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We demonstrate the experimental implementation of two-qubit superdense coding on liquid-state
NMR spectroscopy of chloroform. To verify the success of the protocol, we employ the technique
of quantum state tomography to reconstruct the density matrix of the state for the preparation,
encoding, and decoding stages. We quantify the quality of the implementation using the fidelity
measure of quantum states, and we observe the decrease in fidelity upon introducing a delay between
encoding and decoding. The analysis technique we use for tomography and a description of error
estimations are discussed in detail.

I. INTRODUCTION AND THEORY

The implementation of simple quantum logic gates and
algorithms using techniques in nuclear magnetic reso-
nance (NMR) spectroscopy is explored in Junior Lab Ex-
periment 49,[1] an account of which is summarized in [2].
In the same spirit, we develop here the ubiquitous tech-
nique of quantum state tomography for NMR quantum
information processing and then utilize this technique to
demonstrate the implementation of the quantum super-
dense coding protocol.

A very similar experiment has been performed in 2000
by Fang, et al., and our experimental procedures and
interpretations will be in loose parallel to their work in
[3]. Any notation not defined in this paper will follow
the conventions used in [2].

I.1. Superdense Coding

We first introduce the Bell states for two qubits:

|Φ+〉 =
|00〉+ |11〉√

2
|Ψ+〉 =

|01〉+ |10〉√
2

|Φ−〉 =
|00〉 − |11〉√

2
|Ψ−〉 =

|01〉 − |10〉√
2

.

Suppose now that Alice holds the first qubit and Bob
holds the second qubit, and that Alice and Bob prepare
their qubits in the initial state |Φ+〉.

Superdense coding is a quantum protocol which allows
Alice to send to Bob two bits of classical information by
performing operations only on her own qubit.[4] In fact,
Alice needs only apply one of four operations to send the
classical bitstrings 00, 01, 10, and 11:

00 : I1|Φ+〉 = |Φ+〉 01 : X2
1 |Φ+〉 = |Ψ+〉

10 : Z2
1 |Φ+〉 = |Φ−〉 11 : Y 2

1 |Φ+〉 = |Ψ−〉,
(1)

up to irrelevant overall phases and where the subscript
1 denotes that nothing is done to qubit 2. We see that
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Alice can change the mutual quantum state into any of
the four Bell states; this is the encoding stage. Since
the Bell states form a complete orthonormal basis, Alice
can then send her qubit to Bob, and Bob can simply
measure the total system in the Bell basis to determine
the operation Alice applied; this is the decoding stage.

To prepare the mutual state, we use the sequence[4]

U = Y2UτX2X1, (2)

which maps the initial state |00〉 into |Ψ+〉, up to an over-
all phase. After the preparation, we apply the encoding
sequence precisely as defined in Equation 1, except we
take Z2

1 = X2
1Y

2
1 , up to an overall phase.

To measure the encoded state, we actually perform the
inverse of the preparation sequence, and then measure in
the computational basis. We use the inverse

U† = X1X2U
3
τ Y 2. (3)

It can be shown that U† maps the Bell states to

U†|Φ+〉 = |00〉 U†|Ψ+〉 = |01〉
U†|Φ−〉 = |10〉 U†|Ψ−〉 = |11〉,

up to irrelevant overall phases. The bitstring labels of
the computational basis then precisely gives the encoded
classical bitstrings, completing the decoding process.

I.2. Quantum State Tomography

Measurement in NMR is made primarily through the
FID readout. Suppose that the state after the compu-
tation is described by the density matrix ρ. The most
general measurement we can do is to first apply a read-
out operator R and then measure the FID of one spin.[4]

The FID due to spin k after application of readout R
is mathematically described by[1]

Vk(R; t) = − tr
[
e−iHtRρR†eiHt

(
iσ(k)
x + σ(k)

y

)]
. (4)

The superscripts on the Pauli operators mean they act
only on spin k. In this lab, k = 1 denotes qubit 1 (hy-
drogen) and k = 2 qubit 2 (carbon).
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When working with the pseudo-pure state ρ created via
temporal averaging, then we sum the FIDs of the tem-
poral averaging process and use the linearity of trace.[5]
Since we will deal only with pseudo-pure states in super-
dense coding, we use ρ to denote the simulated ρ.

