUSIONS

Comparing the classical and relativistic models, we
find the former deviates significantly to χ2 probabilities
well below 10%. Fig. 4 and 5 show a strong, monotonic
dependence of the classical predictions for e/m and mc2

on the momentum of the electrons. The data strongly
suggests special relativity is more self-consistent.

Using the relativistic model, we find the charge-to-
mass ratio to be e/m = (1.55 ± 0.008rand. ± 0.31syst.)×
1011 C/kg and the electron mass to be mc2 = (612 ±
5rand. ± 170syst.) keV. Compared to the established val-
ues of e/m = 1.759× 1011 C/kg and mc2 = 511 keV,
these are errors of about 10% and 20%, respectively.
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