If ρ is expected to be diagonal (i.e., a mixed state in-
volving only the pseudo-pure computational basis states),
then it suffices to obtain the FID readouts V1(X1; t) and
V2(X2; t) and solve a system of equations to reconstruct
the diagonals of ρ, as was done in [2].

Generalizing these readout operators allows the full re-

construction of the density matrix, a technique called
quantum state tomography.[4] To perform state tomogra-
phy, we utilize the following FID readouts, which accord-
ing to [6] is a sufficient set.

We recall that Equation 4 gives two oscillators at fre-
quencies ωk±J/2, with amplitudes proportional to differ-
ences among the matrix elements ρij . As in Experiment
49, we are interested in the Fourier-transformed FIDs,
which gives two spectral lines with integrals equal to the
(complex) amplitudes. Using Equation 5, we get a sys-
tem of equations for reconstructing ρ.

V1(X1; t) = [(ρ11 − ρ33) + i(−ρ31 − ρ13)] ei(ω1−J/2)t + [(ρ22 − ρ44) + i(−ρ42 − ρ24)] ei(ω1+J/2)t

V1(X2; t) = [(ρ14 − ρ23) + i(−ρ13 − ρ24)] ei(ω1−J/2)t + [(ρ23 − ρ14) + i(−ρ24 − ρ13)] ei(ω1+J/2)t

V2(X1; t) = [(ρ14 − ρ32) + i(−ρ12 − ρ34)] ei(ω2−J/2)t + [(ρ32 − ρ14) + i(−ρ12 − ρ34)] ei(ω2+J/2)t

V2(X2; t) = [(ρ11 − ρ22) + i(−ρ21 − ρ12)] ei(ω2−J/2)t + [(ρ33 − ρ44) + i(−ρ43 − ρ34)] ei(ω2+J/2)t

V1(Y1; t) = i(ρ31 − ρ13 − ρ11 + ρ33)ei(ω1−J/2)t + i(+ρ42 − ρ24 − ρ22 + ρ44)ei(ω1+J/2)t

V1(Y2; t) = i(ρ13 − ρ14 + ρ23 − ρ24)ei(ω1−J/2)t + i(−ρ14 − ρ13 − ρ23 − ρ24)ei(ω1+J/2)t

V2(Y1; t) = i(ρ14 − ρ12 − ρ34 + ρ32)ei(ω2−J/2)t + i(−ρ12 − ρ14 − ρ32 − ρ34)ei(ω2+J/2)t

V2(Y2; t) = i(ρ21 − ρ12 − ρ11 + ρ22)ei(ω2−J/2)t + i(+ρ43 − ρ34 − ρ33 + ρ44)ei(ω2+J/2)t

(5)

II. EXPERIMENTAL SETUP AND
PROCEDURE

The experiment runs on a Bruker Advance 200 NMR
spectrometer with a sample of 7% by weight 13CHCl3 dis-
solved in d6-acetone and controlled through a MATLAB
interface, as described in [1] and summarized in [2].

The calibration procedure for this experiment involves
the calculation of phase references φ1 and φ2, 90◦ pulse
widths for H and C, and normalization factors Nc and N
to account for the effects of the amplifier circuits. We use
the same procedure for these calibrations as in [2] (except
that the step size used for pulse width calibration is 0.1 µs
instead of 0.25 µs).

For this experiment, we find φ1 = 231.44◦ ± 0.15◦

and φ2 = 234.46◦ ± 0.24◦. The 90◦ pulse widths are
found to be (9.30± 0.08)µs for H and (8.31± 0.08)µs for
C. The normalization factors are Nc = 3.16 ± 0.05 and
N = (6.38 ± 0.03) × 10−9. For consistency, we use the
hardcoded value of J = 214.9613 Hz used by the MAT-
LAB interface in temporal averaging.

To verify the superdense coding protocol, we perform
four sets of tomography experiments:

1. One on the pseudo-pure initial state |00〉;

2. One on the prepared state |Φ+〉;

3. One for each encoded Bell state, for classical mes-
sages 0, 1, 2, and 3; and

4. One for each decoded computational basis state, for
classical messages 0, 1, 2, and 3.

This yields a total of ten tomograms, which consists of
eight FIDs each (4 readouts × 2 nuclei), following Equa-
tion 5. Each FID takes approximately three minutes to
acquire (3 sequences for one temporal averaged FID ×
50 s delay per pulse sequence). Thus, total runtime is
approximately four hours.

Finally, we also perform an experiment exploring the
effects of a delay ∆t on the order of the decoherence time
T ∗2 ≈ 0.2 s [2] between encoding and decoding. Because
of time restrictions, we decide to perform this only on
the superdense coding of the message 00, which should
be representative of the others.

The procedure is a standard tomograph, but repeated
with varying values of ∆t. We use the values between 0 s
to 0.5 s, in steps of 0.02 s, yielding 26 tomograms with a
runtime of ten hours, covered in two runs: one going up
to 0.2 s and the second (two days later but with the same
calibration parameters) from there up to 0.5 s.

III. ANALYSIS OF ERRORS

We introduce several modifications to the error esti-
mates of the peak integrals beyond the simple statistical
uncertainties used in [2], to account for the systematic
uncertainties going into the fit procedure of Section IV.
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First, because we now generally expect zero peaks,
which are not sharply localized in frequency, we increase
the integration range to 25 Hz, using trapezoidal integra-
tion as before. We sample the standard deviation of the
FID outside the peak regions and use that value as uni-
form uncertainties on all points in the FID, which are
propagated into the integral.

To account for the signal-to-noise ratio and for any pos-
sible zero offset in the FID, we also compute the (com-
plex) RMS of the signal outside the peaks, treating the
left and right peaks separately. This is then multiplied
by twice the integration range and added as systematic
uncertainty into the peak integral uncertainties.

Because of the ambiguity of which integration range to
use, we also compute the peak integrals using the previ-
ous 5 Hz range used in [2] and in calibrations, along with
the standard 50 Hz range used by the MATLAB inter-
face. We take half the difference between the two results
as an additional source of systematic uncertainty.

Next, we consider possible systematic effects due to
pulsing. Although the statistical uncertainty on the
parabolic fit y = ax2 + bx+ c is generally small, there is
a discrepancy between the pulse widths xl and xr given
by the left and right peaks respectively. In quoting pulse
widths, we provide the average of x = (xl + xr)/2 and
include the discrepancy as the systematic part of δx.

However, the effect of this uncertainty on the peak inte-
grals has been largely ignored in [2]. As a first approxima-
tion, we estimate the signal error δy due to this discrep-
ancy as δy = (al + ar)(δx)2. This formula comes about
by taking the second-order Taylor expansion 2a(δx)2 of
the fits about their respective maxima to determine the
change in y as a result of δx. We then average the ef-
fects from both the left and right peaks to arrive at our
formula for δy.

For this experiment, we find δy = 5.7× 103 for H and
δy = 380 for C. The units are arbitrary because we have
not yet normalized the peak integrals; however this is
on the order of 1% of a maximal peak integral, which is
approximately 106 and 105 for H and C, respectively.

Since this is a systematic error from pulsing, we also
want to take into account the number of pulses applied.
Using some rough estimation, we count 15 rotation gates
used in temporal averaging. In the preparation sequence
U , we use one for H and two for C (and the same for U†).
For encoding, we use two gates for encoding 01 and 11
and four gates (from Z2

1 = X2
1Y

2
1 ) for encoding 10 (none

are used for 00).

We then compute the total systematic uncertainty due
to pulsing as the number of gates squared times δy.
Again, the square comes from the fact that as the pulse
errors accumulate, the signal loss is roughly quadratic.

Finally, we multiply both the peak integrals and their
total uncertainties by the normalization factors N and
Nc, as done in [2]. We also propagate the statistical
uncertainties in N and Nc by quadrature, separately for
real and imaginary parts.

IV. DENSITY MATRIX RECONSTRUCTION

The process described in Section III gives us 16 com-
plex peak integrals (8 FIDs with left and right peak in-
tegrals) with statistical and systematic uncertainties ac-
counted for, which we can use for reconstructing ρ.

One way to solve the tomography problem is to simply
perform a least-squares linear solution. We find, how-
ever, that such a solution does not generally satisfy the
constraints that density matrices be positive-semidefinite
(Hermitian with nonnegative eigenvalues) operators with
trace one. Thus, a general complex matrix is not a suit-
able model for our data.

Rather, following a suggestion in [7], we introduce the
matrix T , defined to be

T =

x1 x2 + ix11 x3 + ix12 x4 + ix13
0 x5 x6 + ix14 x7 + ix15
0 0 x8 x9 + ix16
0 0 0 x10


where the xk are real parameters. If we now define ρ =
T †T , we are guaranteed that ρ is positive-semidefinite.
Furthermore, since the diagonals of ρ are real, we can
save imposing the trace condition until the very end. The
trade-off, of course, is that our fit needs to be nonlinear,
as the elements of ρ which go into Equation 5 are no
longer linear functions of the parameters xj .

In order to avoid fitting complex numbers, we sepa-
rate the 16 complex amplitudes from Section III into real
and imaginary components, giving us a data set Yj of 32
points, which we fit to the 16 parameters xk. The fit-
ting function takes in the xk, generates T , computes ρ,
and applies Equation 5 with real and imaginary parts
separated to obtain the fit function Y j .

All of this is done numerically, and we use an algorithm
for nonlinear chi-square fitting with uncertainties written
by Brahms,[8] which runs on native MATLAB procedures
and provides uncertainty estimates δxj on the parame-
ters. From the uncertainties δxj , we easily obtain the
uncertainties δT on T . We then define the uncertainty
on ρ to be δρ = (δT )†T + T †(δT ), taking the absolute
value of the real and imaginary parts.

Finally, although we can judge the quality of the result
by simply plotting the density matrix as a 3D bar graph
and checking for qualitative agreement with the predicted
result, we pursue a more quantitative measure using the
the fidelity of the state. As defined by [4], the fidelity of
a density matrix with respect to an expected pure state
ψ is given by

F (|ψ〉) =
√
〈ψ|ρ|ψ〉. (6)

To estimate the uncertainty on the fidelity, we take

δF =

√
|〈ψ|Re[δρ]2|ψ〉|

2F
. (7)

Detailed properties of the fidelity as a measure of quan-
tum state distances are given in [4], but we note here that
the closer the fidelity is to one, the closer ρ is to |ψ〉.
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V. RESULTS AND DISCUSSION

We show an explicit fit for the prepared state |Ψ+〉 to
all 32 Yj in Figure 1 below, to illustrate the nature of
the fitting function and to demonstrate the error bars
resulting from the error estimates of Section III.

FIG. 1. A fit of the 32 peak integrals for the tomography of
|Φ+〉, where the red circles represent the measured data set
Yj and the blue squares represent the fitted points Y j . Note
the partitioning into groups of four: the partitions represent
the readouts X1, Y1, X2, and Y2 for H followed by the same
for C. Within each partition, we order the four points by real
left and right peaks and then imaginary left and right peaks.

For the initial pure state |00〉, we find that we obtain a
fidelity of 0.89±0.06 with a χ2

16 = 0.55, while for the pre-
pared state |Φ+〉, we have a fidelity of 0.83± 0.07 and a

χ2
16 = 0.48. We do not have room to accomodate the den-

sity matrix plots for these two preparation tomographs,
but we note that they are similar to their corresponding
states in the encoding and decoding of 00 in Figures 2
and 3.

Although these states are not used to demonstrate su-
perdense coding, they do give very useful benchmarks for
the fidelity measure. From the tomography of |00〉, which
involves no pulse sequences, we see that temporal averag-
ing and the readout operator already accounts for a large
drop in fidelity from the ideal case. From the tomogra-
phy of |Φ+〉, we also see that U has an effect on fidelity
as well, and that the creation of pseudo-Bell states incurs
a cost in quality, possibly due to the Uτ gate used.

We show the real parts of the reconstructed ρ for each
of the classical messages of the encoding protocol in Fig-
ure 2, where we expect to see density matrices corre-
sponding to the four Bell states. Below that, in Figure 3,
we show the real parts of the reconstructed ρ for each of
the classical messages after decoding. We expect to ob-
tain the computational basis states. We do not show the
imaginary parts of ρ because they are generally less than
0.1 and do not show any interesting or notable structure.

For clarity, we also do not show the error bars on the
density matrices. However, they are generally between
5% to 40%, with most elements settling at around 15%
of the total density matrix element. It is clear that due
to our generous estimation of errors in Section III, our
tomographed density matrices are not very precise. Nev-
ertheless, at least on the qualitative level, we can see that
they clearly demonstrate the correctness, if not robust-
ness, of superdense coding.

(a)Encoding 00 (b)Encoding 01 (c)Encoding 10 (d)Encoding 11

FIG. 2. Real part of the reconstructed density matrix for the superdense encoding protocol.

(a)Decoding 00 (b)Decoding 01 (c)Decoding 10 (d)Decoding 11

FIG. 3. Real part of the reconstructed density matrix for the superdense decoding protocol.
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In fact, we can do a little better by employing the mea-
sure of fidelity. In Tables I and II, we show fidelity mea-
sures between different states, according to Equations 6
and 7. We see that, at least between the possible al-
ternatives, the one we expect to get wins out in terms of
fidelity. This, of course, points to an objective method for
Bob to decode Alice’s message: he computes the fidelity
of the decoded state against each of the computational
basis states and takes the one with the highest fidelity.

Code χ2
16 F (|Φ+〉) F (|Ψ+〉) F (|Φ−〉) F (|Ψ−〉)

00 .49 .82± .07 .36± .12 .25± .07 .36± .06
01 .86 .54± .16 .68± .14 .45± .08 .22± .08
10 1.51 .51± .22 .47± .13 .67± .08 .27± .21
11 1.70 .41± .16 .47± .09 .40± .05 .66± .05

TABLE I. Chi-squared of fits and fidelity measures across
different possible Bell states for the encoded density matrices.
The dominant fidelity is bolded for reference.

Code χ2
16 F (|00〉) F (|01〉) F (|10〉) F (|11〉)

00 .66 .86± .06 .41± .08 .23± .03 .20± .07
01 .71 .55± .08 .73± .10 .17± .09 .37± .09
10 1.23 .33± .07 .27± .12 .72± .23 .55± .02
11 .75 .42± .07 .13± .09 .49± .17 .75± .06

TABLE II. Chi-squared of fits and fidelity measures across
different possible basis states for the decoded density matri-
ces. The dominant fidelity is bolded for reference.

It is interesting to note that at the decoding stage, the
poorest fit and the one with (arguably) the lowest fidelity
is the |10〉 state, which is subjected to the most pulses,
due to the Z2

1 used in the encoding stage. This suggests
that a 180◦ pulse is not the same as two 90◦ pulses, which
could cause the encoding of 10 to be more noisy.

Another interesting fact is that the fidelity goes up
upon decoding. This could mean that applying the in-
verse circuit U† actually undoes some of the accumulated
errors. In fact, between encoding and decoding of the
message 00, |00〉 went down by only 0.03 in fidelity.

This leads to our final experiment: the introduction of

a delay time between encoding and decoding, to see if
we can get this fidelity to go down as we add a delay ∆t
between setting up |Φ+〉 and decoding to recover |00〉.

A plot of the fidelity of the decoded state against |00〉
as a function of ∆t is shown in Figure 4. Note that
the point at 60 ms is suspect because the fit does not
converge well on that point; nevertheless, it occupies an
unremarkable point on the trend and seems to fit in well,
so we retain it for completeness.

The general trend is, as expected, a decreasing func-
tion of ∆t, with an apparent asymptotic value above 0.5.
However, it is more interesting to note the possibility that
there is additional structure in the plot, with noticeable
upward fluctuations around 40 ms, 80 ms, 340 ms, and
460 ms. Their origins are unknown.

FIG. 4. Fidelity of the decoded |00〉 state as a function of
the delay time ∆t between encoding and decoding. Note the
apparent structure in the trend.

VI. CONCLUSIONS

In meeting the terms of our proposal, we succeeded in
developing a technique for performing quantum state to-
mography on NMR of two qubits and demonstrated its
use in implementing the superdense coding protocol. We
also introduced the use of fidelity as a means of quanti-
fying the quality of tomographed states and showed that
it is a valid measure by verifying its decay as we subject
the system to decoherence.
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